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Abstract—The growing demand for efficient video compression
solutions underscores the increasing significance of research into
coding optimization on multi-core systems.

This paper presents the implementation and performance
analysis of a multithreaded video encoder developed in Java and
optimized for modern multi-core processors. The encoder per-
forms intra-frame compression of raw YUV 4:2:0 video using a
frame-based parallelism approach. This method maximizes CPU
core utilization while minimizing thread management overhead.

Tests were conducted on five platforms equipped with multi-
core processors from Intel and AMD. The application’s execution
time was measured for varying numbers of frames. The obtained
results demonstrate effective scalability of the encoder as the
number of processed frames increases, confirming that Java can
be an effective tool for implementing parallel video compression
on multi-core systems.

I. INTRODUCTION

HE INCREASING demand for efficient video processing
Tcontinues to test the limits of contemporary computing
platforms. Video compression is a computationally intensive
task, particularly for high-resolution, high frame rate con-
tent, and achieving real-time or near-real-time performance is
often essential in applications such as live streaming, video
surveillance, or large-scale media processing pipelines. While
dedicated hardware accelerators like GPUs are often used for
such workloads [1], many real-world applications, especially
in server environments, rely on general-purpose CPUs [2].
Numerous studies have explored video encoding algorithms
and performance optimization techniques, providing valuable
insights into how encoding efficiency can be improved through
software and hardware-level enhancements [1], [3], [4].

This paper presents a performance-oriented evaluation of
multithreaded video compression on modern server-grade pro-
cessors using a custom-built encoder implemented in Java.
Java was selected for its platform independence and robust
support for multithreading, which facilitated the implementa-
tion of parallel processing using native concurrency constructs
and stream-based data pipelines [5]. The encoder performs
intra-frame compression on raw YUV 4:2:0 video and supports
both single-threaded and multithreaded execution. Frame-
based parallelism was used instead of block-based parallelism
to more effectively leverage the high thread counts available on
the test machines. This approach ensures sufficient workload
distribution across all cores, avoiding granularity limitations
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that arise when the number of parallel tasks is too low. It
also reduces overhead associated with thread management,
allowing the encoder to scale efficiently with increasing core
counts. Our evaluation measures the total encoding time,
starting after the video data is fully loaded into memory and
ending once the encoded file has been written to disk. As
such, the performance results reflect not only the efficiency
of parallel computation, but also task distribution overhead,
thread synchronization, and serial operations such as output
handling.

Five multicore platforms were tested, representing a range
of CPU architectures and core counts. By comparing execution
time and speedup across varying frame counts, we explore the
strengths and limitations of each system in handling a realistic,
mixed-parallelism workload. Rather than isolating idealized,
parallel-only scenarios, our measurements reflect the practical
end-to-end behavior of CPU-based encoding workflows.

This article is organized as follows. Section II begins with
an introduction to video encoding and compression, describing
the basic concepts and challenges of reducing video data while
maintaining visual quality. It explains how video encoders con-
vert raw video images into a compressed format through algo-
rithmic steps. It also highlights the computational requirements
of these processes and the importance of parallelization for
performance. Section III presents the main video compression
algorithms such as discrete cosine transform (DCT), quantiza-
tion and motion estimation. It explains how these techniques
reduce redundancy and achieve efficient compression. Section
IV describes the architecture and internal structure of the
encoder, detailing the modular design, block-based processing
and the implementation of parallelization at the frame level
using multithreading in Java. Section V describes the test
environment and methodology, followed by an analysis of the
performance results on different systems, comparing single-
threaded and multithreaded execution. Section VI presents the
conclusions from the experiments and possible directions for
further research.

II. VIDEO ENCODING AND COMPRESSION

Video encoding is a computationally demanding process
that transforms raw, high-resolution video data into a com-
pressed format suitable for storage and transmission [6].
This transformation typically involves a series of algorithmic
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steps designed to reduce redundancy and preserve perceptual
quality.

At the core of most intra-frame compression schemes lies

a block-based pipeline consisting of the following opera-
tions [7]:

1) Block partitioning: the input frame is divided into
fixed-size macroblocks (e.g., 16x16 pixels).

2) Transformation: each macroblock is converted into the
frequency domain using the Discrete Cosine Transform
(DCT), enabling more efficient compression by concen-
trating signal energy into fewer coefficients.

3) Quantization: DCT coefficients are scaled and rounded
to reduce precision, effectively discarding less perceptu-
ally significant data.

4) Entropy coding: quantized coefficients are compressed
using techniques such as run-length encoding (RLE) to
eliminate statistical redundancy.

These stages are computationally expensive, particularly at
high resolutions and frame rates. As a result, the performance
of a video encoder depends not only on the efficiency of these
individual algorithms, but also on how well they are inte-
grated into a scalable execution model. Our approach focuses
on frame-based parallelization, where individual frames are
processed concurrently across multiple threads.

III. TRANSFORM CODING OF VIDEO DATA AND
REDUCTION ALGORITHMS

RANSFORM coding is one of the more computationally

demanding steps in the encoding pipeline. This process
converts visual data from the spatial domain — where it’s
represented as individual pixel values — into the frequency
domain. It is used to isolate the components that carry the most
visual weight from those that can be discarded with minimal
impact on perceived quality [7]. After the transformation, we
reduce the precision of the less important frequency compo-
nents using quantization. This lossy compression step shrinks
the file size drastically, without noticeably affecting how the
video looks [8]. The specific technique we rely on for this
transformation is the Discrete Cosine Transform (DCT).

A. Discrete Cosine Transform (DCT)

DCT represents a block of an image as a weighted sum
of cosine waves oscillating at different frequencies. This shift
from pixels to frequency components reveals a useful pattern:
most of the important visual information tends to concentrate
in just a few low-frequency coefficients, while the high-
frequency components — often corresponding to fine detail or
noise — can be compressed more aggressively or discarded
entirely [9].

In a typical implementation, the process begins by dividing
each video frame into smaller blocks, usually 8 x 8 pixels. Each
of these blocks is then transformed using the 2D DCT. The
result is a matrix of coefficients that describe the contribution
of each frequency component within that block — the top-left
corner of the matrix holds the DC (average) value, while the
remaining entries describe increasingly fine detail as you move
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outward. This structure allows us to perform quantization more
intelligently. Because human vision is more sensitive to low-
frequency information, we can preserve those coefficients with
higher precision and apply more aggressive compression to the
less perceptible high frequencies.

Mathematically, the 2D DCT (type II, O(N?)) for a block
of size N x N is defined as follows:

Y (u,v) = ¢ -ofu) - c(v) Z fow

where:

e Y(u,v) is the resulting DCT coefficient at frequency
indices (u,v),

e f(x,y) is the input pixel value at position (x,y),

o c(k) = % when k = 0, and c¢(k) = 1 otherwise,

o N is the block size, typically 8.

One practical advantage of DCT is its separability. The
2D transform can be broken down into a 1D DCT applied
first along the rows, and then along the columns (or vice
versa). This significantly reduces the computational complex-
ity (O(N?)) [10].

B. DCT quantization

Once each image block has been transformed via DCT,
we’re left with a set of frequency-domain coefficients. While
many of these coefficients — especially the ones representing
higher frequencies — contribute little to the perceived visual
quality, they still occupy space. Quantization reduces this
burden by simplifying these values.

The process involves dividing each coefficient by a corre-
sponding value from a quantization matrix and then rounding
the result:

Q(x) = round (Q4 ac S) (2)
irj

Where:

e Q(x) is the quantized coefficient,

o x is the original DCT coefficient,

e @, ; is the value from the quantization matrix at position

(i,4),

o S is a scaling factor that adjusts the compression strength.

The quantization matrix controls how much detail is kept
in different parts of the image. Lower numbers in the matrix
correspond to low-frequency components, which capture the
general structure and smooth areas of the image—these are
preserved more accurately. Higher numbers are assigned to
high-frequency components, which represent fine details or
noise; these are compressed more aggressively.
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A commonly used quantization matrix from the JPEG
standard is shown below.

[16 11 10 16 24 40 51 61 ]
12 12 14 19 26 58 60 55
14 13 16 24 40 57 69 56
14 17 22 29 51 87 80 62

18 22 37 56 68 109 103 77
24 35 55 64 81 104 113 92
49 64 78 87 103 121 120 101
72 92 95 98 112 100 103 99

C. Motion estimation and compensation

To further improve compression efficiency, modern video
encoders utilize the similarity between consecutive frames
through motion estimation and compensation - processes that
analyze changes between frames and predict what future
frames will look like based on the movement of visual
elements.

Step 1: Motion estimation. This step works by comparing
two consecutive frames to identify macroblocks that have
shifted in position. This is usually done by searching within a
defined area of the reference frame to find the best match for
each block in the current frame. Metrics such as the Sum of
Absolute Differences (SAD) or Mean Squared Error (MSE)
are used to evaluate how well blocks match. The result of this
process is a set of motion vectors, which describe how far and
in which direction each block has moved.

Step 2: Motion compensation. This step then uses these
vectors to shift corresponding blocks in the reference frame
to approximate the content of the current frame. Instead of
encoding the full frame, the encoder stores only the difference
(residual) between the predicted and the actual frame. This
residual typically contains less information than the original
frame.

IV. ENCODER ARCHITECTURE

The encoder was developed in Java with a modular,
object-oriented structure, centered around the core classes
VideoObjectPlane, Macroblock, Bitstream, and
VOPHeader. Each video frame is divided into 16x16 pixel
macroblocks, which are then processed using DCT, quantiza-
tion, and run-length encoding (RLE).

The encoder supports two execution modes: sequen-
tial and multithreaded. In the multithreaded version,
the ExecutorService from java.util.concurrent
package is used to create a thread pool that matches the num-
ber of available CPU cores. This allows each video frame to
be processed independently in a separate thread, significantly
improving encoding performance. Synchronization is handled
through Future objects, which act as placeholders for the
results of asynchronous tasks and allow results to be collected
in order. .

Two levels of parallelism were considered during implemen-
tation: frame-level and block-level. Frame-level parallelism
was chosen and implemented, with each frame processed in a
separate thread. This approach aligned well with the hardware

characteristics of the testing environment. While block-level
parallelism was explored as a finer-grained alternative, it
proved to be significantly slower, and thus not integrated into
the final encoder.

The encoder processes raw video data stored in a YUV
4:2:0 file with a resolution of 1920x1080 pixels. This format
represents color using separate planes for luminance (Y) and
chrominance (U and V), with chrominance subsampled by
a factor of two in both horizontal and vertical dimensions.
Video frames are loaded using the 1oadYUVFrames func-
tion, which reads the raw data from disk, partitions it into
individual frames, and converts them to BufferedImage
objects in RGB color space. Each frame is then encoded as
an I_VOP object, that then segments the image into individual
macroblocks and compresses each block.

Each Macroblock object stores pixel data in the same
4:2:0 structure, with luminance represented by 256 samples
and each chrominance channel by 64 samples, correspond-
ing to the 16x16 luminance block and its associated 8x8
chrominance blocks. These values are stored in separate
one-dimensional arrays for Y, U, and V components and
are extracted during macroblock construction from the input
RGB image via internal color space conversion. Internally,
the pixel data is converted from RGB to YUYV, then further
processed into 8x8 sub-blocks for DCT and quantization. The
DCT implementation uses separable 2D transformation with
precomputed cosine values for efficiency and relies on double-
precision arithmetic to maintain numerical accuracy during
computation.

The result of the encoding process is stored in a binary
file, written using the custom Bitstream class. The out-
put maintains the original block order thanks to the use
of Future.get (). This ensures deterministic output even
when block processing completes in a different order.

The entire encoder was developed using standard Java
libraries, including java.util.concurrent for paral-
lelism and java.awt for image handling. Due to its modular
architecture, the system can be extended in the future with
additional features, such as motion estimation for inter-frame
coding or dynamic encoding strategies based on scene char-
acteristics like Video Objects.

V. PERFORMANCE ANALYSIS AND TEST ENVIRONMENT

To evaluate the performance of the implemented video en-
coder, a series of experiments were conducted on five different
computing platforms, each equipped with a distinct server-
grade processor, selected to cover a range of architectures,
core counts, and generations:

¢ C1 (2 x Intel Xeon E5-2670 v3) — 12 cores / 24 threads,
Haswell-EP architecture (22nm), released in 2014. An
older platform with limited performance compared to
modern standards.

e C2 (2 x Intel Xeon Gold 5218R) — 20 cores / 40 threads,
Cascade Lake Refresh (14 nm), released in 2020. A mid-
range server CPU offering a good balance between core
count and clock speed.
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e C3 (2 x Intel Xeon Gold 6342) — 24 cores / 48 threads,
Ice Lake-SP architecture (10 nm), released in 2021. With
improved single-core performance and memory band-
width support.

e C4 (2 x Intel Xeon Platinum 8358) — 32 cores / 64
threads, Ice Lake-SP architecture (10nm), released in
2021. High core density suited for parallel workloads.

e C5 (2 x AMD EPYC 9654) — 96 cores / 192 threads,
Zen 4 (Genoa) architecture (5nm), released in 2022. A
high-end processor optimized for massive parallelism and
throughput.

Each system processed a standard YUV 4:2:0 1920x1080
video file, with frame counts ranging from 250 to 2000 for
the multithreaded (MT) version' and from 250 to 1500 for
the single-threaded (ST) version?.Depending on the number
of frames, the size of the test files ranged from approximately
741 MB (250 frames) to 5.79 GB (2000 frames). This setup
allowed for the analysis of both raw execution time and
scalability with increasing frame counts.

To quantify the performance gain achieved through paral-
lelization, the speedup factor was calculated as the ratio of the
single-threaded execution time to the multithreaded execution
time: T

ST
S Torr 3)

The performance data collected across all tested platforms
is summarized in Table I, which lists the minimum measured
processing times for both single-threaded and multithreaded
executions, along with the computed speedup values. The
results are presented for increasing frame counts, illustrating
how processing time scales with input size. Speedup values
were calculated using equation 3. Figures 1 and 2 visualize
the speedup and multithreaded processing times across all sys-
tems, respectively, providing a comparative view of scalability
and performance gains with increased threading and workload.

In general, all platforms demonstrate substantial perfor-
mance improvements from multithreading, with speedup tend-
ing to increase as the number of processed frames grows.
However, the magnitude and consistency of these gains vary
across systems. Notably, some platforms—particularly C2 C3,
and C4 —exhibit a plateau or even slight dip in speedup
around mid-range workloads (750 to 1250 frames), indicating
that the platforms either have, or are close to reaching their
maximum effective scaling and additional workload does not
significantly improve parallel efficiency.

Among the tested systems, the AMD-based C5 platform
initially shows comparatively modest speedup at lower frame
counts, which can be attributed to the overhead of managing
its high core count when the workload is too small to fully
utilize the available resources. As the workload increases, C5’s
scalability becomes clear: by the 1500-frame mark, it surpasses

A total of 2000 frames were used for testing. This value was chosen as
the maximum that could be reliably loaded across all systems, given their
varying available memory.

2Due to long processing times, the single-threaded encoder was only tested
up to 1500 frames.
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all other platforms in speedup and achieves the shortest
absolute multithreaded processing time at 2000 frames.

Interestingly, C1, despite having the poorest absolute
processing times, consistently achieves the second highest
speedup among all platforms. This indicates that while its
baseline single-threaded performance is limited, it benefits
strongly from multithreading, scaling efficiently with increas-
ing workload size. In contrast, C2, which also features fewer
cores, shows more consistent but lower speedup values,
plateauing around 12 to 13x speedup across moderate to
larger frame counts, and is eventually outperformed by more
scalable systems at higher workloads. C3 and C4 occupy a
middle ground, maintaining solid and relatively stable speedup
improvements that exceed those of C2, yet do not quite match
the top-end performance and scalability of C5 at larger frame
counts.

VI. CONCLUSION

This work aimed to design, implement, and evaluate a
multithreaded video encoder in Java, capable of leveraging the
parallel processing capabilities of modern multicore architec-
tures. In pursuit of this goal, the encoder was developed using
a modular, object-oriented structure in Java, incorporating key
compression techniques such as the Discrete Cosine Trans-
form (DCT), quantization, and run-length encoding (RLE).
The implementation included both single-threaded and multi-
threaded execution modes, enabling a comparative analysis of
encoding performance across different hardware platforms and
workloads. A series of experiments were conducted using five
server-grade systems with varying core counts and architec-
tures, focusing on the encoding of high-definition video data in
YUYV 4:2:0 format. The objective was to assess the scalability
and performance benefits of multithreading for video encoding
tasks.

The results demonstrate that all tested CPUs benefit sub-
stantially from multithreading, with speedups ranging from
approximately 9x to over 24x depending on the system and
workload. Among them, C5 achieved the highest ultimate
acceleration, peaking above 24x speedup at larger frame
counts, demonstrating superior scalability on high concurrency
workloads despite initially modest gains at lower frame counts.
Notably, C1, despite having the slowest absolute processing
times, consistently achieved the second highest speedup, indi-
cating efficient scaling relative to its baseline single-threaded
performance. C3 and C4 maintained solid and relatively
stable speedup improvements, exceeding C2’s generally lower
but consistent gains, which plateaued around 12 to 13x at
moderate to large workloads.

Importantly, our measurements suggest that raw core count
alone does not fully explain observed performance. Differ-
ences in scaling behavior—especially how speedup grows
with frame count—highlight the role of thread orchestration
overhead and single-threaded efficiency in managing output
and coordination. For example, while C5 initially showed
lower speedup at small workloads, it ultimately surpassed
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TABLE I
MINIMUM ST AND MT PROCESSING TIMES AND COMPUTED SPEEDUP ACROSS ALL MACHINES
Frame Count Cc1l c2 c3 c4 C5
Tst [s] Twmr [s] Speedup [ Tst [s] Twmr [s] Speedup | Tst [s] Twmr [s] Speedup | Tst [s] Twmr [s] Speedup | Tst [s] Twmt [s] Speedup

250 63.702 5.029 12.67 44.123 4.302 10.26 41.383 3.446 12.01 42.752 4.044 10.57 63.874 7.043 9.07

500 141.167 8.460 16.69 87.956 7.202 12.21 83.395 6.052 13.78 85.934 6.769 12.70 | 131.713  10.498 12.55

750 202.898 11.845 17.13 133.306  10.776 12.37 126.079 8.991 14.02 129.259 9.562 13.52 192.968  11.030 17.49

1000 272.535 15.743 17.31 178.920 14.486 12.35 169.908 12.423 13.68 | 174.848 13.445 13.00 | 276.740 14.447 19.16

1250 352270  18.463 19.08 | 225432 18.109 1245 | 213.186 15.155 14.07 | 219300 16.112 13.61 | 357.784 18.686 19.15

1500 433261 22.316 19.41 268.962  21.007 12.80 | 254.934 17.570 14.51 263.189  18.791 14.01 405.174  16.592 24.42

2000 - 29.113 - - 29.340 - - 23.829 - - 25.065 - - 23.697 -

25 |- n

20 -1 |—e—C1
= f - C2
E —e—C3
o 1510 1|—+C4

C5
10 + n
| | | | | |
250 500 750 1000 1250 1500
Frame Count
Fig. 1. Speedup of multithreaded processing across all machines
T

= e Cc1l
o m-C2
g
= —e—C3
= —+—C4
= c5

\ \
750 1000

| |
1250 1500

Frame Count

Fig. 2. Comparison of minimum multithreaded processing times for all tested systems

several peers as the workload increased, indicating superior
multithreaded scalability at higher concurrency levels.

These findings validate the need to assess full-system
performance for parallel workloads, not just isolated paral-
lel execution paths. In practice, the total encoding time is
shaped by how well a CPU balances parallel computation
with effective scheduling and sequential operations. This is
especially relevant in environments without GPU acceleration,
where CPUs must take on end-to-end responsibility for video
processing.

Future research may explore extending the encoding model
to include inter-frame prediction, introducing more complex

dependencies across frames, or benchmarking hybrid CPU-
GPU configurations. Nevertheless, this work offers a grounded
perspective on CPU capabilities in a realistic, high-throughput
encoding pipeline, and serves as a foundation for further
exploration of CPU-bound multimedia processing.
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