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Abstract—The growing demand for efficient video compression
solutions underscores the increasing significance of research into
coding optimization on multi-core systems.

This paper presents the implementation and performance
analysis of a multithreaded video encoder developed in Java and
optimized for modern multi-core processors. The encoder per-
forms intra-frame compression of raw YUV 4:2:0 video using a
frame-based parallelism approach. This method maximizes CPU
core utilization while minimizing thread management overhead.

Tests were conducted on five platforms equipped with multi-
core processors from Intel and AMD. The application’s execution
time was measured for varying numbers of frames. The obtained
results demonstrate effective scalability of the encoder as the
number of processed frames increases, confirming that Java can
be an effective tool for implementing parallel video compression
on multi-core systems.

I. INTRODUCTION

T
HE INCREASING demand for efficient video processing

continues to test the limits of contemporary computing

platforms. Video compression is a computationally intensive

task, particularly for high-resolution, high frame rate con-

tent, and achieving real-time or near-real-time performance is

often essential in applications such as live streaming, video

surveillance, or large-scale media processing pipelines. While

dedicated hardware accelerators like GPUs are often used for

such workloads [1], many real-world applications, especially

in server environments, rely on general-purpose CPUs [2].

Numerous studies have explored video encoding algorithms

and performance optimization techniques, providing valuable

insights into how encoding efficiency can be improved through

software and hardware-level enhancements [1], [3], [4].

This paper presents a performance-oriented evaluation of

multithreaded video compression on modern server-grade pro-

cessors using a custom-built encoder implemented in Java.

Java was selected for its platform independence and robust

support for multithreading, which facilitated the implementa-

tion of parallel processing using native concurrency constructs

and stream-based data pipelines [5]. The encoder performs

intra-frame compression on raw YUV 4:2:0 video and supports

both single-threaded and multithreaded execution. Frame-

based parallelism was used instead of block-based parallelism

to more effectively leverage the high thread counts available on

the test machines. This approach ensures sufficient workload

distribution across all cores, avoiding granularity limitations

that arise when the number of parallel tasks is too low. It

also reduces overhead associated with thread management,

allowing the encoder to scale efficiently with increasing core

counts. Our evaluation measures the total encoding time,

starting after the video data is fully loaded into memory and

ending once the encoded file has been written to disk. As

such, the performance results reflect not only the efficiency

of parallel computation, but also task distribution overhead,

thread synchronization, and serial operations such as output

handling.

Five multicore platforms were tested, representing a range

of CPU architectures and core counts. By comparing execution

time and speedup across varying frame counts, we explore the

strengths and limitations of each system in handling a realistic,

mixed-parallelism workload. Rather than isolating idealized,

parallel-only scenarios, our measurements reflect the practical

end-to-end behavior of CPU-based encoding workflows.

This article is organized as follows. Section II begins with

an introduction to video encoding and compression, describing

the basic concepts and challenges of reducing video data while

maintaining visual quality. It explains how video encoders con-

vert raw video images into a compressed format through algo-

rithmic steps. It also highlights the computational requirements

of these processes and the importance of parallelization for

performance. Section III presents the main video compression

algorithms such as discrete cosine transform (DCT), quantiza-

tion and motion estimation. It explains how these techniques

reduce redundancy and achieve efficient compression. Section

IV describes the architecture and internal structure of the

encoder, detailing the modular design, block-based processing

and the implementation of parallelization at the frame level

using multithreading in Java. Section V describes the test

environment and methodology, followed by an analysis of the

performance results on different systems, comparing single-

threaded and multithreaded execution. Section VI presents the

conclusions from the experiments and possible directions for

further research.

II. VIDEO ENCODING AND COMPRESSION

Video encoding is a computationally demanding process

that transforms raw, high-resolution video data into a com-

pressed format suitable for storage and transmission [6].

This transformation typically involves a series of algorithmic
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steps designed to reduce redundancy and preserve perceptual

quality.

At the core of most intra-frame compression schemes lies

a block-based pipeline consisting of the following opera-

tions [7]:

1) Block partitioning: the input frame is divided into

fixed-size macroblocks (e.g., 16×16 pixels).

2) Transformation: each macroblock is converted into the

frequency domain using the Discrete Cosine Transform

(DCT), enabling more efficient compression by concen-

trating signal energy into fewer coefficients.

3) Quantization: DCT coefficients are scaled and rounded

to reduce precision, effectively discarding less perceptu-

ally significant data.

4) Entropy coding: quantized coefficients are compressed

using techniques such as run-length encoding (RLE) to

eliminate statistical redundancy.

These stages are computationally expensive, particularly at

high resolutions and frame rates. As a result, the performance

of a video encoder depends not only on the efficiency of these

individual algorithms, but also on how well they are inte-

grated into a scalable execution model. Our approach focuses

on frame-based parallelization, where individual frames are

processed concurrently across multiple threads.

III. TRANSFORM CODING OF VIDEO DATA AND

REDUCTION ALGORITHMS

T
RANSFORM coding is one of the more computationally

demanding steps in the encoding pipeline. This process

converts visual data from the spatial domain — where it’s

represented as individual pixel values — into the frequency

domain. It is used to isolate the components that carry the most

visual weight from those that can be discarded with minimal

impact on perceived quality [7]. After the transformation, we

reduce the precision of the less important frequency compo-

nents using quantization. This lossy compression step shrinks

the file size drastically, without noticeably affecting how the

video looks [8]. The specific technique we rely on for this

transformation is the Discrete Cosine Transform (DCT).

A. Discrete Cosine Transform (DCT)

DCT represents a block of an image as a weighted sum

of cosine waves oscillating at different frequencies. This shift

from pixels to frequency components reveals a useful pattern:

most of the important visual information tends to concentrate

in just a few low-frequency coefficients, while the high-

frequency components — often corresponding to fine detail or

noise — can be compressed more aggressively or discarded

entirely [9].

In a typical implementation, the process begins by dividing

each video frame into smaller blocks, usually 8×8 pixels. Each

of these blocks is then transformed using the 2D DCT. The

result is a matrix of coefficients that describe the contribution

of each frequency component within that block — the top-left

corner of the matrix holds the DC (average) value, while the

remaining entries describe increasingly fine detail as you move

outward. This structure allows us to perform quantization more

intelligently. Because human vision is more sensitive to low-

frequency information, we can preserve those coefficients with

higher precision and apply more aggressive compression to the

less perceptible high frequencies.

Mathematically, the 2D DCT (type II, O(N4)) for a block

of size N ×N is defined as follows:

Y (u, v) =
1

4
· c(u) · c(v)

N−1
∑

x=0

N−1
∑

y=0

f(x, y)

· cos

(

(2x+ 1) · u · π

2N

)

· cos

(

(2y + 1) · v · π

2N

)

(1)

where:

• Y (u, v) is the resulting DCT coefficient at frequency

indices (u, v),
• f(x, y) is the input pixel value at position (x, y),
• c(k) = 1√

2
when k = 0, and c(k) = 1 otherwise,

• N is the block size, typically 8.

One practical advantage of DCT is its separability. The

2D transform can be broken down into a 1D DCT applied

first along the rows, and then along the columns (or vice

versa). This significantly reduces the computational complex-

ity (O(N3)) [10].

B. DCT quantization

Once each image block has been transformed via DCT,

we’re left with a set of frequency-domain coefficients. While

many of these coefficients — especially the ones representing

higher frequencies — contribute little to the perceived visual

quality, they still occupy space. Quantization reduces this

burden by simplifying these values.

The process involves dividing each coefficient by a corre-

sponding value from a quantization matrix and then rounding

the result:

Q(x) = round

(

x

Qi,j · S

)

(2)

Where:

• Q(x) is the quantized coefficient,

• x is the original DCT coefficient,

• Qi,j is the value from the quantization matrix at position

(i, j),
• S is a scaling factor that adjusts the compression strength.

The quantization matrix controls how much detail is kept

in different parts of the image. Lower numbers in the matrix

correspond to low-frequency components, which capture the

general structure and smooth areas of the image—these are

preserved more accurately. Higher numbers are assigned to

high-frequency components, which represent fine details or

noise; these are compressed more aggressively.
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A commonly used quantization matrix from the JPEG

standard is shown below.
























16 11 10 16 24 40 51 61
12 12 14 19 26 58 60 55
14 13 16 24 40 57 69 56
14 17 22 29 51 87 80 62
18 22 37 56 68 109 103 77
24 35 55 64 81 104 113 92
49 64 78 87 103 121 120 101
72 92 95 98 112 100 103 99

























C. Motion estimation and compensation

To further improve compression efficiency, modern video

encoders utilize the similarity between consecutive frames

through motion estimation and compensation - processes that

analyze changes between frames and predict what future

frames will look like based on the movement of visual

elements.

Step 1: Motion estimation. This step works by comparing

two consecutive frames to identify macroblocks that have

shifted in position. This is usually done by searching within a

defined area of the reference frame to find the best match for

each block in the current frame. Metrics such as the Sum of

Absolute Differences (SAD) or Mean Squared Error (MSE)

are used to evaluate how well blocks match. The result of this

process is a set of motion vectors, which describe how far and

in which direction each block has moved.

Step 2: Motion compensation. This step then uses these

vectors to shift corresponding blocks in the reference frame

to approximate the content of the current frame. Instead of

encoding the full frame, the encoder stores only the difference

(residual) between the predicted and the actual frame. This

residual typically contains less information than the original

frame.

IV. ENCODER ARCHITECTURE

The encoder was developed in Java with a modular,

object-oriented structure, centered around the core classes

VideoObjectPlane, Macroblock, Bitstream, and

VOPHeader. Each video frame is divided into 16x16 pixel

macroblocks, which are then processed using DCT, quantiza-

tion, and run-length encoding (RLE).

The encoder supports two execution modes: sequen-

tial and multithreaded. In the multithreaded version,

the ExecutorService from java.util.concurrent

package is used to create a thread pool that matches the num-

ber of available CPU cores. This allows each video frame to

be processed independently in a separate thread, significantly

improving encoding performance. Synchronization is handled

through Future objects, which act as placeholders for the

results of asynchronous tasks and allow results to be collected

in order. .

Two levels of parallelism were considered during implemen-

tation: frame-level and block-level. Frame-level parallelism

was chosen and implemented, with each frame processed in a

separate thread. This approach aligned well with the hardware

characteristics of the testing environment. While block-level

parallelism was explored as a finer-grained alternative, it

proved to be significantly slower, and thus not integrated into

the final encoder.

The encoder processes raw video data stored in a YUV

4:2:0 file with a resolution of 1920x1080 pixels. This format

represents color using separate planes for luminance (Y) and

chrominance (U and V), with chrominance subsampled by

a factor of two in both horizontal and vertical dimensions.

Video frames are loaded using the loadYUVFrames func-

tion, which reads the raw data from disk, partitions it into

individual frames, and converts them to BufferedImage

objects in RGB color space. Each frame is then encoded as

an I_VOP object, that then segments the image into individual

macroblocks and compresses each block.

Each Macroblock object stores pixel data in the same

4:2:0 structure, with luminance represented by 256 samples

and each chrominance channel by 64 samples, correspond-

ing to the 16×16 luminance block and its associated 8×8

chrominance blocks. These values are stored in separate

one-dimensional arrays for Y, U, and V components and

are extracted during macroblock construction from the input

RGB image via internal color space conversion. Internally,

the pixel data is converted from RGB to YUV, then further

processed into 8x8 sub-blocks for DCT and quantization. The

DCT implementation uses separable 2D transformation with

precomputed cosine values for efficiency and relies on double-

precision arithmetic to maintain numerical accuracy during

computation.

The result of the encoding process is stored in a binary

file, written using the custom Bitstream class. The out-

put maintains the original block order thanks to the use

of Future.get(). This ensures deterministic output even

when block processing completes in a different order.

The entire encoder was developed using standard Java

libraries, including java.util.concurrent for paral-

lelism and java.awt for image handling. Due to its modular

architecture, the system can be extended in the future with

additional features, such as motion estimation for inter-frame

coding or dynamic encoding strategies based on scene char-

acteristics like Video Objects.

V. PERFORMANCE ANALYSIS AND TEST ENVIRONMENT

To evaluate the performance of the implemented video en-

coder, a series of experiments were conducted on five different

computing platforms, each equipped with a distinct server-

grade processor, selected to cover a range of architectures,

core counts, and generations:

• C1 (2 x Intel Xeon E5-2670 v3) – 12 cores / 24 threads,

Haswell-EP architecture (22 nm), released in 2014. An

older platform with limited performance compared to

modern standards.

• C2 (2 x Intel Xeon Gold 5218R) – 20 cores / 40 threads,

Cascade Lake Refresh (14 nm), released in 2020. A mid-

range server CPU offering a good balance between core

count and clock speed.
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• C3 (2 x Intel Xeon Gold 6342) – 24 cores / 48 threads,

Ice Lake-SP architecture (10 nm), released in 2021. With

improved single-core performance and memory band-

width support.

• C4 (2 x Intel Xeon Platinum 8358) – 32 cores / 64

threads, Ice Lake-SP architecture (10 nm), released in

2021. High core density suited for parallel workloads.

• C5 (2 x AMD EPYC 9654) – 96 cores / 192 threads,

Zen 4 (Genoa) architecture (5 nm), released in 2022. A

high-end processor optimized for massive parallelism and

throughput.

Each system processed a standard YUV 4:2:0 1920x1080

video file, with frame counts ranging from 250 to 2000 for

the multithreaded (MT) version1 and from 250 to 1500 for

the single-threaded (ST) version2.Depending on the number

of frames, the size of the test files ranged from approximately

741 MB (250 frames) to 5.79 GB (2000 frames). This setup

allowed for the analysis of both raw execution time and

scalability with increasing frame counts.

To quantify the performance gain achieved through paral-

lelization, the speedup factor was calculated as the ratio of the

single-threaded execution time to the multithreaded execution

time:

S =
TST

TMT
. (3)

The performance data collected across all tested platforms

is summarized in Table I, which lists the minimum measured

processing times for both single-threaded and multithreaded

executions, along with the computed speedup values. The

results are presented for increasing frame counts, illustrating

how processing time scales with input size. Speedup values

were calculated using equation 3. Figures 1 and 2 visualize

the speedup and multithreaded processing times across all sys-

tems, respectively, providing a comparative view of scalability

and performance gains with increased threading and workload.

In general, all platforms demonstrate substantial perfor-

mance improvements from multithreading, with speedup tend-

ing to increase as the number of processed frames grows.

However, the magnitude and consistency of these gains vary

across systems. Notably, some platforms—particularly C2 C3,

and C4 —exhibit a plateau or even slight dip in speedup

around mid-range workloads (750 to 1250 frames), indicating

that the platforms either have, or are close to reaching their

maximum effective scaling and additional workload does not

significantly improve parallel efficiency.

Among the tested systems, the AMD-based C5 platform

initially shows comparatively modest speedup at lower frame

counts, which can be attributed to the overhead of managing

its high core count when the workload is too small to fully

utilize the available resources. As the workload increases, C5’s

scalability becomes clear: by the 1500-frame mark, it surpasses

1A total of 2000 frames were used for testing. This value was chosen as
the maximum that could be reliably loaded across all systems, given their
varying available memory.

2Due to long processing times, the single-threaded encoder was only tested
up to 1500 frames.

all other platforms in speedup and achieves the shortest

absolute multithreaded processing time at 2000 frames.

Interestingly, C1, despite having the poorest absolute

processing times, consistently achieves the second highest

speedup among all platforms. This indicates that while its

baseline single-threaded performance is limited, it benefits

strongly from multithreading, scaling efficiently with increas-

ing workload size. In contrast, C2, which also features fewer

cores, shows more consistent but lower speedup values,

plateauing around 12 to 13× speedup across moderate to

larger frame counts, and is eventually outperformed by more

scalable systems at higher workloads. C3 and C4 occupy a

middle ground, maintaining solid and relatively stable speedup

improvements that exceed those of C2, yet do not quite match

the top-end performance and scalability of C5 at larger frame

counts.

VI. CONCLUSION

This work aimed to design, implement, and evaluate a

multithreaded video encoder in Java, capable of leveraging the

parallel processing capabilities of modern multicore architec-

tures. In pursuit of this goal, the encoder was developed using

a modular, object-oriented structure in Java, incorporating key

compression techniques such as the Discrete Cosine Trans-

form (DCT), quantization, and run-length encoding (RLE).

The implementation included both single-threaded and multi-

threaded execution modes, enabling a comparative analysis of

encoding performance across different hardware platforms and

workloads. A series of experiments were conducted using five

server-grade systems with varying core counts and architec-

tures, focusing on the encoding of high-definition video data in

YUV 4:2:0 format. The objective was to assess the scalability

and performance benefits of multithreading for video encoding

tasks.

The results demonstrate that all tested CPUs benefit sub-

stantially from multithreading, with speedups ranging from

approximately 9x to over 24x depending on the system and

workload. Among them, C5 achieved the highest ultimate

acceleration, peaking above 24× speedup at larger frame

counts, demonstrating superior scalability on high concurrency

workloads despite initially modest gains at lower frame counts.

Notably, C1, despite having the slowest absolute processing

times, consistently achieved the second highest speedup, indi-

cating efficient scaling relative to its baseline single-threaded

performance. C3 and C4 maintained solid and relatively

stable speedup improvements, exceeding C2’s generally lower

but consistent gains, which plateaued around 12 to 13× at

moderate to large workloads.

Importantly, our measurements suggest that raw core count

alone does not fully explain observed performance. Differ-

ences in scaling behavior—especially how speedup grows

with frame count—highlight the role of thread orchestration

overhead and single-threaded efficiency in managing output

and coordination. For example, while C5 initially showed

lower speedup at small workloads, it ultimately surpassed
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TABLE I
MINIMUM ST AND MT PROCESSING TIMES AND COMPUTED SPEEDUP ACROSS ALL MACHINES

Frame Count C1 C2 C3 C4 C5

TST [s] TMT [s] Speedup TST [s] TMT [s] Speedup TST [s] TMT [s] Speedup TST [s] TMT [s] Speedup TST [s] TMT [s] Speedup

250 63.702 5.029 12.67 44.123 4.302 10.26 41.383 3.446 12.01 42.752 4.044 10.57 63.874 7.043 9.07

500 141.167 8.460 16.69 87.956 7.202 12.21 83.395 6.052 13.78 85.934 6.769 12.70 131.713 10.498 12.55

750 202.898 11.845 17.13 133.306 10.776 12.37 126.079 8.991 14.02 129.259 9.562 13.52 192.968 11.030 17.49

1000 272.535 15.743 17.31 178.920 14.486 12.35 169.908 12.423 13.68 174.848 13.445 13.00 276.740 14.447 19.16

1250 352.270 18.463 19.08 225.432 18.109 12.45 213.186 15.155 14.07 219.300 16.112 13.61 357.784 18.686 19.15

1500 433.261 22.316 19.41 268.962 21.007 12.80 254.934 17.570 14.51 263.189 18.791 14.01 405.174 16.592 24.42

2000 – 29.113 – – 29.340 – – 23.829 – – 25.065 – – 23.697 –

250 500 750 1000 1250 1500

10

15

20

25
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Fig. 1. Speedup of multithreaded processing across all machines
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Fig. 2. Comparison of minimum multithreaded processing times for all tested systems

several peers as the workload increased, indicating superior

multithreaded scalability at higher concurrency levels.

These findings validate the need to assess full-system

performance for parallel workloads, not just isolated paral-

lel execution paths. In practice, the total encoding time is

shaped by how well a CPU balances parallel computation

with effective scheduling and sequential operations. This is

especially relevant in environments without GPU acceleration,

where CPUs must take on end-to-end responsibility for video

processing.

Future research may explore extending the encoding model

to include inter-frame prediction, introducing more complex

dependencies across frames, or benchmarking hybrid CPU-

GPU configurations. Nevertheless, this work offers a grounded

perspective on CPU capabilities in a realistic, high-throughput

encoding pipeline, and serves as a foundation for further

exploration of CPU-bound multimedia processing.
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