

Abstract—This paper tackles the challenge of adaptive level

generation in video games, focusing on generating content that

aligns with player skill. A key limitation of procedural content

generation (PCG) is achieving semantic control. Specifically,

generating levels of varying difficulty with limited training

data. To address this problem, we propose a hybrid approach

combining Large Language Models (LLMs) and Generative

Adversarial Networks (GANs). An LLM is used to generate a

diverse, difficulty-labeled dataset of Snake game levels, which

are validated with A* pathfinding to ensure playability. These

levels serve as training data for GANs that are able to effi-

ciently generate new levels. The system is evaluated through

user study and playability metrics. Results show that the LLM-

assigned difficulty labels correlate strongly with human percep-

tion. The achieved playability is 87% for easy levels and 36%

for hard levels. Our findings demonstrate that the hybrid

LLM-GAN approach enables scalable and semantically con-

trolled content generation, balancing quality, adaptability, and

computational efficiency.

Index Terms—procedural content generation, generative ad-

versarial networks, large language models, video games, playa-

bility, adaptive systems.

I. INTRODUCTION

HE greatest advances in the software industry today are

due to the ability to adapt to the personal needs and

preferences of individual users. Functionalities such as Net-

flix’s recommendation system or Duolingo’s customizable

lessons have given companies an edge over the competition.

In recent years, new large language models (LLMs) have

also been developed to answer users’ questions. Similar

principles are being explored in the development of video

games, particularly through the automatic generation of con-

tent based on players' skills and behavior [1].

T

A key challenge in adaptive content generation is seman-

tic control, i.e. the ability to create content with specific, in-

terpretable characteristics (such as difficulty level) that align

with human perception and intent, rather than producing sta-

tistically similar outputs. Traditional procedural content gen-

eration methods face challenges. They either rely on manu-

ally created rules that limit creativity or require extensive

datasets that may not exist for specific domains. And even

 This work was co-funded by the European Union through the National

Recovery and Resilience Plan (NPOO), under the project AutoEvolve –

Automated Evolution of Software, project code: NPOO.C3.2.R3-I1.05.0073.

when successful, they often lack the semantic understanding

to produce content with certain meaningful characteristics.

This paper continues research into adaptive software sys-

tems [2,3], extending from dynamic software updating to

adaptive content generation. Using the game Snake as a con-

trolled environment, we investigated three approaches for

AI-driven level generation: standalone GANs, standalone

LLMs and a novel hybrid LLM-GAN approach.

Our research specifically examines whether modern AI

approaches can provide reliable semantic control for diffi-

culty adaptation. Initial experiments with GANs trained on

limited data (15 levels) demonstrated severe overfitting and

poor generalization. Pure LLM generation showed excellent

quality control through semantic understanding but proved

computationally expensive for real-time applications. This

motivated our hybrid approach: using LLMs to bootstrap di-

verse training datasets for GAN training, combining the se-

mantic precision of language models with the computational

efficiency of adversarial networks. We validated the seman-

tic control capabilities through user study, demonstrating a

strong correlation between LLM-assigned difficulty labels

and human perception. The focus is to determine whether

the proposed hybrid pipeline can achieve the benefits of both

approaches while mitigating their individual limitations.

II. RELATED WORK

The field of procedural content generation (PCG) for

video games [4] has made significant progress through the

application of artificial intelligence techniques. This section

presents the main approaches to game level generation: tra-

ditional PCG methods and their scalability limitations, gen-

erative model applications, and playability assurance tech-

niques that ensure generated content meets functional re-

quirements.

A. Procedural Content Generation

Togelius et al. [5] define procedural content generation

(PCG) as the algorithmic creation of game content with lim-

ited or indirect user input. Some games such as Minecraft1 use

1 https://www.minecraft.net/

Towards Game Level Generation Through LLM and GAN

Filip Martinović, Danijel Mlinarić, Juraj Dončević, Agneza Krajna, Ivica Botički
0009-0000-1347-4377, 0000-0002-5248-7223, 0000-0001-5221-6848, 0000-0001-8304-5463, 0000-0002-7378-3339

University of Zagreb, Faculty of Electrical Engineering and Computing, Croatia

{filip.martinovic, danijel.mlinaric, juraj.doncevic, agneza.krajna, ivica.boticki}@fer.hr

Proceedings of the 20th Conference on Computer
Science and Intelligence Systems (FedCSIS) pp. 739–745

DOI: 10.15439/2025F1909
ISSN 2300-5963 ACSIS, Vol. 43

IEEE Catalog Number: CFP2585N-ART ©2025, PTI 739 Thematic Session: Self Learning and
Self Adaptive Systems

PCG to create seemingly infinite worlds. Games in the

roguelike and dungeon crawler genres, such as Spelunky2, use

it to create unpredictable levels that ensure each playthrough

is unique. The challenge that arises from this approach is to

manage the generation process to create meaningful and en-

tertaining levels. This also requires substantial effort from the

developer, who must set detailed restrictions to ensure playa-

bility.

B. Generative Models

Generative models are a class of machine learning algo-

rithms designed to generate new data samples that resemble a

given dataset. These models learn the underlying distribution

of the data and can generate realistic outputs such as images,

text, etc.

GANs [6] use the adversarial training process where the

generator produces synthetic samples while the discriminator

tries to distinguish real data from the generated ones. During

the training process, the generator and discriminator play a

mini-max game in which the goal for the generator is to pro-

duce realistic samples. Transformers [7], on the other hand,

have introduced the mechanism of self-attention, which al-

lows them to efficiently capture long-range dependencies.

Although they are mainly used for text generation, they have

also proven successful in image generation [8].

C. Generative Models for Level Creation

Recent research has investigated the use of machine learn-

ing (ML) for procedural content generation [9]. Generative

Adversarial Networks (GANs) [6] have emerged as powerful

tools for creating game levels that resemble human-designed

content. As Volz et al. [10] have shown, GANs can capture

the essence of existing Super Mario Bros levels while intro-

ducing new meaningful variations. Their approach uses a Co-

variance Matrix Adaptation Evolutionary Strategy (CMA-

ES) [11] to optimize the latent space of the network, allowing

the creation of levels with certain desired properties, such as

the wall density or the number of enemies. However, this

method relies heavily on large datasets of existing levels and

2 https://www.spelunkyworld.com/

is constrained by the design patterns present in the original

corpus, potentially limiting novelty.

The CESAGAN (Conditionally Embedded Self-Attention

GAN) framework [12] builds on basic GAN architectures and

incorporates explicit constraints into the generation process.

This model encodes specific requirements, such as the num-

ber of walls or enemies, into feature vectors that guide the

generation process. Bootstrapping techniques were used to

solve the problem of a lack of data in the game-level datasets.

This involves iteratively adding newly generated levels that

meet the playability criteria, such as the correct number of tile

types and the existence of a path to all goals, to the training

dataset. This approach has significantly increased the percent-

age of playable levels while reducing the number of dupli-

cates.

D. Playability

One of the main problems encountered with PCG is ensur-

ing that created levels can be completed by the players. There

are several approaches to solving this problem from different

perspectives. One innovative approach combines classifica-

tion with explainability techniques [13]. After identifying un-

playable levels, models such as SHAP (SHapley Additive ex-

Planations) [14] or Integrated Gradients [15] assign im-

portance values to each coordinate in the level, highlighting

areas that are responsible for the unplayability. These values

lead to targeted changes to problematic areas, while the over-

all structure and aesthetics of the level are preserved.

Zhang et al. [16] used GAN to generate Zelda levels and

then used Mixed Integer Linear Programming (MILP) to re-

pair unplayable levels. MILP provides a mathematical ap-

proach to level repair by representing levels as graphs in

which the nodes correspond to tiles (walls, empty spaces,

players, keys, doors or enemies) and the edges represent the

connections between tiles. The playability problem is formu-

lated as a network flow problem with sources (e.g. players),

targets (e.g. doors, keys) and obstacles (e.g. walls). The solu-

tion minimizes the number of changes required to make a

level playable while satisfying constraints related to flow

preservation and obstacle avoidance. While this approach

guarantees playability, the complexity of implementation

could increase significantly for games with dynamic elements

such as moving opponents.

Cooper and Sarkar [17] have used specialized repair agents

to identify and repair unplayable areas. These agents can per-

form otherwise forbidden actions (e.g., walking through

walls), but at a high cost. By identifying expensive actions on

an agent's path to the goal, the system can make targeted mod-

ifications to the level, such as converting walls into empty

spaces.

Jain et al. [18] used autoencoders [19] to generate new lev-

els based on an existing corpus of Super Mario Bros levels.

Their model compresses the level designs into a lower-dimen-

sional latent space and then reconstructs them, effectively

learning the basic patterns and structures that compose valid

Fig. 1 Pre made levels for the Snake game. Green tiles represent

walls, blue tiles represent the player’s initial position, orange tiles
represent box-es that can be moved by the player and all other colors

of the tiles represent different types of food

740 PROCEEDINGS OF THE FEDCSIS. KRAKÓW, POLAND, 2025

levels. They have also used autoencoders to repair unplayable

levels by running them through the model, which leverages

its learned representations to reconstruct missing or problem-

atic elements while maintaining overall coherence.

III. HYBRID APPROACH TO PROCEDURAL CONTENT
GENERATION

This section describes our experimental framework for de-

veloping an adaptive Snake game that dynamically generates

levels tailored to player skill. Our approach addresses a fun-

damental challenge in procedural content generation: balanc-

ing quality, controllability, and computational efficiency.

While LLMs excel at generating semantically meaningful

content with explicit difficulty control, they are computation-

ally expensive for real-time applications. Conversely, once

trained, GANs can efficiently generate content, but typically

lack semantic understanding and require large datasets. Our

hybrid pipeline combines these approaches by using LLMs to

generate diverse, difficulty-labelled training data, then train-

ing specialized GAN models on this data for efficient gener-

ation at runtime. The system operates in two distinct phases.

In the training phase, we use structured prompts to generate

levels of controllable difficulty, validate their playability, and

train separate GAN models for easy and hard difficulty levels.

A. Initial Dataset

One of the biggest challenges in training generative models

is the lack of high-quality, diverse training data. The initial

dataset was extracted from the 15 pre-made levels of the

Google Snake Game Level Editor mod [20] (in Fig. 1).

However, this initial dataset of 15 levels presents a signifi-

cant limitation for training GAN, which typically requires

hundreds or thousands of training samples to learn meaning-

ful data distributions and avoid overfitting. To address data

scarcity, we used LLM to generate additional training data, as

detailed in the section IV.A.

The pre-made levels consist of different types of tiles such

as walls, crates, players and different types of food. To sim-

plify the generation process, we have focused on 4 types of

tiles that are essential for the game: walls, empty spaces, food

and the player’s starting position. All the different food types

have been combined into one and all other tile types have been

treated as empty spaces.

Individual pre-made level images are available on GitHub

[21]. The images were processed by extracting tiles based on

their colour. The levels can be displayed in different ways.

Inspired by the game levels in The Video Game Levels Cor-

pus (VGLC) [22], we opted for the 2D grid representation. A

specific character symbol is used for each tile type. In our

simplified levels, “W” stands for walls, "-" for empty areas,

“F” for food and “S” for snake head, as shown in Fig. 4.

To encode the levels for training with GANs, each tile type

is encoded in a separate channel, so that the levels were rep-

resented using four channels. Since the pre-made levels have

different sizes, further preprocessing was required. In partic-

ular, all levels were padded with empty spaces up to a size of

32x32 tiles.

B. GAN Model

The architecture of the GAN model is based on the model

from Arjovsky et al. [23]. In this design, the discriminator

consists of blocks of strided convolutional layers followed by

batch normalization layers and LeakyReLU activation layers.

The generator uses transposed convolutional layers followed

by batch normalization and ReLU layers. The last transposed

convolutional layer is followed by the hyperbolic tangent

function (tanh), which maps the outputs to the range [-1,1].

The architecture is adapted to 32x32 size images by removing

the deepest layer of both the discriminator and the generator.

The architecture of the entire system is shown in Fig. 2.

WWWWWWWWWWWWWWWWWWW

W------WWWWW------W

W-A---S---------A-W

W--WW--WWWWW--WW--W

W--WW--WWWWW--WW--W

W----A-------A----W

W------WWWWW------W

WW-WW-WWWWWWW-WW-WW

WW-WW-WWWWWWW-WW-WW

WW-WW-WWWWWWW-WW-WW

W------WWWWW------W

W----A-------A----W

W--WW--WWWWW--WW--W

W--WW--WWWWW--WW--W

W-A-------------A-W

W------WWWWW------W

WWWWWWWWWWWWWWWWWWW

Fig. 2 Architecture of GAN [24] Fig. 3 Levels generated by GAN on initial dataset

Fig. 4 Example of pre-made level in 2D format

FILIP MARTINOVIĆ ET AL: TOWARDS GAME LEVEL GENERATION THROUGH LLM AND GAN 741

After the training process, the generator can accurately rep-

licate levels in the training dataset, as shown in Fig. 3. How-

ever, since only a limited amount of training data is available,

the model tends to overfit. It replicates training samples in-

stead of generating varied new levels. Furthermore, to gener-

ate levels with the desired difficulty, a larger, balanced dataset

with difficulty labels is required.

C. LLM for Training Set

Instead of designing new levels manually, large language

models (LLMs) can be used for this task. To generate new

levels, the LLM must first be given clear instructions on how

to generate them. It must also be given some levels as a refer-

ence. In most cases, text prompts are used as input to the

model and the output is usually in the form of text. When gen-

erating levels with LLMs, we explored two primary output

formats: 2D textual grids and structured representation. As

level examples, we passed premade levels in 2D format, as

shown in Fig. 4. The prompt to the model was as follows: “I
have attached game levels for the game Snake. ‘W’ represents

walls and ‘-‘ represents empty spaces. Generate more similar

levels”.
We found that the text outputs, especially for larger levels,

often contained errors, such as an incorrect number of rows or

an incorrect number of elements in a row. While most of these

errors could be corrected manually, our goal is to automate

the process. To generate high-quality, structured game layers,

we combined GPT-4o and the OpenAI API Structured Out-

puts feature [25] that allowed us to capture the output in JSON

format. To shape the whole process as a pipeline, we used the

LangChain [26] framework in combination with a Pydantic-

based output parser. Instead of generating free-form grids, we

used pydantic.BaseModel to define a detailed schema to ex-

plicitly describe the components of a game level. The schema

contains fields with the grid size (height and width of the

level), a list of wall coordinates, the position of the snake head

and a list of food coordinates. The output parser allowed us to

validate each generated level and automatically discard levels

that did not exactly match the schema. A typical prompt asked

the model to generate a solvable Snake level of a given size

with specific design constraints (the food must not be placed

on the walls, the level must be solvable). The output was au-

tomatically parsed and validated. Inconsistencies or missing

fields triggered errors, allowing us to discard or regenerate the

sample in question. This approach provided a clean, normal-

ized dataset suitable for conversion to structured tensors for

GAN training. It also gave us the opportunity to generate new

levels under certain conditions. The difficulty of the levels is

particularly interesting. With carefully designed prompts, it is

possible to generate easier or harder levels, as can be seen in

Fig. 5. Easy levels have fewer walls, and food is generated

closer to snake’s head, while harder levels have more com-

plex wall structures and food is harder to reach. In some cases,

however, there is no clear difference in the difficulty of the

generated levels.

Even though there are multiple methods that can check the

playability and even repair levels (section II.C), we only cal-

culated the shortest path from the snake's head to all the food

items. It can be calculated using the A* algorithm [27],

adapted for multiple goals, where additional movement con-

straints apply: the snake cannot immediately turn back (return

to the direction it just came from). The snake’s ability to grow
incrementally was not considered and it was treated as a sin-

gle tile. The Manhattan distance was used as a heuristic func-

tion. Knowing the shortest path allows comparison of levels

from the unbiased perspective of a “perfect player”. We track
metrics such as path length, the number of turns, the number

of tight turns (around walls), and the longest straight path. We

also track metrics related to the level itself, such as the per-

centage of walls, the number of dead ends, the number of

“chokepoints” (narrow passages with walls on both sides).
Regardless of these metrics, the difficulty depends signifi-

cantly on the placement of the food.

IV. EXPERIMENT SETUP

To create a substantially larger dataset for GAN training

and validate our hybrid approach, we employed a comprehen-

sive three-phase experimental framework. This methodology

enables systematic comparison of the cost and quality of pure

LLM generation, the effectiveness of hybrid GAN training,

and the validation of semantic control through a user study,

providing quantitative analysis of the trade-offs between the

different approaches. The system architecture is shown in Fig.

6.

A. Generating Dataset for GAN Training

We used levels generated by an LLM in text format, as de-

scribed in section III.A, and input them to LLM as examples.

When selecting the examples, focus was to ensure that there

Fig. 5 a) Easy level generated by LLM, b) hard level generated by LLM

and c) hard level generated by LLM with shortest path found with A*

algorithm

Fig. 6 System architecture of the hybrid LLM-GAN level generation

pipeline

742 PROCEEDINGS OF THE FEDCSIS. KRAKÓW, POLAND, 2025

is a clear difference between hard and easy levels, like more

open spaces and food closer to the player for easier levels, and

more narrow passages and food placed in more difficult

places for harder levels.

We then generated 50 easy and 50 difficult levels with

structured few-shot prompts. Each generation started with a

prompt with 3569 tokens for easy levels and 8495 tokens for

difficult levels. The model's responses varied in complexity,

averaging 412 tokens for easy levels and 705 tokens for diffi-

cult levels. Due to the nature of generative models that not all

levels were viable. Some were unplayable or logically broken

and had to be discarded, resulting in a higher number of to-

kens spent. As this process immediately generated 50 playa-

ble easy levels, there were 17 unplayable hard levels that we

discarded. The total number of tokens used to generate all 100

levels was 617131. We can see that the generation process,

while successful, consumes a lot of resources and is not prac-

tical when a big set of levels is needed.

B. GAN Training

With the generated dataset, we trained two separate GAN

models: one for easy and one for difficult levels. Each model

was trained3 with a corresponding subset of 50 levels.

All levels were pre-processed as described in III.A. The

training data was normalized to the range [-1,1] to align with

the tanh activation in the generator’s output layer, as men-

tioned in section III.B.

We explored different values for the learning rate, the stack

size, the dimension of the latent vector, and the number of

times the discriminator is trained before training the generator

during each epoch. The playability rate (PR) was used as the

optimization target. It is defined as number of solvable levels

per 100 generated levels. The models were trained for 2000

epochs.

C. User Study for Semantic Control Validation

To evaluate the perceived difficulty of the LLM generated

game levels, we conducted a user study involving seven

participants. Each participant was asked to rate 100 level

3Training was conducted on NVIDIA GeForce GTX 1050 for

approximately 4 hours. We used Optuna framework [28] for hyperparameters
and monitored convergence through playability rate (PR) metric.

images on a scale from 1 (very easy) to 5 (very difficult). The

dataset consisted of 50 "easy" and 50 "hard" levels generated

by a large language model in IV.A. However, users were not

informed of these labels. The difficulty levels were randomly

shuffled and presented to all users in the same order to ensure

consistency. After collecting the individual ratings, we

calculated the average rating for each level and analyzed its

Pearson correlation with various structural features extracted

from the levels described in III.C. This enabled us to identify

which features most strongly influence the difficulty

perceived by the users and the correspondence between the

difficulty assigned as input to the LLM and the user ratings.

V. RESULTS

We present our findings in two main parts: first, validation

of LLM semantic control through a user study, showing a

strong correlation between assigned and perceived difficulty;

second, the analysis of GAN performance when trained on

LLM-generated datasets, revealing significant differences be-

tween easy and hard level generation complexity.

Fig. 8 Correlation matrix between structural level features and user diffi-

culty ratings (n=7 participants, 100 levels)

TABLE Ⅰ

MODEL COMPARISON BETWEEN LEVEL DIFFICULTY

Model

Difficulty

Max (Avg)

Playability

Rate (PR)

Computation

al cost

Generation

time

Semantic

control

GAN

Hard
36 (24*) %

2h training

duration
< 1s Limited

GAN

Easy
87 (74*) %

2h training

duration
< 1s Limited

LLM

Hard
66 (100**) %

~705 tokens

per level
~30s Excellent

LLM

Easy
100 %

~412 tokens

per level
~30s Excellent

*Average of top 5 hyperparameter configurations
**After validation and regeneration of failed levels

Fig. 7 Playable levels generated by GAN models trained on:

 a) “hard” dataset, b) “easy” dataset

a)

b)

FILIP MARTINOVIĆ ET AL: TOWARDS GAME LEVEL GENERATION THROUGH LLM AND GAN 743

A. LLM Generated Levels

Based on the correlation (Fig. 8), we have identified several

features that exhibit a strong relationship with user perceived

difficulty. The most prominent is the tight turn ratio, which

has the highest positive correlation with average user ratings,

suggesting that levels requiring frequent sharp changes of di-

rection are consistently rated as more difficult. Other features

such as total number of turns and percentage of walls also

correlate strongly with higher difficulty ratings, suggesting

that spatial complexity and environmental constraints play a

central role in perceived challenge. However, several features

are highly intercorrelated, most notably tight turns and turns,

as well as average and maximum distance to food, leading to

redundancy and suggesting that a more compact feature set

could be used without significant information loss. Interest-

ingly, the binary difficulty label originally assigned to the

level generation prompt ("easy" vs. "hard") shows a strong

correlation with the actual user ratings.

Results show that the generated levels are highly consistent

with players' perceptions, which strengthens confidence in the

quality of the generated levels and can serve as a useful basis

for further automation. However, a larger-scale study would

be needed to confirm these findings across diverse player pop-

ulations. It is important to note that our analysis is based on

correlation rather than causation, further controlled experi-

ments are needed to confirm which features directly influence

perceived difficulty.

B. GAN Generated Levels

We have selected the five best performing hyperparameter

configurations for each model (Easy GAN and Hard GAN)

based on the playability rate (PR). For each of these configu-

rations, we also identified the top three training checkpoints

that produced the highest quality outputs. From each of these

checkpoints, we generated 100 playable level samples, result-

ing in a diverse evaluation set. We then computed metrics de-

scribed in IV.C for these generated levels. As shown in Table

Ⅰ, the model trained on the “hard” dataset generates much less

playable levels than the one trained on the easy dataset. The

4Complete results can be found at: https://fer-autoevolve.github.io/results/

significant difference in playability rates (87% vs 36%) sug-

gests that difficult levels require more complex spatial rea-

soning that our current GAN architecture struggles to capture.

This indicates that difficulty affects not only player percep-

tion but also computational generation complexity. Similar to

the results in A, some features, such as number of tight turns,

tight turn ratio and percentage of walls, show a clear differ-

ence between the generated easy and hard levels4, as shown

in Fig. 9. Models are able to generate completely new playa-

ble levels with distinct features as shown in Fig. 7.

VI. CONCLUSION

Our research explored different approaches to procedural

content generation (PCG) of game level s. We found that,

while efficient for generating a large number of levels, GANs

require big and quality datasets. LLMs, on the other hand,

produce high quality levels with very little input, but require

a lot of resources to generate a larger amount of levels. We

proposed a hybrid approach by combining the flexibility of

large language models (LLMs) with the efficiency of genera-

tive adversarial networks (GANs). LLMs proved effective in

generating structured and semantically rich level layouts, par-

ticularly when guided by schema-constrained prompting.

However, due to high computational costs, LLMs are best

suited for generating curated datasets. In contrast, GANs,

once trained, can quickly generate large volumes of content

but exhibit limited generalization when data is scarce. Our

user study confirmed that LLM-labeled difficulty levels align

well with player perceptions, and that certain structural fea-

tures (e.g., tight turns, wall density) correlate strongly with

perceived difficulty. These insights can guide future systems

toward real-time, skill-adaptive content generation.

REFERENCES

[1] G. N. Yannakakis and J. Togelius, ‘Experience-Driven Procedural
Content Generation’, IEEE Trans. Affect. Comput., vol. 2, no. 3, pp.

147–161, Jul. 2011, doi: 10.1109/T-AFFC.2011.6.

[2] D. Mlinarić, ‘Extension of dynamic software update model for class
hierarchy changes and run-time phenomena detection’, info:eu-

repo/semantics/doctoralThesis, University of Zagreb. Faculty of

Electrical Engineering and Computing. Department of Applied

Fig. 9 Distribution comparison of key metrics between GAN-generated “easy” and “hard" levels

744 PROCEEDINGS OF THE FEDCSIS. KRAKÓW, POLAND, 2025

Computing, 2020. Accessed: May 26, 2025. [Online]. Available:

https://urn.nsk.hr/urn:nbn:hr:168:087042

[3] D. Mlinarić, J. Dončević, M. Brčić, and I. Botički, ‘Revolutionizing

Software Development: Autonomous Software Evolution’, in 2024

47th MIPRO ICT and Electronics Convention (MIPRO), May 2024,

pp. 224–228. doi: 10.1109/MIPRO60963.2024.10569871.

[4] N. Shaker, J. Togelius, and M. J. Nelson, Procedural Content Genera-

tion in Games. in Computational Synthesis and Creative Systems.

Cham: Springer International Publishing, 2016. doi: 10.1007/978-3-

319-42716-4.

[5] J. Togelius, E. Kastbjerg, D. Schedl, and G. N. Yannakakis, ‘What is

procedural content generation? Mario on the borderline’, in Proceed-

ings of the 2nd International Workshop on Procedural Content Gener-

ation in Games, in PCGames ’11. New York, NY, USA: Association

for Computing Machinery, Jun. 2011, pp. 1–6. doi:

10.1145/2000919.2000922.

[6] I. J. Goodfellow et al., ‘Generative Adversarial Networks’, Jun. 10,

2014, arXiv: arXiv:1406.2661. doi: 10.48550/arXiv.1406.2661.

[7] A. Vaswani et al., ‘Attention Is All You Need’, Jun. 12, 2017, arXiv:

arXiv:1706.03762. doi: 10.48550/arXiv.1706.03762.

[8] A. Dosovitskiy et al., ‘An Image is Worth 16x16 Words: Transformers

for Image Recognition at Scale’, Oct. 22, 2020, arXiv:

arXiv:2010.11929. doi: 10.48550/arXiv.2010.11929.

[9] A. Summerville et al., ‘Procedural Content Generation via Machine

Learning (PCGML)’, IEEE Trans. Games, vol. 10, no. 3, pp. 257–270,

Sep. 2018, doi: 10.1109/TG.2018.2846639.

[10] V. Volz, J. Schrum, J. Liu, S. M. Lucas, A. Smith, and S. Risi, ‘Evolv-

ing Mario Levels in the Latent Space of a Deep Convolutional Genera-

tive Adversarial Network’, May 02, 2018, arXiv: arXiv:1805.00728.

doi: 10.48550/arXiv.1805.00728.

[11] N. Hansen, S. D. Müller, and P. Koumoutsakos, ‘Reducing the Time

Complexity of the Derandomized Evolution Strategy with Covariance

Matrix Adaptation (CMA-ES)’, Evol. Comput., vol. 11, no. 1, pp. 1–

18, Mar. 2003, doi: 10.1162/106365603321828970.

[12] R. Rodriguez Torrado, A. Khalifa, M. Cerny Green, N. Justesen, S.

Risi, and J. Togelius, ‘Bootstrapping Conditional GANs for Video

Game Level Generation’, in 2020 IEEE Conference on Games (CoG),

Aug. 2020, pp. 41–48. doi: 10.1109/CoG47356.2020.9231576.

[13] M. Bazzaz and S. Cooper, ‘Guided Game Level Repair via Explain-

able AI’, Nov. 04, 2024, arXiv: arXiv:2410.23101. doi: 10.48550/

arXiv.2410.23101.

[14] S. M. Lundberg and S.-I. Lee, ‘A Unified Approach to Interpreting

Model Predictions’, in Advances in Neural Information Processing

Systems, Curran Associates, Inc., 2017. Accessed: Apr. 02, 2025. [On-

line]. Available: https://proceedings.neurips.cc/paper_files/paper/

2017/hash/8a20a8621978632d76c43dfd28b67767-Abstract.html

[15] N. Kokhlikyan et al., ‘Captum: A unified and generic model inter-

pretability library for PyTorch’, Sep. 16, 2020, arXiv:

arXiv:2009.07896. doi: 10.48550/arXiv.2009.07896.

[16] H. Zhang, M. C. Fontaine, A. K. Hoover, J. Togelius, B. Dilkina, and

S. Nikolaidis, ‘Video Game Level Repair via Mixed Integer Linear

Programming’, Oct. 13, 2020, arXiv: arXiv:2010.06627. doi:

10.48550/arXiv.2010.06627.

[17] S. Cooper and A. Sarkar, ‘Pathfinding Agents for Platformer Level

Repair’.

[18] R. Jain, A. Isaksen, and C. Holmg, ‘Autoencoders for Level Genera-

tion, Repair, and Recognition’.

[19] G. E. Hinton and R. R. Salakhutdinov, ‘Reducing the Dimensionality

of Data with Neural Networks’, Science, vol. 313, no. 5786, pp. 504–

507, Jul. 2006, doi: 10.1126/science.1127647.

[20] ‘Google Snake Mods’. Accessed: Apr. 04, 2025. [Online]. Available:

https://googlesnakemods.com/v/4/

[21] ‘DarkSnakeGang/GoogleSnakeLevelEditor: Level Editor Mod for

Google Snake’. Accessed: Apr. 08, 2025. [Online]. Available:

https://github.com/DarkSnakeGang/GoogleSnakeLevelEditor

[22] A. J. Summerville, S. Snodgrass, M. Mateas, and S. Ontañón, ‘The

VGLC: The Video Game Level Corpus’, Jul. 03, 2016, arXiv:

arXiv:1606.07487. doi: 10.48550/arXiv.1606.07487.

[23] M. Arjovsky, S. Chintala, and L. Bottou, ‘Wasserstein GAN’, Dec. 06,

2017, arXiv: arXiv:1701.07875. doi: 10.48550/arXiv.1701.07875.

[24] C. Little, M. Elliot, R. Allmendinger, and S. S. Samani, ‘Generative

Adversarial Networks for Synthetic Data Generation: A Comparative

Study’, Dec. 03, 2021, arXiv: arXiv:2112.01925. doi: 10.48550/

arXiv.2112.01925.

[25] ‘Structured Outputs - OpenAI API’. Accessed: May 24, 2025. [On-

line]. Available: https://platform.openai.com

[26] ‘LangChain’. Accessed: May 22, 2025. [Online]. Available: https://

www.langchain.com/langchain

[27] P. E. Hart, N. J. Nilsson, and B. Raphael, ‘A Formal Basis for the

Heuristic Determination of Minimum Cost Paths’, IEEE Trans. Syst.

Sci. Cybern., vol. 4, no. 2, pp. 100–107, Jul. 1968, doi: 10.1109/

TSSC.1968.300136.

[28] ‘Optuna - A hyperparameter optimization framework’, Optuna. Ac-

cessed: May 23, 2025. [Online]. Available: https://optuna.org/

FILIP MARTINOVIĆ ET AL: TOWARDS GAME LEVEL GENERATION THROUGH LLM AND GAN 745

