
 

Abstract—This paper tackles the challenge of adaptive level 

generation in video games, focusing on generating content that 

aligns with player skill. A key limitation of procedural content 

generation  (PCG)  is  achieving  semantic  control.  Specifically, 

generating  levels  of  varying  difficulty  with  limited  training 

data. To address this problem, we propose a hybrid approach 

combining  Large  Language  Models  (LLMs)  and  Generative 

Adversarial Networks (GANs). An LLM is used to generate a 

diverse, difficulty-labeled dataset of Snake game levels, which 

are validated with A* pathfinding to ensure playability. These 

levels  serve as  training data for  GANs that  are  able  to  effi-

ciently generate new levels.  The system is  evaluated through 

user study and playability metrics. Results show that the LLM-

assigned difficulty labels correlate strongly with human percep-

tion. The achieved playability is 87% for easy levels and 36% 

for  hard  levels.  Our  findings  demonstrate  that  the  hybrid 

LLM-GAN approach  enables  scalable  and  semantically  con-

trolled content generation, balancing quality, adaptability, and 

computational efficiency.

Index Terms—procedural content generation, generative ad-

versarial networks, large language models, video games, playa-

bility, adaptive systems.

I. INTRODUCTION

HE greatest advances in the software industry today are 

due to the ability  to adapt  to the personal  needs and 

preferences of individual users. Functionalities such as Net-

flix’s  recommendation system or  Duolingo’s  customizable 

lessons have given companies an edge over the competition. 

In  recent  years,  new large language models  (LLMs) have 

also  been  developed  to  answer  users’  questions.  Similar 

principles are being explored in the development of video 

games, particularly through the automatic generation of con-

tent based on players' skills and behavior [1].

T

A key challenge in adaptive content generation is seman-

tic control, i.e. the ability to create content with specific, in-

terpretable characteristics (such as difficulty level) that align 

with human perception and intent, rather than producing sta-

tistically similar outputs. Traditional procedural content gen-

eration methods face challenges. They either rely on manu-

ally created rules  that  limit  creativity  or require extensive 

datasets that may not exist for specific domains. And even 
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when successful, they often lack the semantic understanding 

to produce content with certain meaningful characteristics.

This paper continues research into adaptive software sys-

tems  [2,3],  extending  from dynamic  software  updating  to 

adaptive content generation. Using the game Snake as a con-

trolled  environment,  we  investigated  three  approaches  for 

AI-driven  level  generation:  standalone  GANs,  standalone 

LLMs and a novel hybrid LLM-GAN approach. 

Our  research  specifically  examines  whether  modern  AI 

approaches can provide reliable semantic control for diffi-

culty adaptation. Initial experiments with GANs trained on 

limited data (15 levels) demonstrated severe overfitting and 

poor generalization. Pure LLM generation showed excellent 

quality control through semantic understanding but proved 

computationally  expensive  for  real-time  applications.  This 

motivated our hybrid approach: using LLMs to bootstrap di-

verse training datasets for GAN training, combining the se-

mantic precision of language models with the computational 

efficiency of adversarial networks. We validated the seman-

tic control capabilities through user study, demonstrating a 

strong  correlation  between  LLM-assigned  difficulty  labels 

and human perception.  The focus is to determine whether 

the proposed hybrid pipeline can achieve the benefits of both 

approaches while mitigating their individual limitations.

II. RELATED WORK

The  field  of  procedural  content  generation  (PCG)  for 

video games [4] has made significant progress through the 

application of artificial intelligence techniques. This section 

presents the main approaches to game level generation: tra-

ditional PCG methods and their scalability limitations, gen-

erative model applications,  and playability assurance tech-

niques  that  ensure  generated  content  meets  functional  re-

quirements.

A. Procedural Content Generation

Togelius  et  al.  [5]  define  procedural  content  generation 

(PCG) as the algorithmic creation of game content with lim-

ited or indirect user input. Some games such as Minecraft1 use

1 https://www.minecraft.net/
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PCG to create seemingly infinite worlds. Games in the 

roguelike and dungeon crawler genres, such as Spelunky2, use  

it to create unpredictable levels that ensure each playthrough 

is unique. The challenge that arises from this approach is to 

manage the generation process to create meaningful and en-

tertaining levels. This also requires substantial effort from the 

developer, who must set detailed restrictions to ensure playa-

bility. 

B. Generative Models 

Generative models are a class of machine learning algo-

rithms designed to generate new data samples that resemble a 

given dataset. These models learn the underlying distribution 

of the data and can generate realistic outputs such as images, 

text, etc.  

GANs [6] use the adversarial training process where the 

generator produces synthetic samples while the discriminator 

tries to distinguish real data from the generated ones. During 

the training process, the generator and discriminator play a 

mini-max game in which the goal for the generator is to pro-

duce realistic samples. Transformers [7], on the other hand, 

have introduced the mechanism of self-attention, which al-

lows them to efficiently capture long-range dependencies. 

Although they are mainly used for text generation, they have 

also proven successful in image generation [8]. 

C. Generative Models for Level Creation 

Recent research has investigated the use of machine learn-

ing (ML) for procedural content generation [9]. Generative 

Adversarial Networks (GANs) [6] have emerged as powerful 

tools for creating game levels that resemble human-designed 

content. As Volz et al. [10] have shown, GANs can capture 

the essence of existing Super Mario Bros levels while intro-

ducing new meaningful variations. Their approach uses a Co-

variance Matrix Adaptation Evolutionary Strategy (CMA-

ES) [11] to optimize the latent space of the network, allowing 

the creation of levels with certain desired properties, such as 

the wall density or the number of enemies. However, this 

method relies heavily on large datasets of existing levels and 

 
2 https://www.spelunkyworld.com/ 

is constrained by the design patterns present in the original 

corpus, potentially limiting novelty. 

The CESAGAN (Conditionally Embedded Self-Attention 

GAN) framework [12] builds on basic GAN architectures and 

incorporates explicit constraints into the generation process. 

This model encodes specific requirements, such as the num-

ber of walls or enemies, into feature vectors that guide the 

generation process. Bootstrapping techniques were used to 

solve the problem of a lack of data in the game-level datasets. 

This involves iteratively adding newly generated levels that 

meet the playability criteria, such as the correct number of tile 

types and the existence of a path to all goals, to the training 

dataset. This approach has significantly increased the percent-

age of playable levels while reducing the number of dupli-

cates.  

D. Playability 

One of the main problems encountered with PCG is ensur-

ing that created levels can be completed by the players. There 

are several approaches to solving this problem from different 

perspectives. One innovative approach combines classifica-

tion with explainability techniques [13]. After identifying un-

playable levels, models such as SHAP (SHapley Additive ex-

Planations) [14] or Integrated Gradients [15] assign im-

portance values to each coordinate in the level, highlighting 

areas that are responsible for the unplayability. These values 

lead to targeted changes to problematic areas, while the over-

all structure and aesthetics of the level are preserved.  

Zhang et al. [16] used GAN to generate Zelda levels and 

then used Mixed Integer Linear Programming (MILP) to re-

pair unplayable levels. MILP provides a mathematical ap-

proach to level repair by representing levels as graphs in 

which the nodes correspond to tiles (walls, empty spaces, 

players, keys, doors or enemies) and the edges represent the 

connections between tiles. The playability problem is formu-

lated as a network flow problem with sources (e.g. players), 

targets (e.g. doors, keys) and obstacles (e.g. walls). The solu-

tion minimizes the number of changes required to make a 

level playable while satisfying constraints related to flow 

preservation and obstacle avoidance. While this approach 

guarantees playability, the complexity of implementation 

could increase significantly for games with dynamic elements 

such as moving opponents. 

Cooper and Sarkar [17] have used specialized repair agents 

to identify and repair unplayable areas. These agents can per-

form otherwise forbidden actions (e.g., walking through 

walls), but at a high cost. By identifying expensive actions on 

an agent's path to the goal, the system can make targeted mod-

ifications to the level, such as converting walls into empty 

spaces. 

Jain et al. [18] used autoencoders [19] to generate new lev-

els based on an existing corpus of Super Mario Bros levels. 

Their model compresses the level designs into a lower-dimen-

sional latent space and then reconstructs them, effectively 

learning the basic patterns and structures that compose valid 

Fig. 1 Pre made levels for the Snake game. Green tiles represent 

walls, blue tiles represent the player’s initial position, orange tiles 
represent box-es that can be moved by the player and all other colors 

of the tiles represent different types of food 
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levels. They have also used autoencoders to repair unplayable 

levels by running them through the model, which leverages 

its learned representations to reconstruct missing or problem-

atic elements while maintaining overall coherence. 

III. HYBRID APPROACH TO PROCEDURAL CONTENT 
GENERATION 

This section describes our experimental framework for de-

veloping an adaptive Snake game that dynamically generates 

levels tailored to player skill. Our approach addresses a fun-

damental challenge in procedural content generation: balanc-

ing quality, controllability, and computational efficiency. 

While LLMs excel at generating semantically meaningful 

content with explicit difficulty control, they are computation-

ally expensive for real-time applications. Conversely, once 

trained, GANs can efficiently generate content, but typically 

lack semantic understanding and require large datasets. Our 

hybrid pipeline combines these approaches by using LLMs to 

generate diverse, difficulty-labelled training data, then train-

ing specialized GAN models on this data for efficient gener-

ation at runtime. The system operates in two distinct phases. 

In the training phase, we use structured prompts to generate 

levels of controllable difficulty, validate their playability, and 

train separate GAN models for easy and hard difficulty levels. 

A. Initial Dataset 

One of the biggest challenges in training generative models 

is the lack of high-quality, diverse training data. The initial 

dataset was extracted from the 15 pre-made levels of the 

Google Snake Game Level Editor mod [20] (in Fig. 1). 

However, this initial dataset of 15 levels presents a signifi-

cant limitation for training GAN, which typically requires 

hundreds or thousands of training samples to learn meaning-

ful data distributions and avoid overfitting. To address data 

scarcity, we used LLM to generate additional training data, as 

detailed in the section IV.A. 

The pre-made levels consist of different types of tiles such 

as walls, crates, players and different types of food. To sim-

plify the generation process, we have focused on 4 types of 

tiles that are essential for the game: walls, empty spaces, food 

and the player’s starting position. All the different food types 

have been combined into one and all other tile types have been 

treated as empty spaces. 

Individual pre-made level images are available on GitHub 

[21]. The images were processed by extracting tiles based on 

their colour. The levels can be displayed in different ways. 

Inspired by the game levels in The Video Game Levels Cor-

pus (VGLC) [22], we opted for the 2D grid representation. A 

specific character symbol is used for each tile type. In our 

simplified levels, “W” stands for walls, "-" for empty areas, 

“F” for food and “S” for snake head, as shown in Fig. 4. 

To encode the levels for training with GANs, each tile type 

is encoded in a separate channel, so that the levels were rep-

resented using four channels. Since the pre-made levels have 

different sizes, further preprocessing was required. In partic-

ular, all levels were padded with empty spaces up to a size of 

32x32 tiles. 

B. GAN Model 

The architecture of the GAN model is based on the model 

from Arjovsky et al. [23]. In this design, the discriminator 

consists of blocks of strided convolutional layers followed by 

batch normalization layers and LeakyReLU activation layers. 

The generator uses transposed convolutional layers followed 

by batch normalization and ReLU layers. The last transposed 

convolutional layer is followed by the hyperbolic tangent 

function (tanh), which maps the outputs to the range [-1,1]. 

The architecture is adapted to 32x32 size images by removing 

the deepest layer of both the discriminator and the generator. 

The architecture of the entire system is shown in Fig. 2. 
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Fig. 2 Architecture of GAN [24] Fig. 3 Levels generated by GAN on initial dataset 

Fig. 4 Example of pre-made level in 2D format 
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After the training process, the generator can accurately rep-

licate levels in the training dataset, as shown in Fig. 3. How-

ever, since only a limited amount of training data is available, 

the model tends to overfit. It replicates training samples in-

stead of generating varied new levels. Furthermore, to gener-

ate levels with the desired difficulty, a larger, balanced dataset 

with difficulty labels is required. 

C. LLM for Training Set 

Instead of designing new levels manually, large language 

models (LLMs) can be used for this task. To generate new 

levels, the LLM must first be given clear instructions on how 

to generate them. It must also be given some levels as a refer-

ence. In most cases, text prompts are used as input to the 

model and the output is usually in the form of text. When gen-

erating levels with LLMs, we explored two primary output 

formats: 2D textual grids and structured representation. As 

level examples, we passed premade levels in 2D format, as 

shown in Fig. 4. The prompt to the model was as follows: “I 
have attached game levels for the game Snake. ‘W’ represents 

walls and ‘-‘ represents empty spaces. Generate more similar 

levels”. 
We found that the text outputs, especially for larger levels, 

often contained errors, such as an incorrect number of rows or 

an incorrect number of elements in a row. While most of these 

errors could be corrected manually, our goal is to automate 

the process. To generate high-quality, structured game layers, 

we combined GPT-4o and the OpenAI API Structured Out-

puts feature [25] that allowed us to capture the output in JSON 

format. To shape the whole process as a pipeline, we used the 

LangChain [26] framework in combination with a Pydantic-

based output parser. Instead of generating free-form grids, we 

used pydantic.BaseModel to define a detailed schema to ex-

plicitly describe the components of a game level. The schema 

contains fields with the grid size (height and width of the 

level), a list of wall coordinates, the position of the snake head 

and a list of food coordinates. The output parser allowed us to 

validate each generated level and automatically discard levels 

that did not exactly match the schema. A typical prompt asked 

the model to generate a solvable Snake level of a given size 

with specific design constraints (the food must not be placed 

on the walls, the level must be solvable). The output was au-

tomatically parsed and validated. Inconsistencies or missing 

fields triggered errors, allowing us to discard or regenerate the 

sample in question. This approach provided a clean, normal-

ized dataset suitable for conversion to structured tensors for 

GAN training. It also gave us the opportunity to generate new 

levels under certain conditions. The difficulty of the levels is 

particularly interesting. With carefully designed prompts, it is 

possible to generate easier or harder levels, as can be seen in 

Fig. 5. Easy levels have fewer walls, and food is generated 

closer to snake’s head, while harder levels have more com-

plex wall structures and food is harder to reach. In some cases, 

however, there is no clear difference in the difficulty of the 

generated levels.  

Even though there are multiple methods that can check the 

playability and even repair levels (section II.C), we only cal-

culated the shortest path from the snake's head to all the food 

items. It can be calculated using the A* algorithm [27], 

adapted for multiple goals, where additional movement con-

straints apply: the snake cannot immediately turn back (return 

to the direction it just came from). The snake’s ability to grow 
incrementally was not considered and it was treated as a sin-

gle tile. The Manhattan distance was used as a heuristic func-

tion. Knowing the shortest path allows comparison of levels 

from the unbiased perspective of a “perfect player”. We track 
metrics such as path length, the number of turns, the number 

of tight turns (around walls), and the longest straight path. We 

also track metrics related to the level itself, such as the per-

centage of walls, the number of dead ends, the number of 

“chokepoints” (narrow passages with walls on both sides). 
Regardless of these metrics, the difficulty depends signifi-

cantly on the placement of the food. 

IV. EXPERIMENT SETUP 

To create a substantially larger dataset for GAN training 

and validate our hybrid approach, we employed a comprehen-

sive three-phase experimental framework. This methodology 

enables systematic comparison of the cost and quality of pure 

LLM generation, the effectiveness of hybrid GAN training, 

and the validation of semantic control through a user study, 

providing quantitative analysis of the trade-offs between the 

different approaches. The system architecture is shown in Fig. 

6. 

A. Generating Dataset for GAN Training 

We used levels generated by an LLM in text format, as de-

scribed in section III.A, and input them to LLM as examples. 

When selecting the examples, focus was to ensure that there 

Fig. 5 a) Easy level generated by LLM, b) hard level generated by LLM 

and c) hard level generated by LLM with shortest path found with A* 

algorithm 

Fig. 6 System architecture of the hybrid LLM-GAN level generation 

pipeline 
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is a clear difference between hard and easy levels, like more 

open spaces and food closer to the player for easier levels, and 

more narrow passages and food placed in more difficult 

places for harder levels. 

We then generated 50 easy and 50 difficult levels with 

structured few-shot prompts. Each generation started with a 

prompt with 3569 tokens for easy levels and 8495 tokens for 

difficult levels. The model's responses varied in complexity, 

averaging 412 tokens for easy levels and 705 tokens for diffi-

cult levels. Due to the nature of generative models that not all 

levels were viable. Some were unplayable or logically broken 

and had to be discarded, resulting in a higher number of to-

kens spent. As this process immediately generated 50 playa-

ble easy levels, there were 17 unplayable hard levels that we 

discarded. The total number of tokens used to generate all 100 

levels was 617131. We can see that the generation process, 

while successful, consumes a lot of resources and is not prac-

tical when a big set of levels is needed.  

B. GAN Training 

With the generated dataset, we trained two separate GAN 

models: one for easy and one for difficult levels. Each model 

was trained3 with a corresponding subset of 50 levels. 

All levels were pre-processed as described in III.A. The 

training data was normalized to the range [-1,1] to align with 

the tanh activation in the generator’s output layer, as men-

tioned in section III.B. 

We explored different values for the learning rate, the stack 

size, the dimension of the latent vector, and the number of 

times the discriminator is trained before training the generator 

during each epoch. The playability rate (PR) was used as the 

optimization target. It is defined as number of solvable levels 

per 100 generated levels. The models were trained for 2000 

epochs. 

C. User Study for Semantic Control Validation 

To evaluate the perceived difficulty of the LLM generated 

game levels, we conducted a user study involving seven 

participants. Each participant was asked to rate 100 level 

 
3Training was conducted on NVIDIA GeForce GTX 1050 for 

approximately 4 hours. We used Optuna framework [28] for hyperparameters 
and monitored convergence through playability rate (PR) metric. 

images on a scale from 1 (very easy) to 5 (very difficult). The 

dataset consisted of 50 "easy" and 50 "hard" levels generated 

by a large language model in IV.A. However, users were not 

informed of these labels. The difficulty levels were randomly 

shuffled and presented to all users in the same order to ensure 

consistency. After collecting the individual ratings, we 

calculated the average rating for each level and analyzed its 

Pearson correlation with various structural features extracted 

from the levels described in III.C. This enabled us to identify 

which features most strongly influence the difficulty 

perceived by the users and the correspondence between the 

difficulty assigned as input to the LLM and the user ratings. 

V. RESULTS 

We present our findings in two main parts: first, validation 

of LLM semantic control through a user study, showing a 

strong correlation between assigned and perceived difficulty; 

second, the analysis of GAN performance when trained on 

LLM-generated datasets, revealing significant differences be-

tween easy and hard level generation complexity. 

Fig. 8 Correlation matrix between structural level features and user diffi-

culty ratings (n=7 participants, 100 levels) 

TABLE Ⅰ 

MODEL COMPARISON BETWEEN LEVEL DIFFICULTY 

Model 

Difficulty 

Max (Avg) 

Playability 

Rate (PR) 

Computation

al cost 

Generation 

time 

Semantic 

control 

GAN  

Hard 
36 (24*) % 

2h training 

duration 
< 1s Limited 

GAN 

Easy 
87 (74*) % 

2h training 

duration 
< 1s Limited 

LLM 

Hard 
66 (100**) % 

~705 tokens  

per level 
~30s Excellent 

LLM 

Easy 
100 % 

~412 tokens  

per level 
~30s Excellent 

*Average of top 5 hyperparameter configurations 
**After validation and regeneration of failed levels 

Fig. 7 Playable levels generated by GAN models trained on: 

 a) “hard” dataset, b) “easy” dataset 

a) 

b) 
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A. LLM Generated Levels 

Based on the correlation (Fig. 8), we have identified several 

features that exhibit a strong relationship with user perceived 

difficulty. The most prominent is the tight turn ratio, which 

has the highest positive correlation with average user ratings, 

suggesting that levels requiring frequent sharp changes of di-

rection are consistently rated as more difficult. Other features 

such as total number of turns and percentage of walls also 

correlate strongly with higher difficulty ratings, suggesting 

that spatial complexity and environmental constraints play a 

central role in perceived challenge. However, several features 

are highly intercorrelated, most notably tight turns and turns, 

as well as average and maximum distance to food, leading to  

redundancy and suggesting that a more compact feature set 

could be used without significant information loss. Interest-

ingly, the binary difficulty label originally assigned to the 

level generation prompt ("easy" vs. "hard") shows a strong 

correlation with the actual user ratings.  

Results show that the generated levels are highly consistent 

with players' perceptions, which strengthens confidence in the 

quality of the generated levels and can serve as a useful basis 

for further automation. However, a larger-scale study would 

be needed to confirm these findings across diverse player pop-

ulations. It is important to note that our analysis is based on 

correlation rather than causation, further controlled experi-

ments are needed to confirm which features directly influence 

perceived difficulty.   

B. GAN Generated Levels 

We have selected the five best performing hyperparameter 

configurations for each model (Easy GAN and Hard GAN) 

based on the playability rate (PR). For each of these configu-

rations, we also identified the top three training checkpoints 

that produced the highest quality outputs. From each of these 

checkpoints, we generated 100 playable level samples, result-

ing in a diverse evaluation set. We then computed metrics de-

scribed in IV.C for these generated levels. As shown in Table 

Ⅰ, the model trained on the “hard” dataset generates much less 

playable levels than the one trained on the easy dataset. The 

 
4Complete results can be found at: https://fer-autoevolve.github.io/results/  

significant difference in playability rates (87% vs 36%) sug-

gests that difficult levels require more complex spatial rea-

soning that our current GAN architecture struggles to capture. 

This indicates that difficulty affects not only player percep-

tion but also computational generation complexity. Similar to 

the results in A, some features, such as number of tight turns, 

tight turn ratio and percentage of walls, show a clear differ-

ence between the generated easy and hard levels4, as shown 

in Fig. 9. Models are able to generate completely new playa-

ble levels with distinct features as shown in Fig. 7.  

VI. CONCLUSION 

Our research explored different approaches to procedural 

content generation (PCG) of game level s. We found that, 

while efficient for generating a large number of levels, GANs 

require big and quality datasets. LLMs, on the other hand, 

produce high quality levels with very little input, but require 

a lot of resources to generate a larger amount of levels. We 

proposed a hybrid approach by combining the flexibility of 

large language models (LLMs) with the efficiency of genera-

tive adversarial networks (GANs). LLMs proved effective in 

generating structured and semantically rich level layouts, par-

ticularly when guided by schema-constrained prompting. 

However, due to high computational costs, LLMs are best 

suited for generating curated datasets. In contrast, GANs, 

once trained, can quickly generate large volumes of content 

but exhibit limited generalization when data is scarce. Our 

user study confirmed that LLM-labeled difficulty levels align 

well with player perceptions, and that certain structural fea-

tures (e.g., tight turns, wall density) correlate strongly with 

perceived difficulty. These insights can guide future systems 

toward real-time, skill-adaptive content generation. 
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