&l

Proceedings of the 20" Conference on Computer

DOI: 10.15439/2025F1909

Science and Intelligence Systems (FedCSIS) pp. 739-745 ISSN 2300-5963 ACSIS, Vol. 43

IEEE Catalog Number: CFP2585N-ART ©2025, PTI

Towards Game Level Generation Through LLM and GAN

Filip Martinovi¢, Danijel Mlinari¢, Juraj Doncevi¢, Agneza Krajna, Ivica Boticki
0009-0000-1347-4377, 0000-0002-5248-7223, 0000-0001-5221-6848, 0000-0001-8304-5463, 0000-0002-7378-3339
University of Zagreb, Faculty of Electrical Engineering and Computing, Croatia
{filip.martinovic, danijel.mlinaric, juraj.doncevic, agneza.krajna, ivica.boticki}@fer.hr

Abstract—This paper tackles the challenge of adaptive level
generation in video games, focusing on generating content that
aligns with player skill. A key limitation of procedural content
generation (PCG) is achieving semantic control. Specifically,
generating levels of varying difficulty with limited training
data. To address this problem, we propose a hybrid approach
combining Large Language Models (LLMs) and Generative
Adversarial Networks (GANs). An LLM is used to generate a
diverse, difficulty-labeled dataset of Snake game levels, which
are validated with A* pathfinding to ensure playability. These
levels serve as training data for GANs that are able to effi-
ciently generate new levels. The system is evaluated through
user study and playability metrics. Results show that the LLM-
assigned difficulty labels correlate strongly with human percep-
tion. The achieved playability is 87% for easy levels and 36%
for hard levels. Our findings demonstrate that the hybrid
LLM-GAN approach enables scalable and semantically con-
trolled content generation, balancing quality, adaptability, and
computational efficiency.

Index Terms—procedural content generation, generative ad-
versarial networks, large language models, video games, playa-
bility, adaptive systems.

1. INTRODUCTION

HE greatest advances in the software industry today are

due to the ability to adapt to the personal needs and
preferences of individual users. Functionalities such as Net-
flix’s recommendation system or Duolingo’s customizable
lessons have given companies an edge over the competition.
In recent years, new large language models (LLMs) have
also been developed to answer users’ questions. Similar
principles are being explored in the development of video
games, particularly through the automatic generation of con-
tent based on players' skills and behavior [1].

A key challenge in adaptive content generation is seman-
tic control, i.e. the ability to create content with specific, in-
terpretable characteristics (such as difficulty level) that align
with human perception and intent, rather than producing sta-
tistically similar outputs. Traditional procedural content gen-
eration methods face challenges. They either rely on manu-
ally created rules that limit creativity or require extensive
datasets that may not exist for specific domains. And even

This work was co-funded by the European Union through the National
Recovery and Resilience Plan (NPOO), under the project AutoEvolve —
Automated Evolution of Software, project code: NPOO.C3.2.R3-11.05.0073.

739

when successful, they often lack the semantic understanding
to produce content with certain meaningful characteristics.

This paper continues research into adaptive software sys-
tems [2,3], extending from dynamic software updating to
adaptive content generation. Using the game Snake as a con-
trolled environment, we investigated three approaches for
Al-driven level generation: standalone GANs, standalone
LLMs and a novel hybrid LLM-GAN approach.

Our research specifically examines whether modern Al
approaches can provide reliable semantic control for diffi-
culty adaptation. Initial experiments with GANs trained on
limited data (15 levels) demonstrated severe overfitting and
poor generalization. Pure LLM generation showed excellent
quality control through semantic understanding but proved
computationally expensive for real-time applications. This
motivated our hybrid approach: using LLMs to bootstrap di-
verse training datasets for GAN training, combining the se-
mantic precision of language models with the computational
efficiency of adversarial networks. We validated the seman-
tic control capabilities through user study, demonstrating a
strong correlation between LLM-assigned difficulty labels
and human perception. The focus is to determine whether
the proposed hybrid pipeline can achieve the benefits of both
approaches while mitigating their individual limitations.

II. ReLateED WoRrK

The field of procedural content generation (PCG) for
video games [4] has made significant progress through the
application of artificial intelligence techniques. This section
presents the main approaches to game level generation: tra-
ditional PCG methods and their scalability limitations, gen-
erative model applications, and playability assurance tech-
niques that ensure generated content meets functional re-
quirements.

A. Procedural Content Generation

Togelius et al. [5] define procedural content generation
(PCQG) as the algorithmic creation of game content with lim-
ited or indirect user input. Some games such as Minecraft' use

! https://www.minecraft.net/

Thematic Session: Self Learning and
Self Adaptive Systems

740

Fig. 1 Pre made levels for the Snake game. Green tiles represent
walls, blue tiles represent the player’s initial position, orange tiles
represent box-es that can be moved by the player and all other colors
of the tiles represent different types of food

PCG to create seemingly infinite worlds. Games in the
roguelike and dungeon crawler genres, such as Spelunky?, use
it to create unpredictable levels that ensure each playthrough
is unique. The challenge that arises from this approach is to
manage the generation process to create meaningful and en-
tertaining levels. This also requires substantial effort from the
developer, who must set detailed restrictions to ensure playa-
bility.
B. Generative Models

Generative models are a class of machine learning algo-
rithms designed to generate new data samples that resemble a
given dataset. These models learn the underlying distribution
of the data and can generate realistic outputs such as images,
text, etc.

GANSs [6] use the adversarial training process where the
generator produces synthetic samples while the discriminator
tries to distinguish real data from the generated ones. During
the training process, the generator and discriminator play a
mini-max game in which the goal for the generator is to pro-
duce realistic samples. Transformers [7], on the other hand,
have introduced the mechanism of self-attention, which al-
lows them to efficiently capture long-range dependencies.
Although they are mainly used for text generation, they have
also proven successful in image generation [8].

C. Generative Models for Level Creation

Recent research has investigated the use of machine learn-
ing (ML) for procedural content generation [9]. Generative
Adversarial Networks (GANs) [6] have emerged as powerful
tools for creating game levels that resemble human-designed
content. As Volz et al. [10] have shown, GANs can capture
the essence of existing Super Mario Bros levels while intro-
ducing new meaningful variations. Their approach uses a Co-
variance Matrix Adaptation Evolutionary Strategy (CMA-
ES) [11] to optimize the latent space of the network, allowing
the creation of levels with certain desired properties, such as
the wall density or the number of enemies. However, this
method relies heavily on large datasets of existing levels and

2 https://www.spelunkyworld.com/

PROCEEDINGS OF THE FEDCSIS. KRAKOW, POLAND, 2025

is constrained by the design patterns present in the original
corpus, potentially limiting novelty.

The CESAGAN (Conditionally Embedded Self-Attention
GAN) framework [12] builds on basic GAN architectures and
incorporates explicit constraints into the generation process.
This model encodes specific requirements, such as the num-
ber of walls or enemies, into feature vectors that guide the
generation process. Bootstrapping techniques were used to
solve the problem of a lack of data in the game-level datasets.
This involves iteratively adding newly generated levels that
meet the playability criteria, such as the correct number of tile
types and the existence of a path to all goals, to the training
dataset. This approach has significantly increased the percent-
age of playable levels while reducing the number of dupli-
cates.

D.Playability

One of the main problems encountered with PCG is ensur-
ing that created levels can be completed by the players. There
are several approaches to solving this problem from different
perspectives. One innovative approach combines classifica-
tion with explainability techniques [13]. After identifying un-
playable levels, models such as SHAP (SHapley Additive ex-
Planations) [14] or Integrated Gradients [15] assign im-
portance values to each coordinate in the level, highlighting
areas that are responsible for the unplayability. These values
lead to targeted changes to problematic areas, while the over-
all structure and aesthetics of the level are preserved.

Zhang et al. [16] used GAN to generate Zelda levels and
then used Mixed Integer Linear Programming (MILP) to re-
pair unplayable levels. MILP provides a mathematical ap-
proach to level repair by representing levels as graphs in
which the nodes correspond to tiles (walls, empty spaces,
players, keys, doors or enemies) and the edges represent the
connections between tiles. The playability problem is formu-
lated as a network flow problem with sources (e.g. players),
targets (e.g. doors, keys) and obstacles (e.g. walls). The solu-
tion minimizes the number of changes required to make a
level playable while satisfying constraints related to flow
preservation and obstacle avoidance. While this approach
guarantees playability, the complexity of implementation
could increase significantly for games with dynamic elements
such as moving opponents.

Cooper and Sarkar [17] have used specialized repair agents
to identify and repair unplayable areas. These agents can per-
form otherwise forbidden actions (e.g., walking through
walls), but at a high cost. By identifying expensive actions on
an agent's path to the goal, the system can make targeted mod-
ifications to the level, such as converting walls into empty
spaces.

Jain et al. [18] used autoencoders [19] to generate new lev-
els based on an existing corpus of Super Mario Bros levels.
Their model compresses the level designs into a lower-dimen-
sional latent space and then reconstructs them, effectively
learning the basic patterns and structures that compose valid

FILIP MARTINOVIC ET AL: TOWARDS GAME LEVEL GENERATION THROUGH LLM AND GAN

‘real’ samples
Trainingdata —» %

Generator, G

Backpropagation

$50| J03RUILLILIDSI

Discriminator, D

Multilayer neural

network

Multilayer
neural network

Random noise
50| J0JRIBUID

Generated ‘fake’ samples

Backpropagation
Fig. 2 Architecture of GAN [24]

levels. They have also used autoencoders to repair unplayable
levels by running them through the model, which leverages
its learned representations to reconstruct missing or problem-
atic elements while maintaining overall coherence.

III. HYBRID APPROACH TO PROCEDURAL CONTENT
GENERATION

This section describes our experimental framework for de-
veloping an adaptive Snake game that dynamically generates
levels tailored to player skill. Our approach addresses a fun-
damental challenge in procedural content generation: balanc-
ing quality, controllability, and computational efficiency.
While LLMs excel at generating semantically meaningful
content with explicit difficulty control, they are computation-
ally expensive for real-time applications. Conversely, once
trained, GANSs can efficiently generate content, but typically
lack semantic understanding and require large datasets. Our
hybrid pipeline combines these approaches by using LLMs to
generate diverse, difficulty-labelled training data, then train-
ing specialized GAN models on this data for efficient gener-
ation at runtime. The system operates in two distinct phases.
In the training phase, we use structured prompts to generate
levels of controllable difficulty, validate their playability, and
train separate GAN models for easy and hard difficulty levels.

A. Initial Dataset

One of the biggest challenges in training generative models
is the lack of high-quality, diverse training data. The initial
dataset was extracted from the 15 pre-made levels of the
Google Snake Game Level Editor mod [20] (in Fig. 1).

However, this initial dataset of 15 levels presents a signifi-
cant limitation for training GAN, which typically requires
hundreds or thousands of training samples to learn meaning-
ful data distributions and avoid overfitting. To address data
scarcity, we used LLM to generate additional training data, as
detailed in the section [V.A.

The pre-made levels consist of different types of tiles such
as walls, crates, players and different types of food. To sim-
plify the generation process, we have focused on 4 types of
tiles that are essential for the game: walls, empty spaces, food
and the player’s starting position. All the different food types
have been combined into one and all other tile types have been
treated as empty spaces.

Fig. 3 Levels generated by GAN on initial dataset

Individual pre-made level images are available on GitHub
[21]. The images were processed by extracting tiles based on
their colour. The levels can be displayed in different ways.
Inspired by the game levels in The Video Game Levels Cor-
pus (VGLC) [22], we opted for the 2D grid representation. A
specific character symbol is used for each tile type. In our
simplified levels, “W” stands for walls, "-" for empty areas,
“F” for food and “S” for snake head, as shown in Fig. 4.

To encode the levels for training with GANS, each tile type
is encoded in a separate channel, so that the levels were rep-
resented using four channels. Since the pre-made levels have
different sizes, further preprocessing was required. In partic-
ular, all levels were padded with empty spaces up to a size of
32x32 tiles.

B. GAN Model

The architecture of the GAN model is based on the model
from Arjovsky et al. [23]. In this design, the discriminator
consists of blocks of strided convolutional layers followed by
batch normalization layers and LeakyReLU activation layers.
The generator uses transposed convolutional layers followed
by batch normalization and ReLU layers. The last transposed
convolutional layer is followed by the hyperbolic tangent
function (fanh), which maps the outputs to the range [-1,1].
The architecture is adapted to 32x32 size images by removing
the deepest layer of both the discriminator and the generator.
The architecture of the entire system is shown in Fig. 2.

WA WA
Wo————= WIWWW——~——~ W
W-A-—=S-——=—=——~ A-T

W-—WW--WWWWW--WW--W
W-—WW--WWWWW--WW--W

WW-WW-WWWWWWW-WW-WW
WW-WW-WNWWWWW-WW-WW
WW-WW-WWNWWWWW-WW-WW

W-—WW--WWWWW--WW--W
W-—WW--WWWWW--WW--W

W-RA-————m——————— A-T
W= WWWW——~——~ W
WA WA

Fig. 4 Example of pre-made level in 2D format

741

742

Fig. 5 a) Easy level generated by LLM, b) hard level generated by LLM
and c) hard level generated by LLM with shortest path found with A*
algorithm

After the training process, the generator can accurately rep-
licate levels in the training dataset, as shown in Fig. 3. How-
ever, since only a limited amount of training data is available,
the model tends to overfit. It replicates training samples in-
stead of generating varied new levels. Furthermore, to gener-
ate levels with the desired difficulty, a larger, balanced dataset
with difficulty labels is required.

C.LLM for Training Set

Instead of designing new levels manually, large language
models (LLMs) can be used for this task. To generate new
levels, the LLM must first be given clear instructions on how
to generate them. It must also be given some levels as a refer-
ence. In most cases, text prompts are used as input to the
model and the output is usually in the form of text. When gen-
erating levels with LLMs, we explored two primary output
formats: 2D textual grids and structured representation. As
level examples, we passed premade levels in 2D format, as
shown in Fig. 4. The prompt to the model was as follows: “I
have attached game levels for the game Snake. “W’ represents
walls and ‘- represents empty spaces. Generate more similar
levels”.

We found that the text outputs, especially for larger levels,
often contained errors, such as an incorrect number of rows or
an incorrect number of elements in a row. While most of these
errors could be corrected manually, our goal is to automate
the process. To generate high-quality, structured game layers,
we combined GPT-40 and the OpenAl API Structured Out-
puts feature [25] that allowed us to capture the output in JSON
format. To shape the whole process as a pipeline, we used the
LangChain [26] framework in combination with a Pydantic-
based output parser. Instead of generating free-form grids, we
used pydantic.BaseModel to define a detailed schema to ex-
plicitly describe the components of a game level. The schema
contains fields with the grid size (height and width of the
level), a list of wall coordinates, the position of the snake head
and a list of food coordinates. The output parser allowed us to
validate each generated level and automatically discard levels
that did not exactly match the schema. A typical prompt asked
the model to generate a solvable Snake level of a given size
with specific design constraints (the food must not be placed
on the walls, the level must be solvable). The output was au-
tomatically parsed and validated. Inconsistencies or missing
fields triggered errors, allowing us to discard or regenerate the
sample in question. This approach provided a clean, normal-
ized dataset suitable for conversion to structured tensors for
GAN training. It also gave us the opportunity to generate new
levels under certain conditions. The difficulty of the levels is

PROCEEDINGS OF THE FEDCSIS. KRAKOW, POLAND, 2025

Phase 1 Phase 2 Phase 3
LLM level generation GAN training Runtime level generation
Prompt
- & Hi4
— T | Hithi
[iy Labeled dataset— GAN - I G
. J

Generated levels

I. 1
kI
1 1

=53]
[T h

Difficulty-labeled |
colevels

Fig. 6 System architecture of the hybrid LLM-GAN level generation
pipeline

particularly interesting. With carefully designed prompts, it is
possible to generate easier or harder levels, as can be seen in
Fig. 5. Easy levels have fewer walls, and food is generated
closer to snake’s head, while harder levels have more com-
plex wall structures and food is harder to reach. In some cases,
however, there is no clear difference in the difficulty of the
generated levels.

Even though there are multiple methods that can check the
playability and even repair levels (section I1.C), we only cal-
culated the shortest path from the snake's head to all the food
items. It can be calculated using the A* algorithm [27],
adapted for multiple goals, where additional movement con-
straints apply: the snake cannot immediately turn back (return
to the direction it just came from). The snake’s ability to grow
incrementally was not considered and it was treated as a sin-
gle tile. The Manhattan distance was used as a heuristic func-
tion. Knowing the shortest path allows comparison of levels
from the unbiased perspective of a “perfect player”. We track
metrics such as path length, the number of turns, the number
of tight turns (around walls), and the longest straight path. We
also track metrics related to the level itself, such as the per-
centage of walls, the number of dead ends, the number of
“chokepoints” (narrow passages with walls on both sides).
Regardless of these metrics, the difficulty depends signifi-
cantly on the placement of the food.

IV. EXPERIMENT SETUP

To create a substantially larger dataset for GAN training
and validate our hybrid approach, we employed a comprehen-
sive three-phase experimental framework. This methodology
enables systematic comparison of the cost and quality of pure
LLM generation, the effectiveness of hybrid GAN training,
and the validation of semantic control through a user study,
providing quantitative analysis of the trade-offs between the
different approaches. The system architecture is shown in Fig.
6.

A. Generating Dataset for GAN Training

We used levels generated by an LLM in text format, as de-
scribed in section III.A, and input them to LLM as examples.
When selecting the examples, focus was to ensure that there

FILIP MARTINOVIC ET AL: TOWARDS GAME LEVEL GENERATION THROUGH LLM AND GAN

TABLEI
MODEL COMPARISON BETWEEN LEVEL DIFFICULTY
Model Max (Avg) | Computation| Generation | Semantic
Difficulty Playability al cost time control
Rate (PR)
GAN 2h training o
*) 0,
Hard 36 (24*) % duration <ls Limited
GAN 2h training o
*) 0,
Easy 87 (74*) % duration <ls Limited
LLM ~705 tokens
66 (100%%) 9 ~30 Excellent
Hard ()% per level s xeetien
LLM ~412 tok
100 % OIS 305 Excellent
Easy per level

*Average of top 5 hyperparameter configurations
** After validation and regeneration of failed levels

is a clear difference between hard and easy levels, like more
open spaces and food closer to the player for easier levels, and
more narrow passages and food placed in more difficult
places for harder levels.

We then generated 50 easy and 50 difficult levels with
structured few-shot prompts. Each generation started with a
prompt with 3569 tokens for easy levels and 8495 tokens for
difficult levels. The model's responses varied in complexity,
averaging 412 tokens for easy levels and 705 tokens for diffi-
cult levels. Due to the nature of generative models that not all
levels were viable. Some were unplayable or logically broken
and had to be discarded, resulting in a higher number of to-
kens spent. As this process immediately generated 50 playa-
ble easy levels, there were 17 unplayable hard levels that we
discarded. The total number of tokens used to generate all 100
levels was 617131. We can see that the generation process,
while successful, consumes a lot of resources and is not prac-
tical when a big set of levels is needed.

B. GAN Training

With the generated dataset, we trained two separate GAN
models: one for easy and one for difficult levels. Each model
was trained® with a corresponding subset of 50 levels.

All levels were pre-processed as described in III.A. The
training data was normalized to the range [-1,1] to align with
the fanh activation in the generator’s output layer, as men-
tioned in section II1.B.

We explored different values for the learning rate, the stack
size, the dimension of the latent vector, and the number of
times the discriminator is trained before training the generator
during each epoch. The playability rate (PR) was used as the
optimization target. It is defined as number of solvable levels
per 100 generated levels. The models were trained for 2000
epochs.

C. User Study for Semantic Control Validation

To evaluate the perceived difficulty of the LLM generated
game levels, we conducted a user study involving seven
participants. Each participant was asked to rate 100 level

3Training was conducted on NVIDIA GeForce GTX 1050 for
approximately 4 hours. We used Optuna framework [28] for hyperparameters
and monitored convergence through playability rate (PR) metric.

743

b)

Fig. 7 Playable levels generated by GAN models trained on:
a) “hard” dataset, b) “easy” dataset

images on a scale from 1 (very easy) to 5 (very difficult). The
dataset consisted of 50 "easy" and 50 "hard" levels generated
by a large language model in IV.A. However, users were not
informed of these labels. The difficulty levels were randomly
shuffled and presented to all users in the same order to ensure
consistency. After collecting the individual ratings, we
calculated the average rating for each level and analyzed its
Pearson correlation with various structural features extracted
from the levels described in III.C. This enabled us to identify
which features most strongly influence the difficulty
perceived by the users and the correspondence between the
difficulty assigned as input to the LLM and the user ratings.

V.RESULTS

We present our findings in two main parts: first, validation
of LLM semantic control through a user study, showing a
strong correlation between assigned and perceived difficulty;
second, the analysis of GAN performance when trained on
LLM-generated datasets, revealing significant differences be-
tween easy and hard level generation complexity.

tight_tums
tight_turn_ratio -8 070 osa
081 080

030 031 o020 WY 00 . x .
06

walls_percentage | 0685 079 078

path_length_ratio R

avg_path_to_foad

dead_ends -
longest_straight_path L
chokepoints
avg_distance_to_food S8
max_distance_to_food -0z
min_distance_to_food -
ditficulty_numeric

avg_rating -00

path_length_ratio
avg_path_to_food -
walls_percentage
dead_ends -
chokepoints
difficulty_numeric
avg_rating

min_distance to_food - |

longest_straight_path - &
avg_cistance_to_food
max _distance_to_food

Fig. 8 Correlation matrix between structural level features and user diffi-
culty ratings (n=7 participants, 100 levels)

744

tight_turn_ratio tight_turns

400 400

300 4

Count
Count

200 4 200 4

100

0 \&'U‘QTU'P_“'L&‘__%“J — M 0+

100 4

PROCEEDINGS OF THE FEDCSIS. KRAKOW, POLAND, 2025
100 4 walls_percentage

80 4

60 1

I easy
hard

Count

40

204

0.0 0.2 0.4 0.6 0.8 1.0 0 5 10 15 20

25 0.1 0.2 0.3 0.4 0.5

Fig. 9 Distribution comparison of key metrics between GAN-generated “easy” and “hard" levels

A. LLM Generated Levels

Based on the correlation (Fig. 8), we have identified several
features that exhibit a strong relationship with user perceived
difficulty. The most prominent is the tight turn ratio, which
has the highest positive correlation with average user ratings,
suggesting that levels requiring frequent sharp changes of di-
rection are consistently rated as more difficult. Other features
such as fotal number of turns and percentage of walls also
correlate strongly with higher difficulty ratings, suggesting
that spatial complexity and environmental constraints play a
central role in perceived challenge. However, several features
are highly intercorrelated, most notably tight turns and turns,
as well as average and maximum distance to food, leading to
redundancy and suggesting that a more compact feature set
could be used without significant information loss. Interest-
ingly, the binary difficulty label originally assigned to the
level generation prompt ("easy" vs. "hard") shows a strong
correlation with the actual user ratings.

Results show that the generated levels are highly consistent
with players' perceptions, which strengthens confidence in the
quality of the generated levels and can serve as a useful basis
for further automation. However, a larger-scale study would
be needed to confirm these findings across diverse player pop-
ulations. It is important to note that our analysis is based on
correlation rather than causation, further controlled experi-
ments are needed to confirm which features directly influence
perceived difficulty.

B. GAN Generated Levels

We have selected the five best performing hyperparameter
configurations for each model (Easy GAN and Hard GAN)
based on the playability rate (PR). For each of these configu-
rations, we also identified the top three training checkpoints
that produced the highest quality outputs. From each of these
checkpoints, we generated 100 playable level samples, result-
ing in a diverse evaluation set. We then computed metrics de-
scribed in IV.C for these generated levels. As shown in Table
I, the model trained on the “hard” dataset generates much less
playable levels than the one trained on the easy dataset. The

“Complete results can be found at: https://fer-autoevolve.github.io/results/

significant difference in playability rates (87% vs 36%) sug-
gests that difficult levels require more complex spatial rea-
soning that our current GAN architecture struggles to capture.
This indicates that difficulty affects not only player percep-
tion but also computational generation complexity. Similar to
the results in A, some features, such as number of tight turns,
tight turn ratio and percentage of walls, show a clear differ-
ence between the generated easy and hard levels®, as shown
in Fig. 9. Models are able to generate completely new playa-
ble levels with distinct features as shown in Fig. 7.

VI. CONCLUSION

Our research explored different approaches to procedural
content generation (PCG) of game level s. We found that,
while efficient for generating a large number of levels, GANs
require big and quality datasets. LLMs, on the other hand,
produce high quality levels with very little input, but require
a lot of resources to generate a larger amount of levels. We
proposed a hybrid approach by combining the flexibility of
large language models (LLMs) with the efficiency of genera-
tive adversarial networks (GANs). LLMs proved effective in
generating structured and semantically rich level layouts, par-
ticularly when guided by schema-constrained prompting.
However, due to high computational costs, LLMs are best
suited for generating curated datasets. In contrast, GANS,
once trained, can quickly generate large volumes of content
but exhibit limited generalization when data is scarce. Our
user study confirmed that LLM-labeled difficulty levels align
well with player perceptions, and that certain structural fea-
tures (e.g., tight turns, wall density) correlate strongly with
perceived difficulty. These insights can guide future systems
toward real-time, skill-adaptive content generation.

REFERENCES

G. N. Yannakakis and J. Togelius, ‘Experience-Driven Procedural
Content Generation’, [EEE Trans. Affect. Comput., vol. 2, no. 3, pp.
147-161, Jul. 2011, doi: 10.1109/T-AFFC.2011.6.

D. Mlinari¢, ‘Extension of dynamic software update model for class
hierarchy changes and run-time phenomena detection’, info:eu-
repo/semantics/doctoral Thesis, University of Zagreb. Faculty of
Electrical Engineering and Computing. Department of Applied

(2]

FILIP MARTINOVIC ET AL: TOWARDS GAME LEVEL GENERATION THROUGH LLM AND GAN

(4]

[10]

[11]

[12]

[13]

Computing, 2020. Accessed: May 26, 2025. [Online]. Available:
https://urn.nsk.hr/urn:nbn:hr:168:087042

D. Mlinari¢, J. Donéevi¢, M. Bréi¢, and 1. Boticki, ‘Revolutionizing
Software Development: Autonomous Software Evolution’, in 2024
47th MIPRO ICT and Electronics Convention (MIPRO), May 2024,
pp. 224-228. doi: 10.1109/MIPRO60963.2024.10569871.

N. Shaker, J. Togelius, and M. J. Nelson, Procedural Content Genera-
tion in Games. in Computational Synthesis and Creative Systems.
Cham: Springer International Publishing, 2016. doi: 10.1007/978-3-
319-42716-4.

J. Togelius, E. Kastbjerg, D. Schedl, and G. N. Yannakakis, ‘What is
procedural content generation? Mario on the borderline’, in Proceed-
ings of the 2nd International Workshop on Procedural Content Gener-
ation in Games, in PCGames ’11. New York, NY, USA: Association
for Computing Machinery, Jun. 2011, pp. 1-6. doi:
10.1145/2000919.2000922.

1. J. Goodfellow et al., ‘Generative Adversarial Networks’, Jun. 10,
2014, arXiv: arXiv:1406.2661. doi: 10.48550/arXiv.1406.2661.

A. Vaswani et al., ‘Attention Is All You Need’, Jun. 12, 2017, arXiv:
arXiv:1706.03762. doi: 10.48550/arXiv.1706.03762.

A. Dosovitskiy et al., ‘An Image is Worth 16x16 Words: Transformers
for Image Recognition at Scale’, Oct. 22, 2020, arXiv:
arXiv:2010.11929. doi: 10.48550/arXiv.2010.11929.

A. Summerville et al., ‘Procedural Content Generation via Machine
Learning (PCGML)’, IEEE Trans. Games, vol. 10, no. 3, pp. 257-270,
Sep. 2018, doi: 10.1109/TG.2018.2846639.

V. Volz, J. Schrum, J. Liu, S. M. Lucas, A. Smith, and S. Risi, ‘Evolv-
ing Mario Levels in the Latent Space of a Deep Convolutional Genera-
tive Adversarial Network’, May 02, 2018, arXiv: arXiv:1805.00728.
doi: 10.48550/arXiv.1805.00728.

N. Hansen, S. D. Miiller, and P. Koumoutsakos, ‘Reducing the Time
Complexity of the Derandomized Evolution Strategy with Covariance
Matrix Adaptation (CMA-ES)’, Evol. Comput., vol. 11, no. 1, pp. 1-
18, Mar. 2003, doi: 10.1162/106365603321828970.

R. Rodriguez Torrado, A. Khalifa, M. Cerny Green, N. Justesen, S.
Risi, and J. Togelius, ‘Bootstrapping Conditional GANs for Video
Game Level Generation’, in 2020 IEEE Conference on Games (CoG),
Aug. 2020, pp. 41-48. doi: 10.1109/C0oG47356.2020.9231576.

M. Bazzaz and S. Cooper, ‘Guided Game Level Repair via Explain-
able AI’, Nov. 04, 2024, arXiv: arXiv:2410.23101. doi: 10.48550/
arXiv.2410.23101.

[14]

[15]

[16]

[17]

(18]

[19]

[20]

(21]

[22]

(23]

[24]

[25]
[26]

[27]

(28]

S. M. Lundberg and S.-I. Lee, ‘A Unified Approach to Interpreting
Model Predictions’, in Advances in Neural Information Processing
Systems, Curran Associates, Inc., 2017. Accessed: Apr. 02, 2025. [On-
line]. Available: https://proceedings.neurips.cc/paper_files/paper/
2017/hash/8a20a8621978632d76c43dfd28b67767-Abstract.html

N. Kokhlikyan et al., ‘Captum: A unified and generic model inter-
pretability library for PyTorch’, Sep. 16, 2020, arXiv:
arXiv:2009.07896. doi: 10.48550/arXiv.2009.07896.

H. Zhang, M. C. Fontaine, A. K. Hoover, J. Togelius, B. Dilkina, and
S. Nikolaidis, ‘Video Game Level Repair via Mixed Integer Linear
Programming’, Oct. 13, 2020, arXiv: arXiv:2010.06627. doi:
10.48550/arXiv.2010.06627.

S. Cooper and A. Sarkar, ‘Pathfinding Agents for Platformer Level
Repair’.

R. Jain, A. Isaksen, and C. Holmg, ‘Autoencoders for Level Genera-
tion, Repair, and Recognition’.

G. E. Hinton and R. R. Salakhutdinov, ‘Reducing the Dimensionality
of Data with Neural Networks’, Science, vol. 313, no. 5786, pp. 504—
507, Jul. 2006, doi: 10.1126/science.1127647.

‘Google Snake Mods’. Accessed: Apr. 04, 2025. [Online]. Available:
https://googlesnakemods.com/v/4/
‘DarkSnakeGang/GoogleSnakeLevelEditor: Level Editor Mod for
Google Snake’. Accessed: Apr. 08, 2025. [Online]. Available:
https://github.com/DarkSnakeGang/GoogleSnakeLevelEditor

A. J. Summerville, S. Snodgrass, M. Mateas, and S. Ontafién, ‘The
VGLC: The Video Game Level Corpus’, Jul. 03, 2016, arXiv:
arXiv:1606.07487. doi: 10.48550/arXiv.1606.07487.

M. Arjovsky, S. Chintala, and L. Bottou, ‘Wasserstein GAN’, Dec. 06,
2017, arXiv: arXiv:1701.07875. doi: 10.48550/arXiv.1701.07875.

C. Little, M. Elliot, R. Allmendinger, and S. S. Samani, ‘Generative
Adversarial Networks for Synthetic Data Generation: A Comparative
Study’, Dec. 03, 2021, arXiv: arXiv:2112.01925. doi: 10.48550/
arXiv.2112.01925.

‘Structured Outputs - OpenAl API’. Accessed: May 24, 2025. [On-
line]. Available: https://platform.openai.com

‘LangChain’. Accessed: May 22, 2025. [Online]. Available: https://
www.langchain.com/langchain

P. E. Hart, N. J. Nilsson, and B. Raphael, ‘A Formal Basis for the
Heuristic Determination of Minimum Cost Paths’, IEEE Trans. Syst.
Sci. Cybern., vol. 4, no. 2, pp. 100-107, Jul. 1968, doi: 10.1109/
TSSC.1968.300136.

‘Optuna - A hyperparameter optimization framework’, Optuna. Ac-
cessed: May 23, 2025. [Online]. Available: https://optuna.org/

