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Abstract—Classical life tables assume fully observed lifespans
and ignore censoring, which can bias survival estimates. In this
study, we compare the classical life table with two censoring-
aware approaches: the Kaplan-Meier estimator applied to sim-
ulated censored lifetimes, and the actuarial estimator assuming
uniform censoring within intervals.

Using mortality data for the Czech Republic (from year
2021), we show that both the mentioned alternative methods
yield systematically lower survival and life expectancy estimates,
compared to life tables-based approach. The actuarial estimator
is the most conservative, and we provide a formal proof that it
underestimates survival relative to Kaplan-Meier.

These differences have practical implications for actuarial
pricing and longevity risk. We advocate incorporating survival
analysis techniques into actuarial workflows when dealing with
incomplete or censored data.

Index Terms—life tables, survival analysis, censoring, Kaplan-
Meier estimator, actuarial estimator, life expectancy overestima-
tion, life expectancy underestimation, actuarial science

I. INTRODUCTION

IFE tables are a cornerstone of actuarial science and

demographic research, offering standardized tools to as-
sess mortality and survival in a given population. Based on
aggregated counts of deaths and population exposures at each
age, these tables enable the computation of key quantities
such as age-specific death probabilities and life expectancy. In
standard construction, however, life tables operate under the
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assumption of fully observed lifespans and do not incorporate
censoring the fact that, in many contexts, we do not observe
the complete lifespan for every individual.

Although this assumption holds in retrospective national
mortality data, it becomes increasingly problematic in settings
involving survey-based samples, incomplete registration sys-
tems, or real-time monitoring, where censoring is inherent in
the data structure. Censoring occurs naturally when the full
path of survival is not observed, either due to loss to follow-up,
study end, or delayed entry. Right-censoring means that we do
not know when an individual would experience the event of
interest because the monitoring period ended before the event
could occur.

The distinction could be nontrivial. As noted by Slud [1],
the classical construction of life tables, based on central death
rates and complete cohorts, fails to account for right-censoring,
which can bias survival estimates if present but ignored.
Missov and Vaupel [2] further explore the impact of censoring
on mortality measures, showing that even small amounts
of right-censoring can influence life expectancy and related
metrics. Modern survival analysis, in contrast, is equipped
to handle censored observations through estimators such as
Kaplan-Meier, Nelson-Aalen, and parametric survival models.

In this study, we revisit classical life table methods using
mortality data from the Human Mortality Database (HMD)
[3] for the Czech Republic in 2021. We begin by constructing
a traditional life table and estimating survival probabilities
and life expectancy under the assumption of complete data.
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We then introduce synthetic censoring at the aggregate level
and evaluate its effect on survival metrics. Next, we simulate
individual-level lifetimes with right-censoring and estimate the
survival function [4] using the Kaplan-Meier estimator, a non-
parametric method that accommodates incomplete observation
(51, [6].

In addition, we implement the actuarial estimator of the
survival function, which assumes uniformly distributed cen-
soring within fixed intervals and is widely used when exact
death times are not available [7]. We analytically demonstrate
that this estimator yields lower survival estimates than Kaplan-
Meier under the same data, and we confirm this property
empirically.

By comparing all three approaches, i.e. the classical life
table, Kaplan-Meier, and actuarial estimator, we quantify the
extent of deviation in survival curves and life expectancy
measures due to censoring and method choice. Finally, we
discuss the implications of these differences and possible un-
derestimation of the survivals for actuarial pricing, reserving,
and longevity risk assessment.

II. PRELIMINARIES

Life tables are traditionally constructed using a determinis-
tic sequence of transformations, starting from observed age-
specific death rates or death probabilities. The standard com-
ponents of a complete life table include the probability of
dying between ages x and x + 1 (denoted as ¢, ), the number
of survivors at age x (marked as [,.), the number of deaths at
age x (d;), the person-years lived between ages x and x + 1
(here denoted as L), the total person-years remaining beyond
a given age = (T};), and the remaining life expectancy at age x
(marked as e;). These definitions are extensively documented
in actuarial and demographic literature, for instance [8], [9],
[10].

The death probability ¢, is typically calculated from empir-
ical data as D

N, ey
where D, is the number of deaths observed at age =, and N,
is the number of individuals exposed to risk at that age.

Starting from a radix [y = 100, 000, the number of survivors
at each age is recursively defined as

qz =

lz+1 - lw(l - qm) (2)
From this, the number of deaths is given by
dy = 2z, (3)

and the number of person-years lived between ages x and z+1

is typically approximated by
1
Lx = lm - Edam (4)
assuming that deaths are uniformly distributed within each
age interval. The cumulative future person-years 7, and the

corresponding life expectancy e, are then computed as

w Tx
szksz, e =75 Q)
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respectively, where w denotes the maximum age in the life
table.

III. METHODS

In this section, we implement the above methodology us-
ing mortality and exposure data from the Human Mortality
Database (HMD) for the Czech Republic in 2021. The result-
ing classical life table will serve as the benchmark for later
comparison with methods that incorporate synthetic censoring.

All computations and visualizations were performed using
the R language [11] with the packages ggplot2 [12], dplyr
[13], and survival [14], [15].

A. Classical Life Table Construction

Using mortality and exposure data from the Human Mortal-
ity Database for the Czech Republic in 2021, we constructed
a complete life table following the standard actuarial approach.
The key steps involved computing age-specific probabilities of
death ¢, the number of survivors [, the number of deaths
d,, person-years lived L,, cumulative person-years 7, and
remaining life expectancy e, always considering age x. The
radix was set at o = 100,000, and the last observed age
w = 109 was treated as an absorbing state with qig9 = 1,
meaning that all remaining individuals are assumed to die
within the interval (109,110), as is standard in demographic
practice, [8], [9], and is feasible even for research purposes,
including this proceeding.

Part of the resulting table for ages 09 is shown in Tables I
and II. It illustrates the decreasing pattern of life expectancy
with age and the consistent structure of death probabilities and
exposures.

Fig. 1 presents the curve of remaining life expectancy e,
as a function of age. The smooth and decreasing trajectory
reflects the typical aging pattern in low-mortality populations.

B. Incorporating Synthetic Censoring

To assess how censoring could influence life table calcu-
lations even when working with aggregated population-level
data, we construct a synthetic scenario in which a portion of
the population at each age is assumed to be right-censored.
This mimics conditions observed in longitudinal surveys,
clinical studies, or incomplete registration systems, where not
all individuals’ times of death are observed. Since the dataset
Human Mortality Database (HMD) does not include (or even

TABLE I
FIRST 10 OBSERVATIONS OF HMD DATA (CZECH REPUBLIC, 2021)

Age Deaths Exposure
0 246 110751.7
1 15 109581.9
2 12 112244.1
3 13 114184.9
4 11 113540.5
5 6 112191.5
6 18 111140.5
7 14 109107.7
8 8 108884.5
9 3 109051.5
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TABLE II
FIRST 10 OBSERVATIONS OF THE CONSTRUCTED CLASSICAL LIFE TABLE
(CZECH REPUBLIC, 2021)

Age qx [ do Lo Tx ex
0 0.002221 100000.00  222.12  99888.94 7699599  76.996
1 0.000137 99777.88 13.66  99771.05 7599710  76.166
2 0.000107 99764.22 10.67  99758.89 7499939  75.177
3 0.000114 99753.56 11.36  99747.88 7400180  74.185
4 0.000097 99742.20 9.66  99737.37 7300433  73.193
5 0.000054 99732.54 533  99729.87 7200695 < 72.200
6  0.000162 99727.20 16.15 99719.13 7100965  71.204
7 0.000128 99711.05 12,79  99704.66 7001246  70.215
8 0.000073 99698.26 733  99694.60 6901542  69.224
9  0.000028 99690.93 2.74  99689.56 6801847  68.229
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Fig. 1. Remaining life expectancy (in years) at age = based on classical life
table construction.

consider) censoring, the synthetic, i.e. simulated censoring is
the only way how to investigate its impact.

In our synthetic setup, we assume a fixed censoring prob-
ability c, at each age. Specifically, we define ¢, = 0.10, i.e.,
10 % of the exposure at each age is assumed to be censored.
This means that instead of observing N, person-years fully at
risk, we effectively observe only (1 — ¢, )N, as uncensored
exposure, while ¢, /V, is assumed to be censored.

Following the framework suggested by Slud [1] and the
analytical concerns raised in Missov and Vaupel [2], we adjust
the death probability coming from formula (1) calculation
accordingly,

- D,

where ¢, represents the adjusted probability of death
under censoring. All subsequent life table quantities
l;, (ZI, f}z, Tz, é, from formulae (2, 3, 4, 5) are computed us-
ing this modified death probability g,, replicating the structure
of the classical method.

We emphasize that this adjustment does not imply
individual-level censoring but rather a proxy for its effect
at the population level. The goal is to examine whether
such synthetic censoring, even when introduced into aggregate
mortality data, leads to meaningful differences in key survival
metrics such as life expectancy.

In the next subsection, we present the life table results under
the synthetic censoring assumption and compare them to the
classical baseline.

C. Comparison of Results under Censoring

Fig. 2 shows the comparison between the classical and
synthetically censored life tables in terms of remaining life
expectancy. As expected, the life expectancy under synthetic
censoring is systematically lower in all ages. This is a direct
consequence of inflating the estimated mortality probabilities
when only partial exposures are assumed to be observed. In
other words, if classical life tables-based approach assumes
non-censored framework when probability of death at given
age x is, using formula (1), equal to ¢, = 11\7,—: while the death
probability under censoring is (6), ¢, = ufgﬁ obviously
is ¢ > q, for any c, > 0, i.e., whenever there is nonzero
censoring we are not aware of, the probability of death is in
fact a bit higher and, consequently, the true remaining life
expectancy is a bit lower.

When we assume that data are not censored we might get
falsely optimistic classical estimate used in life tables. When
incorporating censoring we can always see the downward shift
in estimated life expectancy curve which might be closer to
the reality.

In further sections we discuss methods for estimating sur-
vival function which is then used to model life expectnancy.
We present the actuarial estimator and the Kaplan-Meier
estimator.

IV. ACTUARIAL (LIFETABLE) ESTIMATOR

One of the approaches for estimating the survival function,
i.e., a probability that an object will survive longer than a spec-
ified time point [4], is the actuarial or life table estimator [7].
This method is suitable for interval-censored or grouped data
where exact times of death or censoring are not known. It
is commonly used in demography and actuarial science when
data are available in age or time intervals.

Let the time axis be partitioned into intervals (¢;_1,t;). For
each interval, we define
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Fig. 2. Comparison of remaining life expectancy between classical life table
and synthetic censoring scenario (c; = 10 %).
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« 7; as the number of individuals entering interval j,
e d; as the number of deaths observed in interval j,
e c¢; as the number of right-censored observations in inter-
val j.
Assuming uniform censoring within the interval, the effec-
tive number at risk is approximated by

A —— 7

clearly saying that at a midpoint of the given interval (5), there
is just half the censoring ( ) of the entire interval (c;). The
conditional survival probablhty in interval j is then
rh—d,; d;
pj=- Y G ®)
T T
The actuarial estimate of the survival function S (t) is
obtained as the cumulative product,

11 »s- ©)

Jity <t

SA(t

since, if an individial survived up to interval j, they had to
survive also up to intervals j — 1,5 —2,..., 1. Thus, we have
to mutually multiply the interval-related probabilities p;.

This estimator is generally more conservative in estimating
survival than Kaplan-Meier, especially when censoring is
heavy or uneven. The assumption of uniformly distributed
censoring within intervals can lead to a downward bias in
estimated survival compared to methods that use exact event
times.

V. KAPLAN-MEIER ESTIMATOR

The Kaplan-Meier estimator is a non-parametric method
for estimating the survival function S(z), which represents
the probability that a subject survives beyond age = [5],
[6]. It is particularly well-suited for handling right-censored
data, where the exact time of death is not observed for some
individuals.

Let t1 <ty < --- <t} denote the distinct observed failure
times in the sample, d; the number of events (deaths) between
time points ¢;_; and ¢;, and r; the number of individuals at
risk just before ¢;. Then the Kaplan-Meier estimator is given

by
( 1 d; ) .
Jit;<t "

Skm(t) =[] (10)

This step function decreases only at observed event times
and remains constant in intervals where no events occur.
Censored observations reduce the risk set r; at subsequent
time points but do not directly contribute to d;.

Once the survival function is estimated, the life expectancy
at birth ey can be computed as the area under the curve (which
is not differentiable but is continuous, though),

I:/OOOS'(z)dx

(11
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which in practice is approximated as the sum over the discrete

age grid,
KM Z S

where S (z) is an estimate of survival function, modeled using
actuarial estimate S 4 or Kaplan-Meier estimate S KM, as
introduced before. This provides a consistent estimator of the
mean remaining lifetime even in the presence of censoring,
unlike classical life table methods that assume fully observed
(non-censored) data.

We compare the actuarial estimator with the Kaplan-Meier
estimator in the next section and quantify their divergence in
terms of survival function and life expectancy.

(12)

VI. THE ACTUARIAL ESTIMATOR UNDERESTIMATES
SURVIVAL COMPARED TO KAPLAN-MEIER ESTIMATOR

We now provide an analytical justification for why the actu-
arial estimator S A(t) is systematically lower than the Kaplan-
Meier estimator S a (t) under the same data.

Recall that in Kaplan-Meier from formula (10), the survival
function decreases only at exact failure times,

Sia(t) = St (1= 7).

J

13)

where r; is the number at risk just before time point ¢;.

By contrast, the actuarial estimator assumes that censoring is
uniformly distributed within interval (¢;_1,t;), so the effective
number at risk is adjusted to

cs
%:q—é, (14)
and the survival estimate is
. dj
Sa(t;) =Saltj—1)- 1—? . (15)
J
As comes from formulae (13, 15), terms 1 — 4 L and 1 — T

J
are the key. Because rj =r; — 02] < rj in most practical
cases (i.e., if any censoring ¢; > 0 occurs before the end of

the interval), we have

d; d;
2> 2, (16)
T‘j T‘j
which implies
d d;
1-2<1--2, (17)
Tj T‘j

for every time point ¢; < ¢, and therefore, multiplying the
terms from previous formula (17), we get

d d;

1-—=<1-—

v .

j:t " it <t "

3 (8,9,10) -
Sat) < Skm(t).

th € {tl,tz,...,t}

(18)
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This inequality propagates multiplicatively, so the entire sur-
vival curve under the actuarial method lies below the Kaplan-
Meier curve, if any censoring occurs. Hence, the actuarial
estimator systematically underestimates survival compared to
Kaplan-Meier, especially when censoring is substantial.

This property also directly impacts life expectancy estimates
derived as area under the survival curve.

VII. ESTIMATION WITH SIMULATED CENSORING

To analyze the effect of censoring using a statistically rig-
orous survival model, we simulated individual-level lifetimes
from the classical life table probabilities ¢, and applied a 10 %
right-censoring mechanism. We then estimated the survival
function using the Kaplan-Meier estimator.

In parallel, we computed the actuarial survival function
based on interval-level data and uniform censoring assump-
tions. The corresponding life expectancy was obtained as the
discrete area under the actuarial survival curve,

et =Y Sa(x), (19)

where S, (x) denotes the actuarial survival estimate at the
beginning of age x. This summation provides a consistent
approximation of the expected remaining lifetime under the
actuarial model.

Fig. 3 shows the comparison between the Kaplan-Meier
estimate, actuarial estimate and the classical life table survival
function S(x) = I;/lp, as the first two come from formu-
lae (10, 9). The Kaplan-Meier curve lies systematically below
the classical curve, indicating shorter estimated survival due to
the presence of censoring. The curve estimated by the actuarial
estimate lies below both curves. Fig. 4 shows estimated
survival for ages above 75 years. The differences between
the estimates, and, consequently, between the treatment of the
censoring, are more clear in this figure.

In terms of overall life expectancy at birth!, the clas-
sical method based on I, gave ef/T = 77.50 (95% CI
[77.43,77.57]), while the Kaplan-Meier estimator yielded
el™ = 76.54 (95% CI [76.46,76.63]) and the actuarial esti-
mate gave ef! = 75.97 (95% CI [75.90,76.04]), respectively.
The differences here are quiet obvious. Between classical
method and Kaplan-Meier estimate, the difference is approx-
imately 0.96 years. Between classical estimate and actuarial
estimate, the difference is 1.53 years and when comparing
Kaplan-Meier and actuarial estimate the difference shows 0.57
years.

VIII. DISCUSSION

The results of our study provide a comprehensive assess-
ment of how censoring affects survival estimation using three
different approaches: the classical life table, the Kaplan-Meier

I'To report variability of the simulated estimates, 95% confidence intervals
are constructed using the percentile bootstrap, i.e., using the 0.025-th and
0.975-th quantiles of the bootstrapped distribution of each estimator. Confi-
dence intervals are reported in square brackets, preceded by the prefix “95%
Cr.
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Fig. 3. Comparison of survival functions: Kaplan-Meier estimate, actuarial
estimate and life table estimate.
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Fig. 4. Comparison of survival functions for ages 75+ years.

estimator, and the actuarial survival estimator. All methods
were applied consistently to the same underlying mortality
data for the Czech Republic in 2021, using synthetic (simu-
lated) censoring.

Our analyses revealed that the assumptions of no censor-
ing in life table estimates might lead to falsely optimistic
estimates. Incorporating censoring could bring the estimate
closer to the reality. The classical life table estimate of life
expectancy at birth was 77.50 years (95% CI [77.43,77.57)),
while the Kaplan-Meier estimator applied to simulated cen-
sored lifetimes yielded 76.54 years (95% CI [76.46, 76.63]),
a nearly one-year difference. When the actuarial estimator was
applied under uniform censoring assumptions (75.97 with 95%
CI [75.90, 76.04]), life expectancy was lower still, confirming
analytically and empirically that this method is the most
conservative among the three.

From a demographic perspective, this highlights the critical
importance of censoring-aware methodologies, especially in
datasets where full lifespan observation is implausible. Ig-
noring censoring can lead to biased survival estimates and
misleading conclusions about population longevity.

In an actuarial context, these differences carry tangible
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consequences. Life expectancy estimates directly influence
pricing, reserving, and solvency calculations in life insurance
and pension products. A lower estimated life expectancy typi-
cally leads to higher premiums for annuity products and lower
reserves for life insurance, potentially introducing pricing
inaccuracies if censoring is not handled correctly. Conversely,
underestimating survival in products with longevity risk expo-
sure may lead to systematic underreserving, e.g. two people
with the same product but different life expectancy should lead
to higher reserves for the person with higher probability of
death. But when censoring is not accounted for these reserves
could calculated to lower volume leading to underreserving.
In other words when calculating death insurance under falsely
optimistic estimates, lower probability of death (higher life
expectancy) could lead to cheaper insurance policies and vice
versa.

These findings reinforce the need to integrate non-para-
metric survival estimators such as Kaplan-Meier into actuarial
workflows when individual-level or censored data are avail-
able. Even when working with grouped data, awareness of
the limitations of life table and actuarial approximations is
essential.

IX. FUTURE OUTLOOKS

This study opens several directions for further research.
First, extending the analysis to various censoring levels (e.g.,
censoring of 5 %, 20 %, 30 % of available data) would
reveal how estimator performance changes with increasing
data incompleteness. Second, stratifying results by subgroups
such as sex or region could uncover heterogeneity in cen-
soring effects, which is relevant in pricing and reserving.
Third, comparing classical and non-parametric estimators with
parametric survival models, such as Weibull or Gompertz,
may enhance accuracy where model assumptions are plausible.
Finally, quantifying how survival differences (e.g., in life
expectancy) translate into financial impacts, such as annuity
prices or reserves, would strengthen the actuarial relevance of
this work.

X. CONCLUSION

This study demonstrates that classical life tables, while ef-
fective under complete observation, can yield upwardly biased
survival estimates in the presence of censoring. We showed
that both synthetic censoring-like adjustments to exposure and
non-parametric survival methods yield systematically lower
survival curves and life expectancy values.

Among the three methods considered, the actuarial estimator
produced the lowest survival estimates due to its structural
assumption of uniform censoring. The Kaplan-Meier estima-
tor, by leveraging precise event and censoring times, offered
a more accurate and interpretable estimate under realistic data
conditions.

Although the absolute difference in life expectancy across
methods may seem modest, around one year at birth, such
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discrepancies can significantly impact actuarial outcomes. For
annuity products, underestimating survival leads to financial
strain due to underestimated liabilities, while for life insur-
ance, overestimation may affect competitive pricing and risk
pooling.

We conclude that integrating survival analysis techniques,
particularly those accounting for censoring, is essential for
reliable longevity modeling. These tools not only improve the
statistical fidelity of survival estimates but also support more
robust decision-making in insurance, demography, and public
health.
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