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Abstract—In this contribution, the numerical solution of the
spectral fractional elliptic equation with power α ∈ (1, 2) is
studied. After discretization, the problem is reduced to solving
a system of linear algebraic equations. We apply the Best
Uniform Rational Approximation (BURA) method and focus on
the numerical aspects, related to its implementation. An extensive
experimental study is conducted to evaluate the accuracy of the
proposed approach. The numerical results confirm the theoretical
analysis and demonstrate the effectiveness of using the BURA
method for the fractional super-diffusion problems.

I. INTRODUCTION

LET US CONSIDER the spectral fractional elliptic equa-

tion with power α ∈ (1, 2), given by

Aαu(x) = f(x), (1)

where A is a self-adjoint elliptic operator in Ω, satisfying

homogeneous Dirichlet boundary conditions. The non-local

operator Aα is defined via the spectral decomposition of A,

namely

Aαu =
∞
∑

j=1

λαj (u, ψj)ψj ,

where λj > 0 are the eigenvalues, respectively, ψj are the

corresponding normalized eigenfunctions of A, and (., .) is

the L2 inner product.

Let ωh be a uniform rectangular mesh, while the Finite

Difference Method (FDM) is applied to approximate the

operator A. In this case, the FDM discretization of (1) leads

to a system of linear algebraic equations with respect to the

mesh functions u and f , in the form

Aα
u = f . (2)

Here, A ∈ R
N×N is a sparse, symmetric and positive definite

(SPD) matrix, and

Aα
u =

N
∑

j=1

λαj,h(u,Ψj,h)Ψj,h. (3)

As in the continuous case, {λj,h}
N
j=1 is the spectrum of A,

and the eigenvectors Ψj,h are normalized with respect to the

Euclidean dot product (., .).
When α ∈ (0, 1), the problem (1), corresponding to the

fractional sub-diffusion, has been extensively studied in the

past decade (see, for instance, [1]). When α ∈ (1, 2), the

problem (1) is related to the fractional super-diffusion [2],

which is the focus of this study. Notably, many numerical

methods developed for the sub-diffusion case rely directly

on the condition α ∈ (0, 1). Therefore they do not extend

naturally to the super-diffusion case. For α ∈ (1, 2), the

BURA has one positive pole and one positive zero, making

one of the resulting linear systems non-positive definite. To

address this, we employ the BURA method, based on the Best

Uniform Rational Approximation rα,k(t) of degree k of tα in

the interval [0, 1]. Specifically, we investigate the numerical

behavior of the BURA method [3], [4] when applied to the

fractional super-diffusion problems.

II. THE BURA METHOD

The abbreviation BURA stands for Best Uniform Rational

Approximation. Let us consider the min-max problem:

find rα,k ∈ R(k, k) such that

max
t∈[0,1]

|tα − rα,k(t)| = min
rk(t)∈R(k,k)

max
t∈[0,1]

|tα − rk(t)|,

α ∈ (0, 1), (4)

where rk(t) = Pk(t)/Qk(t), Pk and Qk are polynomials of

degree k. Then the error Eα,k of the k-BURA element rα,k
is defined as

Eα,k := max
t∈[0,1]

|tα − rα,k(t)|. (5)

A sharp estimate of Eα,k has been derived in [5] and has the

form:

Eα,k = 4α+1 sin(απ)e−2π
√
αk. (6)

Following [6] we introduce the approximation of A−α in the

form

A−α ≈ λ−α
1,hrα,k

(

λ1,hA
−1

)

,
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and then

uk = λ−α
1,hrα,k

(

λ1,hA
−1

)

f , (7)

where uk is the BURA numerical solution of the linear

algebraic system (2). In other words, uk is the BURA ap-

proximation of the solution u(x) of the fractional elliptic

equation (1). Scaling A−1 by λ1,h, above, ensures that all

eigenvalues of the matrix are in the interval (0, 1] where the

BURA error is uniform.

III. AN APPLICATION OF THE BURA METHOD

In this work we consider the original problem (2) in the

form:

Aα1Aα2u = f ,

where α = α1 + α2, α1,2 ∈ (0, 1]. Now, the BURA method

can be used for solving the following sub-diffusion problems:

Aα1w = f , (8)

Aα2u = w. (9)

The application of the BURA method for solving such prob-

lems has been relatively well studied, during the last years.

In [2] the authors used similar approach where α =
∑l

i=1 αi. In our study, we limit our analysis to the case

l = 2, for the following reasons. First, using l > 2 requires

solving larger number of linear systems, which increases the

computational complexity, and reduces the efficiency of the

solver. Second, for small values of α, a larger k must be

used, to achieve good accuracy, which further increases the

computational cost.

IV. NUMERICAL EXPERIMENTS

The presented numerical experiments are designed to de-

termine the optimal combination of parameters, balancing the

numerical error and the computational time. Specifically, we

consider the one dimensional problem (1) with the right hand

side

f(x) = sin(πx)− sin(2πx) + sin(3πx),

where the computational domain Ω is the unit interval [0, 1]
and α = 1.25, 1.5, 1.75. For this problem, it is possible to

compute the exact solution of the problem (1). Therefore, the

error in the numerical solution can be also precisely calculated.

The problem is discretized on a uniform mesh ωh, h−1 =
n = 8000, 16000, 32000, 64000, by applying the standard

three point stencil. Next, the BURA method is applied with:

• α1 = 1;

• α1 = α2 = α
2 ;

• α2 = 1.

Specifically, the additive BURA method (see [4]) is used,

where

rα,k(t) = c0 +
k

∑

i=1

ci
t− di

. (10)

In this case, the equation (7) can be rewritten as

uk =

[

c0λ
−1
1,hI +

k
∑

i=1

ci (A− λ1,hdiI)
−1

]

f , (11)

The BRASIL [7], [8] software, version 1.2.1, was used for

the computation of the coefficients of the rational approxima-

tion rα,k(t) in the interval [0, 1].
The l2 norm of the error was computed as:

∥u− uexact∥l2 =

√

∑n+1
i=1 (ui − uexact(xi))2

n+ 1
.

The code has been implemented in Python. (See the Ap-

pendix for the main part of the code.) The equation (11)

requires a solver for the tridiagonal systems of equations. In

the implemented solver, the LAPACK [9] subroutine DGTSV

was used for solving these tridiagonal systems. Across the

solver, double precision real numbers were used.

The code has been tested on a server which has Intel(R)

Xeon(R) Silver 4309Y CPU with 16 cores at 2.8 GHz and

32 GB of RAM. However, it should be noted that no attempt

was made to parallelize the solution process. This direction

of research may be pursued in the future, when substantially

larger problems are going to be solved.

V. NUMERICAL RESULTS

The l2 norm of the error for n = 8000, 32000 is presented

in Tables I and II, the l2 norm of the error for n = 64000 is

presented in Fig. 1. Let us note that the error of the numerical

solution, in the experiments, consists of a composition of

several types of errors. First, the discretization leads to an

error. Here, when the Laplace equation is formed, it can be

estimated as O(h2). Second, the rational approximation has

an error Eα,k and the sharp estimate of Eα,k is presented in

(6). Thus, the error of the rational approximation depends on

αk. For α ∈ (0, 1), a more accurate rational approximation

for α close to 1, and for large k, is obtained. Third, there is

also an error in the numerical solution of the systems of linear

algebraic equations, in (11). It should be noted that increasing

the size of these systems leads to a larger error in the solution.

Finally, at every step of the numerical solution of the problem

there are rounding errors. Unfortunately, there is no easy way

to decouple these errors, and capture them independently.

From Tables I and II it follows that for the same α and the

same k a better accuracy is obtained when α1 = α2. Next, as

expected, for α close to 1, the accuracy is higher. However,

higher accuracy comes at an additional cost. When α1 = α2,

the BURA method is applied twice to solve (8–9). When α1 =
1 (or α2 = 1) the BURA method is applied only for solving

equations (9) (or (8)). Thus, in total, for α1 = α2, 2k linear

systems are solved, while for α1 = 1 (or α2 = 1) only k + 1
linear systems have to be solved. The practical realization of

this comparison can be seen in Table III, where the average

execution time (from multiple runs) for n = 8000 is presented

in milliseconds.

The next observation that can be derived from Tables I and

II is that the difference in the accuracy for α1 = 1 and α2 = 1
is less than one percent and thus can be neglected.

From the results represented in Fig. 1 it is possible to

compare the error obtained for α1 = α2, k = 10 and for

α1 = 1, k = 19. In both cases, in total, 20 linear systems
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TABLE I
l2 NORM OF THE ERROR FOR n = 8000.

k (α1, α2)

(1, 0.25) (0.625, 0.625) (0.25, 1) (1, 0.5) (0.75, 0.75) (0.5, 1) (1, 0.75) (0.875, 0.875) (0.75, 1)

12 2.64e-6 1.86e-08 2.64e-6 3.02e-08 1.67e-09 3.02e-08 3.34e-10 2.08e-10 3.34e-10
16 4.91e-7 1.33e-09 4.91e-7 2.47e-09 4.24e-10 2.47e-09 2.86e-10 3.07e-10 2.86e-10
20 1.14e-7 7.50e-10 1.14e-7 3.50e-10 5.01e-10 3.50e-10 3.09e-10 3.05e-10 3.08e-10
24 2.99e-8 8.82e-10 2.99e-8 4.63e-10 5.10e-10 4.63e-10 3.11e-10 3.11e-10 3.11e-10

TABLE II
l2 NORM OF THE ERROR FOR n = 32000.

k (α1, α2)

(1, 0.25) (0.625, 0.625) (0.25, 1) (1, 0.5) (0.75, 0.75) (0.5, 1) (1, 0.75) (0.875, 0.875) (0.75, 1)

12 2.64e-6 1.97e-08 2.64e-6 3.07e-08 1.62e-09 3.07e-08 4.30e-10 3.10e-10 4.30e-10
16 4.91e-7 1.59e-09 4.91e-7 2.91e-09 1.11e-10 2.91e-09 4.08e-11 1.67e-10 4.08e-11
20 1.14e-7 1.42e-10 1.14e-7 2.85e-10 2.32e-10 2.85e-10 7.51e-11 3.21e-11 7.51e-11
24 3.06e-8 1.87e-10 3.06e-8 4.90e-11 1.94e-11 4.92e-11 8.93e-12 1.91e-10 8.91e-12
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Fig. 1. l2 norm of the error for n = 64000.

have been solved, and the execution time is almost the same.

For α = 1.25 the obtained errors are ≈ 9.10−8 and 2.10−7, for

α = 1.5, the errors are ≈ 9.10−9 and 8.10−9, for α = 1.75
the errors are ≈ 3.10−10 and 6.10−11. Therefore, it can be

concluded that, depending on the value of α, it is possible to

choose the optimal order k and the parameter α1.

The next observation concerns the results depicted in Fig. 1.

There, one can see the strange behavior of the error for

α1 = α2 = 0.875 for large k. As noted above, the error

consists (among others) of the discretization error and the

rational approximation error. For n = 64000, the discretization

error is ≈ 2.5 × 10−10 and this error could not be improved

for k > 10.

Finally, Fig. 2 shows the average execution time (from

multiple runs) for n = 8000, 16000, 32000, 64000, in seconds.

As noted above, for α1 = 1 the algorithm solves k + 1 linear

systems of size n + 1, while for α1 = α2 — 2k systems of

the same size. As expected, the execution time is proportional

to k+1 or to k and the linearity is clearly visible in the plot.

VI. CONCLUDING REMARKS

In this contribution, the numerical solution of the spectral

fractional elliptic equation with power α ∈ (1, 2) was studied.
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TABLE III
THE EXECUTION TIME FOR n = 8000 IN MILLISECONDS.

k (α1, α2)

(1, 0.25) (0.625, 0.625) (0.25, 1) (1, 0.5) (0.75, 0.75) (0.5, 1) (1, 0.75) (0.875, 0.875) (0.75, 1)

12 2.82 5.09 2.79 2.82 5.09 2.79 2.83 5.09 2.79
16 3.63 6.72 3.62 3.64 6.72 3.62 3.65 6.71 3.61
20 4.44 8.35 4.42 4.44 8.37 4.43 4.46 8.35 4.36
24 5.27 9.96 5.23 5.26 9.98 5.23 5.33 9.96 5.24
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Fig. 2. Execution time in seconds for n = 8000, 16000, 32000, 64000.

Specifically, for the problem in question, the Best Uniform

Rational Approximation method has been applied. Next a

comprehensive set of experiments has been completed. The

obtained results match the theoretical expectations. In partic-

ular, the fact that the solution error is composed of multiple

components has been captured for large values of k and n.

This may constitute the actual limit of applicability of the

proposed approach (in its standard form).
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APPENDIX

from baryrat import brasil

from mpmath import mp

from numpy import linalg

from scipy.linalg import lapack

import argparse

import numpy as np

# ...

lambda1 = (2*(args.n)*np.sin(np.pi/2/(args.n)))**2

# solver

def thomas(dl, d, du, b):

_, _, _, x, _ = lapack.dgtsv(dl, d, du, b)

return x

# BURA

class bura:

def __init__(self, alpha, k):

if alpha == 0 or alpha == 1:

self._alpha = alpha

return

rat = brasil(

lambda x: x**alpha,

(0, 1),

k,

tol=np.finfo(np.double).eps,

npi=-30,

maxiter=10000,

)

poles = np.real_if_close(np.array(rat.poles(True), dtype=np.complex128))

zeros = np.real_if_close(np.array(rat.zeros(True), dtype=np.complex128))

d = 1 / np.flip(np.sort(poles))

z = 1 / zeros

b = np.zeros(k + 1)

b[-1] = rat(1)

m = 1 / np.subtract.outer(np.append(z, 1), d)

m = np.hstack((m, np.ones((m.shape[0], 1))))

c = np.real(np.array(mp.lu_solve(np.real(m), b), dtype=np.complex128))

self._alpha, self._k, self._c, self._d = alpha, k, c, d

def solve(self, dl, d, du, b, lambda1=lambda1):

if self._alpha == 0:

return b

if self._alpha == 1:

return thomas(dl, d, du, b)

n = len(b)

r = self._c[-1] * b

for i in range(self._k):

r += (

lambda1

* self._c[i]

* thomas(dl, d - lambda1 * self._d[i] * np.ones(n), du, b)

)

return lambda1**-self._alpha * r
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bura1, bura2 = bura(args.alpha1, args.k1), bura(args.alpha2, args.k2)

num = bura1.solve(lower_diag, main_diag, upper_diag, b)

num = bura2.solve(lower_diag, main_diag, upper_diag, num)

exact = exact_solution(dofs, alpha)

err = exact - num

max_err = np.max(np.abs(err))

print("Max error:", max_err)

print("L2 error:", linalg.norm(err)/((args.n+1)**0.5))
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