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Abstract—In this contribution, the numerical solution of the
spectral fractional elliptic equation with power a € (1,2) is
studied. After discretization, the problem is reduced to solving
a system of linear algebraic equations. We apply the Best
Uniform Rational Approximation (BURA) method and focus on
the numerical aspects, related to its implementation. An extensive
experimental study is conducted to evaluate the accuracy of the
proposed approach. The numerical results confirm the theoretical
analysis and demonstrate the effectiveness of using the BURA
method for the fractional super-diffusion problems.

I. INTRODUCTION

I ET US CONSIDER the spectral fractional elliptic equa-
tion with power « € (1,2), given by

Au(z) = f(), (1)

where A is a self-adjoint elliptic operator in {2, satisfying
homogeneous Dirichlet boundary conditions. The non-local
operator A® is defined via the spectral decomposition of A,
namely

A=Y "N (u, ),

Jj=1

where A; > 0 are the eigenvalues, respectively, v; are the
corresponding normalized eigenfunctions of A, and (.,.) is
the L? inner product.

Let w; be a uniform rectangular mesh, while the Finite
Difference Method (FDM) is applied to approximate the
operator \A. In this case, the FDM discretization of (1) leads
to a system of linear algebraic equations with respect to the
mesh functions u and f, in the form

A% =f. 2

Here, A € RV*N is a sparse, symmetric and positive definite
(SPD) matrix, and

N
Aau = Z)\?’h(u, \Ijj,h)\ljjﬁ- (3)

j=1

IEEE Catalog Number: CFP2585N-ART ©2025, PTI

715

Marcin Paprzycki
0000-0002-8069-2152
Systems Research Institute
Polish Academy of Sciences
ul. Newelska 6
01-447 Warsaw, Poland,
Email: paprzyck @ibspan.waw.pl
http://www.ibspan.waw.pl/~paprzyck/

As in the continuous case, {\;,}1_, is the spectrum of A,
and the eigenvectors V¥ ;, are normalized with respect to the
Euclidean dot product (., .).

When « € (0,1), the problem (1), corresponding to the
fractional sub-diffusion, has been extensively studied in the
past decade (see, for instance, [1]). When a € (1,2), the
problem (1) is related to the fractional super-diffusion [2],
which is the focus of this study. Notably, many numerical
methods developed for the sub-diffusion case rely directly
on the condition « € (0,1). Therefore they do not extend
naturally to the super-diffusion case. For o € (1,2), the
BURA has one positive pole and one positive zero, making
one of the resulting linear systems non-positive definite. To
address this, we employ the BURA method, based on the Best
Uniform Rational Approximation r (t) of degree k of t* in
the interval [0, 1]. Specifically, we investigate the numerical
behavior of the BURA method [3], [4] when applied to the
fractional super-diffusion problems.

II. THE BURA METHOD

The abbreviation BURA stands for Best Uniform Rational
Approximation. Let us consider the min-max problem:
find 745 € R(k, k) such that

min  max [t% — ri(t)],

t* — )=
max | Ta,k(t)] re()ER(k,k) tE[0,1]

te[0,1]
a€(0,1), 4

where 7 (t) = Px(t)/Qr(t), Pr and Qy are polynomials of
degree k. Then the error E, ; of the k-BURA element 7, 1
is defined as
FEo L= t —ro k()]
= max 1% = rak(t)| )
A sharp estimate of E, j has been derived in [5] and has the

form:
B, = 4T sin(om')e_%m. (6)

Following [6] we introduce the approximation of A~ in the
form
A Y=~ A;;‘ra,k ()\17}1/171) R
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and then
u, = A ek (ApA™Y) f, )

where u; is the BURA numerical solution of the linear
algebraic system (2). In other words, u; is the BURA ap-
proximation of the solution u(x) of the fractional elliptic
equation (1). Scaling A~! by A1,n, above, ensures that all
eigenvalues of the matrix are in the interval (0, 1] where the
BURA error is uniform.

III. AN APPLICATION OF THE BURA METHOD

In this work we consider the original problem (2) in the
form:
A A =1,

where & = oy + g, a1,2 € (0,1]. Now, the BURA method
can be used for solving the following sub-diffusion problems:

Aw = f, (8)
A2y = w. )

The application of the BURA method for solving such prob-
lems has been relatively well studied, during the last years.

In [2] the authors used similar approach where a =
Z,lizl ;. In our study, we limit our analysis to the case
I = 2, for the following reasons. First, using | > 2 requires
solving larger number of linear systems, which increases the
computational complexity, and reduces the efficiency of the
solver. Second, for small values of «, a larger £ must be
used, to achieve good accuracy, which further increases the
computational cost.

IV. NUMERICAL EXPERIMENTS

The presented numerical experiments are designed to de-
termine the optimal combination of parameters, balancing the
numerical error and the computational time. Specifically, we
consider the one dimensional problem (1) with the right hand
side

f(z) = sin(mx) — sin(2rz) + sin(37x),

where the computational domain € is the unit interval [0, 1]
and o = 1.25,1.5,1.75. For this problem, it is possible to
compute the exact solution of the problem (1). Therefore, the
error in the numerical solution can be also precisely calculated.

The problem is discretized on a uniform mesh wy, hl=
n = 8000, 16000, 32000, 64000, by applying the standard
three point stencil. Next, the BURA method is applied with:

o« a1 =1;

o (V] = Qg = %;

e (Vg = 1.

Specifically, the additive BURA method (see [4]) is used,
where

k
&
t) = . 10
Tak(t) COJ’_;t—di (10)
In this case, the equation (7) can be rewritten as
k
we = A I+ Y i (A= Apdi)7H £, (D)

=1
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The BRASIL [7], [8] software, version 1.2.1, was used for
the computation of the coefficients of the rational approxima-
tion 7, ;(f) in the interval [0, 1].

The I, norm of the error was computed as:

1
Hu —u tHl _ \/E;H_l (uz - uexact(xi))Q
ezxact||la = .

n+1

The code has been implemented in Python. (See the Ap-
pendix for the main part of the code.) The equation (11)
requires a solver for the tridiagonal systems of equations. In
the implemented solver, the LAPACK [9] subroutine DGTSV
was used for solving these tridiagonal systems. Across the
solver, double precision real numbers were used.

The code has been tested on a server which has Intel(R)
Xeon(R) Silver 4309Y CPU with 16 cores at 2.8 GHz and
32 GB of RAM. However, it should be noted that no attempt
was made to parallelize the solution process. This direction
of research may be pursued in the future, when substantially
larger problems are going to be solved.

V. NUMERICAL RESULTS

The I norm of the error for n = 8000, 32000 is presented
in Tables I and II, the [5 norm of the error for n = 64000 is
presented in Fig. 1. Let us note that the error of the numerical
solution, in the experiments, consists of a composition of
several types of errors. First, the discretization leads to an
error. Here, when the Laplace equation is formed, it can be
estimated as O(h?). Second, the rational approximation has
an error I, ; and the sharp estimate of E, j is presented in
(6). Thus, the error of the rational approximation depends on
ak. For o € (0,1), a more accurate rational approximation
for « close to 1, and for large &, is obtained. Third, there is
also an error in the numerical solution of the systems of linear
algebraic equations, in (11). It should be noted that increasing
the size of these systems leads to a larger error in the solution.
Finally, at every step of the numerical solution of the problem
there are rounding errors. Unfortunately, there is no easy way
to decouple these errors, and capture them independently.

From Tables I and II it follows that for the same « and the
same k a better accuracy is obtained when a; = ag. Next, as
expected, for a close to 1, the accuracy is higher. However,
higher accuracy comes at an additional cost. When a; = ao,
the BURA method is applied twice to solve (8-9). When a; =
1 (or ap = 1) the BURA method is applied only for solving
equations (9) (or (8)). Thus, in total, for av; = o, 2k linear
systems are solved, while for a; =1 (or ag = 1) only k + 1
linear systems have to be solved. The practical realization of
this comparison can be seen in Table III, where the average
execution time (from multiple runs) for n = 8000 is presented
in milliseconds.

The next observation that can be derived from Tables I and
I is that the difference in the accuracy for a3 = 1 and ag =1
is less than one percent and thus can be neglected.

From the results represented in Fig. 1 it is possible to
compare the error obtained for a; = awg, K = 10 and for
a; = 1, k = 19. In both cases, in total, 20 linear systems
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TABLE I
l2 NORM OF THE ERROR FOR 1 = 8000.
k (a1, a2)
(1, 0.25) (0.625, 0.625) (0.25, 1) (1, 0.5) (0.75, 0.75) 0.5, 1) (1, 0.75)  (0.875,0.875) (0.75, 1)
12 2.64e-6 1.86e-08 2.64e-6 3.02e-08 1.67e-09 3.02e-08 | 3.34e-10 2.08e-10 3.34e-10
16 491e-7 1.33e-09 4.91e-7 2.47e-09 4.24e-10 2.47e-09 | 2.86e-10 3.07e-10 2.86e-10
20 1.14e-7 7.50e-10 1.14e-7 3.50e-10 5.01e-10 3.50e-10 | 3.09e-10 3.05e-10 3.08e-10
24 2.99e-8 8.82e-10 2.99e-8 4.63e-10 5.10e-10 4.63e-10 | 3.11e-10 3.11e-10 3.11e-10
TABLE 11
l2 NORM OF THE ERROR FOR n = 32000.
k (a1, a2)
(1, 0.25)  (0.625, 0.625) (0.25, 1) (1, 0.5) (0.75, 0.75) 0.5, 1) (1, 0.75)  (0.875, 0.875)  (0.75, 1)
12 2.64e-6 1.97e-08 2.64e-6 3.07e-08 1.62e-09 3.07e-08 | 4.30e-10 3.10e-10 4.30e-10
16 | 491e-7 1.59e-09 491e-7 | 2.91e-09 1.11e-10 2.91e-09 | 4.08e-11 1.67e-10 4.08e-11
20 1.14e-7 1.42e-10 1.14e-7 2.85e-10 2.32e-10 2.85e-10 | 7.51e-11 3.21e-11 7.51e-11
24 3.06e-8 1.87e-10 3.06e-8 4.90e-11 1.94e-11 4.92e-11 | 8.93e-12 1.91e-10 8.91e-12
I» norm of the error for n=64000
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Fig. 1. l2 norm of the error for n = 64000.

have been solved, and the execution time is almost the same. for &k > 10.

For o = 1.25 the obtained errors are ~ 9.10~8 and 2.10~7, for
a = 1.5, the errors are ~ 9.109 and 8.10~°, for o = 1.75
the errors are ~ 3.1071% and 6.10~!!. Therefore, it can be
concluded that, depending on the value of a, it is possible to
choose the optimal order k£ and the parameter «; .

The next observation concerns the results depicted in Fig. 1.
There, one can see the strange behavior of the error for
a; = ag = 0.875 for large k. As noted above, the error
consists (among others) of the discretization error and the
rational approximation error. For n = 64000, the discretization
error is ~ 2.5 x 10710 and this error could not be improved

Finally, Fig. 2 shows the average execution time (from
multiple runs) for n = 8000, 16000, 32000, 64000, in seconds.
As noted above, for a; = 1 the algorithm solves k£ + 1 linear
systems of size n + 1, while for oy = as — 2k systems of
the same size. As expected, the execution time is proportional
to k4 1 or to k and the linearity is clearly visible in the plot.

VI. CONCLUDING REMARKS

In this contribution, the numerical solution of the spectral
fractional elliptic equation with power a € (1,2) was studied.
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TABLE III
THE EXECUTION TIME FOR n = 8000 IN MILLISECONDS.
3 (a1, a2)
(1, 0.25)  (0.625, 0.625) (0.25, 1) | (1,0.5) (0.75,0.75) (0.5, 1) | (1,0.75) (0.875, 0.875) (0.75, 1)
12 2.82 5.09 2.79 2.82 5.09 2.79 2.83 5.09 2.79
16 3.63 6.72 3.62 3.64 6.72 3.62 3.65 6.71 3.61
20 4.44 8.35 4.42 4.44 8.37 4.43 4.46 8.35 4.36
24 5.27 9.96 5.23 5.26 9.98 5.23 5.33 9.96 5.24
Execution time (in seconds)
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Fig. 2. Execution time in seconds for n = 8000, 16000, 32000, 64000.

Specifically, for the problem in question, the Best Uniform
Rational Approximation method has been applied. Next a
comprehensive set of experiments has been completed. The
obtained results match the theoretical expectations. In partic-
ular, the fact that the solution error is composed of multiple
components has been captured for large values of k£ and n.
This may constitute the actual limit of applicability of the
proposed approach (in its standard form).
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APPENDIX

from baryrat import brasil

from mpmath import mp

from numpy import linalg

from scipy.linalg import lapack
import argparse

import numpy as np

#

# solver

def thomas(dl, d, du, b):
v _y _, x, _ = lapack.dgtsv(dl, d, du, b)
return x

# BURA
class bura:
def __init__ (self, alpha, k):
if alpha == 0 or alpha == 1:
self._alpha = alpha
return
rat = brasil(
lambda x: x*xalpha,
(0, 1),
k,
tol=np.finfo (np.double) .eps,
npi=-30,
maxiter=10000,

lambdal = (2% (args.n)*np.sin(np.pi/2/ (args.n))) «*2

poles = np.real_if close(np.array(rat.poles(True), dtype=np.complexl28))
zeros = np.real_if close(np.array(rat.zeros(True), dtype=np.complexl28))

=1 / np.flip(np.sort (poles))
=1 / zeros

np.zeros(k + 1)

[-1] = rat (1)

n Q3 8 00N Q

elf._alpha, self._k, self._c, self._d =

def solve(self, dl, d, du, b, lambdal=lambdal) :

if self._alpha ==
return b
if self._alpha ==
return thomas (dl, d, du, b)
n = len(b)
r = self._c[-1] = Db
for i in range(self._k):
r += (
lambdal
* self._c[i]

* thomas (dl, d - lambdal * self._d[i]

)

return lambdalxx-self._alpha * r

= 1 / np.subtract.outer (np.append(z, 1),
np.hstack ((m, np.ones((m.shapel[0], 1))))
np.real (np.array (mp.lu_solve(np.real (m),

dtype=np.complex128))
k, ¢, d

* np.ones(n), du, b)
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bural, bura2 = bura(args.alphal, args.kl), bura(args.alpha2, args.k2)
num = bural.solve (lower_diag, main_diag, upper_diag, b)

num = buraz2.solve(lower_diag, main_diag, upper_diag, num)
exact = exact_solution(dofs, alpha)

err = exact - num

max_err = np.max(np.abs(err))

print ("Max error:", max_err)
print ("L2 error:", linalg.norm(err)/ ((args.n+1l)*+x0.5))



