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Abstract—Estimating the difficulty of chess puzzles provides
a rich testbed for studying human–computer interaction and
adaptive learning. Building on recent advances and the FedCSIS
2025 Challenge, we address the task of predicting chess puzzle
difficulty ratings using a multi-source representation approach.
Our approach integrates pre-trained neural embeddings of board
states, solution move sequences, and engine-derived success
probabilities. These heterogeneous features are fused via ded-
icated embedding and projection layers, followed by a multi-
layer perceptron regressor. Post-processing calibration and model
ensemble further enhance robustness and generalization. Experi-
ments on the FedCSIS 2025 dataset demonstrate that our method
effectively leverages both structural and empirical information,
achieving strong predictive performance. Our approach achieved
fifth place on the final official leaderboard, highlighting the
effectiveness of combining neural representations with domain-
specific probabilistic features for robust chess puzzle difficulty
prediction.

Index Terms—Human-Computer Interaction, Chess Puzzle
Difficulty, Multi-Source Feature Fusion, Representation Learn-
ing, Ensemble Learning

I. INTRODUCTION

Chess has served not only as a competitive arena, but also

as a richly structured and controlled testbed for exploring

the foundations of human–computer interaction. From Deep

Blue’s brute-force victory over Kasparov [1] to AlphaZero’s

self-taught superhuman play [2], each algorithmic milestone

has advanced a deeper goal: understanding how machines

can model, anticipate, and ultimately support human cognitive

behavior. Contemporary online chess platforms now record

every move, reaction time, and mistake across millions of

human–machine interactions. These data enable a direct esti-

mation of puzzle difficulty from behavioral patterns. Predicting

chess puzzle difficulty thus emerges as a core task that bridges

cognitive science, adaptive learning, and recommender system

design.

While chess has long served as a model system for cognitive

research, it is in the advent of modern online platforms that

has enabled large-scale, quantitative analysis. Lichess 1 is a

widely used open-source online chess platform that provides

millions of user-generated chess puzzles. The difficulty of each

puzzle is quantified using rating systems originally designed

for human players. The most common systems include the

1https://lichess.org

Elo rating [3], which updates a player’s rating based on

game outcomes, and the Glicko [4] and Glicko-2 [5] systems,

which further incorporate rating volatility and adjust more

dynamically to player performance. On Lichess, each puzzle

receives a Glicko-2 rating that reflects its empirical difficulty

for the average user, with accuracy improving as more players

attempt the puzzle.

Building on the IEEE BigData 2024 Cup [6], which demon-

strated the utility of feature-rich and neural approaches for

chess puzzle difficulty prediction [7–12], the FedCSIS 2025

Challenge [13] introduces both a larger dataset and new data

modalities. The main objective remains to predict the difficulty

rating of a chess puzzle using its initial board state and

solution moves. However, in contrast to the first edition, the

FedCSIS 2025 Challenge provides 22 precomputed engine-

based success probabilities per puzzle, generated by Maia-

2 models [14] to simulate human move likelihoods across

different player ratings and types of rating. This addition

eliminates the need for costly local engine simulations and

facilitates more equitable benchmarking of model designs.

With a training set of over 4.5 million puzzles, FedCSIS 2025

offers an enriched setting for advancing research in chess

puzzle difficulty prediction.

In this study, we propose a multi-source neural representa-

tion approach for predicting chess puzzle difficulty. Our ap-

proach integrates heterogeneous information from pre-trained

board state embeddings, solution move sequences, and a 22-

dimensional vector of engine-estimated success probabilities.

These complementary features are jointly fused and embedded

through dedicated projection layers, followed by a multi-layer

perceptron regressor to predict the rating. To further enhance

robustness and address distributional shifts, we apply post-

processing calibration and ensemble models trained under

diverse settings. This design leverages both the structural and

empirical dimensions of puzzle difficulty, leading to improved

predictive performance and generalization.

The remainder of this paper is organized as follows: Section

II analyzes the dataset and outlines the preprocessing pipeline.

Section III describes the proposed approach. Section IV de-

tails the experimental setup and results. Section V discusses

findings, limitations, and potential ways to improve in future

work. Section VI concludes the paper.
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II. DATA ANALYSIS

A comprehensive understanding of the dataset structure

is essential for designing robust prediction models in this

challenge. Table I provides an overview of the principal

features included in the competition dataset. Each chess

puzzle is uniquely identified by a PuzzleId and is char-

acterized by several core components: the board position

specified in Forsyth–Edwards Notation (FEN), the solution

sequence encoded in Portable Game Notation (PGN), and

a 22-dimensional vector of engine-estimated success prob-

abilities (SuccessProb), which represents projected solve

rates across diverse player rating groups and game types. The

Rating field denotes the puzzle’s Glicko-2 difficulty rating

[5], which serves as the primary target variable for model

training.

TABLE I
SUMMARY OF FEATURES IN THE CHALLENGE DATASET

Field Name Description Type

PuzzleId Unique identifier String
FEN Board position String
Moves Solution in PGN String
SuccessProb Success probabilities Float
Rating Glicko-2 puzzle rating (Target) Integer

RatingDeviation Uncertainty in rating Integer
Popularity Upvotes minus downvotes Integer
NbPlays Number of attempts Integer
Themes Puzzle motif tags String
GameUrl Lichess game provenance String
OpeningTags Opening classification String

In addition to these core fields, the training data com-

prises several auxiliary metadata attributes. These include the

rating uncertainty (RatingDeviation), popularity score

(Popularity), total number of attempts (NbPlays), the-

matic tags (Themes), and optional fields such as the

original game URL (GameUrl) and opening classification

(OpeningTags). This rich set of features enables multi-

faceted analysis and facilitates the construction of both neural

and feature-based models.

TABLE II
COMPARISON OF TRAINING AND TEST DATASETS

Property Training Set Test Set

Instances 4,557,000 2,235
Features PuzzleId, FEN, Moves,

SuccessProb, RatingDeviation,
Popularity, NbPlays, Themes,
GameUrl, OpeningTags

PuzzleId, FEN,
Moves, SuccessProb

Target Rating -

Table II presents a comparative summary of the training and

test datasets used in this challenge. The training set contains

4,557,000 puzzle instances, while the test set contains 2,235

instances. Notably, the test set is restricted to the core features:

PuzzleId, FEN, Moves, and SuccessProb with the

ground-truth Rating field hidden to facilitate unbiased model

evaluation. Consequently, additional metadata present in the

training set, such as RatingDeviation, Popularity,

and Themes, must be excluded from the feature set during

model development to ensure strict compatibility between

training and inference conditions.

The structure of the dataset, characterized by both structural

descriptors and empirical engine-based probabilities, enables

the exploration of diverse modeling strategies. The inclusion of

precomputed success probabilities is particularly noteworthy,

as it reduces the computational barrier for participants and

provides valuable prior information for puzzle difficulty pre-

diction, especially for those without access to sufficient local

computational resources.

Although the dataset provides a comprehensive set of struc-

tural and empirical features, ensuring the reliability of the tar-

get variable is crucial for robust model training. In particular,

the rating uncertainty (RatingDeviation) quantifies the

confidence of each puzzle’s Glicko-2 difficulty estimate and

varies substantially across puzzles.

Puzzles exhibiting high rating uncertainty generally cor-

respond to unstable or unreliable difficulty estimates, often

resulting from insufficient player attempts or inconsistent

solution patterns. To improve data quality and label reliability,

all puzzles with a RatingDeviation greater than 90 were

excluded from the training set. This threshold, which aligns

with established practice in prior studies, effectively reduces

label noise by filtering out puzzles with highly variable ratings.

After this preprocessing step, the size of the training set

decreased from approximately 4.56 million to 3.53 million

puzzles. The resulting dataset, comprising high-quality and

reliable labels, was used for model training. This preprocessing

pipeline enhances the stability of the learning process and en-

sures that subsequent modeling are grounded in representative

data.

III. METHODOLOGY

Figure 1 presents an overview of the proposed solution

pipeline for chess puzzle difficulty prediction. The overall

methodology consists of several key components: multi-source

feature embedding, a neural regressor for rating prediction,

post-processing calibration, model ensemble, and uncertainty

estimation. Each component is described in detail below.

A. Feature Embedding

Our approach integrates three complementary sources of

information for each chess puzzle: the board state encoded

in Forsyth–Edwards Notation (FEN), the solution move se-

quence represented in Portable Game Notation (PGN), and

a 22-dimensional vector of engine-estimated success proba-

bilities (SuccessProb). The FEN string offers a detailed,

lossless description of the board configuration, while the

PGN sequence captures the temporal progression of solution

moves. The SuccessProb vector summarizes the predicted

probability of a successful solve across various player rating

brackets and type of rating (rapid or blitz), as precomputed by

the MAIA2 neural engine [14].
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Fig. 1. Overview of proposed approach

To comprehensively capture both the structural and sequen-

tial aspects of each puzzle, we generate a sequence of consec-

utive board states by iteratively applying the solution moves to

the initial FEN. Each intermediate position is embedded using

a pre-trained Maia neural network, which is specifically trained

to emulate human move preferences at defined skill levels [15].

For each board state, we extract a neural embedding from the

penultimate hidden layer of the Maia model. These embed-

dings are mapped into a unified latent space and combined to

form a comprehensive representation of the puzzle’s solution

trajectory.

The solution length is discretized and encoded as a learnable

embedding, enabling the model to incorporate information

about puzzle complexity. Simultaneously, the SuccessProb

vector is embedded through a two-layer feedforward network

with ReLU activation to produce a dense embedding represent-

ing empirical difficulty. Finally, concatenating the aggregated

board embedding, the move count embedding, and the success

probability embedding yields a unified embedding vector. This

multi-source representation integrates structural configuration,

sequential solution dynamics, and empirical difficulty priors,

providing a rich input for downstream prediction.

B. Neural Regressor

The aggregated feature vector is processed by a multi-layer

perceptron regressor designed to capture complex nonlinear

relationships between the fused feature embeddings and puzzle

difficulty. The architecture comprises a sequence of fully

connected layers with progressively decreasing dimensionality,

interleaved with ReLU activation functions and dropout reg-

ularization to enhance generalization and mitigate overfitting.

This deep regression network enables the model to learn intri-

cate mappings from multi-source representations to difficulty

ratings. The final output is a single scalar representing the

predicted Glicko-2 rating for the given puzzle.

C. Post-processing Calibration

To mitigate the distributional shift between the training

set and the competition test data, we employ a simulation-

inspired nonlinear rescaling technique [7] to adjust the raw

predictions of the neural regressor. This post-processing step

compresses prediction values at the distributional extremes

while preserving ratings near the empirical mean, thereby

reducing the impact of outliers. The calibration function is

defined as follows:

r̂ = µ−

1 + sign(r − µ)
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where µ = 1900 denotes the empirical mean rating,

H = 200 and L = 250 control the scaling magnitude

for over- and underestimations respectively, and D = 1000
determines the scale at which the rescaling effect saturates.

These hyperparameters are selected based on prior studies [7]

and further validated through our empirical experience in this

challenge.

This calibration strategy aims to improve the alignment

between predicted and true rating distributions. By explicitly

correcting for known biases in the rating aggregation process,

the rescaling aims to make the predicted difficulty ratings more

robust.

D. Model Ensemble

To further enhance model robustness and predictive perfor-

mance, we employ an output-level ensemble strategy. Specif-

ically, multiple base models are trained independently using

board embeddings generated from different Maia engine vari-

ants, each emulating human play at a distinct ELO rating. The

final prediction is computed by averaging the outputs from all

base models:

Ratingfinal =
1

N

N
∑

i=1

Modeli(Input), (2)

where N is the total number of ensembled models. This

approach leverages complementary perspectives of models

trained on different skill levels and effectively reduces the

variance of individual predictions. Ensembling not only miti-

gates overfitting and model-specific biases but also enhances

the model’s ability to generalize across puzzles of varying

complexity. This strategy is particularly effective in domains

where task difficulty spans a wide spectrum and individual

models may excel in different sub-regions of the input space.
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E. Uncertainty Estimation

To further enhance model reliability and provide inter-

pretable confidence assessments for each prediction, we

propose an ensemble-based uncertainty estimation strategy.

Specifically, for each test instance, we aggregate the prediction

outputs from all base models within the ensemble and compute

the standard deviation of these predictions as a proxy for

epistemic uncertainty, reflecting the degree of disagreement

among ensemble members.

Formally, let y
(j)
i denote the prediction for the i-th test

sample by the j-th base model in the ensemble, where

j = 1, . . . ,M . The uncertainty score for the i-th sample

is quantified as the standard deviation across the ensemble

outputs:

σi =

√

√

√

√

1

M

M
∑

j=1

(

y
(j)
i − ȳi

)2

, (3)

where ȳi represents the mean prediction for the i-th sample.

A higher standard deviation σi indicates greater predictive un-

certainty, as it signals increased model disagreement regarding

the sample’s difficulty.

In accordance with the challenge requirements, we rank

all test samples by their uncertainty scores and flag the top

K instances (where K corresponds to 10% of the test set,

i.e., K = 223 for 2235 samples) using a binary mask. By

leveraging the diversity inherent in the ensemble, this strategy

systematically identifies predictions with elevated risk of error.

IV. EXPERIMENT AND RESULT

A. Experiment Setup

1) Environment: The experimental environment is based on

Ubuntu 22.04, equipped with an NVIDIA RTX 3090 GPU (24

GB VRAM). The CPU is an Intel Xeon Gold 6330 operating

at 2.00 GHz, complemented by 90 GB of system memory.

2) Toolkit: The implementation is based on Python 3.12,

with PyTorch 2.5.1 used for neural network construction and

training. CUDA 12.4 is utilized to accelerate GPU computa-

tions and enhance overall computational efficiency.

3) Evaluation Metric: The metric for performance evalu-

ation is the Mean Squared Error (MSE), consistent with the

official evaluation criterion of the FedCSIS 2025 Challenge.

B. Experiment Result

We conducted a comprehensive set of experiments to evalu-

ate the effectiveness of our approach for chess puzzle difficulty

prediction. Table III summarizes model performance on the

public leaderboard, measured in terms of MSE. All results

correspond to the official public test set provided by the

competition platform [16].

As a baseline, we implemented a LightGBM regressor

utilizing handcrafted chess features extracted from the board

state, move sequence, and basic positional statistics. Feature

extraction was performed using the python-chess library,

which provides utilities for parsing FEN and PGN represen-

tations and computing relevant game attributes. This model

achieved an MSE of 104703.66, serving as the baseline for

subsequent neural network-based approaches.

To investigate the impact of learned representations, we

incorporated pre-trained neural board embeddings derived

from various Maia engine variants. Employing MAIA-1300

embeddings without the inclusion of organizer-provided suc-

cess probability vectors resulted in an MSE of 91689.69.

Incorporating the success probability features further reduced

MSEs for the MAIA-1300, MAIA-1500, and MAIA-1700

models to 82582.37, 85625.50, and 81570.99, respectively,

thereby underscoring the complementary value of empirical

priors.

To address distributional shift and enhance calibration, we

applied a post-processing rescaling procedure to the model

outputs, as described in Section III-C. This adjustment led

to further improvement, with MSEs decreasing to 76986.22

for MAIA-1300, 78155.64 for MAIA-1500, and 79688.41 for

MAIA-1700.

Subsequently, ensemble averaging across the MAIA-1300,

MAIA-1500, and MAIA-1700 models yielded an MSE of

75915.97. Our final approach, which ensembles board em-

beddings from five Maia variants (MAIA-1100, MAIA-1300,

MAIA-1500, MAIA-1700, and MAIA-1900) and combines

calibrated outputs with success probability features, achieved

the best observed performance, attaining an MSE of 67071.66

on the public leaderboard.

TABLE III
PERFORMANCE COMPARISON OF DIFFERENT METHODS ON PUBLIC

LEADERBOARD

Method Public MSE

Handcrafted Features + LightGBM (Baseline) 104703.66
MAIA-1300 (w/o SuccessProb) 91689.69
MAIA-1300 82582.37
MAIA-1500 85625.50
MAIA-1700 81570.99
MAIA-1300 + Post-processing 76986.22
MAIA-1500 + Post-processing 78155.64
MAIA-1700 + Post-processing 79688.41
MAIA-1300/1500/1700 Ensemble 75915.97
MAIA-1100/1300/1500/1700/1900 Ensemble 67071.66

The results clearly demonstrate that leveraging pre-trained

neural embeddings, incorporating empirical success probabil-

ities, and ensembling the outputs of individually calibrated

models together yield substantial improvements over tradi-

tional handcrafted feature-based models. The progressive re-

duction in MSE observed through our stepwise model en-

hancements highlights the additive value of each component in

our solution. Ultimately, our final ensemble approach achieved

a marked performance gain relative to classical models. These

findings confirm the effectiveness of multi-source feature

fusion and neural representation learning for chess puzzle

difficulty prediction.
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C. Uncertainty Estimation Result

To quantitatively evaluate the effectiveness of our uncer-

tainty estimation strategy, we participated in the additional

uncertainty mask task organized as part of the challenge. In

this task, each team was required to submit a binary mask

identifying the most uncertain 10% of the test puzzles. Let P

denote the perfect score, obtained by replacing the predictions

for the 10% most erroneous test cases with their ground-

truth values, and let N denote the score achieved using the

submitted mask. The evaluation metric is defined as:

ρ =
N

P
(4)

Our submitted mask achieved a ratio of ρ = 1.589, ranking

3rd among participating teams. On the official leaderboard,

this corresponded to a score of approximately 55234, com-

pared with the theoretical lower bound of 34766 under a

perfect mask. The results show that our proposed uncertainty

estimation strategy provides a reliable means of identifying

error-prone cases, with potential for further refinement.

V. DISCUSSION

Our experimental results reveal several insights and limi-

tations that warrant further investigation. While handcrafted

features extracted from the board state and move sequences

provide a valuable baseline for chess puzzle difficulty pre-

diction, they are inherently limited in their ability to capture

the full complexity of positional and sequential information.

Models based solely on such features consistently underper-

form relative to deep neural architectures, likely due to their

inability to represent the nuanced dynamics encoded in FEN

strings and move sequences, both of which are essential for

accurate difficulty modeling.

Nevertheless, prior work and our own attempts indicate

that carefully engineered handcrafted features, if effectively

integrated into neural network architectures, may offer com-

plementary benefits. However, our straightforward approach to

merging these features with neural embeddings did not yield

performance improvements, suggesting that more advanced

integration strategies, such as attention-based models, may be

necessary to unlock the full potential of hybrid feature sets.

Due to computational constraints and time limitations, our

current study utilized only five Maia pre-trained model vari-

ants, corresponding to targeted ELO levels of 1100, 1300,

1500, 1700, and 1900. Each Maia variant is designed to

emulate the play style of human users at its specific rating

level, thereby enabling the model to capture a spectrum of

human skill profiles. Nonetheless, this approach may not

fully represent the diversity of the solver population. Future

research should consider integrating all available Maia models,

spanning ELO 1100 to 1900, to achieve finer granularity

in modeling player abilities. Such comprehensive ensembles

could provide a more nuanced simulation of the human skill

continuum and further improve prediction robustness.

In summary, our findings underscore the importance of both

high-capacity neural architectures and the principled fusion

of domain-specific features for robust chess puzzle difficulty

prediction. Advancing this field will require continued re-

search into sophisticated feature integration strategies and

more comprehensive utilization of human-like engine ensem-

bles, ultimately paving the way for models with enhanced

generalization and interpretability.

VI. CONCLUSION

In this work, we investigated chess puzzle difficulty pre-

diction using a multi-source feature fusion approach based

on neural embedding techniques, within the context of the

FedCSIS 2025 Challenge. Our approach integrates pre-trained

Maia board embeddings, solution move sequences, and success

probabilities generated by the MAIA2 engine. These heteroge-

neous information sources are combined within a unified neu-

ral regression model. Results on the official public leaderboard

demonstrate that incorporating empirical priors derived from

chess engines, neural network-based representations, model

ensemble, and post-processing calibration leads to improved

performance over traditional feature-based baselines.

In addition, we acknowledge the overarching goal of the

knowledgepit competition series [17–20], which is to eval-

uate the skills of data scientists through carefully designed

tasks [16]. Beyond its evaluative role, the knowledgepit pro-

vides an excellent platform for testing novel methodologies,

comparing approaches under common benchmarks, and ad-

vancing the broader data science community.
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A. Janusz, and D. Ślęzak, “Ieee big data cup 2024

report: Predicting chess puzzle difficulty at knowl-

edgepit.ai,” in 2024 IEEE International Conference on

Big Data (BigData). IEEE, 2024. doi: 10.1109/Big-

Data62323.2024.10825289 pp. 8423–8429.

[7] T. Woodruff, O. Filatov, and M. Cognetta, “The bread

emoji team’s submission to the ieee bigdata 2024 cup:

Predicting chess puzzle difficulty challenge,” in 2024

IEEE International Conference on Big Data (BigData).

IEEE, 2024. doi: 10.1109/BigData62323.2024.10826037

pp. 8415–8422.

[8] A. Schütt, T. Huber, and E. André, “Estimating chess

puzzle difficulty without past game records using a

human problem-solving inspired neural network archi-

tecture,” in 2024 IEEE International Conference on

Big Data (BigData). IEEE, 2024. doi: 10.1109/Big-

Data62323.2024.10826087 pp. 8396–8402.

[9] S. Björkqvist, “Estimating the puzzlingness of chess

puzzles,” in 2024 IEEE International Conference on

Big Data (BigData). IEEE, 2024. doi: 10.1109/Big-

Data62323.2024.10825991 pp. 8370–8376.

[10] A. Rafaralahy, “Pairwise learning to rank for chess

puzzle difficulty prediction,” in 2024 IEEE International

Conference on Big Data (BigData). IEEE, 2024. doi:

10.1109/BigData62323.2024.10825356 pp. 8385–8389.

[11] D. Ruta, M. Liu, and L. Cen, “Moves based predic-

tion of chess puzzle difficulty with convolutional neural

networks,” in 2024 IEEE International Conference on

Big Data (BigData). IEEE, 2024. doi: 10.1109/Big-

Data62323.2024.10825595 pp. 8390–8395.

[12] S. Miłosz and P. Kapusta, “Predicting chess puzzle

difficulty with transformers,” in 2024 IEEE International

Conference on Big Data (BigData). IEEE, 2024. doi:

10.1109/BigData62323.2024.10825919 pp. 8377–8384.
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[19] M. Czerwiński, M. Michalak, P. Biczyk, B. Adam-

czyk, D. Iwanicki, I. Kostorz, M. Brzęczek, A. Janusz,
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