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Abstract—Estimating the difficulty of chess puzzles provides
a rich testbed for studying human-computer interaction and
adaptive learning. Building on recent advances and the FedCSIS
2025 Challenge, we address the task of predicting chess puzzle
difficulty ratings using a multi-source representation approach.
Our approach integrates pre-trained neural embeddings of board
states, solution move sequences, and engine-derived success
probabilities. These heterogeneous features are fused via ded-
icated embedding and projection layers, followed by a multi-
layer perceptron regressor. Post-processing calibration and model
ensemble further enhance robustness and generalization. Experi-
ments on the FedCSIS 2025 dataset demonstrate that our method
effectively leverages both structural and empirical information,
achieving strong predictive performance. Our approach achieved
fifth place on the final official leaderboard, highlighting the
effectiveness of combining neural representations with domain-
specific probabilistic features for robust chess puzzle difficulty
prediction.

Index Terms—Human-Computer Interaction, Chess Puzzle
Difficulty, Multi-Source Feature Fusion, Representation Learn-
ing, Ensemble Learning

I. INTRODUCTION

Chess has served not only as a competitive arena, but also
as a richly structured and controlled testbed for exploring
the foundations of human—computer interaction. From Deep
Blue’s brute-force victory over Kasparov [1] to AlphaZero’s
self-taught superhuman play [2], each algorithmic milestone
has advanced a deeper goal: understanding how machines
can model, anticipate, and ultimately support human cognitive
behavior. Contemporary online chess platforms now record
every move, reaction time, and mistake across millions of
human-machine interactions. These data enable a direct esti-
mation of puzzle difficulty from behavioral patterns. Predicting
chess puzzle difficulty thus emerges as a core task that bridges
cognitive science, adaptive learning, and recommender system
design.

While chess has long served as a model system for cognitive
research, it is in the advent of modern online platforms that
has enabled large-scale, quantitative analysis. Lichess ' is a
widely used open-source online chess platform that provides
millions of user-generated chess puzzles. The difficulty of each
puzzle is quantified using rating systems originally designed
for human players. The most common systems include the
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Elo rating [3], which updates a player’s rating based on
game outcomes, and the Glicko [4] and Glicko-2 [5] systems,
which further incorporate rating volatility and adjust more
dynamically to player performance. On Lichess, each puzzle
receives a Glicko-2 rating that reflects its empirical difficulty
for the average user, with accuracy improving as more players
attempt the puzzle.

Building on the IEEE BigData 2024 Cup [6], which demon-
strated the utility of feature-rich and neural approaches for
chess puzzle difficulty prediction [7-12], the FedCSIS 2025
Challenge [13] introduces both a larger dataset and new data
modalities. The main objective remains to predict the difficulty
rating of a chess puzzle using its initial board state and
solution moves. However, in contrast to the first edition, the
FedCSIS 2025 Challenge provides 22 precomputed engine-
based success probabilities per puzzle, generated by Maia-
2 models [14] to simulate human move likelihoods across
different player ratings and types of rating. This addition
eliminates the need for costly local engine simulations and
facilitates more equitable benchmarking of model designs.
With a training set of over 4.5 million puzzles, FedCSIS 2025
offers an enriched setting for advancing research in chess
puzzle difficulty prediction.

In this study, we propose a multi-source neural representa-
tion approach for predicting chess puzzle difficulty. Our ap-
proach integrates heterogeneous information from pre-trained
board state embeddings, solution move sequences, and a 22-
dimensional vector of engine-estimated success probabilities.
These complementary features are jointly fused and embedded
through dedicated projection layers, followed by a multi-layer
perceptron regressor to predict the rating. To further enhance
robustness and address distributional shifts, we apply post-
processing calibration and ensemble models trained under
diverse settings. This design leverages both the structural and
empirical dimensions of puzzle difficulty, leading to improved
predictive performance and generalization.

The remainder of this paper is organized as follows: Section
IT analyzes the dataset and outlines the preprocessing pipeline.
Section III describes the proposed approach. Section IV de-
tails the experimental setup and results. Section V discusses
findings, limitations, and potential ways to improve in future
work. Section VI concludes the paper.
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II. DATA ANALYSIS

A comprehensive understanding of the dataset structure
is essential for designing robust prediction models in this
challenge. Table I provides an overview of the principal
features included in the competition dataset. Each chess
puzzle is uniquely identified by a PuzzleId and is char-
acterized by several core components: the board position
specified in Forsyth—-Edwards Notation (FEN), the solution
sequence encoded in Portable Game Notation (PGN), and
a 22-dimensional vector of engine-estimated success prob-
abilities (SuccessProb), which represents projected solve
rates across diverse player rating groups and game types. The
Rating field denotes the puzzle’s Glicko-2 difficulty rating
[5], which serves as the primary target variable for model
training.

TABLE I
SUMMARY OF FEATURES IN THE CHALLENGE DATASET

Field Name Description Type

Puzzleld Unique identifier String
FEN Board position String
Moves Solution in PGN String
SuccessProb Success probabilities Float

Rating Glicko-2 puzzle rating (Target) Integer
RatingDeviation ~ Uncertainty in rating Integer
Popularity Upvotes minus downvotes Integer
NbPlays Number of attempts Integer
Themes Puzzle motif tags String
GameUrl Lichess game provenance String
OpeningTags Opening classification String

In addition to these core fields, the training data com-
prises several auxiliary metadata attributes. These include the
rating uncertainty (RatingDeviation), popularity score
(Popularity), total number of attempts (NbPlays), the-
matic tags (Themes), and optional fields such as the
original game URL (GameUrl) and opening classification
(OpeningTags). This rich set of features enables multi-
faceted analysis and facilitates the construction of both neural
and feature-based models.

TABLE II
COMPARISON OF TRAINING AND TEST DATASETS

Property  Training Set Test Set

Instances 4,557,000 2,235

Features Puzzleld, FEN, Moves, Puzzleld, FEN,
SuccessProb, RatingDeviation, ~ Moves, SuccessProb
Popularity, NbPlays, Themes,
GameUrl, OpeningTags

Target Rating -

Table II presents a comparative summary of the training and
test datasets used in this challenge. The training set contains
4,557,000 puzzle instances, while the test set contains 2,235
instances. Notably, the test set is restricted to the core features:
PuzzleId, FEN, Moves, and SuccessProb with the
ground-truth Rat ing field hidden to facilitate unbiased model
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evaluation. Consequently, additional metadata present in the
training set, such as RatingDeviation, Popularity,
and Themes, must be excluded from the feature set during
model development to ensure strict compatibility between
training and inference conditions.

The structure of the dataset, characterized by both structural
descriptors and empirical engine-based probabilities, enables
the exploration of diverse modeling strategies. The inclusion of
precomputed success probabilities is particularly noteworthy,
as it reduces the computational barrier for participants and
provides valuable prior information for puzzle difficulty pre-
diction, especially for those without access to sufficient local
computational resources.

Although the dataset provides a comprehensive set of struc-
tural and empirical features, ensuring the reliability of the tar-
get variable is crucial for robust model training. In particular,
the rating uncertainty (RatingDeviation) quantifies the
confidence of each puzzle’s Glicko-2 difficulty estimate and
varies substantially across puzzles.

Puzzles exhibiting high rating uncertainty generally cor-
respond to unstable or unreliable difficulty estimates, often
resulting from insufficient player attempts or inconsistent
solution patterns. To improve data quality and label reliability,
all puzzles with a RatingDeviation greater than 90 were
excluded from the training set. This threshold, which aligns
with established practice in prior studies, effectively reduces
label noise by filtering out puzzles with highly variable ratings.

After this preprocessing step, the size of the training set
decreased from approximately 4.56 million to 3.53 million
puzzles. The resulting dataset, comprising high-quality and
reliable labels, was used for model training. This preprocessing
pipeline enhances the stability of the learning process and en-
sures that subsequent modeling are grounded in representative
data.

[II. METHODOLOGY

Figure 1 presents an overview of the proposed solution
pipeline for chess puzzle difficulty prediction. The overall
methodology consists of several key components: multi-source
feature embedding, a neural regressor for rating prediction,
post-processing calibration, model ensemble, and uncertainty
estimation. Each component is described in detail below.

A. Feature Embedding

Our approach integrates three complementary sources of
information for each chess puzzle: the board state encoded
in Forsyth—-Edwards Notation (FEN), the solution move se-
quence represented in Portable Game Notation (PGN), and
a 22-dimensional vector of engine-estimated success proba-
bilities (SuccessProb). The FEN string offers a detailed,
lossless description of the board configuration, while the
PGN sequence captures the temporal progression of solution
moves. The SuccessProb vector summarizes the predicted
probability of a successful solve across various player rating
brackets and type of rating (rapid or blitz), as precomputed by
the MAIA?2 neural engine [14].



HAITAO XIAO ET AL.: MULTI-SOURCE FEATURE FUSION AND NEURAL EMBEDDING FOR PREDICTING CHESS PUZZLE DIFFICULTY

Feature Embedding Neural Regressor Post-processing Calibration
MAIA :> Rating -}-}Ratingca“brated

sm_o_ps ‘ FEN ‘ ‘ Board State |

E . {}

an .ﬁﬂ " ‘|:> ‘ Moves ‘ - ‘ Move Count | |:> = Rating ———

t0x minx W l!..’ - Eg :>Final
Chess Puzzles ‘ Success Prob ‘ ‘ Prob Embed | .” .” Ratin-gFina, Result

Multi-Layer Perceptron Model Ensemble

Fig. 1. Overview of proposed approach

To comprehensively capture both the structural and sequen-
tial aspects of each puzzle, we generate a sequence of consec-
utive board states by iteratively applying the solution moves to
the initial FEN. Each intermediate position is embedded using
a pre-trained Maia neural network, which is specifically trained
to emulate human move preferences at defined skill levels [15].
For each board state, we extract a neural embedding from the
penultimate hidden layer of the Maia model. These embed-
dings are mapped into a unified latent space and combined to
form a comprehensive representation of the puzzle’s solution
trajectory.

The solution length is discretized and encoded as a learnable
embedding, enabling the model to incorporate information
about puzzle complexity. Simultaneously, the SuccessProb
vector is embedded through a two-layer feedforward network
with ReLU activation to produce a dense embedding represent-
ing empirical difficulty. Finally, concatenating the aggregated
board embedding, the move count embedding, and the success
probability embedding yields a unified embedding vector. This
multi-source representation integrates structural configuration,
sequential solution dynamics, and empirical difficulty priors,
providing a rich input for downstream prediction.

B. Neural Regressor

The aggregated feature vector is processed by a multi-layer
perceptron regressor designed to capture complex nonlinear
relationships between the fused feature embeddings and puzzle
difficulty. The architecture comprises a sequence of fully
connected layers with progressively decreasing dimensionality,
interleaved with ReLU activation functions and dropout reg-
ularization to enhance generalization and mitigate overfitting.
This deep regression network enables the model to learn intri-
cate mappings from multi-source representations to difficulty
ratings. The final output is a single scalar representing the
predicted Glicko-2 rating for the given puzzle.

C. Post-processing Calibration

To mitigate the distributional shift between the training
set and the competition test data, we employ a simulation-
inspired nonlinear rescaling technique [7] to adjust the raw
predictions of the neural regressor. This post-processing step
compresses prediction values at the distributional extremes
while preserving ratings near the empirical mean, thereby

reducing the impact of outliers. The calibration function is
defined as follows:
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where = 1900 denotes the empirical mean rating,
H = 200 and L = 250 control the scaling magnitude
for over- and underestimations respectively, and D = 1000
determines the scale at which the rescaling effect saturates.
These hyperparameters are selected based on prior studies [7]
and further validated through our empirical experience in this
challenge.

This calibration strategy aims to improve the alignment
between predicted and true rating distributions. By explicitly
correcting for known biases in the rating aggregation process,
the rescaling aims to make the predicted difficulty ratings more
robust.

D. Model Ensemble

To further enhance model robustness and predictive perfor-
mance, we employ an output-level ensemble strategy. Specif-
ically, multiple base models are trained independently using
board embeddings generated from different Maia engine vari-
ants, each emulating human play at a distinct ELO rating. The
final prediction is computed by averaging the outputs from all
base models:

N

Rating;, = ;;Modeli(lnput), 2

where NNV is the total number of ensembled models. This
approach leverages complementary perspectives of models
trained on different skill levels and effectively reduces the
variance of individual predictions. Ensembling not only miti-
gates overfitting and model-specific biases but also enhances
the model’s ability to generalize across puzzles of varying
complexity. This strategy is particularly effective in domains
where task difficulty spans a wide spectrum and individual
models may excel in different sub-regions of the input space.
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E. Uncertainty Estimation

To further enhance model reliability and provide inter-
pretable confidence assessments for each prediction, we
propose an ensemble-based uncertainty estimation strategy.
Specifically, for each test instance, we aggregate the prediction
outputs from all base models within the ensemble and compute
the standard deviation of these predictions as a proxy for
epistemic uncertainty, reflecting the degree of disagreement
among ensemble members.

Formally, let ygj ) denote the prediction for the i-th test
sample by the j-th base model in the ensemble, where
j = 1,...,M. The uncertainty score for the i-th sample
is quantified as the standard deviation across the ensemble
outputs:

o= |27 o (07 —5) 3)

j=1

where y; represents the mean prediction for the ¢-th sample.
A higher standard deviation o; indicates greater predictive un-
certainty, as it signals increased model disagreement regarding
the sample’s difficulty.

In accordance with the challenge requirements, we rank
all test samples by their uncertainty scores and flag the top
K instances (where K corresponds to 10% of the test set,
ie., K = 223 for 2235 samples) using a binary mask. By
leveraging the diversity inherent in the ensemble, this strategy
systematically identifies predictions with elevated risk of error.

IV. EXPERIMENT AND RESULT
A. Experiment Setup

1) Environment: The experimental environment is based on
Ubuntu 22.04, equipped with an NVIDIA RTX 3090 GPU (24
GB VRAM). The CPU is an Intel Xeon Gold 6330 operating
at 2.00 GHz, complemented by 90 GB of system memory.

2) Toolkit: The implementation is based on Python 3.12,
with PyTorch 2.5.1 used for neural network construction and
training. CUDA 12.4 is utilized to accelerate GPU computa-
tions and enhance overall computational efficiency.

3) Evaluation Metric: The metric for performance evalu-
ation is the Mean Squared Error (MSE), consistent with the
official evaluation criterion of the FedCSIS 2025 Challenge.

B. Experiment Result

We conducted a comprehensive set of experiments to evalu-
ate the effectiveness of our approach for chess puzzle difficulty
prediction. Table III summarizes model performance on the
public leaderboard, measured in terms of MSE. All results
correspond to the official public test set provided by the
competition platform [16].

As a baseline, we implemented a LightGBM regressor
utilizing handcrafted chess features extracted from the board
state, move sequence, and basic positional statistics. Feature
extraction was performed using the python—-chess library,
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which provides utilities for parsing FEN and PGN represen-
tations and computing relevant game attributes. This model
achieved an MSE of 104703.66, serving as the baseline for
subsequent neural network-based approaches.

To investigate the impact of learned representations, we
incorporated pre-trained neural board embeddings derived
from various Maia engine variants. Employing MAIA-1300
embeddings without the inclusion of organizer-provided suc-
cess probability vectors resulted in an MSE of 91689.69.
Incorporating the success probability features further reduced
MSEs for the MAIA-1300, MAIA-1500, and MAIA-1700
models to 82582.37, 85625.50, and 81570.99, respectively,
thereby underscoring the complementary value of empirical
priors.

To address distributional shift and enhance calibration, we
applied a post-processing rescaling procedure to the model
outputs, as described in Section III-C. This adjustment led
to further improvement, with MSEs decreasing to 76986.22
for MAIA-1300, 78155.64 for MAIA-1500, and 79688.41 for
MAIA-1700.

Subsequently, ensemble averaging across the MAIA-1300,
MAIA-1500, and MAIA-1700 models yielded an MSE of
75915.97. Our final approach, which ensembles board em-
beddings from five Maia variants (MAIA-1100, MAIA-1300,
MAIA-1500, MAIA-1700, and MAIA-1900) and combines
calibrated outputs with success probability features, achieved
the best observed performance, attaining an MSE of 67071.66
on the public leaderboard.

TABLE III
PERFORMANCE COMPARISON OF DIFFERENT METHODS ON PUBLIC
LEADERBOARD

Method Public MSE
Handcrafted Features + LightGBM (Baseline)  104703.66
MAIA-1300 (w/o SuccessProb) 91689.69
MAIA-1300 82582.37
MAIA-1500 85625.50
MAIA-1700 81570.99
MAIA-1300 + Post-processing 76986.22
MAIA-1500 + Post-processing 78155.64
MAIA-1700 + Post-processing 79688.41
MAIA-1300/1500/1700 Ensemble 75915.97
MAIA-1100/1300/1500/1700/1900 Ensemble  67071.66

The results clearly demonstrate that leveraging pre-trained
neural embeddings, incorporating empirical success probabil-
ities, and ensembling the outputs of individually calibrated
models together yield substantial improvements over tradi-
tional handcrafted feature-based models. The progressive re-
duction in MSE observed through our stepwise model en-
hancements highlights the additive value of each component in
our solution. Ultimately, our final ensemble approach achieved
a marked performance gain relative to classical models. These
findings confirm the effectiveness of multi-source feature
fusion and neural representation learning for chess puzzle
difficulty prediction.
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C. Uncertainty Estimation Result

To quantitatively evaluate the effectiveness of our uncer-
tainty estimation strategy, we participated in the additional
uncertainty mask task organized as part of the challenge. In
this task, each team was required to submit a binary mask
identifying the most uncertain 10% of the test puzzles. Let P
denote the perfect score, obtained by replacing the predictions
for the 10% most erroneous test cases with their ground-
truth values, and let N denote the score achieved using the
submitted mask. The evaluation metric is defined as:

p="> )

Our submitted mask achieved a ratio of p = 1.589, ranking
3rd among participating teams. On the official leaderboard,
this corresponded to a score of approximately 55234, com-
pared with the theoretical lower bound of 34766 under a
perfect mask. The results show that our proposed uncertainty
estimation strategy provides a reliable means of identifying
error-prone cases, with potential for further refinement.

V. DISCUSSION

Our experimental results reveal several insights and limi-
tations that warrant further investigation. While handcrafted
features extracted from the board state and move sequences
provide a valuable baseline for chess puzzle difficulty pre-
diction, they are inherently limited in their ability to capture
the full complexity of positional and sequential information.
Models based solely on such features consistently underper-
form relative to deep neural architectures, likely due to their
inability to represent the nuanced dynamics encoded in FEN
strings and move sequences, both of which are essential for
accurate difficulty modeling.

Nevertheless, prior work and our own attempts indicate
that carefully engineered handcrafted features, if effectively
integrated into neural network architectures, may offer com-
plementary benefits. However, our straightforward approach to
merging these features with neural embeddings did not yield
performance improvements, suggesting that more advanced
integration strategies, such as attention-based models, may be
necessary to unlock the full potential of hybrid feature sets.

Due to computational constraints and time limitations, our
current study utilized only five Maia pre-trained model vari-
ants, corresponding to targeted ELO levels of 1100, 1300,
1500, 1700, and 1900. Each Maia variant is designed to
emulate the play style of human users at its specific rating
level, thereby enabling the model to capture a spectrum of
human skill profiles. Nonetheless, this approach may not
fully represent the diversity of the solver population. Future
research should consider integrating all available Maia models,
spanning ELO 1100 to 1900, to achieve finer granularity
in modeling player abilities. Such comprehensive ensembles
could provide a more nuanced simulation of the human skill
continuum and further improve prediction robustness.

In summary, our findings underscore the importance of both
high-capacity neural architectures and the principled fusion
of domain-specific features for robust chess puzzle difficulty
prediction. Advancing this field will require continued re-
search into sophisticated feature integration strategies and
more comprehensive utilization of human-like engine ensem-
bles, ultimately paving the way for models with enhanced
generalization and interpretability.

VI. CONCLUSION

In this work, we investigated chess puzzle difficulty pre-
diction using a multi-source feature fusion approach based
on neural embedding techniques, within the context of the
FedCSIS 2025 Challenge. Our approach integrates pre-trained
Maia board embeddings, solution move sequences, and success
probabilities generated by the MAIA?2 engine. These heteroge-
neous information sources are combined within a unified neu-
ral regression model. Results on the official public leaderboard
demonstrate that incorporating empirical priors derived from
chess engines, neural network-based representations, model
ensemble, and post-processing calibration leads to improved
performance over traditional feature-based baselines.

In addition, we acknowledge the overarching goal of the
knowledgepit competition series [17-20], which is to eval-
uate the skills of data scientists through carefully designed
tasks [16]. Beyond its evaluative role, the knowledgepit pro-
vides an excellent platform for testing novel methodologies,
comparing approaches under common benchmarks, and ad-
vancing the broader data science community.
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