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Abstract—Vision-Language (VL) models have gained significant
popularity in recent years for tasks involving data extraction and
image recognition. In this paper, we introduce reVISION, a large-
scale Polish benchmark for evaluating such models, comprising
over 39k questions extracted from Polish national exams. We
assess both the models’ general knowledge and their ability to
handle tasks that go beyond plain text, including tables and the
recognition of specialized visual objects. Our study also examines
the effects of image resizing and the inclusion of additional context
via OCR-extracted text. To explore the correlation between human
and model performance, we compare their results across multiple
exam years.

I. INTRODUCTION

ROM the very beginning, Large Language Models have

been evaluated using exam-like tests based on multiple-
choice questions, as exemplified by the MMLU benchmark
created specifically for assessing capabilities of GPT-3[7].
MMLU was popular among LLM practitioners despite its
inconsistencies and even outright errors [6]. A more principal
way to build LLM benchmarks was proposed by [8], where
the benchmark was created using Polish national exams.

Currently, many LLMs are actually not only about language,
but they are multi-modal models, handling both language and
vision. Again, a natural need to evaluate them in a systematic
manner and an idea to use real-life exams remains valid, as
actually a significant part of exam questions uses 2D layout and
images (tables, graphs, diagrams, etc.). In this paper, we extend
the ideas put forward by authors [8] to the bimodal (text and
vision) domain, by preparing reVISION, a new comprehensive
benchmark for measuring the quality of VL models.

Figure 1 shows an example of a difficult physics question ex-
tracted from the 2014 high school exam, which both Qwen2.5-
VL-72B-Instruct and GPT-4.1 failed to answer correctly. In
contrast, Figure 2 presents an easier question from the 2020
professional exam, which was correctly answered by both
models.
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Fig. 1: Example of a difficult question from the 2013 high
school physics exam. The question states: A passenger sitting
in a train compartment moving at a speed of 10m/s sees, for
6 seconds, a train traveling in the opposite direction. If the
length of the passing train is 150m, what is its speed?

Pobrana przez bank prowizja od kredytu udzielonego na sfinansowanie biezacej dzialalnosci jednostki
gospodarczej obciazy konto

A. Pozostale koszty operacyjne.
B. Pozostale koszty rodzajowe.
C. Koszty finansowe.

D. Uslugi obce.

Fig. 2: Example of an easy question from the 2020 professional
exam. The question states: The commission charged by the
bank on a loan granted to finance the current operations of
the business entity is recorded under the account: A. Other
operating costs. B. Other cost types. C. Financial costs. D.
External services.

Our contributions consist in stating and answering the
following questions:

« How effectively do vision-language (VL) models answer
Polish exam questions?

« How do VL models compare to human performance?

o How do visually grounded questions differ from text-based
questions?

« Does resizing images to reduce computational cost affect
model performance?

e Does providing additional context in the form of OCR-
extracted text improve model accuracy?

II. RELATED WORK

Ever since the introduction of the first vision-language (VL)
models [12], their performance has been continually challenged
using a variety of benchmarks. Assessing their capabilities is

Thematic Session: Challenges for Natural
Language Processing
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crucial for selecting the appropriate model for the task at hand.
These evaluations range from testing object, attribute, and
relation recognition [16] to performance on multi-disciplinary
tasks [14]. Despite the diversity of tasks, all benchmarks share
a common goal: to identify and compare models in order to
determine which performs best in a given category.

LLMzSzL. [8], a previous work that relied heavily on Polish
exam questions, addressed the need for Polish-language bench-
marks in the research landscape. It demonstrated the importance
of academic datasets and benchmarks that capture the linguistic
specificity of languages like Polish. By incorporating visual
information, we aim to support the development and evaluation
of multimodal models in the Polish-language context, extending
the capabilities of previous text-only benchmarks.

Previous work such as EXAMS-V [4] emphasizes the need
for benchmarks that assess curriculum-specific knowledge. The
EXAMS-V dataset consists of thousands of multilingual exam
questions. The authors highlight the dataset’s difficulty, noting
that even the most advanced models, such as GPT-4V and
Gemini, struggle with it. While Polish professional exams are
included in the benchmark, they account for just over 2.5k
questions. In this paper, we focus on expanding the number
and variety of questions while narrowing the language scope to
a single language, while using clear criteria for inclusion and
future extensions. Similarly, M3Exam [15] provides a multilevel
benchmark composed of human exam questions. The study
demonstrates that models face challenges when processing
multilingual texts, particularly in low-resource languages.

III. DATASET
A. Data sources

Each year in Poland, three types of national exams are
conducted to assess the knowledge of Polish students: the
eighth-grade exam, the high school exam, and professional
exams. The middle school exam, which was part of the
Polish education system prior to recent educational reforms,
was also considered when preparing the data sources. After
each exam session, the exams are published by the Polish
Central Examination Board (Pol. CKE, Centralna Komisja
Egzaminacyjna). These archives provided us with access to
both questions and answers from a reliable source, ensuring
the high quality of our dataset.

B. Data selection

The primary constraint considered when selecting documents
for dataset preparation was the number of closed-ended ques-
tions with a single correct answer. This approach eliminated
the need for a larger model or human annotators as judges,
enabling us to focus solely on extracting one type of question
while ensuring objectivity by removing emotional bias and
personal preferences. Since many types of exams were heavily
focused on open-ended answers, we decided to exclude them
from further processing. This strict elimination process resulted
in the following categories: math, natural sciences, biology,
physics, and the Polish language for pre-high school questions,
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and arts, mechanics (including mining and metallurgy), and
agriculture (including forestry) for professional exams.

C. Dataset preparation

The preparation of the dataset began with downloading the
exams that were made public over the years. We automated
this stage using basic web scraping methods and Python scripts.
All exams were published in PDF format, with their answers
in separate files, making it crucial to track which question file
corresponds to which answer file.

To extract all the questions from a single PDF file, we
first had to determine the accurate X-axis positions of each
question. We took a single page of the file in order to test the
techniques for position extraction. Our initial approach was to
prompt a multimodal model with an image and have it extract
the bounding boxes of entire questions. However, this proved
ineffective as multimodal models, although good for OCR text
extraction, cannot accurately pinpoint and return text positions
even on small images. Having this in mind, we decided to use
an OCR engine, specifically PaddleOCR', that can extract text,
precisely draw its bounding boxes, and return their positions.
In this way, we identified the text indicating the beginning
of a question. For most exams, the keyword was *Task’ (Pol.
Zadanie). If the word appeared above the actual task, we used
the lower X-axis of "Zadanie’ as the starting position of the
task; otherwise, we used the upper X-axis. The upper X-axis of
the next question was used as the ending position. The images
were then cropped along those axes.

When initially testing on entire exam documents, we
attempted to convert the entire PDF file into a single long
image and then used an OCR engine to detect text. However,
this approach proved ineffective, as the engine was unable
to detect any text in the image. The issue arises primarily
due to the extreme aspect ratio of the images. OCR engines
are typically optimized for standard-sized documents and
conventional aspect ratios. A more effective approach was
based on the fact that each question had to be contained on
a single page, making it possible to split the document into
individual pages, convert them into images, and then detect
tasks within them. After fine-tuning the detection and splitting
process to match each exam type, we were able to extract
almost 40,000 images, each containing exactly one question.
This figure reflects the results after a cleaning process, which
involved removing approximately 30% of the original questions,
primarily due to duplication, with a smaller portion removed
for issues such as poor cropping. The cleaning process was
fully automated, involving the removal of duplicate images by
comparing the OCR-extracted text from each image. Images
containing no text or lacking answer options labeled A, B,
C, and D were also removed. To ensure the accuracy of the
cleaning process, random samples were extracted from the
dataset for manual verification.

The second-to-last step in the preparation of the dataset was
to match the questions with their corresponding answers. We

Thttps://github.com/PaddlePaddle/PaddleOCR
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used a simple PDF text extraction tool and cleaning scripts to
extract answers from Professional Exams files, as the format
of the answer key has remained consistent over the years. For
other exam types, the answers were manually extracted.

Once the dataset was nearly complete, we decided to add
more metadata, specifically indicating whether a task requires
additional data, such as an image or table, to answer the
question, or if it is entirely text-based. To automate this task,
we utilized the Qwen2-VL-7B-Instruct’> model to analyze and
classify the questions. We used the system and user prompt
shown below.

System prompt:
You will see a picture of a Polish
task.If there is more than just a
text in the image, like an image,

table, etc, return true. Otherwise
return false. Respond ONLY with
"true’ or ’'false’.

User prompt:
Does this task need an image
for context?

Table I presents the hardest professional exams categories.
A more detailed analysis of these categories is provided in
Section V-C.

D. Documents cropping as a tool for building text-based
datasets

Dividing a set of questions into individual items can be
useful not only for creating image-based datasets but also for
constructing textual datasets. When using an OCR engine to
extract text from questions that do not require visual context for
understanding, the post-processing effort can be significantly
reduced compared to standard text extraction techniques, as
the data is already segmented into more manageable chunks.

The growing popularity of using multimodal models as a
means for data extraction, particularly with the use of Structured
Outputs®, opens up the possibility of generating structured
datasets that require minimal or no post-processing. Feeding
data to a model in smaller units, rather than entire document
pages, can improve the accuracy of data extraction and analysis.

E. Dataset summary

To better understand the finalized dataset, a numerical
representation of its potential size and actual results will be
given now. Starting with the lowest extraction rate, the 8th-
Grade Exams achieved a 27.5% extraction rate. This was
followed by the High School Exams at 42.9%, the Middle
School Exams at 61.7%, and the Professional Exams with the
highest rate of 67.7%. Until 2012, Mathematics and Nature
were combined in the middle school exams, resulting in a joint
discipline. Table III presents the exact number of questions

Zhttps:/huggingface.co/Qwen/Qwen2- VL-7B-Instruct
3https://platform.openai.com/docs/guides/structured- outputs ?api-mode=re
sponses

for each exam and discipline, while Table IV presents the
distribution of answer options in the dataset.

FE. Dataset availability

The dataset will be publicly available on the Hugging Face
page.

IV. EVALUATION

A. Evaluation harness

The tool we used to assist with model evaluation was Imms-
eval ° [10], a fork of LM Evaluation Harness® [5] framework.
Each model was prompted with the following task (in English)
in addition to being shown the image:

Answer the Polish exam question from
the image. Answer with the good answer
letter only. Possible answers are

A or B or C or D.

The evaluation was carried out using two different ap-
proaches. The first approach involved resizing the images so
that their longest side was 512 pixels, while preserving the
aspect ratio and readability. This resizing was performed not
only to save memory and reduce computational overhead, but
also to evaluate the consequences of image resizing, which
are discussed later in the paper. In the second approach,
models were evaluated using full-size images to assess their
full capabilities. All analyses presented later in the paper are
conducted using the outputs from full-sized images.

A common approach for selecting a model’s answer involves
extracting the log-likelihoods—or probabilities—of each possi-
ble option. However, this functionality was not implemented
for all of the models evaluated. Therefore, we generated the
answers in text format and processed them post hoc by stripping
any punctuation or extraneous content beyond the answer letter.

Questions with answers other than A, B, C, or D were
excluded from the evaluation. This prompting strategy also
simulates a more realistic usage scenario, reflecting how such
models are often used in everyday applications.

B. Evaluated models

For the general evaluation on resized images (the 1st
approach), we selected 18 different open-weight models across
7 model families, with sizes ranging from 2 billion to 72 billion
parameters. We also included one closed-weight GPT model
in the evaluation.

GPT 4.1: gpt-4.1-2025-04-14 7

Qwen: Qwen2.5-VL (3B-Instruct, 7B-Instruct and 72B-
Instruct) [2], Qwen2-VL (2B, 2B-Instruct, 7B and 7B-Instruct)
[13]

InternVL: InternVL2_5-8B [3]

“4Percentages are approximate and may not sum to exactly 100% due to
rounding.

Shttps://github.com/EvolvingLMMs-Lab/Imms-eval

Ohttps://github.com/Eleuther Al/lm-evaluation-harness

https://openai.com/index/gpt-4-1/

667



668

PROCEEDINGS OF THE FEDCSIS. KRAKOW, POLAND, 2025
TABLE I: Top Hardest Professional Exam Categories based on top 10 models performance.
Code Models Visual tasks (%) Domain Category
R.13 8 24.0 Forest Technician Protection and management of forest resources
MG.11 8 46.3 Underground Miner / Mining Technician Exploitation of underground deposits
R.15 7 36.7 Inland Fish Farmer Technician Organization of fish farming operations in aquaculture
MG.30 7 44.2 Optician Technician Production and repair of visual aids
R.14 6 36.0 Forest Technician Utilization of forest resources
M.21 6 55.3 Blacksmith Production and repair of blacksmith products
R.02 5 55.3 Farmer / Agribusiness / Agricultural Technician ~ Agricultural production
RL.06 5 40.7 Horse Trainer Horse riding and training
TABLE III: Distribution of Questions Across Exams and Disciplines

Exam Discipline Original Questions Questions

8th-Grade Exam Polish Language 101 9

8th-Grade Exam Mathematics 99 46

Middle School Exam  Mathematics and Nature 346 152

Middle School Exam  Mathematics 184 96

Middle School Exam  Nature 192 79

High School Exam Biology 169 21

High School Exam Physics 399 154

High School Exam Mathematics 492 280

Professional Exam Arts 3480 2547

Professional Exam Mechanical, Mining and Metallurgical 30240 21057

Professional Exam Agriculture and Forestry 23200 14905

TABLE 1V: Distribution of answer options in the dataset.*

Answer Option  Count  Percentage (%)
A 9,564 243
B 10,235 26.0
C 10,075 25.6
D 9,457 24.0
Other 15 0.04
Total 39,346 100.0
Llava-HF: 1.5 (7B and 13B), v1.6 (Mistral-7B and 34B),

NeXT (Llama3-8B and 72B) [11]
Phi: Phi-4 [1]
Idefics2: Idefics2 (8B and 8B-chatty) [9]
InstructBLIP: Vicuna-7B

C. Cropped images results

The general accuracy of the evaluated models on resized
images is summarized in Table V.

As shown in the table, the Qwen models dominate this part
of the evaluation, despite being trained primarily on English
and Chinese data. All other models tend to hover around
the 25% random-guess baseline. The Qwen2-2B model began
generating random tokens instead of answering the questions,
which explains its low accuracy score.

The LLaVA models, even in their largest 72B variant,
demonstrate that model size alone is insufficient; the quality

TABLE V: Performance of models on images resized to 512px

Model Size  Acc. (%)
Qwen/Qwen2.5-VL-72B-Instruct 72B 60.56
Qwen/Qwen2.5-VL-7B-Instruct 7B 44.82
Qwen/Qwen2.5-VL-3B-Instruct 3B 37.31
Qwen/Qwen2-VL-7B-Instruct 7B 34.16
Qwen/Qwen2-VL-7B 7B 29.04
OpenGVLab/InternVL2/5-8B 8B 28.69
1llava-hf/llava-next-72b-hf 72B 28.06
microsoft/Phi-4-multimodal-instruct ~ 14.7 27.65
Qwen/Qwen2-VL-2B-Instruct 2B 26.02
llava-hf/llava-v1.6-34b-hf 34B 2591
HuggingFaceM4/idefics2-8b-chatty 8B 25.76
HuggingFaceM4/idefics2-8b 8B 25.09
random guessing - 25.00
llava-hf/llava-1.5-7b-hf 7B 24.34
Salesforce/instructblip-vicuna-7b 7B 24.32
1lava-hf/llava-1.5-13b-hf 13B 24.31
llava-hf/llava-v1.6-mistral-7b-hf 7B 24.2
1lava-hf/llama3-1lava-next-8b-hf 8B 24.16
Qwen/Qwen2-VL-2B 2B 20.18

and relevance of the training data are the primary determinants
of performance. These models, trained on English data, achieve
at most 28.06% accuracy.
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TABLE VI: Performance of models on full-size images

Model Size  Ace. (%) o resize

increase
GPT-4.1 - 69.77 -
Qwen/Qwen2.5-VL-72B-Instruct 72B 65.25 +7.44%
Qwen/Qwen2.5-VL-7B-Instruct 7B 48.95 +9.21%
Qwen/Qwen2.5-VL-3B-Instruct 3B 41.16 +10.32%
Qwen/Qwen2-VL-7B-Instruct 7B 46.69 +36.68%
Qwen/Qwen2-VL-7B 7B 40.58  +39.74%
OpenGVLab/InternVL2/5-8B 8B 28.56 -0.45%
llava-hf/llava-next-72b-hf 72B 28.24 +0.64%
microsoft/Phi-4-multimodal-instruct ~ 14.7 28.77 +4.05%
Qwen/Qwen2-VL-2B-Instruct 2B 31.73 +21.94%
llava-hf/llava-v1.6-34b-hf 34B 26.01 +0.39%
HuggingFaceM4/idefics2-8b-chatty 8B 25.25 -1.98%
HuggingFaceM4/idefics2-8b 8B 25.18 +0.36%
llava-hf/llava-1.5-7b-hf 7B 24.32 -0.08%
Salesforce/instructblip-vicuna-7b 7B 24.32 0%
llava-hf/llava-1.5-13b-hf 13B 24.34 +0.12%
1lava-hf/llava-v1.6-mistral-7b-hf 7B 24.32 +0.5%
1lava-hf/llama3-llava-next-8b-hf 8B 24.19 +0.12%
Qwen/Qwen2-VL-2B 2B 20.05 -0.64%

D. Full image results

As seen in Table VI, model accuracy approaches practical
usefulness only for larger models, such as GPT-4.1 and
Qwen2.5-VL-72B-Instruct. Other models, even those that
performed above the guess rate of 25%, still yield unsatisfactory
results. These findings highlight the need for benchmarks like
this one to rigorously evaluate model performance on real-
world tasks. Moreover, they underscore the substantial room for
improvement in smaller or mid-sized vision-language models.

E. To resize or not to resize

Depending on the model version, the performance gains from
using high-resolution images vary. The Qwen2.5 models show
modest improvements of just over 10%, while the Qwen2
models demonstrate increases approaching 40%. Notably,
models that perform poorly on resized images tend to see
limited improvement even when image quality is not altered.

These findings suggest that when image downscaling is
necessary, newer model versions should be preferred to mitigate
the negative effects of reduced image quality.

V. RESULTS ANALYSIS

A. Confusion analysis

LT3

To better understand the models’ “thinking” processes—that
is, the sequence of statistical and text-processing steps they use
to generate answers—a deeper analysis of their answer choices
is required. Each confusion matrix in Figure 3 illustrates the
relationship between the true answers (y-axis) and the answers
predicted by the models (x-axis). This enables a granular
examination of how frequently the top three performing models
confuse specific answer options.

One of the most notable insights from these matrices is the
visual representation of the models’ uncertain guesses. While

GPT-4.1
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Fig. 3: Confusion matrices for different models.

the GPT model demonstrates the best overall performance
across most answer classes, it is slightly outperformed by the
72B Qwen model on questions with “c” as the true answer.
When uncertain, GPT exhibits a bias toward selecting earlier
answer options, with the likelihood of selection decreasing
progressively across the choices. Notably, it appears to almost
avoid choosing the furthest option, “d”, under uncertainty.

The Qwen models tend to favor the middle answer choices
when in doubt. The larger 72B model most frequently guesses
“b” or “c” under uncertainty, reflecting a moderate central
bias. In contrast, the smaller 7B model exhibits a strong
preference for answer “b,” even to the extent that it accidentally
outperforms the larger model in predicting this specific answer.



670

TABLE VII: Performance of vision-language models on visual-
and text-based tasks.
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complex reasoning, and the integration of visual features
with language understanding. Even the most advanced models

evaluated remain far from achieving human-like reasoning
and multidimensional understanding. This performance gap

Model Visual Acc. (%)"  Text Acc. (%)"
GPT-4.1 65.47 73.07
Qwen/Qwen2.5-VL-72B-Instruct 59.09 69.98
Qwen/Qwen2.5-VL-7B-Instruct 44.72 52.19
Qwen/Qwen2-VL-7B-Instruct 42.74 49.71
Qwen/Qwen2.5-VL-3B-Instruct 38.35 43.32
Qwen/Qwen2-VL-7B 36.21 43.92
Qwen/Qwen2-VL-2B-Instruct 30.55 32.64
microsoft/Phi-4-multimodal-instruct 28.33 29.11
OpenGVLab/InternVL2_5-8B 28.37 28.71
1lava-ht/llava-next-72b-hf 27.14 29.09
llava-hf/llava-v1.6-34b-hf 24.87 26.88
HuggingFaceM4/idefics2-8b-chatty 25.37 25.16
HuggingFaceM4/idefics2-8b 24.73 25.53
1lava-hf/llava-1.5-13b-hf 23.67 24.86
llava-hf/llava-1.5-7b-hf 23.62 24.86
Salesforce/instructblip-vicuna-7b 23.53 24.92
llava-hf/llava-v1.6-mistral-7b-hf 23.72 24.71
1lava-hf/llama3-llava-next-8b-hf 23.21 24.95
Qwen/Qwen2-VL-2B 23.42 17.47

“Task classification is based on automated labeling with an estimated 12.2% error rate.
See Section V-B for details.

This pronounced bias suggests a reliance on heuristics or a
limited ability to disambiguate between options in uncertain
scenarios.

B. Visual vs. Text-Based Tasks

To confirm the accuracy of Qwen’s classification of images
that require additional context, such as a picture or table,
a random sample of 1,000 images was selected for manual
verification. The verification revealed that 122 of the 1,000
images were misclassified, with the vast majority being false
positives (120 out of 122). This disproportion may indicate that
the prompt did not sufficiently guide the model to identify tasks
requiring additional context. All subsequent tables that report
model results based on the image-context grouping should be
interpreted in light of an estimated 12.2% labeling error, with a
95% confidence interval ranging from approximately 10.2% to
14.2%. While this level of error is acceptable for exploratory
analysis and broad grouping, it is not sufficiently accurate
for training downstream models. We therefore emphasize that
findings based on this stratification are preliminary and should
not be overinterpreted without more precise annotation.

Out of 39,331 questions considered when calculating the
accuracy of the models, 17,058 were marked as visual-based
and 22,273 were marked as text-based. Table VII shows results
of each model both on visual- and text-based tasks.

With few exceptions, most of the tested models exhibit
higher accuracy on text-based questions compared to those
requiring visual context. This discrepancy stems from the
fact that vision-language models are still primarily trained
on textual data and are less focused on the deep analysis of
figures, tables, or the recognition of specific and highly niche
objects. Visual tasks often demand fine-grained perception,

underscores the limitations of current multimodal training
approaches and highlights the need for more diverse, richly
annotated datasets that better capture the complexities of visual
reasoning.

C. Professional Exams categories analysis

This analysis was conducted on the top 10 best-performing
models, as it required a level of domain knowledge sufficient
to demonstrate informed responses rather than mere guessing.
There are 150 unique category codes, and for the easiest
and hardest analyses, the codes that appeared most frequently
among the top 20 easiest and hardest categories for the selected
models were identified. The proportion of visually-based tasks
was also considered when assessing question difficulty, as
text-based tasks were generally easier for the models to
answer as shown in Section V-B. This led to the exclusion of
categories with more than 70% visual tasks among the hardest
categories, and less than 30% visual tasks among the easiest
categories. These thresholds were selected to create a clear
contrast between predominantly visual and predominantly text-
based categories, while also preserving a sufficient number of
categories to support a robust and meaningful analysis. These
thresholds were selected to create a clear contrast between
predominantly visual and predominantly text-based categories,
while also preserving a sufficient number of categories to
support a robust and meaningful analysis.

The most challenging categories were closely tied to the
limited availability of widely accessible resources for model
training, particularly those that are highly niche and vocational.
Eight categories fell into this group, the most difficult of which
were Protection and Management of Forest Resources and
Exploitation of Underground Deposits.

The knowledge required to become one of these specialists
is heavily underrepresented in training corpora and typically
demands extensive hands-on experience and practical training.

In contrast, most of the easiest categories belonged to the
broader domain of mechanics. Notably, Shipbuilding works—a
subcategory within this domain—appeared among the top
20 easiest categories in nine models. With approximately
1.64 billion cars in the world, mechanical data is widely
available and has certainly been included in model training. The
second easiest domain was Environmental Protection, a highly
discussed topic, particularly in today’s context of increasing
global awareness and concern.

VI. COMPARISON AGAINST HUMANS

Comparing the accuracy of Multimodal Language Models
to exact human performance is not feasible, as human results
are published only for entire exams rather than individual
questions for all but the High School exams. All exams, except
for the Professional exams, contain a significant number of
open-ended questions, which were not included in our dataset.
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Additionally, some closed-ended questions may have been
excluded from the dataset due to the postprocessing described
earlier. Data on human performance in professional exams
were extracted from the WaszaEdukacja website®, which is not
affiliated with the Central Examination Board (CKE). Therefore,
the exam content presented on the site may not fully correspond
to the official questions used in the models’ evaluation. The
purpose of this section is not to compare human knowledge
to model performance directly, but rather to evaluate whether
the difficulty reflected in human performance for a given year
aligns with the general performance of the models—even if the
exact questions differ. This type of analysis applied to textual
exams dataset has been proposed and shown to correlate well
with human performance in [8]. For the visualized models
performance, the top 3 performing models were chosen: GPT-
4.1, Qwen2.5-VL-72B-Instruct and Qwen2.5-VL-7B-Instruct.

A. Eighth-grade exam

8th-Grade Exam Results
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\
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Fig. 4: 8-th grade selected models results compared to average
human results.

In the combined results from all 8th-grade question cat-
egories—grouped due to the limited number of questions
available for individual analysis—the GPT model emerges
as the top-performing model. All models exhibit similar year-
to-year fluctuations in accuracy, differing primarily in their
overall performance levels. GPT achieves an average accuracy
of 69.87%, while the Qwen models follow with 64.48% and
48.99%, respectively. A notable divergence between human
and model performance occurred between 2020 and 2022,
where the average human accuracy improves compared to the
previous years, all the evaluated models experience a decline
in performance.

8https://waszaedukacja.pl/egzaminy/zawodowy

B. Middle school exam

Middle School Exam Results
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Fig. 5: Middle school selected models results compared to
average human results.

Qwen2.5-VL-72B performs exceptionally well on the Middle
School exams, achieving an impressive average accuracy of
77.14%, clearly leading among the evaluated models. In
contrast, GPT-4.1 achieves a more modest average accuracy of
58.02%, aligning more closely with the smaller Qwen2.5-VL-
7B model, which scores 51.98%. Interestingly, the performance
of the 72B Qwen model mirrors the trend of human results
across the years, with the exception of 2018, where a noticeable
deviation occurs. GPT-4.1 maintains accuracy levels generally
comparable to human performance, while the Qwen 7B model
exhibits high variability—ranging from below 20% to as high
as 60%—indicating inconsistency in its performance across
exam years.

C. High school exam

High School Exam Results
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Fig. 6: High school subjects selected models results compared
to average human results.

For the high school exams, the Qwen2.5-VL-72B model’s
performance mirrors the overall trend of human performance
over the years, with rises and declines occurring in parallel,
though at a different absolute level of accuracy. In contrast,
the other two models hover around the human performance
baseline, with GPT-4.1 achieving an average accuracy of 53%
and Qwen2.5-VL-7B scoring 47.34%.
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D. Professional exam

Arts Category Performance
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Fig. 7: Arts selected models results compared to average human
results.

1) Arts: In contrast to the models’ performance, fluctua-
tions in human accuracy are particularly noticeable in the
arts professional exams. The two best-performing models
consistently maintain accuracy above 80%, while human
performance occasionally drops below 65%, highlighting a
significant performance gap in this category.

Mechanics Category Performance
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Fig. 8: Mechanics (including mining and metallurgy) selected
models results compared to average human results.

2) Mechanical, Mining and Metallurgical: In the mechanical
category, human performance significantly surpasses that of the
models, indicating that in highly specialized domains, models
still underperform and have considerable room for improvement.
All models exhibit similar trends of rising and falling perfor-
mance over time, though at different levels of average accuracy.
This consistent fluctuation pattern across models suggests a
correlation between model size (i.e., number of parameters)
and overall performance, with larger models achieving higher
accuracy while following the same performance trajectory.
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Agriculture Category Performance
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Fig. 9: Agriculture (including forestry) selected models results
compared to average human results.

3) Agriculture and Forestry: The accuracy trends for models
and humans on agricultural exam questions appear to move
in opposite directions: while human performance steadily
improves over the years, model performance consistently
declines. This contrast highlights the limitations of using vision-
language models as a benchmark for assessing exam difficulty.
It suggests that what may seem harder for a model may, in
fact, be easier for a human—and vice versa—underscoring the
fundamental differences in reasoning strategies and domain
familiarity. This emphasizes the need for caution when relying
on model-based metrics in educational evaluation or exam
design.

VII. ADDITIONAL OCR CONTEXT

In this section we will try to answer the question if prompting
the model with additional context from the image—in the form
of Optical Character Recognition (OCR)-extracted text—can
improve its accuracy and overall performance. Including OCR-
extracted text from the image in the prompt itself can enhance
model performance by providing additional context that may
not be captured through visual input alone, bridging the
gap between modalities. To encourage the model to utilize
this additional information when answering the question, we
appended the following text to the prompt:

Use the OCR text as well as the image
to answer the question. OCR text:

The following models were selected to evaluate the benefits
of additional context: Qwen2.5-VL-7B-Instruct, Qwen2-VL-
7B, Qwen2-VL-7B-Instruct, Llama3-llava-next-8b-hf, Phi-4.

For the OCR engine, EasyOCR 9 was used, as it handles
Polish characters more effectively than the previously used
PaddleOCR. The text indicating the beginning of each question
did not contain any Polish letters, so the earlier use of
PaddleOCR did not result in processing errors. The extracted
text was provided in the prompt verbatim, without any post-
processing. The OCR was performed on the original, pre-resize
image.

9https://github.com/Jaided AI/EasyOCR
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A. Results

Across the tested models, only the Phi-4 model exhibited
notable improvements when prompted with additional OCR
context. This outcome may be attributed to its modular archi-
tecture, which employs separate adapters (LoRAs) for vision,
speech, and text. Phi-4 processes each modality independently
and integrates them later, enabling more effective fusion of
external textual input with visual features.

Interestingly, the Qwen2-VL-7B-Instruct model showed a
decrease in performance with the additional OCR context.
This suggests that the injected text may have conflicted with
the model’s internal visual interpretation, potentially leading
to confusion or interference during reasoning. Unlike Phi-4,
Qwen models use a single vision encoder that processes visual
inputs and aligns them with textual representations via rotary
embeddings before feeding the combined data into a unified
Transformer stream.

The overall results suggest that, while promising in theory,
incorporating OCR context when processing images of ques-
tions does not consistently improve model performance and
may, in some cases, degrade it. Nevertheless, the observed
gains in Phi-4 underscore that, when properly integrated, OCR
context can enhance performance. Therefore, it is important to
continue exploring modality-specific architectures and training
strategies.

TABLE VIII: General performance of selected models with
additional OCR context

Model Acc. OCR Acc. Increase
Qwen2.5-VL-7B-Instruct ~ 48.95 50.24 +2.64%
Qwen2-VL-7B 40.58 40.84 +0.64%
Qwen2-VL-7B-Instruct 46.69 46.16 -1.14%
Llama3-llava-next-8b-hf 24.19 25.07 +3.64%
Phi-4 28.77 3146  +9.35%

VIII. LIMITATIONS

While this benchmark is a necessary step toward assessing
a model’s knowledge, it evaluates only the model’s final
answers to closed-ended questions and does not account for the
reasoning process behind those answers. Although the provided
responses may be sufficient for tasks such as assisting a student
in finding a correct answer, they fall short in educational
contexts where the underlying reasoning is also evaluated.
In such scenarios, a model might provide the correct answer
but fail to justify it coherently, potentially misleading users
about its understanding. Additionally, the dataset used in
this benchmark represents idealized conditions in which all
questions are fully visible and neatly typewritten. As a result,
the benchmark assesses visual recognition only within these
controlled parameters and does not reflect the broader variability
encountered in real-world visual inputs, such as handwritten
notes, partially obscured text, or classroom environments.

One of the previously mentioned issues is the error rate in
Qwen’s visual-context task recognition. Although the classi-
fication was sufficient for simple comparisons and provided
some insight into the increased difficulty compared to text-only
tasks, the error rate may render the data unsuitable for other
applications.
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