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Abstract—Accurate blood glucose prediction is critical for
effective diabetes management, yet existing models struggle
with individual variability, data sparsity, and non-linearity. We
propose an attention-based multi-task learning (MTL) model in-
tegrated with proximal policy optimization (PPO) reinforcement
learning (RL) to enhance forecasting accuracy and adaptability.
MTL captures shared patterns across multiple prediction tasks,
while PPO dynamically refines predictions based on patient-
specific glucose trends. By incorporating explainability techniques
such as SHAP analysis and Monte Carlo dropout, our approach
not only achieves state-of-the-art predictive accuracy but also
enhances trust in AI-driven decision support systems for diabetes
care. Evaluated on the BrisT1D blood glucose dataset, our model
achieves a R

2 score of 0.85, MSE of 0.0017, RMSE of 0.0419, and
MAE of 0.0310, significantly surpassing conventional methods.
This work advances personalized real-time glucose forecasting,
offering a promising step toward AI-powered glycemic manage-
ment in clinical settings.

Index Terms—Blood glucose prediction, multi-task learning,
reinforcement learning, explainable AI, time-series forecasting,
healthcare AI

I. INTRODUCTION

D
IABETES mellitus is a chronic condition affecting over
537 million adults globally, with projections indicating

it will reach 783 million by 2045 [1]. Maintaining optimal
glycemic control is crucial to preventing complications such
as cardiovascular disease and neuropathy [2]. Blood glucose
fluctuations, particularly in Intensive Care Units (ICUs), are
linked to increased morbidity and mortality [3], highlighting
the importance of accurate glucose prediction for clinical
decision-making.

Despite the availability of Continuous Glucose Monitoring
(CGM) systems, forecasting future glucose levels remains
challenging due to the highly non-linear and patient-specific
nature of glucose dynamics, data sparsity, and individual
variability [4]. Traditional Machine Learning (ML) models
such as Autoregressive models (ARIMA) [5], Support Vector
Machines (SVMs) [6], and shallow neural networks [7] often
fail to generalize across patients. Deep Learning (DL) methods
like Long Short-Term Memory (LSTM) [8], Transformers [9],

and CNN-LSTM hybrids [10] offer improved performance,
but still struggle with adaptability and lack of interpretability,
critical requirements for clinical deployment [11], [12].

Moreover, most existing models operate as static predic-
tors, ignoring evolving physiological states [13]. Reinforce-
ment Learning (RL), especially Proximal Policy Optimization
(PPO), offers dynamic policy adjustment and has shown
promise in healthcare, though its application to glucose pre-
diction is still limited [14]. Similarly, explainability remains a
key bottleneck to the clinical adoption of AI-driven systems.

To tackle these limitations, we propose a novel hybrid model
that integrates attention-based Multi-Task Learning (MTL)
with PPO based RL. Our method enables:

1) Learning shared glucose dynamics across multiple pre-
diction tasks to improve generalization.

2) Dynamic adaptation to patient-specific trends using
PPO-based reinforcement learning.

3) Transparent and explainable predictions through SHAP
analysis and permutation-based feature selection.

4) Superior predictive accuracy with an R2 of 0.85, MSE
of 0.0017, RMSE of 0.0419, and MAE of 0.0310 on
real-world data.

II. RELATED WORKS

Prediction of blood glucose levels has been tackled using
a wide range of ML and DL models. Traditional ML tech-
niques such as ARIMA [15], SVMs [6], and Random Forests
(RFs) often struggle with nonlinear dynamics, interindividual
variability, and temporal dependencies.

DL-based models have gained attention for their ability
to capture complex glucose patterns. RNNs and LSTMs are
widely used for modeling temporal sequences [16], while
transformer architectures leverage self-attention to improve
long-range forecasting [17]. CNN-LSTM hybrids further en-
hance sequential pattern recognition [18]. Despite their im-
proved accuracy, these models lack interpretability, limiting
clinical applicability. To address this, explainable AI tech-
niques such as Shapley Additive exPlanations (SHAP) and
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permutation-based feature importance are increasingly ap-
plied [19].

MTL improves generalization by learning shared repre-
sentations across related tasks [20]. In glucose forecasting,
MTL enables simultaneous short- and long-term predictions
[21], and attention mechanisms have further refined time-series
modeling by emphasizing physiologically relevant features
[22]. Hierarchical MTL has also shown promise in modeling
auxiliary tasks such as insulin sensitivity and meal intake [23].

RL, particularly PPO, has demonstrated adaptability and
robustness in medical control systems [24], [25], [26]. Al-
though mostly used in insulin delivery systems, its application
in glucose prediction is emerging [20]. Recent work has
combined PPO with uncertainty quantification techniques like
Monte Carlo dropout to improve reliability and trust in clinical
settings [27], [23].

III. PROPOSED METHODOLOGY

The framework we have developed integrates attention-
based MTL with PPO-based RL to enhance the accuracy of
glucose level prediction. The comprehensive structure of this
framework is illustrated in Fig. 1.

A. Data Processing and Feature Engineering

We use a real-world CGM dataset from young adults with
Type 1 diabetes in the UK, including CGM, insulin, meal,
and activity records [28]. Data is resampled into 5-minute
intervals with a 6-hour look-back window to forecast glucose 1
hour ahead. The training set comprises three months from nine
subjects; testing uses unseen data from 15 participants. Prepro-
cessing includes last observation carried forward (LOCF) and
Kalman filtering for missing values, min-max normalization:

Xnorm =
X −Xmin

Xmax −Xmin

. (1)

The Z-score standardization is applied:

Xstd =
X − µ

σ
. (2)

where µ and σ denote the mean and standard deviation,
respectively. We extract time-series features such as lagged
glucose values:

Gt, Gt−1, ..., Gt−k, (3)

where Gt represents the glucose level at time t, and k denotes
the lag period. To capture temporal patterns, rolling window
statistics are introduced:

Ḡ
(w)
t =

1

w

t
∑

i=t−w

Gi, (4)

where w is the window size. Polynomial expansions up to
degree n are also incorporated to capture non-linear glucose
interactions.

G2
t , ..., G

n
t . (5)

B. MTL with Attention

The MTL model learns shared representations across tasks
via:

h = fθ(X), (6)

where fθ is the shared feature extractor. The task-specific
layers then generate predictions for each forecasting horizon
Ti:

Ŷi = gϕi
(h), (7)

where gϕi
denotes the task-specific prediction function. Atten-

tion weights αt highlight key time steps:

αt = softmax(Whht + b), (8)

where Wh and b are learnable parameters. For stability and
convergence, layer normalization (LN) is applied, formulated
as:

ĥt =
ht − µ

σ + ϵ
· γ + β, (9)

where γ and β are learnable scaling factors.

C. Reinforcement Learning Component

PPO enables dynamic correction using states. Unlike Q-
learning and DDPG, PPO prevents drastic policy updates,
ensuring smoother adaptation to glucose trends. The repre-
sentation of the state St at time t is represented as:

St = {Gt,△Gt, It,Mt, Pt, Tt}, (10)

where Gt is the glucose level, △Gt is the glucose change, It
is insulin dose, Mt is meal intake, Pt is physical activity, and
Tt is time. Action At represents the predicted next glucose
level as:

At = {Ĝt+1}. (11)

The reward penalizes large prediction errors:

Rt = −
(

|Ĝt+1 −Gt+1|
Gt+1 + ϵ

)2

, (12)

where ϵ prevents the division by zero. The PPO policy
πθ(At|St) is optimized using the clipped objective function
as:

LPPO(θ) = Et [min(rtAt, clip(rt, 1− ϵ, 1 + ϵ)At)] , (13)

where rt(θ) is the probability ratio between new and old
policies, and At is the advantage function.

D. Training and Setup

We use AdamW optimizer and OneCycleLR scheduler.
Training uses smooth L1 loss (Huber Loss):

L(y, ŷ) =

{

0.5(y − ŷ)2, if |y − ŷ| < 1

|y − ŷ| − 0.5, otherwise
(14)

Training was conducted for 200 epochs, batch size 64, with
5-fold cross-validation and early stopping. Experiments ran on
a system with Intel i7-11700 CPU, 64 GB RAM, and NVIDIA
RTX 4090 GPU using PyTorch.
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Fig. 1. Flowchart of the proposed algorithm for blood glucose prediction.

IV. EXPERIMENTAL RESULTS

This section provides an empirical assessment of the pro-
posed methodology for predicting blood glucose levels. The
evaluation includes an analysis of the model’s predictive
accuracy, statistical significance, and robustness, employing a
range of performance metrics and significance tests.

A. Performance Metrics

To quantitatively evaluate the effectiveness of our proposed
model, we compare its performance against baseline models
using four widely adopted regression metrics: Mean Squared
Error (MSE), Root Mean Squared Error (RMSE), Mean Ab-
solute Error (MAE), and Coefficient of Determination (R2

Score).

B. Results

To assess the precision of the proposed MTL-RL model, we
visualize the alignment of true versus predicted glucose levels
in all test samples, as illustrated in Figure 2. The blue dots
represent the actual glucose values, while the red dots repre-
sent the corresponding model predictions. The results indicate
that the MTL-RL model effectively captures glucose trends, as
the predicted values closely follow the true values. Although
minor deviations are observed in higher glucose ranges, the
model exhibits strong overall performance at various glucose
levels. The dense overlap between the two distributions further
validates the reliability of the predictions.

Fig. 2. Glucose prediction vs. true values plot.

To ensure that the observed performance improvements
are statistically significant, we conducted two widely used
statistical tests: the paired t-test and the Wilcoxon signed-rank
test.

The paired t-test is used to compare the mean prediction
errors of the proposed model against the other models. The

null hypothesis (H0) assumes that the differences in model
performance are due to random chance, while the alternative
hypothesis (HA) assumes that our model provides a statisti-
cally significant improvement.

The statistic of the paired t-test is calculated as follows:

t =
d̄

sd/
√
n
, (15)

where d̄ is the mean difference in prediction errors, sd is
the standard deviation of the differences, and n is the number
of test samples. The results of the paired t-test are given in
Table I.

TABLE I
PAIRED T-TEST.

Model t-statistic p-value

Proposed MTL-RL 46.92 7.70×10
−255

The obtained p-value is significantly less than 0.001, leading
to the rejection of the null hypothesis, which confirms that the
MTL-RL model provides a statistically significant improve-
ment in the accuracy of glucose prediction.

Since prediction errors may not be normally distributed,
we also conducted the Wilcoxon signed-rank test, a non-
parametric test that ranks the absolute differences in prediction
errors between the two models. The test results are provided
in Table II.

TABLE II
WILCOXON SIGNED-RANK TEST.

Model Wilcoxon statistic p-value

Proposed MTL-RL 8295.0 1.44×10
−154

Similarly to the paired t test, the Wilcoxon test also yields an
extremely low p-value (p<0.001), confirming that the MTL-
RL model significantly outperforms with high confidence.

Residual analysis is critical to evaluate whether the model
demonstrates systematic bias or errors that could impact
clinical decision making. Figure 3 presents the bland-altman
plot, which visualizes the agreement between the predicted
and actual glucose values.

The residuals are centered around zero, indicating that there
is no systematic bias. 95% of the residuals fall within clinically
acceptable limits, confirming that the model maintains low
bias and high reliability in glucose prediction. These findings
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suggest that the MTL-RL model provides a consistent level of
predictive accuracy, making it a reliable tool for CGM.

Fig. 3. Bland-Altman plot.

To further examine error behavior, we plotted the residual
histogram as illustrated in Figure 4. A well-performing pre-
dictive model should exhibit normally distributed residuals,
centered around zero, without heavy skewness. The residual
histogram demonstrates a nearly normal distribution, suggest-
ing that errors are symmetrically distributed. The absence of
extreme skewness confirms that the model does not exhibit
systematic bias towards under- or over-prediction. Most errors
fall within a narrow range, reinforcing the stability and reliabil-
ity of the predictions. These results indicate that the MTL-RL
model generalizes well across different glucose levels, without
favoring specific ranges of values.

Fig. 4. Residual distribution plot.

Figure 5 shows the parity plot which serves as a visual
assessment of the accuracy of the model by plotting the
predicted glucose values against the actual values. Ideally, an
optimally performing model should align its predictions along
a 45-degree diagonal, representing a perfect prediction. The
MTL-RL model closely follows the red diagonal, indicating
that the predictions align well with the true glucose values
across different ranges. No significant deviations are observed
from the diagonal, which confirms that the model maintains
accuracy in low, moderate, and high glucose concentrations.
The results suggest that the MTL-RL model is effective in
capturing glucose fluctuations with minimal prediction errors.

Fig. 5. Parity plot (predicted vs. true values).

To verify the convergence behavior of the proposed model,
we analyzed the training and validation loss curve in Figure 6,
which illustrates the progression of model optimization over
time. The loss curve exhibits a smooth and stable decline,
confirming that the model is effectively learning the underlying
glucose dynamics. The model converges after approximately
200 epochs, indicating efficient optimization without excessive
computational requirements.

Fig. 6. Training and validation loss curve.

C. Explainability via SHAP and Permutation Importance

To ensure transparency in AI-driven glucose forecasting, we
employed SHAP analysis and the importance of permutation
characteristics to evaluate key predictive factors. Figure 7
shows the SHAP analysis which reveals that past glucose
levels have the highest impact on predictions, with higher
past values increasing predicted glucose levels. In contrast,
the insulin dose shows minimal influence, probably due to its
delayed and nonlinear metabolic effects, making it difficult for
static models to capture.

Fig. 7. SHAP feature importance analysis.
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Figure 8 showed results for permutation importance that
reinforce these findings, demonstrating a significant drop in
model performance when past glucose values are randomized,
while changing insulin dosage has negligible impact. This
confirms the model’s reliance on glucose history and suggests
that RL-based policies (PPO) could better handle delayed
insulin effects.

Fig. 8. Permutation feature importance.

D. Monte Carlo Dropout for Uncertainty Estimation

To quantify prediction confidence, we applied Monte Carlo
(MC) dropout, where the model performs multiple stochastic
forward passes to estimate variance in predictions. The uncer-
tainty is computed as:

Uncertainty =
1

T

T
∑

t=1

(ŷt − ȳ)2 (16)

where T is the number of MC samples. Figure 9 indicates
a higher uncertainty in regions with rapid glucose varia-
tions, particularly during sudden glycemic fluctuations and
transitions between hypoglycemic and hyperglycemic states.
The uncertainty band (gray region) highlights instances where
the model expresses lower confidence, emphasizing the need
for uncertainty-aware glucose prediction models to improve
reliability in clinical decision making.

Fig. 9. Monte carlo dropout uncertainty estimation.

V. DISCUSSION

In the following, we provide a comparative analysis with
existing models, discuss the role of explainability in fostering
trust in AI-driven healthcare, and outlines key challenges and
limitations of the proposed framework.

Table III summarizes the performance metrics of differ-
ent models. The results show that our MTL-RL model sig-
nificantly outperforms traditional ML and DL approaches,
achieving a R2 score of 0.85, compared to other state-of-
the-art approaches. The substantial reduction in MSE (0.0017
vs. 0.015) and MAE (0.0310 vs. 0.069) indicates that the
proposed model makes more precise glucose predictions while
maintaining robustness.

The better performance of our model can be attributed to
three key factors. First, shared representation learning within
MTL enables the model to generalize across different glucose
prediction horizons, enhancing robustness. Second, integration
of an attention mechanism refines the selection of features by
dynamically weighting the most critical past glucose values
and insulin dosage patterns. Third, the RL-based adaptive
correction mechanism ensures a continuous refinement of
predictions based on observed glucose dynamics, minimizing
prediction errors. This adaptability is particularly essential in
glycemic control, where fluctuations arise due to individual
metabolic responses and insulin pharmacokinetics rather than
external lifestyle factors.

A. Challenges and Limitations

Although the proposed model demonstrates robust pre-
dictive capabilities, several limitations persist. Primarily, the
restricted diversity of the dataset may impede generalizability,
necessitating validation across larger and more varied popu-
lations to ensure broader clinical applicability. Additionally,
the use of PPO-based reinforcement learning incurs consid-
erable computational overhead in contrast to conventional
deep learning models, attributable to the iterative nature of
policy optimization. While batch reinforcement learning meth-
ods may enhance computational efficiency, systems based on
reinforcement learning continue to be resource-intensive.

VI. CONCLUSION

We proposed an attention-based MTL model integrated with
PPO based RL for personalized blood glucose forecasting. The
model achieved state-of-the-art performance (R2 = 0.85, MSE
= 0.0017), with strong interpretability via SHAP and per-
mutation analysis and uncertainty estimation through Monte
Carlo dropout. These features promote transparency and clin-
ical trust. Future work will explore hybrid CNN-transformer
architectures for enhanced long-range modeling and federated
learning for privacy-preserving deployment. These advance-
ments aim to further improve real-time glycemic control and
facilitate the integration of our model into CGM systems for
adaptive, patient-specific diabetes management.
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TABLE III
PERFORMANCE COMPARISON OF GLUCOSE PREDICTION MODELS.

Model MSE RMSE MAE R² Score

CNN-LSTM Model [10] 0.036 0.190 0.110 0.620
Time-Series Neural Turing Machine [29] 0.028 0.167 0.098 0.690
TimeGPT Model (Pediatric T1D) [30] 0.024 0.155 0.089 0.725
Hybrid ML Approach [31] 0.015 0.123 0.069 0.800
Proposed MTL-RL Model 0.0017 0.0419 0.0310 0.850
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