& [l

Proceedings of the 20" Conference on Computer
Science and Intelligence Systems (FedCSIS) pp. 315-320 ISSN 2300-5963 ACSIS, Vol. 43

DOI: 10.15439/2025F2657

StarCraft strategy learning refinement using replay
snapshotting

Stefan Kristofik
0000-0002-9995-460X
Institute of Informatics, Slovak Academy of Sciences
Dubravska cesta 9, 845 07 Bratislava, Slovakia
Email: stefan.kristofik @savba.sk

Abstract—We propose a new replay snapshotting (RS) tech-
nique for strategy learning from past matches in real-time
strategy game StarCraft: Brood War (SCBW). It allows for more
precise understanding of particular strategy aspects by sampling
the state of selected game features at important checkpoints
during a match. We use RS to extract and refine a set of
strategies from a large replay dataset STARDATA. To validate
our approach in a competitive environment, we implement an
AI agent for SCBW. It is able to perform the extracted strategy
set against opponents in the BASIL Ladder competition. The
agent consistently achieves rank C with 56 % win rate which is
a significant improvement over our previous approaches.

I. INTRODUCTION

EAL-TIME strategy (RTS) video games, especially the
competitive 1v1 setting, are popular in Al research and
education because of the inherent difficulties and challenges
they present. During a match, only parts of the battlefield near
their own structures and units are visible to players [18]. This
partial observability of the game state forces players to make
decisions under uncertainty based on available incomplete
information. Players need to actively scout the map to gather
information about the opponent’s activities [11]. Moreover, the
number of possible actions a player can execute at each time is
overwhelming, making the decision process very complex [2].
The most popular and widely known RTS is Blizzard’s
StarCraft: Brood War (SCBW) released in 1998 (Fig. 1). One
aspect which made the game successful and long-lasting is fair
balance of 3 playable races: Protoss (P), Terran (T) and Zerg
(Z), each offering unique aesthetics and play-styles. Also, no
’cookie cutter’ strategy exists which would be able to defeat all
opponents [11]. A strategy is a long-term plan for the current
match. It typically involves plans on what structures to build in
what order and what army composition to aim for. Strategies
can be roughly divided into 3 categories capable of countering
each other in a rock-paper-scissors manner (Fig. 2). Another
aspect is easy accessibility for players and researchers. The
game has low hardware requirements, is free-to-play since
2017 and plenty of tools are available for it to aid with

This work was supported by the Slovak Scientific Grand Agency VEGA
under the contract No. 2/0135/23 “Intelligent sensor systems and data
processing”. Funded by the EU NextGenerationEU through the Recovery and
Resilience Plan for Slovakia under the project No. 09105-03-V02-00055.

IEEE Catalog Number: CFP2585N-ART ©2025, PTI

315

Hankova Michaela
Faculty of Informatics and Information Technologies
Slovak University of Technology
Ilkovicova 2, 842 16 Bratislava, Slovakia

Resources
& workers®:. "

Attacking
Terran units

Defensive Zerg
~ structures

Special ability (spell)

Fig. 1. StarCraft: Brood War

turtle
(defensive)

counters

counters

rush
(offensive)

expand

) counters
(economic)

Fig. 2. Rock paper scissors nature of RTS game strategies

research and experimentation, e.g., BWAPI L screp 2, Despite
considerable progress in their quality over the years, RTS
Al agents are not yet capable of beating human expert level
players on a consistent basis [3], [9], [12] or are impractical
for common video games due to high computational power
demands [4], [17].

One possible approach for SCBW agent improvement,
especially the strategy selection aspect, is to learn from
past matches [12], [14], [15]. SCBW allows recording and
archiving of match replays. A vast amount of such data
was accumulated throughout the years. For machine learning
purposes, a dataset of replays should meet certain requirements
to be considered viable and high quality. The largest of such
datasets is STARDATA [1], containing 65646 files. Other
smaller datasets include [5], [6], [7], [13].

One of the important tasks which can be addressed using

Uhttps://github.com/bwapi/bwapi
Zhttps://github.com/icza/screp

Topical area: Advanced Artificial
Intelligence in Applications

316

STARDATA is strategy classification [1]. Knowledge about
strategies extracted from replays of highly skilled players
can benefit SCBW agents in multiple ways. It can be used
during a match to predict opponent activities based on the
observed information and help adjust further actions. As a
part of the preparation process before and between matches, it
can improve the ability to imitate and execute strategies that
are statistically proven to be successful or pick from a pool
of available strategies most suited for the opponent depending
on their race or stored past results against them.

Strategy classification from SCBW replays was at-
tempted [5], [6], [7], [1], but the results of each work were
quite limited or very specific in some way with regards to
dataset size, quality level of matches, number of strategies
or races. Classification from STARDATA was also attempted.
The work [8] extracted strategies only for one race (Terran)
and [10] for all 3 races, but the selection of strategy defining
features (SDFs) was not optimized and could be improved.

In this work, we build upon and improve the process of
strategy extraction from [8] in multiple ways. We allow a
broader range of strategies to be learned by extending the
upper game length limit (Section II-A); refine the unit and
structure production frequency calculation formula to provide
more precise results (Section II-B); refine the SDF selection
process for Terran by also considering the opponent’s race
(Section II-C); tweak strategy classification by adjusting clus-
tering parameters (Section II-D); and finally, we propose a
new technique called replay snapshotting (RS) to improve the
analysis process of extracted data (Section II-E).

To validate our approach, we implement an Al agent nick-
named MisHanBot for SCBW playing Terran race and put
it into the BASIL Ladder competition 3. In this competitive
environment, the agent is able to perform the set of strategies
extracted by RS against opponents of varying quality. It con-
sistently achieves rank C with current win rate of 56 % which
is a significant improvement over our previous approaches.

II. STRATEGY LEARNING
A. Dataset preparation

We use STARDATA to extract and classify Terran strategies
for our SCBW agent from Terran matchups: versus Terran
(TvT), versus Protoss (TvP) and versus Zerg (TvZ). Extractor
proposed in [8] is used to collect raw data. Considered are
only matches that meet the following criteria:

a) Valid 1vl, i.e., readable in BWAPI, featuring two oppos-

ing players using standard set of units.

b) At least one player is Terran.

¢) No longer than 25 minutes.

d) Winner is agreed upon by both tools: extractor and screp.
Criterion a) filters out any custom or non-standard, non-
competitive games. Criterion c) allows the agent to learn larger
variety of middle and late-game strategies than 15 minute limit
used in [8]. Criterion d) ensures that the quality of extracted
strategies can be calculated precisely by inspecting their win

3https://www.basil-ladder.net

PROCEEDINGS OF THE FEDCSIS. KRAKOW, POLAND, 2025

TABLE I
EXTRACTED TERRAN STRATEGIES

STARDATA | Selected | Extracted

Matchup .
replays replays strategies

TvT 2550 1753 3506

TvP 17385 12916 12916

TVZ 14531 12055 12055

Total 34466 26724 28477

rates. To help decide on the winning player, the screp utility
is used to double-check the results provided by extractor.
To identify a winner reliably in a non-labeled SCBW replay
file is a non-trivial task and various replay analysis tools can
produce different outcomes. Dataset cleaning results are shown
in Table I. The total number of extracted Terran strategies
is 28477; 2 from each TvT matchup (since both players are
Terran) and 1 from other matchups (since one player is Terran).
Next, raw data are extracted from the prepared dataset.

B. Data extraction and processing

For raw data extraction, we follow the process [8], obtaining
detailed information about each game, including basic meta-
data (player and map names, match lengths, etc.), timestamps
for structure, unit and upgrade creation and destruction, and
more. For subsequent data processing and compaction, a few
adjustments compared to [8] were made. Firstly, we modify
the formula for unit frequency:

1428.6 - UnitCount

UnitFreq = 1
nisTed MatchLength — FirstFrame M

where UnitCount is the amount of a unit produced in the
entire match, MatchLength is given in game frames and
FirstFrame now denotes when the unit’s first instance was
produced. Previously it denoted when the requirements were
first met for the unit’s creation. Eq. (1) computes the average
frequency of a unit’s production per minute (1428.6 frames)
since its first instance creation until the match’s end. This is
a more precise metric to measure unit usage than previously
used. Secondly, we now calculate frequency for structures, too,
using Eq. (1) but replacing UnitCount by StructCount.

In this work, we define SCBW strategies by structure
build order and construction frequency and unit composition,
omitting technology advancements and upgrades. Put more
simply, we are interested in structure and unit information.
In the remainder of the text, structures and units together will
be denoted as features. Next, a set of important features is
selected which will be used to categorize strategies.

C. Feature selection

Terran can build 18 different structures and create 13 types
of units directly and few more indirectly (see below). Not
all features are equally popular and present in games. If a
match is short, there is not enough time to reach advanced
features. Additionally, players have discovered over the years
which unit compositions are strong against certain opponents.

STEFAN KRISTOFIK, MICHAELA HANKOVA: STARCRAFT STRATEGY LEARNING REFINEMENT USING REPLAY SNAPSHOTTING

TABLE II
UNIT SELECTION EXAMPLE FOR TVT. PERCENTAGE OF STRATEGIES WITH
INDICATED NUMBER OF UNITS

Unit 1+ 5+ 10+ Selected
SCV 100.0 % | 999 % | 99.3 % No, essential
Vulture 80.6 % 56.0 % | 44.0 % Yes
Wraith 44.8 % 194 % | 8.6 % Yes
Valkyrie 1.9 % 0.3 % 0.0 % | No, low usage

TABLE III
STRUCTURE SELECTION EXAMPLE FOR TVT
Structure Prerequisite for Selected
Barracks Factory, Academy No, essential
Factory Vulture, Tank, Goliath Yes
Academy Comsat Station Yes
Comsat Station Scan Sweep Yes
Physics Lab Battlecruiser No, low usage

For example, Terran biological units are stronger and used
more often against Zerg than other opponents. Consequently,
some units are perceived as not effective and are rarely used.
On the other hand, some features are essential for making
progress and are present in vast majority of matches. If a
feature belongs to one of these edge cases, it adds no value
to strategy classification and can be disregarded.

Previous approach [8] used the same set of features in all
3 Terran matchups. In this work, we inspect each matchup
more closely and consider the opponent’s race, allowing us
to fine-tune SDFs for each matchup. We select sets of SDFs
based primarily on the statistical usage of units. Essential and
rarely used units are disregarded. For TvT, units that appear
at least one time in at least 40 % of strategies were selected.
This bar was lowered to 8 % for TvP and 15 % for TvZ due
to different usage distributions. An example of SDF selection
for some units in TvT is shown in Table II.

Next, a set of structures is selected to complete SDFs.
Again, essential and rarely used structures are disregarded.
Terran race tech tree is inspected and for each matchup
important structures are selected which are prerequisites for
the selected units or other structures. An example of SDF
selection for some structures in TvT is shown in Table III.

Selected SDFs are listed in Table IV. Note that although
Spider Mines and Scan Sweeps can not be created directly,
but are a result of unit ability or spell casting, they are still
recognized by BWAPI as units, because they materialize on
the battlefield and their statistics can be gathered by extractor.
Next, compacted data about our selected SDFs from all
28477 Terran strategies are inputs to the unsupervised machine
learning process of strategy classification.

D. Strategy classification

To classify SCBW Terran strategies into categories based
on the compacted SDF data, we use the K-Means algorithm.
It tries to find similarities in the SDF data and group similar

TABLE IV
SELECTED STRATEGY DEFINING FEATURES

Structures Matchups
Factory, Machine Shop, Mis. Turret, Academy,
Comsat Station, Starport, Control Tower VT, Tvh, TvZ
Science Facility, Bunker TvP, TvZ

Units Matchups

Marine, Siege Tank, Vulture, Goliath,
Dropship, Wraith, TvT, TvP, TVvZ
Spider Mine (unit ability), Scan Sweep (spell)
Science Vessel TvP, TvZ
Firebat, Medic TvZ

360

320

280

240

Inertia

160

selected
120
1 2 3 4 5 6 7 8 9 10

Number of clusters (K)

Fig. 3. Elbow method for TvT

strategies into clusters. Previous approach [8] used the same
number of clusters (value K = 10) for all matchups. In this
work, we inspect Terran matchups more closely and use the
Elbow method [16] with inertia to find the optimal values of
K for each, separately.

The results of the Elbow method for TvT are shown in
Fig. 3. Among considered values of K (4-6), K = 5 was
chosen because of the best distribution of average game
lengths between individual clusters and also fair distribution
of number of matches per cluster. With K = 5, we identified
1 cluster containing short games, 2 clusters containing middle
length games and 2 clusters containing long games. Detailed
results of strategy classification for TvT are summarized in
Fig 4. It displays amounts of strategies in clusters.

The resulting value for TvP was K = 6: 2 clusters with
short, 2 with middle length and 2 with long games. For TvZ
it was also K = 6: 2 clusters with short, 1 with middle length
and 3 with long games.

Short
609
940 17%
27%
484
Long 14%
959 .
4/M|d

27%

Fig. 4. Strategy classification into clusters for TvT

317

TABLE V
EXAMPLE OF 2 EXTRACTED STRATEGIES FOR TVT:
CLUSTERS "1’ AND ’3’

0 33 0 533
Structwre | prio | Freq, | U | Freq, | Freq.
M. Shop 4.3 33 Marine 6.9 3.7
Factory 2.6 35 Tank 24 24
Starport 5.7 3.0 Vulture 3.5 52
Academy 6.2 6.0 Goliath 3.8 8.2
Com. Stat. 32 5.7 Scan Sw. 4.3 7.2
C. Tower 53 4.7 Dropship 6.6 8.1
M. Turret 1.2 6.3 S. Mine 2.2 8.7
- - - Wraith 7.5 2.4

Examples of 2 extracted strategies for TvT are shown in
Table V. It shows average frequency rankings of selected
SDFs. Lower numbers indicate more frequent appearance
while higher numbers indicate less frequent appearance.

Cluster ’ 1’ represents a traditional long match strategy using
mechanical units: Tanks, Vultures with their ability Spider
Mines, and Goliaths. It utilizes structures Factory and Comsat
Station often and will construct many Missile Turrets (static
defensive). Cluster ’3’ represents a middle game strategy using
a combination of ground (Marine, Tank) and air (Wraith) units.
It utilizes structures Starport and Factory often.

The above examples show notable differences between
clusters. To find such diversity was an important goal of
strategy extraction. A total of 17 strategies were extracted and
are available for our Terran agent.

E. Replay snapshotting

Extracted strategies as shown in Table V provide basic
guidance on how to proceed in a game for our agent. It learns
what types of features to create. We further refine strategies
by a new technique called replay snapshotting (RS). The basic
principle of RS is that a subset of strategies from each cluster
is inspected and the amounts of currently existing instances
of selected SDFs are snapshotted (sampled) at predetermined
checkpoints. This enables our agent to imitate and implement
strategies more precisely because it gives the agent more
tangible objectives to reach in certain phases of a match.
The agent now gains knowledge about how many instances
of features are necessary to achieve those partial objectives.

For snapshotting, we have selected strategies that are the
best representatives from each cluster. More specifically,
strategies used in matches with duration closest to the average
cluster match lengths were selected. For example, Cluster ’1’
from Table V contains matches with an average duration of
18m:31s. Therefore, we select strategies close to this length for
RS from this cluster. The number and spacing of checkpoints
were set for each cluster individually, based on their average
match lengths. The intent is to have checkpoints distributed
across all game stages: early, middle and late game, to cover
most situations and phases of the entire match. The first
checkpoint is usually set at the 4 minute mark because the

PROCEEDINGS OF THE FEDCSIS. KRAKOW, POLAND, 2025

TABLE VI
EXAMPLE OF REPLAY SNAPSHOTTING FOR CLUSTER ’1’ FOR TVT.
m—MINUTES

Structure | 4m | 6m | 9m | 14m | 18m
Factory 1.1 | 1.7 | 29 4.6 5.8
M. Shop 06 | 1.0 | 19 2.9 32
Starport 00 | 03 | 04 | 07 0.9
C. Tower 00 | 02 | 04 | 06 0.9
Academy 00 | 02 | 0.7 0.9 1.0
Com. Stat. | 0.0 | 0.0 | 1.0 | 23 2.8
M. Turret 00 | 0.0 | 0.6 5.7 9.3

Unit 4m | 6m | 9m | 14m | 18m
Marine 23 | 2.1 1.3 0.6 0.3
Tank 00 | 1.7 | 45 | 115 | 158
Vulture 03 | I.1 | 3.0 35 4.5
Goliath 00 | 0.8 | 1.1 6.0 9.8
Dropship 00 | 0.1 | 0.0 0.9 2.5
S. Mine 00 | 1.0 | 32 7.6 11.9
Wraith 00 | 0.1 | 0.1 0.4 0.4

first important strategic decisions for Terran are made around
this time. The last checkpoint is set near the average cluster
duration, e.g., at the 18 minute mark for Cluster *1’. The
number of strategies selected for RS was 50 per cluster.

An example of the RS technique for Cluster "1’ for TvT is
shown in Table VI. It shows average numbers of instances
of selected SDFs snapshotted at exact checkpoints during
matches selected for RS. For this cluster, 5 checkpoints were
defined at 4, 6, 9, 14 and 18 minute marks. The 4 and 6
minute checkpoints suggest how to proceed in early game and
prepare for the transition into middle game. Next, the 9 and
14 minute checkpoints suggest how to transition from early
to middle game and prepare for late game. Finally, the last
18 minute checkpoint advises on what structures should be
present in the player’s base and what is the army composition
to aim for in late game. Note that in Table VI RS is not able
to track any instances of Scan Sweep spell (one of selected
TvT SDFs) because it has only a very short duration and then
it disappears from the battlefield.

To implement this strategy, the agent should start by con-
structing some Factories with Machine Shop, start training
some Marines and Vultures, later adding Tanks and Goliaths,
research the Vulture’s ability to lay Spider Mines and start
using them. In middle game, it should add more Factories
with Machine Shops, construct an Academy and then Comsat
Stations and start producing Missile Turrets. Army should
now contain more Tanks and Goliaths while keeping adding
Vultures in small numbers and increase the usage of Spider
Mines and also slowing down Marine production. A late game
player’s base should have a healthy number of Factories with
Machine Shops, an Academy, some Comsat Stations and many
Missile Turrets should be scattered around the battlefield. Late
game army composition should comprise mainly Tanks with
Goliaths both in healthy numbers with the support of Vultures

STEFAN KRISTOFIK, MICHAELA HANKOVA: STARCRAFT STRATEGY LEARNING REFINEMENT USING REPLAY SNAPSHOTTING

and few Dropships and many Spider Mines should be laid on
the battlefield. Starting from middle game, the agent can also
consider occasionally constructing less used structures such as
Starport or Control Tower and training some less used units
such as Wraiths.

Based on values obtained by RS, we divide features into
three categories:

o Mandatory: Value >= 1. Present in majority of matches.
The agent should try to construct the indicated number
or more of them.

« Optional: Value € (0;1). Not present in each match. The
agent can consider construction of one instance in case
of structures and few instances in case of units.

o Not advisable: Value = 0. Not present in any match. It
is not advised for the agent to construct these.

In Table VI, an example of a mandatory feature is Factory at
9 minute mark (Value = 2.9). The agent should try to have at
least 2 but optimally 3 or more of them at this checkpoint. An
example of an optional feature is Machine Shop at 4 minute
mark (Value = 0.6). The agent can consider construction of
one at this checkpoint.

Strategies extracted and refined by RS (RS strategies) pro-
vide very detailed guidance for the entire match duration as
can be seen in the above example. The next objective is to
implement them into our agent.

ITII. STRATEGY IMPLEMENTATION

Our agent MisHanBot is based on the public version of
Steamhammer (SH) *, a popular starter agent for development
and experimentation. Its main race is Zerg, but can also play
other races, however, on a lower level than the main one. It
also supplies a set of starting strategies and provides many nec-
essary functionalities of a SCBW agent already implemented
on a basic level. While adopting existing functionalities from
SH, like unit micromanagement, our agent also has many small
improvements over baseline SH Terran, including better unit
control and unit repair logic, or better ability and spell usage.
Terran strategies are implemented in SH by:

o Configuration file (config), an explicit list of items to
create and other commands to perform from the start of
the match. This list can contain all features, not only those
selected as SDFs (Table IV). Depending on its length, it
can be used for all game stages.

e BOSS, a module which takes over and continues to
implement the strategy after all items in config have been
created. It tries to keep the ’trend’ set by config and
continues with construction of items present in the list.

Strategy selection during a match is based on randomness
with weighted probabilities. A pool of strategies is defined for
various situations (matchups, opponent’s plans, etc.), and each
strategy in the pool is assigned a weight based on suitability
for tackling that situation. When a situation occurs, SH selects
one strategy from that situation’s pool randomly.

“https://satirist.org/ai/starcraft/steamhammer/

TABLE VII
WIN RATES AND WEIGHTS FOR TVT STRATEGY POOL
Strategy (Cluster) 0 s 2’ ’3’ s
Win rate 52.8 | 55.5 | 28.7 | 50.3 | 53.6
Weight 22 23 12 21 22

We implement RS strategies into our agent as follows.
We overwrite config so that it contains only our Terran RS
strategies. We define 3 situations: TvT, TvP, TvZ. Note that in
our agent, we do not create situations considering opponent’s
plans. Our strategy selection depends only on the opponent’s
race. Next, we create a strategy pool for each situation. To
account for the randomness of RS strategies (see Section II-E),
we round up the advised values from Table VI to the nearest
integers. This means that values of all optional features will
be rounded to 1, i.e., the agent can try to have one instance
of them. Values of all mandatory features will be increased,
too. Therefore, the agent is given the upper bounds of what
numbers to aim for. After this adjustment, we put RS strategies
into strategy pools in config; TvT strategy pool includes 5
strategies, TvP and TvZ pools both include 6 strategies.

The explicit lists in config for each RS strategy are set up
using knowledge of the Terran tech tree while trying to follow
RS advice (example in Table VI) as closely as possible.

Next, we set weights for strategy pools. Weights are as-
signed to extracted strategies in pools proportional to their win
rate. Sum of weights in a pool is equal to 100. More successful
strategies get higher weights and in turn will be picked more
often in games than those with lower weights. TvT win rates
were obtained as part of this work (see Section II-D). TvP
and TvZ win rates were obtained from collaboration with
the authors of two other agents (see Section IV) who did
strategy classification for Protoss and Zerg races. Win rates and
corresponding weights for the TvT strategy pool are shown
in Table VII. It displays average win rates against all other
Clusters in the pool. When our agent is in a TvT situation,
Cluster ’1° has the highest win rate and in turn the highest
chance to be used: 23 %. On the other hand, Cluster 2’ is the
least successful and has the lowest chance to be used: 12 %.

During a match after processing config, strategy control of
our agent is handed over to the BOSS module, similar to SH.
It will follow a trend established by config and keep producing
features as specified in the last RS checkpoint in the remainder
of the match.

IV. RESULTS AND CONCLUSION

At the time of writing this paper, our agent MisHanBot is
active in the BASIL Ladder competition. It has rank C with
ELO rating 2586, overall win rate 49.4 %, recent win rate
56.3 % and is situated at the 46th place out of 101 currently
active agents. The overall number of agents in the ladder is
159. Agents ranked 102 or below are temporarily disabled
to keep the competition’s level high. They can be re-enabled
again under certain conditions.

319

320

TABLE VIII
OUR STARDATA-TRAINED AGENT RESULTS IN BASIL LADDER AS OF
MAY, 15TH 2025

Agent ELO BASIL | Games Win ‘Win rate
gen rating rank played rate 7 days
KasoBot (T) [8] 2390 E 48821 38.9 % 41.7 %
Azergo (Z2) 2206 E 9034 28.9 % 26.1 %
TommyBot (P) 2203 F 9057 19.6 % 25.7 %
MisHanBot (T) | 5504 e 10253 | 494 % | 563 %
[This work]

60 %

Win rate
w
o
X
E
9
=
< <
5 R

45 %

A o A
o R A
® & $ < &L R &

Fig. 5. Win rates of our agent against each opponent race in the last 6 months
(Nov 2024-May 2025). Source: BASIL Ladder https://www.basil-ladder.net/
bot.html?bot=MisHanBot

The comparison with our other currently active agents is
shown in Table VIII. Results obtained by our new agent
MisHanBot are a significant improvement over our other
approaches. Note that both agents Azergo and TommyBot
extract detailed data and learn strategies from STARDATA
for their particular races, but use different approaches for
their implementation. Strategies obtained by Azergo are not as
effective and could be improved. TommyBot is an experimental
agent built from scratch, i.e., it does not use any of available
popular starter agents, such as SH.

Fig. 5 displays win rate trends of our agent in the last 6
months against all three opponent races. Results indicate that
TvP win rate (currently at 42.8 %) is not satisfactory as it
consistently trails behind other two matchups and brings the
agent’s overall win rate down considerably. On the other hand,
TvZ win rate (currently at 58.0 %) is satisfactory while in TvT
it is slightly above the average level (currently at 51.6 %).

Our results indicate that the proposed replay snapshotting
approach for strategy refinement is beneficial for overall
SCBW AI agent improvement. Our agent is able to imitate
extracted strategies more accurately than our previous ap-
proaches and it performs better in a competitive environment.
As future work, it could be worth looking more closely into
TvP particularly, identify and remedy the weaknesses of our
agent in this matchup. Other improvements could include:
further SDF selection fine-tuning by adding or removing
items; RS adjustments by considering the total amount of
produced features at checkpoints instead of counting currently

PROCEEDINGS OF THE FEDCSIS. KRAKOW, POLAND, 2025

existing instances; including more matches per cluster into
RS; adding checkpoints beyond the average cluster time;
fine-tuning checkpoint distribution; setting probabilities of
strategies within pools with low win rates to O to avoid their
usage during matches; and more.

REFERENCES

[1]1 Z. Lin, J. Gehring, V. Khalidov and G. Synnaeve, “STARDATA: A
StarCraft AI Research Dataset,” 13th AAAI Conf. Artificial Intelligence
and Interactive Digital Entertainment, AIIDE 2017, pp. 50-56, https:
//dx.doi.org/10.48550/arXiv.1708.02139

[2] S. Ontafion, G. Synnaeve, A. Uriarte, F. Richoux, D. Churchill and

M. Preuss, “A Survey of Real-Time Strategy Game AI Research and

Competition in StarCraft,” IEEE Trans. Computational Intelligence and

Al in games, IEEE Computational Intelligence Society, 2013, 5(4),

pp. 293-311, hutps://dx.doi.org/10.1109/TCIAIG.2013.2286295

Mi. Certicky, D. Churchill, K.-J. Kim, Ma. Certicky and R. Kelly,

“StarCraft AI Competitions, Bots and Tournament Manager Software,”

IEEE Trans. Games, 2018, 11(3), pp. 227-237, https://dx.doi.org/10.

1109/TG.2018.2883499

O. Vinyals, I. Babuschkin et al., “Grandmaster level in StarCraft II using

multi-agent reinforcement learning,” Nature, 2019, 575, pp. 350-354,

https://dx.doi.org/10.1038/s41586-019-1724-z

[S] B. G. Weber and M. Mateas, “A data mining approach to strategy
prediction,” IEEE Symp. Computational Intelligence and Games, 2009,
pp. 140-147, https://dx.doi.org/10.1109/CIG.2009.5286483

[6] H. C. Cho, K. J. Kim and S. B. Cho, “Replay-based strategy prediction
and build order adaptation for StarCraft Al bots,” IEEE Conf. Compu-
tational Intelligence in Games (CIG), 2013, pp. 1-7, https://dx.doi.org/
10.1109/CI1G.2013.6633666

[71 G. Synnaeve and P. Bessiere, “A Dataset for StarCraft AI & an Example

of Armies Clustering,” Artificial Intelligence in Adversarial Real-Time

Games, 2012,, https://dx.doi.org/10.48550/arXiv.1211.4552

S. Kristofik, P. Malik, M. Kasas, S. Neupauer, “StarCraft agent strategic

training on a large human versus human game replay dataset,” Federated

Conf. Computer Science and Information Systems, FedCSIS 2020, 21,

ACSIS, pp. 391-399, https:/dx.doi.org/10.15439/2020F178

[9]1 M. Swiechowski, “Game AI Competitions: Motivation for the Imitation

Game-Playing Competition,” Federated Conf. Computer Science and

Information Systems, FedCSIS 2020, 21, ACSIS, pp. 155-160, https:

//dx.doi.org/10.15439/2020F 126

S. Kristofik, M. Kasas, P. Malik, “StarCraft strategy classification of

a large human versus human game replay dataset,” Federated Conf.

Computer Science and Information Systems, FedCSIS 2021, 25, ACSIS,

pp. 137-140, https://dx.doi.org/10.15439/2021F48

G. Robertson, I. Watson, “A Review of Real-Time Strategy Game Al”

Al Magazine, 2014, 35(4), pp. 75—-104, https://dx.doi.org/10.1609/aimag.

v35i4.2478

S. Xu, H. Kuang et al., “Macro action selection with deep reinforce-

ment learning in StarCraft,” 15th AAAI Conf. Artificial Intelligence

and Interactive Digital Entertainment, AIIDE 2019, pp. 94-99, https:

//dx.doi.org/10.48550/ARXIV.1812.00336

J. J. Merelo-Guervés, A. Ferniandez-Ares et al.,, “RedDwarfData: a

simplified dataset of StarCraft matches,” 2017, https://dx.doi.org/10.

48550/arXiv.1712.10179

F. Dai, J. Gong, J. Huang, J. Hao, “Macromanagement and Strategy

Classification in Real-Time Strategy Games,” 2nd China Symp. Cog-

nitive Computing and Hybrid Intelligence (CCHI), 2019, pp. 263-267,

https://dx.doi.org/10.1109/CCHI.2019.8901957

N. Justesen, S. Risi, “Learning Macromanagement in StarCraft from

Replays using Deep Learning,” 2017, https://dx.doi.org/10.48550/arXiv.

1707.03743

C. Shi, B. Wei et al., “A quantitative discriminant method of elbow

point for the optimal number of clusters in clustering algorithm,”

J. Wireless Comm. and Networking, 2021, https://dx.doi.org/10.1186/

$13638-021-01910-w

N. Justensen, M. Kaselimi et at., “Human-like Bots for Tactical Shooters

Using Compute-Efficient Sensors,” 2024, https://dx.doi.org/10.48550/

arXiv.2501.00078

J. Gehring, D. Ju, V. Mella, D. Gant, N. Usunier, G. Synnaeve, “High-

Level Strategy Selection under Partial Observability in StarCraft: Brood

War,” 2018, https://dx.doi.org/10.48550/arXiv.1811.08568

3

[4

[8

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

