
StarCraft strategy learning refinement using replay

snapshotting

Štefan Krištofı́k

0000-0002-9995-460X

Institute of Informatics, Slovak Academy of Sciences

Dúbravská cesta 9, 845 07 Bratislava, Slovakia

Email: stefan.kristofik@savba.sk

Hanková Michaela

Faculty of Informatics and Information Technologies

Slovak University of Technology

Ilkovičova 2, 842 16 Bratislava, Slovakia

Abstract—We propose a new replay snapshotting (RS) tech-
nique for strategy learning from past matches in real-time
strategy game StarCraft: Brood War (SCBW). It allows for more
precise understanding of particular strategy aspects by sampling
the state of selected game features at important checkpoints
during a match. We use RS to extract and refine a set of
strategies from a large replay dataset STARDATA. To validate
our approach in a competitive environment, we implement an
AI agent for SCBW. It is able to perform the extracted strategy
set against opponents in the BASIL Ladder competition. The
agent consistently achieves rank C with 56 % win rate which is
a significant improvement over our previous approaches.

I. INTRODUCTION

REAL-TIME strategy (RTS) video games, especially the

competitive 1v1 setting, are popular in AI research and

education because of the inherent difficulties and challenges

they present. During a match, only parts of the battlefield near

their own structures and units are visible to players [18]. This

partial observability of the game state forces players to make

decisions under uncertainty based on available incomplete

information. Players need to actively scout the map to gather

information about the opponent’s activities [11]. Moreover, the

number of possible actions a player can execute at each time is

overwhelming, making the decision process very complex [2].

The most popular and widely known RTS is Blizzard’s

StarCraft: Brood War (SCBW) released in 1998 (Fig. 1). One

aspect which made the game successful and long-lasting is fair

balance of 3 playable races: Protoss (P), Terran (T) and Zerg

(Z), each offering unique aesthetics and play-styles. Also, no

’cookie cutter’ strategy exists which would be able to defeat all

opponents [11]. A strategy is a long-term plan for the current

match. It typically involves plans on what structures to build in

what order and what army composition to aim for. Strategies

can be roughly divided into 3 categories capable of countering

each other in a rock-paper-scissors manner (Fig. 2). Another

aspect is easy accessibility for players and researchers. The

game has low hardware requirements, is free-to-play since

2017 and plenty of tools are available for it to aid with

This work was supported by the Slovak Scientific Grand Agency VEGA
under the contract No. 2/0135/23 ”Intelligent sensor systems and data

processing”. Funded by the EU NextGenerationEU through the Recovery and
Resilience Plan for Slovakia under the project No. 09I05-03-V02-00055.

Fig. 1. StarCraft: Brood War

turtle
(defensive)

rush
(offensive)

expand
(economic)

counters

counters

counters

Fig. 2. Rock paper scissors nature of RTS game strategies

research and experimentation, e.g., BWAPI 1, screp 2. Despite

considerable progress in their quality over the years, RTS

AI agents are not yet capable of beating human expert level

players on a consistent basis [3], [9], [12] or are impractical

for common video games due to high computational power

demands [4], [17].

One possible approach for SCBW agent improvement,

especially the strategy selection aspect, is to learn from

past matches [12], [14], [15]. SCBW allows recording and

archiving of match replays. A vast amount of such data

was accumulated throughout the years. For machine learning

purposes, a dataset of replays should meet certain requirements

to be considered viable and high quality. The largest of such

datasets is STARDATA [1], containing 65646 files. Other

smaller datasets include [5], [6], [7], [13].

One of the important tasks which can be addressed using

1https://github.com/bwapi/bwapi
2https://github.com/icza/screp

Proceedings of the 20th Conference on Computer
Science and Intelligence Systems (FedCSIS) pp. 315–320

DOI: 10.15439/2025F2657
ISSN 2300-5963 ACSIS, Vol. 43

IEEE Catalog Number: CFP2585N-ART ©2025, PTI 315 Topical area: Advanced Artificial
Intelligence in Applications



STARDATA is strategy classification [1]. Knowledge about

strategies extracted from replays of highly skilled players

can benefit SCBW agents in multiple ways. It can be used

during a match to predict opponent activities based on the

observed information and help adjust further actions. As a

part of the preparation process before and between matches, it

can improve the ability to imitate and execute strategies that

are statistically proven to be successful or pick from a pool

of available strategies most suited for the opponent depending

on their race or stored past results against them.

Strategy classification from SCBW replays was at-

tempted [5], [6], [7], [1], but the results of each work were

quite limited or very specific in some way with regards to

dataset size, quality level of matches, number of strategies

or races. Classification from STARDATA was also attempted.

The work [8] extracted strategies only for one race (Terran)

and [10] for all 3 races, but the selection of strategy defining

features (SDFs) was not optimized and could be improved.

In this work, we build upon and improve the process of

strategy extraction from [8] in multiple ways. We allow a

broader range of strategies to be learned by extending the

upper game length limit (Section II-A); refine the unit and

structure production frequency calculation formula to provide

more precise results (Section II-B); refine the SDF selection

process for Terran by also considering the opponent’s race

(Section II-C); tweak strategy classification by adjusting clus-

tering parameters (Section II-D); and finally, we propose a

new technique called replay snapshotting (RS) to improve the

analysis process of extracted data (Section II-E).

To validate our approach, we implement an AI agent nick-

named MisHanBot for SCBW playing Terran race and put

it into the BASIL Ladder competition 3. In this competitive

environment, the agent is able to perform the set of strategies

extracted by RS against opponents of varying quality. It con-

sistently achieves rank C with current win rate of 56 % which

is a significant improvement over our previous approaches.

II. STRATEGY LEARNING

A. Dataset preparation

We use STARDATA to extract and classify Terran strategies

for our SCBW agent from Terran matchups: versus Terran

(TvT), versus Protoss (TvP) and versus Zerg (TvZ). Extractor

proposed in [8] is used to collect raw data. Considered are

only matches that meet the following criteria:

a) Valid 1v1, i.e., readable in BWAPI, featuring two oppos-

ing players using standard set of units.

b) At least one player is Terran.

c) No longer than 25 minutes.

d) Winner is agreed upon by both tools: extractor and screp.

Criterion a) filters out any custom or non-standard, non-

competitive games. Criterion c) allows the agent to learn larger

variety of middle and late-game strategies than 15 minute limit

used in [8]. Criterion d) ensures that the quality of extracted

strategies can be calculated precisely by inspecting their win

3https://www.basil-ladder.net

TABLE I
EXTRACTED TERRAN STRATEGIES

Matchup
STARDATA

replays
Selected
replays

Extracted
strategies

TvT 2550 1753 3506

TvP 17385 12916 12916

TvZ 14531 12055 12055

Total 34466 26724 28477

rates. To help decide on the winning player, the screp utility

is used to double-check the results provided by extractor.

To identify a winner reliably in a non-labeled SCBW replay

file is a non-trivial task and various replay analysis tools can

produce different outcomes. Dataset cleaning results are shown

in Table I. The total number of extracted Terran strategies

is 28477; 2 from each TvT matchup (since both players are

Terran) and 1 from other matchups (since one player is Terran).

Next, raw data are extracted from the prepared dataset.

B. Data extraction and processing

For raw data extraction, we follow the process [8], obtaining

detailed information about each game, including basic meta-

data (player and map names, match lengths, etc.), timestamps

for structure, unit and upgrade creation and destruction, and

more. For subsequent data processing and compaction, a few

adjustments compared to [8] were made. Firstly, we modify

the formula for unit frequency:

UnitFreq =
1428.6 · UnitCount

MatchLength− FirstFrame
(1)

where UnitCount is the amount of a unit produced in the

entire match, MatchLength is given in game frames and

FirstFrame now denotes when the unit’s first instance was

produced. Previously it denoted when the requirements were

first met for the unit’s creation. Eq. (1) computes the average

frequency of a unit’s production per minute (1428.6 frames)

since its first instance creation until the match’s end. This is

a more precise metric to measure unit usage than previously

used. Secondly, we now calculate frequency for structures, too,

using Eq. (1) but replacing UnitCount by StructCount.

In this work, we define SCBW strategies by structure

build order and construction frequency and unit composition,

omitting technology advancements and upgrades. Put more

simply, we are interested in structure and unit information.

In the remainder of the text, structures and units together will

be denoted as features. Next, a set of important features is

selected which will be used to categorize strategies.

C. Feature selection

Terran can build 18 different structures and create 13 types

of units directly and few more indirectly (see below). Not

all features are equally popular and present in games. If a

match is short, there is not enough time to reach advanced

features. Additionally, players have discovered over the years

which unit compositions are strong against certain opponents.

316 PROCEEDINGS OF THE FEDCSIS. KRAKÓW, POLAND, 2025



TABLE II
UNIT SELECTION EXAMPLE FOR TVT. PERCENTAGE OF STRATEGIES WITH

INDICATED NUMBER OF UNITS

Unit 1+ 5+ 10+ Selected

SCV 100.0 % 99.9 % 99.3 % No, essential

Vulture 80.6 % 56.0 % 44.0 % Yes

Wraith 44.8 % 19.4 % 8.6 % Yes

Valkyrie 1.9 % 0.3 % 0.0 % No, low usage

TABLE III
STRUCTURE SELECTION EXAMPLE FOR TVT

Structure Prerequisite for Selected

Barracks Factory, Academy No, essential

Factory Vulture, Tank, Goliath Yes

Academy Comsat Station Yes

Comsat Station Scan Sweep Yes

Physics Lab Battlecruiser No, low usage

For example, Terran biological units are stronger and used

more often against Zerg than other opponents. Consequently,

some units are perceived as not effective and are rarely used.

On the other hand, some features are essential for making

progress and are present in vast majority of matches. If a

feature belongs to one of these edge cases, it adds no value

to strategy classification and can be disregarded.

Previous approach [8] used the same set of features in all

3 Terran matchups. In this work, we inspect each matchup

more closely and consider the opponent’s race, allowing us

to fine-tune SDFs for each matchup. We select sets of SDFs

based primarily on the statistical usage of units. Essential and

rarely used units are disregarded. For TvT, units that appear

at least one time in at least 40 % of strategies were selected.

This bar was lowered to 8 % for TvP and 15 % for TvZ due

to different usage distributions. An example of SDF selection

for some units in TvT is shown in Table II.

Next, a set of structures is selected to complete SDFs.

Again, essential and rarely used structures are disregarded.

Terran race tech tree is inspected and for each matchup

important structures are selected which are prerequisites for

the selected units or other structures. An example of SDF

selection for some structures in TvT is shown in Table III.

Selected SDFs are listed in Table IV. Note that although

Spider Mines and Scan Sweeps can not be created directly,

but are a result of unit ability or spell casting, they are still

recognized by BWAPI as units, because they materialize on

the battlefield and their statistics can be gathered by extractor.

Next, compacted data about our selected SDFs from all

28477 Terran strategies are inputs to the unsupervised machine

learning process of strategy classification.

D. Strategy classification

To classify SCBW Terran strategies into categories based

on the compacted SDF data, we use the K-Means algorithm.

It tries to find similarities in the SDF data and group similar

TABLE IV
SELECTED STRATEGY DEFINING FEATURES

Structures Matchups

Factory, Machine Shop, Mis. Turret, Academy,
Comsat Station, Starport, Control Tower

TvT, TvP, TvZ

Science Facility, Bunker TvP, TvZ

Units Matchups

Marine, Siege Tank, Vulture, Goliath,
Dropship, Wraith,
Spider Mine (unit ability), Scan Sweep (spell)

TvT, TvP, TvZ

Science Vessel TvP, TvZ

Firebat, Medic TvZ

120

160

200

240

280

320

360

1 2 3 4 5 6 7 8 9 10

In
e

rt
ia

Number of clusters (K)

considered

selected

Fig. 3. Elbow method for TvT

strategies into clusters. Previous approach [8] used the same

number of clusters (value K = 10) for all matchups. In this

work, we inspect Terran matchups more closely and use the

Elbow method [16] with inertia to find the optimal values of

K for each, separately.

The results of the Elbow method for TvT are shown in

Fig. 3. Among considered values of K (4–6), K = 5 was

chosen because of the best distribution of average game

lengths between individual clusters and also fair distribution

of number of matches per cluster. With K = 5, we identified

1 cluster containing short games, 2 clusters containing middle

length games and 2 clusters containing long games. Detailed

results of strategy classification for TvT are summarized in

Fig 4. It displays amounts of strategies in clusters.

The resulting value for TvP was K = 6: 2 clusters with

short, 2 with middle length and 2 with long games. For TvZ

it was also K = 6: 2 clusters with short, 1 with middle length

and 3 with long games.

609

17%

484

14%

514

15%
959

27%

940

27%

Short

Mid

Long

Fig. 4. Strategy classification into clusters for TvT

ŠTEFAN KRIŠTOFÍK, MICHAELA HANKOVÁ: STARCRAFT STRATEGY LEARNING REFINEMENT USING REPLAY SNAPSHOTTING 317



TABLE V
EXAMPLE OF 2 EXTRACTED STRATEGIES FOR TVT:

CLUSTERS ’1’ AND ’3’

Structure
Cl. ’1’

Freq.

Cl. ’3’

Freq.
Unit

Cl. ’1’

Freq.

Cl. ’3’

Freq.

M. Shop 4.3 3.3 Marine 6.9 3.7

Factory 2.6 3.5 Tank 2.4 2.4

Starport 5.7 3.0 Vulture 3.5 5.2

Academy 6.2 6.0 Goliath 3.8 8.2

Com. Stat. 3.2 5.7 Scan Sw. 4.3 7.2

C. Tower 5.3 4.7 Dropship 6.6 8.1

M. Turret 1.2 6.3 S. Mine 2.2 8.7

- - - Wraith 7.5 2.4

Examples of 2 extracted strategies for TvT are shown in

Table V. It shows average frequency rankings of selected

SDFs. Lower numbers indicate more frequent appearance

while higher numbers indicate less frequent appearance.

Cluster ’1’ represents a traditional long match strategy using

mechanical units: Tanks, Vultures with their ability Spider

Mines, and Goliaths. It utilizes structures Factory and Comsat

Station often and will construct many Missile Turrets (static

defensive). Cluster ’3’ represents a middle game strategy using

a combination of ground (Marine, Tank) and air (Wraith) units.

It utilizes structures Starport and Factory often.

The above examples show notable differences between

clusters. To find such diversity was an important goal of

strategy extraction. A total of 17 strategies were extracted and

are available for our Terran agent.

E. Replay snapshotting

Extracted strategies as shown in Table V provide basic

guidance on how to proceed in a game for our agent. It learns

what types of features to create. We further refine strategies

by a new technique called replay snapshotting (RS). The basic

principle of RS is that a subset of strategies from each cluster

is inspected and the amounts of currently existing instances

of selected SDFs are snapshotted (sampled) at predetermined

checkpoints. This enables our agent to imitate and implement

strategies more precisely because it gives the agent more

tangible objectives to reach in certain phases of a match.

The agent now gains knowledge about how many instances

of features are necessary to achieve those partial objectives.

For snapshotting, we have selected strategies that are the

best representatives from each cluster. More specifically,

strategies used in matches with duration closest to the average

cluster match lengths were selected. For example, Cluster ’1’

from Table V contains matches with an average duration of

18m:31s. Therefore, we select strategies close to this length for

RS from this cluster. The number and spacing of checkpoints

were set for each cluster individually, based on their average

match lengths. The intent is to have checkpoints distributed

across all game stages: early, middle and late game, to cover

most situations and phases of the entire match. The first

checkpoint is usually set at the 4 minute mark because the

TABLE VI
EXAMPLE OF REPLAY SNAPSHOTTING FOR CLUSTER ’1’ FOR TVT.

m–MINUTES

Structure 4m 6m 9m 14m 18m

Factory 1.1 1.7 2.9 4.6 5.8

M. Shop 0.6 1.0 1.9 2.9 3.2

Starport 0.0 0.3 0.4 0.7 0.9

C. Tower 0.0 0.2 0.4 0.6 0.9

Academy 0.0 0.2 0.7 0.9 1.0

Com. Stat. 0.0 0.0 1.0 2.3 2.8

M. Turret 0.0 0.0 0.6 5.7 9.3

Unit 4m 6m 9m 14m 18m

Marine 2.3 2.1 1.3 0.6 0.3

Tank 0.0 1.7 4.5 11.5 15.8

Vulture 0.3 1.1 3.0 3.5 4.5

Goliath 0.0 0.8 1.1 6.0 9.8

Dropship 0.0 0.1 0.0 0.9 2.5

S. Mine 0.0 1.0 3.2 7.6 11.9

Wraith 0.0 0.1 0.1 0.4 0.4

first important strategic decisions for Terran are made around

this time. The last checkpoint is set near the average cluster

duration, e.g., at the 18 minute mark for Cluster ’1’. The

number of strategies selected for RS was 50 per cluster.

An example of the RS technique for Cluster ’1’ for TvT is

shown in Table VI. It shows average numbers of instances

of selected SDFs snapshotted at exact checkpoints during

matches selected for RS. For this cluster, 5 checkpoints were

defined at 4, 6, 9, 14 and 18 minute marks. The 4 and 6

minute checkpoints suggest how to proceed in early game and

prepare for the transition into middle game. Next, the 9 and

14 minute checkpoints suggest how to transition from early

to middle game and prepare for late game. Finally, the last

18 minute checkpoint advises on what structures should be

present in the player’s base and what is the army composition

to aim for in late game. Note that in Table VI RS is not able

to track any instances of Scan Sweep spell (one of selected

TvT SDFs) because it has only a very short duration and then

it disappears from the battlefield.

To implement this strategy, the agent should start by con-

structing some Factories with Machine Shop, start training

some Marines and Vultures, later adding Tanks and Goliaths,

research the Vulture’s ability to lay Spider Mines and start

using them. In middle game, it should add more Factories

with Machine Shops, construct an Academy and then Comsat

Stations and start producing Missile Turrets. Army should

now contain more Tanks and Goliaths while keeping adding

Vultures in small numbers and increase the usage of Spider

Mines and also slowing down Marine production. A late game

player’s base should have a healthy number of Factories with

Machine Shops, an Academy, some Comsat Stations and many

Missile Turrets should be scattered around the battlefield. Late

game army composition should comprise mainly Tanks with

Goliaths both in healthy numbers with the support of Vultures

318 PROCEEDINGS OF THE FEDCSIS. KRAKÓW, POLAND, 2025



and few Dropships and many Spider Mines should be laid on

the battlefield. Starting from middle game, the agent can also

consider occasionally constructing less used structures such as

Starport or Control Tower and training some less used units

such as Wraiths.

Based on values obtained by RS, we divide features into

three categories:

• Mandatory: V alue >= 1. Present in majority of matches.

The agent should try to construct the indicated number

or more of them.

• Optional: V alue ∈ (0; 1). Not present in each match. The

agent can consider construction of one instance in case

of structures and few instances in case of units.

• Not advisable: V alue = 0. Not present in any match. It

is not advised for the agent to construct these.

In Table VI, an example of a mandatory feature is Factory at

9 minute mark (V alue = 2.9). The agent should try to have at

least 2 but optimally 3 or more of them at this checkpoint. An

example of an optional feature is Machine Shop at 4 minute

mark (V alue = 0.6). The agent can consider construction of

one at this checkpoint.

Strategies extracted and refined by RS (RS strategies) pro-

vide very detailed guidance for the entire match duration as

can be seen in the above example. The next objective is to

implement them into our agent.

III. STRATEGY IMPLEMENTATION

Our agent MisHanBot is based on the public version of

Steamhammer (SH) 4, a popular starter agent for development

and experimentation. Its main race is Zerg, but can also play

other races, however, on a lower level than the main one. It

also supplies a set of starting strategies and provides many nec-

essary functionalities of a SCBW agent already implemented

on a basic level. While adopting existing functionalities from

SH, like unit micromanagement, our agent also has many small

improvements over baseline SH Terran, including better unit

control and unit repair logic, or better ability and spell usage.

Terran strategies are implemented in SH by:

• Configuration file (config), an explicit list of items to

create and other commands to perform from the start of

the match. This list can contain all features, not only those

selected as SDFs (Table IV). Depending on its length, it

can be used for all game stages.

• BOSS, a module which takes over and continues to

implement the strategy after all items in config have been

created. It tries to keep the ’trend’ set by config and

continues with construction of items present in the list.

Strategy selection during a match is based on randomness

with weighted probabilities. A pool of strategies is defined for

various situations (matchups, opponent’s plans, etc.), and each

strategy in the pool is assigned a weight based on suitability

for tackling that situation. When a situation occurs, SH selects

one strategy from that situation’s pool randomly.

4https://satirist.org/ai/starcraft/steamhammer/

TABLE VII
WIN RATES AND WEIGHTS FOR TVT STRATEGY POOL

Strategy (Cluster) ’0’ ’1’ ’2’ ’3’ ’4’

Win rate 52.8 55.5 28.7 50.3 53.6

Weight 22 23 12 21 22

We implement RS strategies into our agent as follows.

We overwrite config so that it contains only our Terran RS

strategies. We define 3 situations: TvT, TvP, TvZ. Note that in

our agent, we do not create situations considering opponent’s

plans. Our strategy selection depends only on the opponent’s

race. Next, we create a strategy pool for each situation. To

account for the randomness of RS strategies (see Section II-E),

we round up the advised values from Table VI to the nearest

integers. This means that values of all optional features will

be rounded to 1, i.e., the agent can try to have one instance

of them. Values of all mandatory features will be increased,

too. Therefore, the agent is given the upper bounds of what

numbers to aim for. After this adjustment, we put RS strategies

into strategy pools in config; TvT strategy pool includes 5

strategies, TvP and TvZ pools both include 6 strategies.

The explicit lists in config for each RS strategy are set up

using knowledge of the Terran tech tree while trying to follow

RS advice (example in Table VI) as closely as possible.

Next, we set weights for strategy pools. Weights are as-

signed to extracted strategies in pools proportional to their win

rate. Sum of weights in a pool is equal to 100. More successful

strategies get higher weights and in turn will be picked more

often in games than those with lower weights. TvT win rates

were obtained as part of this work (see Section II-D). TvP

and TvZ win rates were obtained from collaboration with

the authors of two other agents (see Section IV) who did

strategy classification for Protoss and Zerg races. Win rates and

corresponding weights for the TvT strategy pool are shown

in Table VII. It displays average win rates against all other

Clusters in the pool. When our agent is in a TvT situation,

Cluster ’1’ has the highest win rate and in turn the highest

chance to be used: 23 %. On the other hand, Cluster ’2’ is the

least successful and has the lowest chance to be used: 12 %.

During a match after processing config, strategy control of

our agent is handed over to the BOSS module, similar to SH.

It will follow a trend established by config and keep producing

features as specified in the last RS checkpoint in the remainder

of the match.

IV. RESULTS AND CONCLUSION

At the time of writing this paper, our agent MisHanBot is

active in the BASIL Ladder competition. It has rank C with

ELO rating 2586, overall win rate 49.4 %, recent win rate

56.3 % and is situated at the 46th place out of 101 currently

active agents. The overall number of agents in the ladder is

159. Agents ranked 102 or below are temporarily disabled

to keep the competition’s level high. They can be re-enabled

again under certain conditions.

ŠTEFAN KRIŠTOFÍK, MICHAELA HANKOVÁ: STARCRAFT STRATEGY LEARNING REFINEMENT USING REPLAY SNAPSHOTTING 319



TABLE VIII
OUR STARDATA-TRAINED AGENT RESULTS IN BASIL LADDER AS OF

MAY, 15TH 2025

Agent
ELO

rating

BASIL

rank

Games

played

Win

rate

Win rate

7 days

KasoBot (T) [8] 2390 E 48821 38.9 % 41.7 %

Azergo (Z) 2206 E 9034 28.9 % 26.1 %

TommyBot (P) 2203 F 9057 19.6 % 25.7 %

MisHanBot (T)
[This work]

2586 C 10253 49.4 % 56.3 %

40 %

45 %

50 %

55 %

60 %

W
in

 r
a

t
e

TvZ

TvT

TvP

Fig. 5. Win rates of our agent against each opponent race in the last 6 months
(Nov 2024–May 2025). Source: BASIL Ladder https://www.basil-ladder.net/
bot.html?bot=MisHanBot

The comparison with our other currently active agents is

shown in Table VIII. Results obtained by our new agent

MisHanBot are a significant improvement over our other

approaches. Note that both agents Azergo and TommyBot

extract detailed data and learn strategies from STARDATA

for their particular races, but use different approaches for

their implementation. Strategies obtained by Azergo are not as

effective and could be improved. TommyBot is an experimental

agent built from scratch, i.e., it does not use any of available

popular starter agents, such as SH.

Fig. 5 displays win rate trends of our agent in the last 6

months against all three opponent races. Results indicate that

TvP win rate (currently at 42.8 %) is not satisfactory as it

consistently trails behind other two matchups and brings the

agent’s overall win rate down considerably. On the other hand,

TvZ win rate (currently at 58.0 %) is satisfactory while in TvT

it is slightly above the average level (currently at 51.6 %).

Our results indicate that the proposed replay snapshotting

approach for strategy refinement is beneficial for overall

SCBW AI agent improvement. Our agent is able to imitate

extracted strategies more accurately than our previous ap-

proaches and it performs better in a competitive environment.

As future work, it could be worth looking more closely into

TvP particularly, identify and remedy the weaknesses of our

agent in this matchup. Other improvements could include:

further SDF selection fine-tuning by adding or removing

items; RS adjustments by considering the total amount of

produced features at checkpoints instead of counting currently

existing instances; including more matches per cluster into

RS; adding checkpoints beyond the average cluster time;

fine-tuning checkpoint distribution; setting probabilities of

strategies within pools with low win rates to 0 to avoid their

usage during matches; and more.

REFERENCES

[1] Z. Lin, J. Gehring, V. Khalidov and G. Synnaeve, “STARDATA: A
StarCraft AI Research Dataset,” 13th AAAI Conf. Artificial Intelligence

and Interactive Digital Entertainment, AIIDE 2017, pp. 50–56, https:
//dx.doi.org/10.48550/arXiv.1708.02139

[2] S. Ontañon, G. Synnaeve, A. Uriarte, F. Richoux, D. Churchill and
M. Preuss, “A Survey of Real-Time Strategy Game AI Research and
Competition in StarCraft,” IEEE Trans. Computational Intelligence and

AI in games, IEEE Computational Intelligence Society, 2013, 5(4),
pp. 293–311, https://dx.doi.org/10.1109/TCIAIG.2013.2286295

[3] Mi. Čertický, D. Churchill, K.-J. Kim, Ma. Čertický and R. Kelly,
“StarCraft AI Competitions, Bots and Tournament Manager Software,”
IEEE Trans. Games, 2018, 11(3), pp. 227–237, https://dx.doi.org/10.
1109/TG.2018.2883499

[4] O. Vinyals, I. Babuschkin et al., “Grandmaster level in StarCraft II using
multi-agent reinforcement learning,” Nature, 2019, 575, pp. 350–354,
https://dx.doi.org/10.1038/s41586-019-1724-z

[5] B. G. Weber and M. Mateas, “A data mining approach to strategy
prediction,” IEEE Symp. Computational Intelligence and Games, 2009,

pp. 140-147, https://dx.doi.org/10.1109/CIG.2009.5286483
[6] H. C. Cho, K. J. Kim and S. B. Cho, “Replay-based strategy prediction

and build order adaptation for StarCraft AI bots,” IEEE Conf. Compu-

tational Intelligence in Games (CIG), 2013, pp. 1-7, https://dx.doi.org/
10.1109/CIG.2013.6633666

[7] G. Synnaeve and P. Bessière, “A Dataset for StarCraft AI & an Example
of Armies Clustering,” Artificial Intelligence in Adversarial Real-Time

Games, 2012,, https://dx.doi.org/10.48550/arXiv.1211.4552
[8] Š. Krištofı́k, P. Malı́k, M. Kasáš, Š. Neupauer, “StarCraft agent strategic

training on a large human versus human game replay dataset,” Federated

Conf. Computer Science and Information Systems, FedCSIS 2020, 21,
ACSIS, pp. 391–399, https://dx.doi.org/10.15439/2020F178

[9] M. Świechowski, “Game AI Competitions: Motivation for the Imitation
Game-Playing Competition,” Federated Conf. Computer Science and

Information Systems, FedCSIS 2020, 21, ACSIS, pp. 155–160, https:
//dx.doi.org/10.15439/2020F126

[10] Š. Krištofı́k, M. Kasáš, P. Malı́k, “StarCraft strategy classification of
a large human versus human game replay dataset,” Federated Conf.

Computer Science and Information Systems, FedCSIS 2021, 25, ACSIS,
pp. 137–140, https://dx.doi.org/10.15439/2021F48

[11] G. Robertson, I. Watson, “A Review of Real-Time Strategy Game AI,”
AI Magazine, 2014, 35(4), pp. 75–104, https://dx.doi.org/10.1609/aimag.
v35i4.2478

[12] S. Xu, H. Kuang et al., “Macro action selection with deep reinforce-
ment learning in StarCraft,” 15th AAAI Conf. Artificial Intelligence

and Interactive Digital Entertainment, AIIDE 2019, pp. 94–99, https:
//dx.doi.org/10.48550/ARXIV.1812.00336

[13] J. J. Merelo-Guervós, A. Fernández-Ares et al., “RedDwarfData: a
simplified dataset of StarCraft matches,” 2017, https://dx.doi.org/10.
48550/arXiv.1712.10179

[14] F. Dai, J. Gong, J. Huang, J. Hao, “Macromanagement and Strategy
Classification in Real-Time Strategy Games,” 2nd China Symp. Cog-

nitive Computing and Hybrid Intelligence (CCHI), 2019, pp. 263–267,
https://dx.doi.org/10.1109/CCHI.2019.8901957

[15] N. Justesen, S. Risi, “Learning Macromanagement in StarCraft from
Replays using Deep Learning,” 2017, https://dx.doi.org/10.48550/arXiv.
1707.03743

[16] C. Shi, B. Wei et al., “A quantitative discriminant method of elbow
point for the optimal number of clusters in clustering algorithm,”
J. Wireless Comm. and Networking, 2021, https://dx.doi.org/10.1186/
s13638-021-01910-w

[17] N. Justensen, M. Kaselimi et at., “Human-like Bots for Tactical Shooters
Using Compute-Efficient Sensors,” 2024, https://dx.doi.org/10.48550/
arXiv.2501.00078

[18] J. Gehring, D. Ju, V. Mella, D. Gant, N. Usunier, G. Synnaeve, “High-
Level Strategy Selection under Partial Observability in StarCraft: Brood
War,” 2018, https://dx.doi.org/10.48550/arXiv.1811.08568

320 PROCEEDINGS OF THE FEDCSIS. KRAKÓW, POLAND, 2025


