Lo

Proceedings of the 20" Conference on Computer
Science and Intelligence Systems (FedCSIS) pp. 393-398 ISSN 2300-5963 ACSIS, Vol. 43

DOI: 10.15439/2025F2661

Challenges in Evaluating OSS Quality: Results
from SLR on Quality Evaluation Tools

M. Ash Taggetiren
0009-0001-5369-4080
Hacettepe University
Universiteler Mah., 06800 Cankaya/Ankara/Tiirkiye
Email: aslitasgetiren@cs.hacettepe.edu.tr

Abstract—Open Source Software (OSS) quality evaluation is
essential for ensuring the adoption and effective use of OSS
projects across various domains. Most works on OSS quality
evaluation have focused on the development of models or frame-
works rather than providing practical implementations. These
proposals can be challenging to use for inexperienced users, which
highlights the need for user-friendly tools. This paper presents
preliminary findings from a Systematic Literature Review (SLR)
that investigates the characteristics, limitations, and gaps of
current Quality Evaluation Tools (QETSs) for OSS. Our analysis
reveals the diversity of quality models underlying these tools and
the absence of standardization, which impedes the comparability
and reliability of evaluation results. This work also informs the
next steps in improving OSS quality evaluation practices.

I. INTRODUCTION

EVELOPMENT and the use of open source software

(OSS) has become widespread, with more than 100
million public projects available on GitHub alone. However,
the abundance of options makes selecting the right OSS chal-
lenging. Unique characteristics of OSS, such as full availability
of source code, version history, and community-driven and
decentralized development, further complicate the selection
process. These traits limit the effectiveness of standard soft-
ware quality evaluation tools, which are typically designed
for closed-source software and do not account for OSS-
specific characteristics. As a result, tools specifically designed
or adapted for OSS are needed to support more accurate,
consistent, and relevant evaluations.

Specialized quality evaluation tools are also critical, as
quality evaluation directly impacts OSS adoption, mainte-
nance, and contribution decisions. Developers, organizations,
and users rely on these evaluations to determine whether an
OSS project is reliable, secure, and maintainable enough to
integrate into their systems. Without appropriate tools, OSS
quality evaluations have a risk of becoming inconsistent,
overly subjective, and difficult to compare across projects.

To allow for ease in OSS selection and comparison, var-
ious quality models and frameworks have been proposed. A
systematic literature review published in 2020 [1] identified
35 primary studies that proposed an OSS quality evaluation

This study was supported by Scientific and Technological Research Council
of Turkey (TUBITAK) under the Grant Number 746360. The authors thank
to TUBITAK for their supports.

IEEE Catalog Number: CFP2585N-ART ©2025, PTI

393

Ayca Kolukisa-Tarhan
0000-0003-1466-9605
Hacettepe University
Universiteler Mah., 06800 Cankaya/Ankara/Tiirkiye
Email: atarhan@cs.hacettepe.edu.tr

model or framework. Another published in 2022 [2] identified
36 primary studies with the same purpose. However, manually
applying these models can be challenging for the average user,
creating a barrier to their practical adoption. To facilitate the
use of these quality models, an easy-to-use and preferably au-
tomated method for adopting these quality models is necessary.
To this end, some quality evaluation tools have been proposed
along with studies about quality models.

In [2] it was discovered that out of 36 primary studies,
16 of them (44%) were supported by a tool. Additionally,
[1] revealed that among the 35 primary studies analyzed, 22
referenced the availability of toolsets.

Nevertheless, proposing tools is not enough; the tools must
be published and maintained for long-term usage. Only two
tools mentioned in the reviewed papers in [1] had active, up-
to-date web pages. Only one tool remains accessible in 2025.

In addition to tool availability, aspects such as usability,
clear evaluation criteria, and compatibility with evolving OSS
practices are essential for real-world adoption. Tools that are
difficult to install, bound to outdated standards, or lacking
documentation further reduce their utility to practitioners and
researchers alike. These challenges highlight the need for a
structured investigation into the current state of QETs.

Previous study [2] investigated literature up to 2020 and
focused on Quality Evaluation Models or Frameworks (QE-
MoF) for OSS. It provided valuable insights into OSS quality
assessment approaches by investigating various aspects of QE-
MOoF, including their goals, structure, and evaluation criteria.
However, it only briefly examined the existence of supporting
tools as a sub-question, and did not have a dedicated focus on
Quality Evaluation Tools (QETs).

Given the strong connection between QEMoFs and QETs,
we build upon this prior work by conducting a new Systematic
Literature Review (SLR) that explicitly focuses on QETs for
OSS. Our work expands on [2] by:

1) Introducing new research questions specifically targeting

QET characteristics.

2) Extending the investigation coverage beyond 2020 to

include more recent developments.

3) Modifying the search strategy to specifically iden-

tify studies that propose practical, user-accessible tools
rather than only conceptual models.

Topical area: Software, System and Service Engineering

394

To that end, in comparison to 13,146 studies initially
retrieved in [2], our updated search retrieved 15,036 additional
works. After applying inclusion and exclusion criteria, we
selected 19 primary studies on QETSs, which are published
between 2006 and November 2024, for detailed analysis.

This paper presents initial findings from this SLR on QETs
for OSS, highlighting key challenges, limitations, and gaps in
existing tools. We discuss the lack of maintenance, accessibil-
ity, and standardization among the QETs and outline a vision
for future research towards developing standardized, user-
friendly tools to improve OSS quality evaluation practices.

II. RESEARCH DESIGN

Goal of this research was to comprehensively examine
and characterize existing quality evaluation tools for OSS by
their content, structure and practical use. The research design
followed the SLR methodology [3] and took advantage of
PICOC (population, intervention, comparison, outcomes and
Context) template [4].

Population: OSS quality evaluation

Intervention: OSS quality evaluation tools

Comparison: Characteristics of OSS quality evaluation tools

Outcomes: Basic characteristics and structure, degree of
guidance provided, basic characteristics in evaluation, devel-
opment method, and validation method of the proposals.

Context: Academia (scientific literature)

A. Research Questions

Given the strong connection between QEMoFs and QETs,
some questions were taken from [2] and were adapted to be
more in line with our focus on tools. Aim of this adaptation
was to ensure that our study builds upon prior research while
addressing the gap in practical tool implementations.

B. Search String

To make search results comparable with those of the SLR
done for QEMoFs in 2020, the search string in [2] was taken
as a basis. In order to focus the search on QETs in this SLR,
the phrase (ool OR framework OR application) was added to
the search string in [2] to obtain the final search string. This
adjustment ensured that the search captured studies proposing
implemented and potentially usable tools, rather than solely
conceptual models. The final search string was:

(tool OR framework OR application) AND
(“quality”) AND

(“evaluation model” OR “assessment model” OR “mea-
surement model” OR “evaluation framework” OR “as-
sessment framework” OR “measurement framework’)
AND

(“OSS” OR “FOSS” OR “FLOSS” OR “open source
software”)

This query was executed across seven major scientific
databases: IEEE Xplore, ACM Digital Library, ScienceDirect,
Scopus, Springer, Web of Science, and Google Scholar.

PROCEEDINGS OF THE FEDCSIS. KRAKOW, POLAND, 2025

C. Inclusion and Exclusion Criteria

As a result of the updated search string, our SLR retrieved
15,036 additional studies that were published between 2020
and 2024, beyond those analyzed in [2]. While the study
count is relatively high for a four year period, most of the
results came from Google Scholar which is prone to result
duplication.

1) Exclusion Criteria (EC): The following criteria were
applied to remove irrelevant or duplicate studies:

EC1: Duplicate studies

EC2: Studies that were not published in English

EC3: Studies that are not accessible in full text

EC4: Secondary studies (e.g., SLR, meta-analyses)

EC5: Books and theses

EC6: Studies that discuss OSS quality evaluation without
proposing, applying, or describing a specific QET

EC7: Studies on OSS quality evaluation that do not refer-
ence a known quality model or standard

EC6 aims to exclude purely conceptual or theoretical dis-
cussions that lack reference to any practical tool or im-
plementation. EC7 was introduced to distinguish dedicated
OSS quality evaluation tools from generic tools that only
incidentally evaluate software quality (e.g., security scanners,
static analysis tools).

2) Inclusion Criteria (IC): A study was included if:

IC1: It explicitly focused on OSS quality evaluation.

IC2: Tt proposed a tool specifically designed for evaluating
OSS quality.

D. Data Extraction

After screening, 19 primary studies on QETSs were selected,
these primary studies are listed in a supplementary material
(see Data Availability section). To ensure a systematic review
process, data extraction was guided by the predefined research
questions (RQs) which are introduced and answered in Section
III. A structured spreadsheet was used to record the extracted
data, with each sub-question represented as a column. For each
study, relevant information was manually extracted from the
full text.

The data extraction was performed by the first author, and
ambiguous cases were reviewed and discussed with the second
author to promote consistency and reduce bias. The RQs were
designed to capture key characteristics of each QET, including:

o Basic characteristics (RQ-1)

o Structural attributes (RQ-2)

o Guidance and usability (RQ-3)

o Evaluation methods (RQ-4)

« Development details (RQ-5)

o Current accessibility and maintenance status (RQ-6)

This structured approach ensured that findings are compara-
ble across different QETs and can be synthesized effectively.

III. RESULTS

This section presents the preliminary findings of our study.
The results are structured based on the defined RQs and cover
aspects that were specified in the previous section.

ASLI TASGETIREN, AYCA KOLUKISA TARHAN: CHALLENGES IN EVALUATING OSS QUALITY: RESULTS FROM SLR ON QUALITY EVALUATION

The following subsections systematically address each RQ,
summarizing the key insights extracted from the reviewed
studies. An overview of the results is provided in table format,
along with full references to primary studies, on Zenodo (see
Data Availability section).

The findings highlight recurring issues such as lack of
standardization, limited usability, and sustainability concerns;
reinforcing the need for more consistent, well-maintained, and
user-friendly QETs.

A. RQ-1: What are the basic characteristics of the QET
proposed for OSS?

Data were extracted from each primary study to determine
the main purpose of the QET and assess the use of Al
techniques in its evaluation logic. Understanding these is
essential for distinguishing between broadly applicable tools
and those tailored to specific evaluation goals or contexts.

1) RQ-1.1: What is the main purpose of the QET in the
study?: Each QET was categorized based on its primary
evaluation focus. Tools were labeled as either:

o G: General-purpose i.e., designed to evaluate overall OSS
quality, or

o S: Domain-specific i.e., targeting one or more focused
quality attributes such as maintainability or security.

The findings indicate that out of the 19 tools analyzed,
13 (68%) of the QETs were designed for general-purpose
evaluation, while 6 (32%) focused on a specific quality aspect.
This distribution suggests a trend toward designing general-
purpose evaluation approaches, although domain-specific tools
remain relevant for targeted quality evaluations.

2) RQ-1.2: Does the QET utilize AI?: For Al usage, we
checked if the tool explicitly described the integration of Al-
based techniques (e.g., machine learning, natural language
processing (NLP)) in its implementation. Identifying the po-
tential use of Al integration with this sub-question helps to
asses how modern and scalable these tools are, and highlights
opportunities for future research.

Out of 19 QETs, only one utilized Al methods. The work
used NLP to extract data from community channels. While
there are other works that talked about incorporating Al to
their tools in the future, they have not released a version that
contains it yet. This suggests that although the application of
Al in OSS quality evaluation is recognized as promising, its
actual implementation in the published QETs remains rare.

B. RQ-2: How is the QET for OSS structured?

1) RQ-2.1: Which quality model is the QET based on?: We
analyzed if the QETs referred to formal software quality mod-
els—such as ISO/IEC 25000, ISO/IEC 9126, or Dromey—
or used custom or OSS-specific models such as OpenBRR,
QSOS, or OSMM.

This sub-question was included to assess if the QETs
are grounded in standardized definitions of software quality,
which supports consistency and comparability across different
tools and evaluation contexts. When tools rely on outdated
or informal models, their results may not align with current

quality standards or be usable beyond their original context.
Thus, this analysis helps determine how closely existing QETs
align with widely accepted software quality frameworks and
whether there is a need for standardization or modernization.

Results indicate that 47% of the QETs used ISO/IEC 9126
[5] as at least one of their base models; however, ISO/IEC
9126 has been replaced with ISO/IEC 25010 [6] and new
models should take this standard as the basis. Only 16% of the
tools were based on the newer ISO/IEC 25010 standard. Sev-
eral tools referenced OSS-specific quality models like QSOS,
OpenBRR, and OSMM, which were designed to address OSS
evaluation challenges but may no longer align with current
international standards. This suggests a lag in the adoption of
up-to-date quality models within the QETs.

2) RQ-2.2: From what aspects can OSS be evaluated by
the QET?: The QETs were classified based on the quality
aspects they evaluated, including product quality, quality-in-
use, community-related factors, a combination of these, or a
single specific attribute.

This sub-question was included to evaluate how compre-
hensively each tool assesses OSS quality. OSS differs from
proprietary software not only in its technical traits, but also in
how it is developed, used, and maintained by its community.
As such, a meaningful OSS quality evaluation should ideally
include technical, user-facing, and community aspects. By
analyzing which aspects each QET covers, we can evaluate if a
tool is too narrowly focused or provides a more comprehensive
assessment aligned with the unique nature of OSS.

The analysis revealed that 84% of the QETs addressed
product quality (e.g., maintainability, reliability), 58% consid-
ered quality-in-use (e.g., usability, user satisfaction) and 74%
incorporates community-related metrics (e.g., maintenance ca-
pacity, sustainability). Seven tools specifically used a mix of
each of these quality aspects and two tools focused only
on a single attribute such as security. These results indicate
that while most tools emphasize code-level characteristics,
many also acknowledge the importance of user experience and
community health, which are both critical to the success and
adoption of OSS projects.

C. RQ-3: What degree of guidance is provided for the evalu-
ation of OSS by the QET?

This question examined how clearly the QETs explain
their evaluation procedures and whether they demonstrated the
tool’s application through practical examples. Clear guidance
is essential for consistent use and broader adoption; without
it, even technically sound tools may remain unused.

1) RQ-3.1: Is the evaluation procedure of the QET ade-
quately described in the study?: To assess the transparency of
the evaluation process, each study was analyzed to determine
whether it provided an adequate (yes), partial, or no descrip-
tion of how the QET could be used to assess OSS. A well-
documented evaluation process increases the likelihood that
a tool can be adopted by practitioners or extended by other
researchers.

395

396

Less than half (47%) of the QETs were determined to
include a detailed evaluation procedure, while 32% provided
partial descriptions, and 21% lacked a guideline. These find-
ings indicate that the majority of tools do not offer sufficient
instructions, which can make them harder to apply in practice
and reduce the consistency and reproducibility of their results.

2) RQ-3.2: Is a demonstration of the evaluation using the
QET provided in the study?: Demonstration of the tool in
practice is critical for illustrating how the tool functions, val-
idating its usefulness, and helping users understand expected
outcomes.

The analysis revealed that 47% of the studies included some
practical demonstration. The remaining 53% lacked detailed
examples of how the tool was applied, which limits users’
ability to assess its effectiveness and real-world applicability.

D. RQ-4: What are the basic characteristics of the QET for
evaluating OSS?

1) RQ-4.1: Is the license type of the OSS product used as
an evaluation criterion?: Licensing type is a very important
characteristic in OSS, as it can potentially restrict or influence
the licensing of other software that incorporates it. Seven
(37%) of the QETs explicitly incorporated license type as a
factor in quality evaluation, while the rest did not consider
licensing constraints in the assessment process.

2) RQ-4.2: Does the QET support subjective or objective
evaluation?: The studies were analyzed to determine whether
the QETs relied on subjective assessments (e.g., taking user
opinions into consideration) or objective assessments (e.g.,
metric-based analysis). Objective assessments tend to support
consistency and automation, while subjective ones can capture
nuanced user perspectives that are difficult to quantify.

The results indicate that 53% of the QETs combined
subjective and objective approaches, while 16% supported
entirely objective evaluation and 32% relied on subjective
assessments. These results suggest that while many tools aim
for a balanced approach, a significant portion still depends
heavily on subjective input. Subjective input is risky as it
can limit standardization or automation in large-scale OSS
evaluations; however, some tools knowingly allow subjective
input to include diverse user perspectives.

3) RQ-4.3: Does the QET support qualitative or quan-
titative evaluation?: This sub-question assessed the QET’s
reliance on quantitative methods (e.g., numeric metrics, au-
tomated analysis) or incorporation of qualitative insights (e.g.,
user interpretations, expert reviews). The evaluation approach
influences how scalable, replicable, and interpretable the tool
is in practice.

The analysis reveals that 89% of the QETs primarily relied
on quantitative evaluation, using methods such as automated
code analysis and structured data collection. Remaining two
tools combined both approaches for a more comprehensive
evaluation. The predominance of quantitative evaluation aligns
with the goal of automation but may limit the capture of
context-dependent or user-centered insights.

PROCEEDINGS OF THE FEDCSIS. KRAKOW, POLAND, 2025

4) RQ-4.4: What quality attributes are used for evaluation
by the QET?: The inclusion of different attributes reflects
how the tool defines “quality” and which aspects of OSS it
prioritizes. The most frequently addressed quality attributes
were maintainability (68% of the tools), reliability (58%),
efficiency (47%), and security (42%).

These results suggest that most QETs focused on code-
centric attributes commonly emphasized in traditional software
quality models. This focus was likely due to relative ease
of automatically extracting code-related metrics. However, for
tools specialized in evaluating OSS, it is important to consider
OSS-specific attributes. RQ-4.5 will show that while there
are tools that consider community activity metrics, which
are unique to OSS, code related metrics still play a more
prominent role.

5) RQ-4.5: What software metrics are used for evaluation
by the QET?: To further understand how the QETs measure
and apply quality criteria, we investigated the specific soft-
ware metrics used in evaluation. These metrics serve as the
foundation for generating evidence-based quality assessments.
Across the reviewed studies, commonly used metrics included:

o Code quality indicators (e.g., complexity, code smells),

o Community activity metrics (e.g., issue tracking, pull

request volume),

« Bug tracking statistics,

« Support responsiveness and service quality.

Details of these distributions can be seen more clearly in
the summary table (see Data Availability section).

6) RQ-4.6: What aggregation methods are used for eval-
uation by the QET?: Metric values gathered using various
techniques tend to be heterogeneous in nature, making com-
bining and comparing them difficult. To combine different
metric values into a single score, aggregation methods are
used. Weighted arithmetic mean was the most used aggregation
method among the studies (63%), with some using other tech-
niques such as overall sum or other mathematical equations.

The widespread use of weighted mean indicates a preference
for simple and interpretable methods of combining quality
metrics. At the same time, the presence of alternative aggrega-
tion methods, such as summation or custom formulas, reflects
a lack of standardization in how overall quality is calculated.
This variation can reduce the transparency and comparability
of results across different QETs.

7) RQ-4.7: Does the QET support evaluation at a single
point in time or throughout the evolution of OSS?: Evaluating
quality over the course of a project’s development is partic-
ularly relevant for OSS, where code and community activity
evolve continuously. Tools that support analysis throughout
evolution can help detect trends, regressions, or improvements,
and are valuable for maintainers making long-term decisions.

The results indicate that 79% of the QETs performed single-
point evaluations, while 3 tools (16%) allowed tracking quality
over time, enabling historical analysis of OSS quality.

A study made on OSS project size growth patterns [7]
observed that many OSS repositories reach approximately 75%
of their final code size within the first 25% of commits, which

ASLI TASGETIREN, AYCA KOLUKISA TARHAN: CHALLENGES IN EVALUATING OSS QUALITY: RESULTS FROM SLR ON QUALITY EVALUATION

might suggest that a snapshot taken after this period could cap-
ture much of the system’s core. However, there is no guarantee
that the snapshot will be taken at the right time, potentially
causing significant early changes to be missed. Additionally,
one-time evaluations risk overlooking later community-driven
refinements or regressions.

8) RQ-4.8: How are data collected for OSS evaluation
in the QET?: Data collection methods were categorized as
manual (e.g., form entries, expert-provided ratings etc.) and
automated (e.g., metric extraction from repositories, codes, or
APIs). The method of data collection directly affects a tool’s
usability, scalability, and potential for continuous evaluation.
Automated tools typically require less user effort and support
more consistent and repeatable assessments. However, not all
the data can be retrieved automatically, which might limit the
data to be taken into consideration in fully automated tools.

The findings showed that 47% of the QETs relied on manual
input, 47% used fully automated data retrieval, and one did not
specify it. This even split suggests that while many tools aim
to automate evaluation, a significant number still depends on
user-provided data; which can limit scalability and introduce
subjectivity, but also allow for the inclusion of qualitative or
context-specific information that automated methods may not
be able to access.

9) RQ-4.9: What is the required skill level of users who
evaluate OSS using the QET?: Usability and accessibility
are critical for encouraging widespread adoption of the tools,
especially in OSS communities, where users may include non-
experts.

The analysis showed that 58% of the QETs required a
medium to high level of expertise, such as familiarity with
software quality models, metric interpretation, or manual con-
figuration. This suggests that many tools are geared toward
expert users and may pose a barrier for broader adoption,
particularly among smaller or less formal OSS projects.

It should be noted that in cases where the required skill level
was not explicitly stated, it was inferred based on the tool’s
interface, configuration requirements, technical documentation
and results from RQ-3.

10) RQ-4.10: How are the results of the evaluation provided
to the user in the QET?: The format of the results significantly
influences the clarity, practical usefulness, and availability
of quality assessments—especially for non-expert users or
decision-makers.

The analysis showed that the QETs presented their results
using the formats listed below. Some used more than one
format to show their results; these were counted in the
percentages:

 Indexed values in range (e.g., 0-1, 0-100) in 53%,
¢ Ordinal scales (e.g., ranked scores) in 42%,
o Nominal scales (e.g., "good," "fair,” "poor") in 11%.

These findings indicate a tendency toward numeric outputs,
which are well-suited for integration into automated systems
or dashboards but may reduce usefulness for stakeholders
needing more descriptive evaluations.

E. RQ-5: What programming tools and frameworks were used
while developing the QET?

The technologies used to develop the QETs were analyzed,
including programming languages, frameworks, and external
libraries. This information is important for assessing the main-
tainability, accessibility, and extensibility of the tools. It can
also provide guidance for future QET developers.

Most papers did not specify the technologies used. To ad-
dress this, the source code of the tools—when available—was
examined to manually extract the necessary information.

Most commonly used technologies were found to be Python,
Java and JavaScript. However, due to limited reporting and
missing source code links, a complete analysis could not be
performed for all the QETs.

F. RQ-6: What is the current status of the QETs for OSS?

Evaluating the current state (i.e., maintained, discontinued,
or still in progress) of each tool is essential to understand
its sustainability, potential for long-term use, and relevance to
practitioners.

A five-year threshold was used to assess maintenance status,
i.e., the tools that had no updates within the last five years were
classified as no longer actively maintained. According to this
criterion, only six of the tools (32%) were found to be actively
maintained. Out of the six active tools, only one was published
before 2019. Additionally, out of these, only four tools have
had updates within the last five years.

For tools that were discontinued, an archived version was
searched on platforms such as Wayback Machine and GitHub.
This process aimed to determine whether older versions of
the tools were still accessible for reference, analysis or use.
The results indicate that 63% of the discontinued tools had
an archived version available, while an archived version could
not be found for the remaining 37%.

These results highlight a significant sustainability issue:
Many QETs are not maintained over time, and in several cases,
their disappearance makes it difficult for others to study, reuse,
or build on them. This poses a barrier to both reproducibility
and practical adoption of the QETs for OSS evaluation.

IV. DISCUSSION

This SLR on Quality Evaluation Tools for OSS reveals
several practical and methodological challenges that limit the
tools’ effectiveness, adoption, and long-term utility.

A key issue is the short lifespan and limited maintenance
of many QETSs; several tools are either no longer accessible
or have not been updated in recent years. This result might
be influenced by our focus on academic literature, where
prototypes might not be sustained beyond a single study.
However, to support reliable and replicable evaluation in real-
world OSS contexts, QETs must remain accessible over time.
Even if they are not maintained, at a minimum, tools should be
archived and publicly available to enable reproducibility and
research. Ideally, QETs should also be hosted in open-source
repositories, like the OSS projects they assess. Without this,

397

both practitioners and researchers face significant barriers in
applying existing tools or advancing the field.

A second major concern is the lack of standardization across
the tools. The QETs are based on a wide range of quality
models, ranging from outdated standards (e.g., ISO/IEC 9126)
to OSS-specific frameworks such as QSOS or OpenBRR. This
diversity, while reflective of differing needs, leads to inconsis-
tent and non-comparable evaluation results. The absence of a
shared framework or terminology makes it difficult to compare
evaluations across tools or projects, limiting the potential for
creating universal benchmarks or guidelines. This puts users in
a position where they might need to evaluate the QETs before
they can use the QET to evaluate OSS quality.

Finally, usability remains an issue. While some tools were
aimed to be user-friendly, many require medium to high levels
of technical expertise to use, limiting accessibility for non-
expert users. This usability gap limits the widespread adoption
of the QETs. Future tools should prioritize intuitive interfaces,
quality model templates, clear documentation, and automated
data collection to lower the barrier for inexperienced users.

Taken together, these findings highlight the need for more
sustainable, standardized, and accessible Quality Evaluation
Tools for OSS. Addressing these issues would not only im-
prove the reliability and comparability of OSS evaluations,
but would also promote widespread adoption and continuous
quality improvement in OSS ecosystems.

V. THREATS TO VALIDITY

This study, like any other SLR, is subject to several potential
threats to validity. One potential threat is the completeness of
our search strategy. While we carefully designed our search
string to capture relevant QETs for OSS, some studies might
have been missed due to variations in terminology or indexing
issues in databases. Additionally, the digital libraries we used
may not cover all relevant papers, particularly those from
lesser-known conferences or non-indexed journals.

The scope of the dataset also presents limitations. Our
findings are based on a finite set of primary studies, which
may not fully represent all existing QETs for OSS. Some tools
may exist only as industry applications without academic doc-
umentation, leading to a possible bias toward research-focused
tools rather than those used in practice. Additionally; EC7,
as stated in Section II.C, further limits the scope. Per EC7,
this review focuses on QETSs that reference known quality
models or standards. That is, tools that evaluate OSS quality
using non-standard methods (including some that might be
widely used in practice) may not be represented. This choice
was made to prioritize comparability and structure, but limits
generalization of the results to all tools.

It should also be noted that some aspects of the analysis
involved interpretive judgment, especially when tool charac-
teristics (e.g., required skill level in RQ-4.9 or maintenance
status in RQ-6) were not explicitly stated in the studies. In
such cases, we inferred answers based on indicators like doc-
umentation detail, user interface design, or repository activity.
For example, the five-year threshold in RQ-6 is an arbitrary

PROCEEDINGS OF THE FEDCSIS. KRAKOW, POLAND, 2025

cutoff and may not fully reflect a tool’s usability, especially if
it has remained functional without frequent updates.

Lastly, the study does not assess the real-world effectiveness
of the identified QETs through hands-on user testing. While
we analyzed their documentation and reported functionality,
actual usability, reliability, adoption, and performance of the
tools remain unverified. Future studies could address this by
running case studies or user surveys to validate our findings.

VI. CONCLUSION

This study provides preliminary insights into the states of
Quality Evaluation Tools for Open Source Software, iden-
tifying key challenges in tool sustainability, standardization,
and usability. While OSS quality evaluation models are well-
studied, practical implementation is still an issue due to
outdated tools, inconsistencies, and complexity.

Moving forward, future research should focus on improving
the longevity and accessibility of the QETs, ensuring that tools
remain accessible even if they are not actively maintained.
Additionally, establishing standardized frameworks and meta-
models could help make evaluation results more comparable
across different tools. Finally, incorporating automation and
Al-driven approaches, which are not yet widely implemented
in the QETs for OSS, has the potential to improve scalability
and reduce the manual effort required for quality assessment.

Addressing these gaps will help create more sustainable,
standardized, and user-friendly QETSs, ultimately contributing
to more effective evaluation and selection of OSS products,
greater trust in OSS systems, and broader adoption of quality
assessment practices.

DATA AVAILABILITY

The complete summary table of RQ results and the full list
of analyzed primary studies are openly available on Zenodo
at https://doi.org/10.5281/zenodo.15869799

REFERENCES

[1] V. Lenarduzzi, D. Taibi, D. Tosi, L. Lavazza, and S. Morasca, “Open
Source Software Evaluation, Selection, and Adoption: a Systematic
Literature Review,” in 2020 46th Euromicro Conference on Software
Engineering and Advanced Applications (SEAA), Aug. 2020. doi:
10.1109/SEAAS51224.2020.00076 pp. 437-444.

[2] N. Yilmaz and A. Kolukisa Tarhan, “Quality evaluation models or
frameworks for open source software: A systematic literature review,”
Journal of Software: Evolution and Process, vol. 34, no. 6, p. e2458,
Jun. 2022. doi: 10.1002/smr.2458 Publisher: John Wiley & Sons, Ltd.

[3] S. Keele et al., “Guidelines for performing systematic literature reviews
in software engineering,” Technical report, ver. 2.3 ebse technical report.
ebse, Tech. Rep., 2007.

[4] C. Wohlin, P. Runeson, M. Host, M. C. Ohlsson, B. Regnell, A. Wesslén
et al., Experimentation in software engineering. Springer, 2012, vol.
236.

[5] “ISO/IEC 9126-1:2001.”
standard/22749.html

[6] “ISO 25010.” [Online]. Available: https://is025000.com/index.php/en/
150-25000-standards/iso-25010

[71 K. Szymanski and M. Ochodek, “On the applicability of the pareto
principle to source-code growth in open source projects,” in 2023 I8th
Conference on Computer Science and Intelligence Systems (FedCSIS),
2023. doi: 10.15439/2023F5221 pp. 781-789.

[Online]. Available: https://www.iso.org/

