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Abstract—Reconnaissance is a crucial stage of cyberattacks,
enabling attackers to gather information about system vulner-
abilities. In computer networks, data regarding addressing and
transmission paths is especially sensitive. This paper introduces a
concept for a hybrid mutation system based on Software Defined
Networking (SDN), combining address and data path mutation
to improve security. The system employs central network man-
agement and pseudorandom, temporary addressing, which is
periodically reconfigured. In contrast to existing Moving Target
Defense (MTD) address mutation methods, end devices connect
through dedicated agents, which can be implemented using a
SmartNIC. The agent modifies packet headers at a network
edge to obfuscate address information, minimizing the processing
burden on SDN switches inside a network. The objective is to
hinder attackers from discovering network details that could
be exploited. A prototype was implemented using typical SDN
components and containerized end devices. Tests confirmed the
system’s correctness and effectiveness in protecting the network
structure and communication paths. This approach enhances the
confidentiality of network parameters and limits the information
available to potential attackers, making reconnaissance signif-
icantly more difficult, while minimizing SDN network control
overhead.

I. INTRODUCTION

ETWORK security is critical in today’s digital landscape,
N as it protects sensitive data from unauthorized access and
cyber threats while ensuring the integrity and availability of
network resources. The network attack cycle spans several
steps. The Cyber Kill Chain illustrates this cycle, detailing
the stages an attacker typically goes through to successfully
breach a network, from reconnaissance and weaponization to
delivery, exploitation, installation, command and control, and
finally, actions on objectives [1].

The reconnaissance is the initial phase where attackers
gather information about their target, identifying potential
vulnerabilities and entry points that can be exploited to gain
unauthorized access. Stopping an attacker at the reconnais-
sance phase of a cyber attack provides significant security
advantages by preventing further exploitation and reducing
the overall risk to a network. However, spotting reconnais-
sance activity can be challenging due to several factors that
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make it stealthy and difficult to differentiate from legitimate
network traffic. Traditional computer networks are inherently
static, making them predictable targets for attackers who
exploit static IP addresses, unchanged software stacks, and
consistent routing paths to plan and execute cyberattacks.
This predictability enables adversaries to conduct prolonged
reconnaissance, identify vulnerabilities, and launch precise,
well-timed exploits with minimal resistance. The static nature
of computer networks gives the attacker a significant advantage
over the defender, as attackers can use stealthy techniques to
gather information over a long time to identify weaknesses
without raising alarms [2].

A proposed solution to this issue was introduced in [3] as
part of the USA Federal Networking and Information Technol-
ogy Research and Development program, which seeks inno-
vative approaches to address critical cybersecurity challenges.
This approach, known as Moving Target Defense (MTD),
represents a fundamental shift in securing computer networks.
The core principle of MTD is that an attack, if successful,
can only be effective once, as the system is continuously
reconfigured to prevent the reuse of the same attack vector.
By dynamically altering the attack surface, MTD increases
the complexity and cost for attackers, reduces the window of
vulnerability exposure, and enhances overall system resilience.
Moving Target Defense mitigates this risk by introducing
continuous, randomized changes to network attributes such
as IP addresses, system configurations, and routing paths.
By dynamically altering the attack surface, MTD disrupts
adversarial strategies, forcing attackers to constantly reassess
their tactics, thereby increasing the cost and complexity of
cyber intrusions [4]. Unlike traditional static defenses relying
on perimeter security mechanisms, MTD adopts a proactive
security posture that introduces unpredictability while ensuring
system reliability for legitimate users.

Numerous MTD strategies have been proposed for securing
computer networks [5]. One of the key principles of MTD in
networks is IP Address Mutation, which involves frequently
changing the IP addresses of critical assets, preventing at-
tackers from accurately mapping the network [6][7]. This
technique disrupts traditional reconnaissance methods and
limits the effectiveness of targeted attacks. Another effective
approach is Dynamic Network Topology, which emphasizes
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dynamic changes in network architecture to confound attack-
ers [8]. Route Mutation and Traffic Obfuscation techniques
further enhance network security by dynamically altering
packet routes, making it difficult for attackers to eavesdrop or
execute man-in-the-middle attacks. This method ensures that
sensitive data does not travel predictable paths, increasing the
difficulty of successful network intrusions [9]. Service and Port
Randomization also prevents attackers from leveraging known
vulnerabilities by frequently changing open ports and service
access points [10].

The benefits of MTD for networks are substantial. It disrupts
reconnaissance efforts, reduces the attack window, and forces
adversaries to adapt continuously, increasing their resource
expenditure and reducing their ability to execute long-term
attacks. Moreover, MTD enhances cyber resilience by in-
troducing self-adaptive security measures that dynamically
respond to emerging threats. However, challenges such as
performance overhead, compatibility with legacy systems, and
the need for intelligent automation must be addressed to
optimize MTD implementation.

Software-Defined Networking (SDN) technology plays a
key role in implementing most Moving Target Defence strate-
gies, enabling dynamic, automated, and adaptive networking
mechanisms. This technology provides programmability, flex-
ibility, and scalability, making it possible to rapidly adjust
network configurations, which constitutes the core of most
network-based MTD methods. However, these frequent and
unpredictable changes introduce significant stress on SDN
switches and controllers, impacting performance, stability, and
resource utilization.

As noted in [11], while centralization in SDN improves
control and flexibility, it also introduces new attack vectors.
Offloading certain security functions to edge components can
mitigate these risks and improve scalability. With the advent of
Smart Network Interface Cards (SmartNICs), there is potential
to alleviate some of these pressures by offloading certain
processing tasks from the SDN controllers and switches,
thereby enhancing overall system efficiency and enabling more
robust MTD solutions that can adapt in real-time without
compromising network integrity. SmartNICs represent a sig-
nificant evolution in network interface technology, offering en-
hanced functionality that extends far beyond traditional NICs.
SmartNICs integrate programmable processors, memory, and
dedicated hardware accelerators at their core, enabling them
to offload network processing tasks [12].

This paper presents a hybrid addressing and route mu-
tation mechanism that utilizes dedicated host agents with
a lightweight SDN switch system. These host agents are
designed to be implemented using SmartNICs, offloading
specific tasks from core SDN switches. This approach not
only improves the scalability of network management but also
enhances performance by allowing core switches to focus on
high-level routing decisions while host agents handle lower-
level address mutation tasks efficiently.
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II. RELATED WORKS

Several solutions based on the concept of address mutation
and dynamic routing in network environments built on SDN
architecture can be found in scientific literature.

One example of applying address mutation in SDN net-
works is the OpenFlow Random Host Mutation (OF-RHM)
mechanism [13]. Each host is assigned a virtual IP address
used during network communication in this solution. Impor-
tantly, these addresses are periodically changed, significantly
complicating attacks based on traffic monitoring (e.g., sniffing)
or network topology analysis. The address mutation process
is handled by the switches, which also manage data traffic.
Although this approach improves transmission security, it
increases the load on the switches, which can negatively
impact the overall performance and scalability of the network.

Another approach was presented in [14], where a routing
algorithm based on fake addressing was proposed. In this
model, switches establish paths between hosts using randomly
assigned addresses, while the SDN controller manages the
mapping of temporary addresses to actual ones. Despite its
security advantages, this solution involves several significant
challenges. Firstly, the mutation process executed on the
switches generates additional load for these devices. Secondly,
the path selection may lead to temporary network congestion,
especially in more complex topologies, due to excessive packet
flooding during route updates.

In [15], the authors proposed using local NAT tables on each
switch. In this model, a dedicated MTD unit responsible for
generating temporary addressing is connected to each switch.
As a result, the SDN controller is relieved of some responsibil-
ity — its role is limited to initializing data transmission paths.
Although this reduces the controller’s load, the switches still
need to handle the address translation process, which remains
challenging for their performance.

On the other hand, the solution presented in [16] introduces
an additional layer of switches called agents directly connected
to end devices. These agents take over the task of address
mutation, thereby offloading the main switches responsible for
packet routing in the network. This approach limits the impact
of mutation on the core infrastructure; however, it introduces
another challenge — temporary addressing is created for each
individual connection, which may lead to significant load on
the SDN controller, especially in high-traffic environments.

III. MTD CONCEPT

This paper proposes a solution based on the Moving Target
Defense technique, utilizing a hybrid mutation approach. The
proposed method introduces dynamic mutations at both the
data transmission path level and the addressing level, specifi-
cally targeting the second and third layers of the OSI model,
namely the MAC and IP address layers.

Our solution leverages the flexibility and centralized control
offered by Software-Defined Networking, where the SDN
controller plays a pivotal role. The controller is tasked with
orchestrating both path and address mutations and dynamically
installing flow rules on SDN switches throughout the network
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via the OpenFlow protocol. To support the address mutation
process, we introduce lightweight, specialized agents in the
form of thin SDN switches that are designed to manipulate
packet headers in real time.

These agents are deployed at the network edge, typically on
end devices or SmartNICs. They are responsible for executing
packet-level transformations in accordance with mutation poli-
cies received from the SDN controller. Each agent is capable
of performing real-time mutation of MAC and IP addresses.
The agents operate transparently to the applications running
on the host devices, ensuring seamless communication while
continuously altering address mappings to thwart reconnais-
sance and tracking attempts by potential adversaries.

By offloading the mutation tasks from the core SDN
switches to these edge agents, the architecture reduces the
processing overhead on network infrastructure components,
improves scalability, and enables fine-grained control over
address mutation. The result is a dynamic, resilient, and
secure communication environment that significantly raises
the bar for attackers attempting to exploit static network
configurations.

The overall architecture of the proposed system is illus-
trated in Fig. 1, highlighting the interplay between the SDN
controller, the network switches, and the deployed agents.

To establish a connection between devices, the controller
performs a pseudo-random selection of one of the available
paths labeled 1, 2, and 3 in the diagram. Data exchange takes
place over the selected route for the duration defined by the
mutation interval.

During operation, packets transmitted in the network are
subject to modification to obscure their actual source and
destination addresses. Temporary false addressing is applied,
referred to as tMAC (temporary MAC address) and tIP
(temporary IP address). After the mutation interval expires,
the controller generates new temporary addresses and selects
new transmission paths for each end device connected to the
network.

The real addresses, corresponding to the physical configu-
ration of device interfaces, are denoted as pM AC' (permanent
MAC address) and pI P (permanent IP address). From the per-
spective of communicating hosts, it is impossible to discover
the actual address of the machine involved in data exchange,
ensuring complete address obfuscation within the system. As a
result, all packets transmitted within the network contain only
temporary, falsified source and destination addresses in their
headers.

This mechanism can operate successfully provided all com-
municating devices, including SDN switches, remain under
the organization’s control. The system also assumes that the
organization has access to a large address pool within a given
subnet, allowing for effective masking of real IP addresses. To
avoid raising suspicion from a potential attacker, temporary IP
addresses are selected from the available address space within
the corresponding subnet.

Control
lapplication|

l‘ SDN Controller

=8 B4

< Agent
%% P
- -8
‘!'L'/I gent
o Agent

Fig. 1. The architecture of the proposed network

A. Connection Establishment and Handling

Fig. 2 presents a sequence diagram illustrating the phases of
a sample connection establishment between Host I and Server
1. This process includes:

1) ARP Request for the DNS Server
Communication with the DNS Server is the first step in
establishing the connection. Assuming that the ARP ta-
bles on the end devices are initially empty, Host I sends
an ARP request to the broadcast address (ff:ff:ff:ff:ff:ff)
asking for the MAC address of the DNS Server. The HI
Agent intercepts this request and replies to Host 1 with
a packet containing a temporary MAC address for the
DNS Server, marked as tMACDNS in the diagram.

2) DNS Query
Host 1, now knowing the temporary MAC address of
the DNS Server (tMACDNS), sends a query requesting
the IP address of a specific domain. In the presented
diagram, the DNS query concerns the domain serverl.pl,
corresponding to the device Server I. The query is
received by the HI Agent and then sent to the SDN
Controller using a PACKET__IN message.
Upon receiving the query, the SDN Controller performs
a pseudo-random path selection to determine through
which switch the communication will proceed. It also
verifies whether the requested domain is handled by the
DNS Server. If the domain does not exist, the connection
attempt fails. If the domain is valid, the controller uses
temporary addresses created for the current mutation
state.
One of these temporary addresses is the fake IP address
of Server 1 (tIPS1). The SDN Controller uses this
address to modify the DNS server’s configuration file,
which maps actual server addresses to domain names.
In the next step, the controller uses the temporary
addressing to generate rules for appropriate agents and
switches in the network. These rules are installed us-
ing FLOW_MOD messages. Rules are installed on the
HI, S1, and DNS agents. The rules for HI and SI
handle address obfuscation and ARP query handling
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Fig. 2. Connection Establishment and Handling Diagram

for temporary IP addresses. The rule installed on the
DNS Agent ensures that the DNS response is delivered
to Host 1 through the network. To achieve this, the
SDN Controller additionally installs rules on Host I’s
agent and on the switches in the SDN Network to allow
proper delivery of the response from the DNS Server.
The rules installed on the SDN Network switches serve
exclusively to forward packets between end devices
using obfuscated addressing.

The DNS query is directly forwarded to the DNS Agent
and then to the DNS Server. To send a response, the
DNS Server must obtain the MAC address of Host
1, from which the original query was received. It
sends an ARP request, which is intercepted by the
DNS Agent, who replies with a fake MAC address
00:00:00:aa:bb:cc. Due to the complexity of the
proposed system’s logic, the DNS Agent is configured
with a flow rule that returns this MAC address for
any IP in response to an ARP request. After receiving
the ARP response, the DNS Server sends back a DNS
response containing the fake IP address corresponding
to the requested domain (¢/PSI). The DNS Agent, upon
receiving this response, sends it to the SDN Controller,
which then forwards the packet to the HI Agent via
the SDN Network. While sending the response into the

3)

4)

network, the DNS Agent performs address translation,
inserting temporary addressing into the packet header:
tMACDNS and tIPDNS for the source, and tMACH I and
tIPHI for the destination. When the HI Agent receives
the response, it performs reverse translation by replacing
the destination addresses with the real addressing of
Host 1 ()MACHI and pIPHI).

ARP Request for Server 1

After receiving the DNS response containing t/PS1, Host
1 sends an ARP request to obtain the MAC address
assigned to this IP address. The rule installed by the
SDN Controller on the HI Agent handles the request,
returning the temporary MAC address of Server I,
marked in the diagram as tMACS].

Communication Between Host and Server

The next part of the diagram presents a sample TCP
connection established between Host I and Server 1.
In the first phase, Host I sends a SY N message as
the initial step of the TCP three-way handshake. The
packet header includes the real source address (pIPHI
and pMACH]I) and the temporary destination address
(tIPS1 and tMACSI). Upon receiving it, the HI Agent
performs address translation using tMACHI and t/IPH]I.
The packet sent into the network has fully obfuscated
addressing until it reaches the SI Agent, who then
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performs reverse translation by replacing the temporary
destination address (tMACSI and tIPSI) with the real
address (pMACSI and pIPSI). After Server I success-
fully receives the segment, it replies with a SYN-ACK.
Meanwhile, the S/ Agent handles an ARP query for
the Host I address mapping, returning the temporary
address tMACH . Since communication is bidirectional,
S1 Agent once again performs address translation for
the response, and on the receiving side, the HI Agent
performs reverse translation.

B. Mutation State Change During Connection Duration

One of the assumptions of the system operation is the
continuation of the connection when a mutation state change
occurs. Fig. 3 illustrates the sequence diagram that fulfills this
assumption. The diagram shows a fragment of communication
between Server I and Host 1, which is downloading a file from
the server. It is assumed that the file is large enough for the
download process to be time-consuming. It is also assumed
that the mutation interval Tm is short enough to change a
mutation state during the file download process.

After the connection is successfully established, the file
download from Server I begins. Communication between Host
1 and Server 1 takes place using segments containing the
PUSHACK and ACK flags. The segment sent by Server
1 with the PUSHACK flag includes the data segment of
the file requested by Host I. The ACK segment, on the
other hand, is the response from Host I indicating successful
reception of the segment from Server I. This communication
continues until Server I sends all segments. At this point,
Server I sends a F'IN flag segment, informing Host I that all
segments have been transmitted and initiating the connection
termination process.

During the connection establishment, the SDN Controller
places flow rules in the switch flow tables, enabling commu-
nication using temporary addressing marked in the diagram
as addresses t0. These rules have a defined time 7Tm, after
which they are permanently removed from the switch. When
the rule responsible for address obfuscation on the Agent HI is
removed, it sends a FLOW_REMOVED message to the SDN
Controller, informing it that the rule has been deleted. The
SDN Controller then re-selects the path for communication.
Next, using the newly generated addressing in state ¢/, it
installs flow rules on the switches responsible, in the case of
Agent HI and Agent S1, for translating addresses ¢/, and for
switches in the SDN Network, for communication using the
t1 addresses along the new path. After the rules are installed,
the client-server communication continues with the new data
path state and obfuscated addressing.

IV. IMPLEMENTATION

The experimental environment for the designed system was
implemented using the Containernet network emulator, run-
ning on a virtual machine with Ubuntu 20.04. Open vSwitch
(OVS) was used to implement the agents and SDN switches.
These components form the foundation of a software-defined

network architecture, which supports advanced dynamic be-
havior and fine-grained traffic control.

The SDN network is managed by the Ryu controller, which
runs a dedicated control application written in Python. This
application serves as the central intelligence of the system,
orchestrating all major network operations such as address
mutation, communication path management and DNS response
manipulation. It interacts continuously with switches and
agents, using the OpenFlow protocol to install and update flow
rules that define how packets are forwarded throughout the
network.

One of the core features of the control application is its
dynamic addressing mechanism. At fixed intervals, the system
triggers a mutation process that generates random temporary
IP and MAC addresses for all endpoints in the network,
including hosts, servers, and the DNS server. These addresses
replace the real ones in communication flows, significantly
reducing the feasibility of reconnaissance and tracking by
potential attackers. The mutation runs asynchronously in the
background, ensuring uninterrupted operation of other system
components.

In addition to address mutation, the control application
configures agent-hosted rules to intercept and respond to ARP
queries. When hosts send ARP requests for the DNS server, the
agents reply with dynamically assigned fake MAC addresses.

Another essential component of the architecture is a DNS
server built using the Python Dmnslib library. It processes
traditional DNS queries but is tightly integrated with the
control logic. Upon receiving a DNS request, the control appli-
cation extracts the queried domain, verifies it against a known
mapping, and assigns a temporary IP address corresponding to
the correct service endpoint. The DNS server configuration is
then updated in real time to reflect the new address, ensuring
all clients receive the current valid mapping.

Once a DNS query is resolved, the control application
establishes the necessary flow rules to guide the DNS response
and subsequent communication across the SDN switches and
agents. For every transmission, source and destination ad-
dresses are translated to temporary counterparts, and then re-
stored on the receiving end, enabling seamless and transparent
bidirectional communication.

Communication paths themselves are also subject to muta-
tion. The system periodically selects different routes for data
transfer from a predefined set of options. New flow rules are
installed along the newly chosen path, while outdated ones are
removed.

All flow rules are configured with hard timeouts to ensure
that temporary addressing remains effective. The control ap-
plication is notified when a rule expires and installs a new
rule set with updated addresses and paths. This dynamic rule
replacement ensures continued communication fidelity while
preserving the ephemeral nature of all addressing and routing
information.

The overall logic of the control application described above
is presented in Algorithm 1.
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Fig. 3. Mutation State Change During the Connection
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Fig. 4. SDN Network Topology in the Research Environment

The structure of the implemented network, including ad-
dress allocation for individual components, is illustrated in
Fig. 4, and the logical system architecture is shown in Fig. 5.
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Fig. 5. Logical architecture of the implemented environment

V. VALIDATION AND RESULTS

A series of test scenarios were developed to verify the
implemented system’s operation.
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Algorithm 1 Control Application Logic for SDN Mutation

System

Require: Active SDN controller, initialized switches, known

domain-to-server mappings

Ensure: Continuous operation with dynamic addressing and
path mutation

. Initialize mappings and path set

: Start background MutationLoop

: OnSwitchFeaturesReceived

. if host agent then

Install ARP rule, redirect DNS to controller

: else if DNS agent then

Install ARP rule

: end if

: OnPacketIn

: if DNS query for known domain then

Select endpoint, assign temporary IP/MACs

Store mappings, update DNS config

Install translation and ARP rules

Select path, install forwarding rules

Forward modified DNS packet

: end if

: OnFlowRemoved

: if ARP rule expired then

Reinstall ARP rule

. else if IP flow expired then

Identify flow, retrieve temp addresses

Select path, reinstall updated rules

: end if

: MutationLoop (background)

: while true do

Sleep for interval, generate temp IP/MACs

Update mappings, reinstall rules

: end while

© % N AW N~

RN NN R N om e s e e e e e
PRV HEDDR YR IINRLDNEQ

A. Address Mutation

The first test scenario illustrates network traffic on various
devices belonging to the selected path during communication
between H4 and Server 2 using the ping command.

Fig. 8 shows traffic on the interface of the agent connected
to H4. Initially, the agent responds to an ARP query regard-
ing the DNS server, returning the temporary MAC address
(t_MAC_DNS). Then, the host sends a DNS query for the IP
address of the server domain server2.pl. After forwarding
the query to the controller, it is sent to the DNS server, which
returns a response containing the temporary IP address of the
target server (t_IP_S2).

To begin the transmission of ICMP packets, the host must
still obtain the MAC address assigned to the server. In response
to the ARP query, the agent returns the temporary MAC
address of the server (t_MAC_S2). Following this, correct com-
munication occurs, using the temporary destination addressing.

The source addressing is obscured when the packet passes
through the agent. The agent then replaces the real addressing
with the temporary one corresponding to the given host
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(t_MAC_H4 and ¢ _IP_H4). Fig. 9 shows the observation of
traffic on a selected switch in the SDN Network located on

the

communication path. The ICMP packets contain both

temporary source and destination addressing.

The observation of traffic on the Agent S2 device port,
connecting the agent to the server, is shown in Figure 10.
Upon receiving the appropriate packet from the network, the
agent performs a reverse translation, replacing the temporary
server addressing with the real one, labeled p_MAC_S2 and
p_IP_S2, allowing the response to be sent to the host.

B. Change of Address Mutation State

As part of the address mutation mechanism, after the time

Tm

has passed, communication in the system takes place using

the temporary addressing of the new state. In the following Fig.
6 and Fig. 7, the communication between Host I and Server
1 during the download of an HTTP page is presented, using
temporary addresses in two different states of the system.
During the first two connections (lines 1-27 and 3-6 of
listings in Fig. 6 and Fig. 7 respectively), Host I communicates
with Server I using the temporary address 10.0.0.165, and

the

server 10.0.0.53. After the time Tm, defined in the test

as 10 seconds, the subsequent page download (lines 29-41
and 7-8) takes place using a new pair of temporary addresses:
10.0.0.237 for Host I and 10.0.0.102 for Server 1.

- N S T

40
41

root@hl:/# wget http://serverl.pl:8080

--2025-01-07 17:28:49-- http://serverl.pl:8080/
Resolving serverl.pl (serverl.pl)... 10.0.0.53
Connecting to serverl.pl (serverl.pl)
|10.0.0.531:8080... connected.

HTTP request sent, awaiting response... 200 OK
Length: 1028 (1.0K) [text/html]

Saving to: 'index.html'

100% [ >] 1,028 --.-K/s in Os
2025-01-07 17:28:49 (244 MB/s) -

'index.html' saved [1028/1028]

root@hl:/# wget http://serverl.pl:8080

--2025-01-07 12:28:52-- http://serverl.pl:8080/
Resolving serverl.pl (serverl.pl)... 10.0.0.53
Connecting to serverl.pl (serverl.pl)
|10.0.0.531:8080... connected.

HTTP request sent, awaiting response... 200 OK
Length: 1028 (1.0K) [text/html]

Saving to: 'index.html.1l'

100% [============>] 1,028 -—.-K/s in 0Os
2025-01-07 17:28:52 (213 MB/s) -

'index.html.1l' saved [1028/1028]

root@hl:/# wget http://serverl.pl:8080

--2025-01-07 17:29:09-- http://serverl.pl:8080/
Resolving serverl.pl (serverl.pl)... 10.0.0.102
Connecting to serverl.pl (serverl.pl)
110.0.0.102]:8080... connected.

HTTP request sent, awaiting response... 200 OK
Length: 1028 (1.0K) [text/html]

Saving to: 'index.html.2'

100% [============ 1,028 --.-K/s in Os
2025-01-07 17:29:09 (213 MB/s) -

'index.html.2' saved [1028/1028]

Fig. 6. Downloading a page from Server I on device Host I



152

1 root@serverl:/# python3 -m http.server 8080
2 Serving HTTP on 0.0.0.0 port 8080 ...
310.0.0.165 - - [07/Jan/2025 17:28:49]

4 "GET / HTTP/1.1" 200 -
510.0.0.165 - - [07/Jan/2025 17:28:52]
6 "GET / HTTP/1.1" 200 -
710.0.0.237 - - [07/Jan/2025 17:29:09]
8 "GET / HTTP/1.1" 200 -

Fig. 7. Received requests of Server I

C. Mutation of Path and Address State During the Connection

The implemented system supports mutation during the con-
nection, ensuring continuous communication. In the test on
device Host 5, a 1GB file was downloaded from Server 1. The
time Tm was set to 5 seconds, allowing for the observation of
frequent mutation state changes in the system.

Upon establishing a connection with Server I, Host 1
received the following messages, shown in Fig. 11:

o temporary MAC address of the DNS Server
23:DA:A9:89:27:51 (+_MAC_DNS),

o temporary IP address of Server I

(t_IP_S1_10),
« temporary MAC address of Server I B1:56:ED:C4:2D:06
(t_MAC_S1_10).

Subsequent communication involves downloading the file
"plik.bin" from Server 1. Fig. 12 shows the traffic ob-
served on switch S5 (chosen for path mutation) with com-
pletely obfuscated addressing. Host 5 uses the temporary
address D1:58:CO:F7:AE:3C (t_MAC_HS5_t0) and 10.0.0.247
(¢_IP_H5_t0). Fig. 13 depicts the situation of a mutation
state change. After the time Tm has passed, the flows on the
corresponding switches are updated, enabling continued com-
munication with a new address and path. In the new mutation
state for the path, the switch changes to S4, through which
the segments are transmitted. Additionally, new temporary
addresses appear in the packet headers:

¢ MAC address of Host 5
(t_MAC_H5_tl),

o IP address of Host 5 10.0.0.236 (r_IP_H5_tl),

e MAC address of Server 1 D3:03:0A:06:8F:8A
(t_MAC_S1_tl),

o IP address of Server 1 10.0.0.21 (t_IP_S1_tl).

Upon the mutation state change, retransmission of the seg-
ments occurs. This happens so quickly that the connection
continues with the new addressing shortly afterward, enabling
the entire file to be downloaded.

10.0.0.185

93:97:15:01:69:DC

VI. DISCUSSION

The test scenarios described above validate the correct
functioning of the proposed Moving Target Defense system
based on hybrid mutations at both the MAC and IP layers, as
well as dynamic path adjustments during communication.

The results from the Address Mutation test confirm that the
agents correctly perform address obfuscation and translation
at the network edges. Temporary addresses are assigned and
managed without impacting the continuity of communication
from the hosts’ perspective. This behavior is evident from
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the consistent and uninterrupted exchange of ICMP packets
and successful DNS resolution processes involving mutated
addressing.

The Change of Address Mutation State scenario demon-
strates the system’s ability to transition between different
temporary address states during normal operations seamlessly.
After the predefined timeout interval (7m), new sets of tem-
porary IP addresses are allocated and applied transparently,
while ongoing services (such as HTTP downloads) continue
unaffected. This dynamic reassignment capability significantly
increases the complexity for any adversary attempting to map
the network or track devices, reinforcing the defensive posture.

Finally, the Mutation of Path and Address State During the
Connection scenario showcases the most demanding feature of
the system—Ilive mutation of both the data path and addressing
during an active session. During a large file transfer, the
system’s behavior proves that the agents and controller can
coordinate effectively to update switch flows and reassign
addressing without disrupting the data stream. Segment re-
transmissions and address switching occur within such short
intervals that the host application layer remains unaware of
the underlying changes.

The tests and observed results prove that the proposed
solution functions as intended. It achieves its core objective
of creating a dynamic and unpredictable network communi-
cation environment, effectively increasing potential attackers’
difficulty in exploiting static addressing schemes or consistent
routing paths.

Although effective in the test environment, the system uses
temporary IPv4 addresses from a limited subnet. In larger
networks, this may lead to address exhaustion. Supporting
IPv6 would expand the address pool and enhance scalability
and obfuscation.

VII. CONCLUSION

This paper presents an MTD system employing a hybrid
mutation strategy involving address and path alterations to
enhance network security. By cyclically mutating these ele-
ments during connection initiation and throughout the session
duration, the proposed approach significantly increases the
complexity of network reconnaissance for potential attackers.
The design leverages dedicated packet processing agents,
which can be efficiently implemented on SmartNICs at end
hosts, enabling high-performance execution with minimal im-
pact on system resources.

The prototype implementation, tested in an SDN-based
environment utilizing OVS switches, demonstrated that the
mutation mechanism operates seamlessly without disrupting
normal network operations. Experimental results validated the
system’s effectiveness in improving the security posture of
corporate networks by dynamically and unpredictably altering
attack surfaces. Future work will optimize mutation intervals,
integrate adaptive intelligence for mutation decisions, and
evaluate performance in larger and more diverse network
topologies.
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Source Source Destination Destination Protocol Lengtf Info t_MAC_DNS

06:60:60:00

09:04 00:00:06_00:00:04 ff:FF:FF:FF.FF:FF Broadcast i
©3:08:ch:8: :

:00:04 0:00:00_00:00:04 ARP
1:da:c3 10.6.0.6 NS
0:60:04 10.0.0.4 NS
f.ff:ff Broadcast Arp
:00:04 60:00:00_00:00:04 ARP
b:3c:72 10.6.0.47 ICHP
0:60:04 10.0.0.4 ICHP
b:3c:72 10.6.0.47 ICHP
00:00:09:00:60:04 10.0.0.4 i

0172 10.8.0.47
0:04 10.9.0.4 73140130
73:4e:30:30:3¢:72 10.9.0.47

42'Who has 16.0.6.67 Tell 10.0.0.4 .~
42 19.0.9.6 is at c3:08:c6:01:da:c3

76 Standard query 8x3f87 A server2.pl ¥
86 Standard query response Bxf87 A server2.pl A 10.0.0.47
42 Who has 10.0.0.477 Tell 10.0.0.4

4210.0.0.47 is at T3:4e:30:20:00:72 «—*t-MAC_S2
98 Echo (ping) request 1d=0x0032, seq=1/256, tt1=64 (repl)
98 Echo (ping) reply  1d-0x832, seq=1/256, ttl-64 (requs
98 Echo (ping) request 1d=0x0032, seq=2/512, tt1=64 (repl)
98 Echo (ping) reply  1d-0x8032, seq=2/512, ttl-64 (requs

t_IP_S2

Fig. 8. Traffic observed on the port of the Agent H4 device connecting the agent to the host

t_ MAC_H4 t IP_H4 t MAC_S2 t_IP_S2

No.  Source l Saurce jDestination jDestination Frotocal Lengft Info
10 32:66:26:03:73:06 10.0.0.177 73:4e:30:30:3¢:72 10.0.8.477 I0WP 98 Echo (ping) request 1d=0x0032, seq=1/258, ttl=64 (reply in 1)

1 73:40:30:30:3c:72 10.0.0.47  32:66:26:83:73:06 10.0.8.177 ICHP 98 Echo

ping) reply  1d=0x8632, seq-1/256, ttl=64 (request in 19)

(

(
12 32:66:26:63:73:06 10.0.0.177 73:4:30:30:3c:72 10.0.0.47  ICHP 98 Echo (ping) request 1d=0:0032, seq=2/512, til-64 (reply in 13)
13 73:40:30:30:3c:72 10.0.0.47  32:66:26,83,73:06 10.0.0.177 ICHP 98 Echo (ping) reply  1d=Bv0032, seq=2/512, ttl1=64 (request in 12)

Fig. 9. Traffic observed on the switch in the SDN Network

t_MAC_H4 t_IP_H4 p_MAC_s2 p_IP_S2

No. Soce V¥ Source
:B3:73:06 10.0.0.177 BD 00:00:00:00:03 19.0.8.3 ICHP

B: :08 :ff Broadcast ARP

:03 00:00:00_00:00:03 ARP

32: 6 106 10.0.0.177 ICHP

60: 6 103 10.0.0.3 ICHP

32: 6 106 10.0.0.177 ICHP

g B 0. 00: 01 103 10.6.0.3 ICHP

10 0A:00:00:00:00:03 10.0.6.3 32:66:26:83:73:66 10.0.0.177 ICHP

Destination i Destmatlon/ Protocol Lengtt Info

98 Echo (ping) request 10-0v0032, seq=1/256, ttl=64 (reply in 6)
42 Who has 10.8.0.1777 Tell 10.6.0.
42 10.0.0.177 is at 32:66:26:83:73:06
98 Echo (ping) reply  id=6x0@32, seq=1/256, ttl=64 (request in 3)
98 Echo (ping) request 10=6x9032, seq=2/512, ttl=64 (reply in 8)
98 Echo (ping) reply  10-0x9032, seq=2/512, ttl=64 (request in 7)
)
)

e

98 Echo (ping) request 1d-xBA32, seq=3/768, ttl=64 (reply in 10)
98 Echo (ping) reply  1d-6xBA32, seq=3/768, ttl-G4 (request in 9)

Fig. 10. Traffic observed on the port of the Agent S2 device connected to the server

No.  Source Source Destination Destination Protocol Lengtt Info t_MAC_DNS
100:00:00:00:00:05 00:00:00_00:00:05 ff:ff.ff:ff.ff:ff Broadcast ARP 42 Who has 10.0.0.67 Tell 16.0.8.5 tIP S1 0
8 o8 42 10.0.0.6 is at 23:da:a9:89:27:51 - =

09:00:09:(60:00:05 00:00:0_00: 09:65 ARP
£42:29:80:27: o
DHS

(0:00:00:00
TE:ffIfT: 7177 Broadeast
c4 DGS (0:00:00:00:00:05 00:00:00_00:00:05 ARP
b1:56:ed:c4:2b. 2 o}

TP
TP
TCP

(0:00:00:00
bi:56:ed:c4:

HTTP

70 Standard query @xSefl A serverl.pl

86 Standard query response Bx5efl A server1.pl A 10.0.0.185
70 Standard query Bxf8ec AAMA serverd.pl

70 Standard query response @xfBec AAAA serveri.pl

7
42 Who has 10.9.0.1857 Tell 10.0.0.5 <t MAC_S1_t0

66 36630 ~ 8080 [ACK] Seq=1 Ack=1 Win=42496 Len=0 TSval=204
187 GET /plik.bin HTTP/1.1
66 8680 ~ 36630 [ACK] Seq=1 Ack=122 Win-43520 Len=@ TSval=7
273 8080 ~+ 36630 [PSH, ACK] Seg=1 Ack=122 Win=43520 Len=207
66 36630 ~ 8680 [ACK] Seq=122 Ack=208 Win=42496 Len=0 TSval

Fig. 11. Traffic observed on the Agent H5 device

t_MAC_H5_t0 t_IP_H5_t0 t_MAC_S1_t0
Source J Destination

2 :CO:TT: 0.0.247 12b:

4 d1:58:cB:T7:ae:3c 10.0.0.247 :2b:06 10.
5 bl:56:ed:c4:2b:06 10.0.0.185 :ae:3c 10.
6 bl:56:ed:c4:2b:06 10.0.8.185 :ae:3c 10.
7 d1:58:c0:77:ae:3c 10.0.0.247 :2b:06 10.
8 bl:56:ed:c4:2b:06 10.9.0.185 :ae:d3c 10.
9 d1:58:c@:T7:ae:3c 10.0.0.247 :2b:06 10.
16 bl:56:ed:c4:2b:06 10.9.0.185 :ae:3c 10.
11 d1:58:c0:f7:ae:3c 10.0.0.247 :2b:86 10.

t_IP_S1_t0

/ Destination} Protocol |Length Info

.0.185 TCP 66 36630 — 8080 [ACK] Seq=I
©.185 HTTP 187 GET /plik.bin HTTP/1.1

0.247 TCP 66 8080 — 36630 [ACK] Seq=
.0.247 TCP 273 B0BO — 36630 [PSH, ACK]
.0.185 TCP 66 36630 — 8080 [ACK] Seq=!
@.247 TCP 7306 808@ —~ 36630 [PSH, ACK]
0.185 TCP 66 36630 — 8080 [ACK] Seq=l
0.247 TCP 7306 8088 — 36630 [PSH, ACK]
@.185 TCP 66 36630 —~ 8080 [ACK] Seq=1

Fig. 12. The traffic observed on switch S5 in state 10

P

) g

115:01:69:dc 10.0.0.236 d3:03:0a:86:87:8a 10.0.0.21

115:01:69:dc 10.0.0.236 d3:03:0a:86:8f:8a 10.0.0.21
g

1
7:15:01:69:dc 10.9.6. 236 dZ:BS:Da:ﬂﬁlﬂf:Ea 10.0.8.21
1

RETRASMISSION

:97:15:01:69:dc 10.9.8. 236 d3:B 1fa:86:87:8a 10.0.0.21

2 93:97:15:!!1:69:dc 10.9.0. 236 d&:BS:Ba:ESJSf:Sa 10.0.0.21

36 93:97115:01169:ﬂc 19.9.0. 236 GB:BSIBE:BSIEf:Ea 10.0.0.21

69:0 190023 a3 183 10.0.0.2

1 Retr 31097 Ack
£9:0c 10..0.230 _03:6 182 10.0.0.00 10 18 30630 ~ 8080 [ALK] Seq=] Ack=t234332545 WAN=010 Lens T5Vl=20A035401d TSeCr=251Bi1r5 .
18 14 [TCP Retra : T

78 36630 ~ 0980 [ACK] Seq=1 Ack=4294933993 Win=266 Len= TSval= 2040354015 T5e0r=TI5161775 .
78 36630 ~ 8980 [ACK] Seq=1 Ack-4294935441 Win=266 Len=0 TSval-2649354915 TSecr=725187775 ..
TCP Re 3 935441 Ack T

PSH, 7 136989 Ack P 06 T

69:dc 10.6.9.236 f:8a 16.9.0.21 78 36630 ~ 8980 [ACK] Seq=1 Ack=4294936889 Win=264 Len=0 TSval-2646354618 TSecr=725187776 .
69:dc 1.6.0.236 f:82 10.9.0.21 78 36630 ~ 8980 [ACK] Seq=1 Ack= 4234939785 Win=259 Len=0 TSval 2649354618 TSecr=725187779 .

3 L

78 35630 = EUED [ACK] Seq=1 Ack= 4294947025 Wlin=245 Len 0 TSval 2940354019 TSeCr=125187779 .
78 36630 = 3080 [ACK] Seq=1 Ack-42949434?3 Wln-Zd(i Len=0 TSVHI-ZMMMMI TSecT-7251B7782 c
78 36630 = 3080 [ACK] Seq=1 Ack= 4294955713 Mlin= 211!! Len=g TSval 2648354021 TSecT 725137782 c

34 9 69:0c 10.9.0. 236 03:8 182 10.0.0.21 = BUEB [ACK] Seq=1 Ack= 4294957161 Win=246 Len=Q TSval 2840354024 TSeCT 725187756 c

7E 36530 = BUEB [ACK] Seq=1 Ack= 4294962953 1lin=242 Len=d TSval 2040354024 TSeCT 125187786 .

66 35530 ~ 8080 [ACK] Seq=1 Ack=20213 Wm 243 Len=0 TSVal 2040354026 TSecr= 725187756

9 0.0, 1514 8080 - 36630 [ACK] Seq=20273 Ack=1 Win-85 Len=1448 TSval-725187793 TSecr=2040354026

9 0.0, 7306 8080 - 36630 [PSH, ACK] Seq=21721 Ack=1 Win-85 Len=7240 TSval=725187793 TSecr=2040354026
3 0.0, 66 36630 ~ 8080 [ACK] Seq=1 Ack=28961 Win=266 Len=0 TSval-2040354030 TSecr=725187793
93 0.0 7366 8086 - 36630 [PSH, ACK] Seq=28961 Ack=1 Win=85 Len=7240 TSval=725187793 TSecr=2046354026
(3:03:0a:86:87:8a 10.0.8.21 66 36630 ~ 8980 [ACK] Seq=1 Ack-36261 Win=266 Len=0 TSval-2040354832 TSecr=725187793

t_MAC_H5_t1 t_IP_H5_t1 t_ MAC_S1_t1 t_IP_S1_t1

Fig. 13. Traffic observed on switch S4 in state ¢/
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