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Abstract—Reconnaissance is a crucial stage of cyberattacks,
enabling attackers to gather information about system vulner-
abilities. In computer networks, data regarding addressing and
transmission paths is especially sensitive. This paper introduces a
concept for a hybrid mutation system based on Software Defined
Networking (SDN), combining address and data path mutation
to improve security. The system employs central network man-
agement and pseudorandom, temporary addressing, which is
periodically reconfigured. In contrast to existing Moving Target
Defense (MTD) address mutation methods, end devices connect
through dedicated agents, which can be implemented using a
SmartNIC. The agent modifies packet headers at a network
edge to obfuscate address information, minimizing the processing
burden on SDN switches inside a network. The objective is to
hinder attackers from discovering network details that could
be exploited. A prototype was implemented using typical SDN
components and containerized end devices. Tests confirmed the
system’s correctness and effectiveness in protecting the network
structure and communication paths. This approach enhances the
confidentiality of network parameters and limits the information
available to potential attackers, making reconnaissance signif-
icantly more difficult, while minimizing SDN network control
overhead.

I. INTRODUCTION

N
ETWORK security is critical in today’s digital landscape,

as it protects sensitive data from unauthorized access and

cyber threats while ensuring the integrity and availability of

network resources. The network attack cycle spans several

steps. The Cyber Kill Chain illustrates this cycle, detailing

the stages an attacker typically goes through to successfully

breach a network, from reconnaissance and weaponization to

delivery, exploitation, installation, command and control, and

finally, actions on objectives [1].

The reconnaissance is the initial phase where attackers

gather information about their target, identifying potential

vulnerabilities and entry points that can be exploited to gain

unauthorized access. Stopping an attacker at the reconnais-

sance phase of a cyber attack provides significant security

advantages by preventing further exploitation and reducing

the overall risk to a network. However, spotting reconnais-

sance activity can be challenging due to several factors that
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make it stealthy and difficult to differentiate from legitimate

network traffic. Traditional computer networks are inherently

static, making them predictable targets for attackers who

exploit static IP addresses, unchanged software stacks, and

consistent routing paths to plan and execute cyberattacks.

This predictability enables adversaries to conduct prolonged

reconnaissance, identify vulnerabilities, and launch precise,

well-timed exploits with minimal resistance. The static nature

of computer networks gives the attacker a significant advantage

over the defender, as attackers can use stealthy techniques to

gather information over a long time to identify weaknesses

without raising alarms [2].

A proposed solution to this issue was introduced in [3] as

part of the USA Federal Networking and Information Technol-

ogy Research and Development program, which seeks inno-

vative approaches to address critical cybersecurity challenges.

This approach, known as Moving Target Defense (MTD),

represents a fundamental shift in securing computer networks.

The core principle of MTD is that an attack, if successful,

can only be effective once, as the system is continuously

reconfigured to prevent the reuse of the same attack vector.

By dynamically altering the attack surface, MTD increases

the complexity and cost for attackers, reduces the window of

vulnerability exposure, and enhances overall system resilience.

Moving Target Defense mitigates this risk by introducing

continuous, randomized changes to network attributes such

as IP addresses, system configurations, and routing paths.

By dynamically altering the attack surface, MTD disrupts

adversarial strategies, forcing attackers to constantly reassess

their tactics, thereby increasing the cost and complexity of

cyber intrusions [4]. Unlike traditional static defenses relying

on perimeter security mechanisms, MTD adopts a proactive

security posture that introduces unpredictability while ensuring

system reliability for legitimate users.

Numerous MTD strategies have been proposed for securing

computer networks [5]. One of the key principles of MTD in

networks is IP Address Mutation, which involves frequently

changing the IP addresses of critical assets, preventing at-

tackers from accurately mapping the network [6][7]. This

technique disrupts traditional reconnaissance methods and

limits the effectiveness of targeted attacks. Another effective

approach is Dynamic Network Topology, which emphasizes
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dynamic changes in network architecture to confound attack-

ers [8]. Route Mutation and Traffic Obfuscation techniques

further enhance network security by dynamically altering

packet routes, making it difficult for attackers to eavesdrop or

execute man-in-the-middle attacks. This method ensures that

sensitive data does not travel predictable paths, increasing the

difficulty of successful network intrusions [9]. Service and Port

Randomization also prevents attackers from leveraging known

vulnerabilities by frequently changing open ports and service

access points [10].

The benefits of MTD for networks are substantial. It disrupts

reconnaissance efforts, reduces the attack window, and forces

adversaries to adapt continuously, increasing their resource

expenditure and reducing their ability to execute long-term

attacks. Moreover, MTD enhances cyber resilience by in-

troducing self-adaptive security measures that dynamically

respond to emerging threats. However, challenges such as

performance overhead, compatibility with legacy systems, and

the need for intelligent automation must be addressed to

optimize MTD implementation.

Software-Defined Networking (SDN) technology plays a

key role in implementing most Moving Target Defence strate-

gies, enabling dynamic, automated, and adaptive networking

mechanisms. This technology provides programmability, flex-

ibility, and scalability, making it possible to rapidly adjust

network configurations, which constitutes the core of most

network-based MTD methods. However, these frequent and

unpredictable changes introduce significant stress on SDN

switches and controllers, impacting performance, stability, and

resource utilization.

As noted in [11], while centralization in SDN improves

control and flexibility, it also introduces new attack vectors.

Offloading certain security functions to edge components can

mitigate these risks and improve scalability. With the advent of

Smart Network Interface Cards (SmartNICs), there is potential

to alleviate some of these pressures by offloading certain

processing tasks from the SDN controllers and switches,

thereby enhancing overall system efficiency and enabling more

robust MTD solutions that can adapt in real-time without

compromising network integrity. SmartNICs represent a sig-

nificant evolution in network interface technology, offering en-

hanced functionality that extends far beyond traditional NICs.

SmartNICs integrate programmable processors, memory, and

dedicated hardware accelerators at their core, enabling them

to offload network processing tasks [12].

This paper presents a hybrid addressing and route mu-

tation mechanism that utilizes dedicated host agents with

a lightweight SDN switch system. These host agents are

designed to be implemented using SmartNICs, offloading

specific tasks from core SDN switches. This approach not

only improves the scalability of network management but also

enhances performance by allowing core switches to focus on

high-level routing decisions while host agents handle lower-

level address mutation tasks efficiently.

II. RELATED WORKS

Several solutions based on the concept of address mutation

and dynamic routing in network environments built on SDN

architecture can be found in scientific literature.

One example of applying address mutation in SDN net-

works is the OpenFlow Random Host Mutation (OF-RHM)

mechanism [13]. Each host is assigned a virtual IP address

used during network communication in this solution. Impor-

tantly, these addresses are periodically changed, significantly

complicating attacks based on traffic monitoring (e.g., sniffing)

or network topology analysis. The address mutation process

is handled by the switches, which also manage data traffic.

Although this approach improves transmission security, it

increases the load on the switches, which can negatively

impact the overall performance and scalability of the network.

Another approach was presented in [14], where a routing

algorithm based on fake addressing was proposed. In this

model, switches establish paths between hosts using randomly

assigned addresses, while the SDN controller manages the

mapping of temporary addresses to actual ones. Despite its

security advantages, this solution involves several significant

challenges. Firstly, the mutation process executed on the

switches generates additional load for these devices. Secondly,

the path selection may lead to temporary network congestion,

especially in more complex topologies, due to excessive packet

flooding during route updates.

In [15], the authors proposed using local NAT tables on each

switch. In this model, a dedicated MTD unit responsible for

generating temporary addressing is connected to each switch.

As a result, the SDN controller is relieved of some responsibil-

ity – its role is limited to initializing data transmission paths.

Although this reduces the controller’s load, the switches still

need to handle the address translation process, which remains

challenging for their performance.

On the other hand, the solution presented in [16] introduces

an additional layer of switches called agents directly connected

to end devices. These agents take over the task of address

mutation, thereby offloading the main switches responsible for

packet routing in the network. This approach limits the impact

of mutation on the core infrastructure; however, it introduces

another challenge – temporary addressing is created for each

individual connection, which may lead to significant load on

the SDN controller, especially in high-traffic environments.

III. MTD CONCEPT

This paper proposes a solution based on the Moving Target

Defense technique, utilizing a hybrid mutation approach. The

proposed method introduces dynamic mutations at both the

data transmission path level and the addressing level, specifi-

cally targeting the second and third layers of the OSI model,

namely the MAC and IP address layers.

Our solution leverages the flexibility and centralized control

offered by Software-Defined Networking, where the SDN

controller plays a pivotal role. The controller is tasked with

orchestrating both path and address mutations and dynamically

installing flow rules on SDN switches throughout the network
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via the OpenFlow protocol. To support the address mutation

process, we introduce lightweight, specialized agents in the

form of thin SDN switches that are designed to manipulate

packet headers in real time.

These agents are deployed at the network edge, typically on

end devices or SmartNICs. They are responsible for executing

packet-level transformations in accordance with mutation poli-

cies received from the SDN controller. Each agent is capable

of performing real-time mutation of MAC and IP addresses.

The agents operate transparently to the applications running

on the host devices, ensuring seamless communication while

continuously altering address mappings to thwart reconnais-

sance and tracking attempts by potential adversaries.

By offloading the mutation tasks from the core SDN

switches to these edge agents, the architecture reduces the

processing overhead on network infrastructure components,

improves scalability, and enables fine-grained control over

address mutation. The result is a dynamic, resilient, and

secure communication environment that significantly raises

the bar for attackers attempting to exploit static network

configurations.

The overall architecture of the proposed system is illus-

trated in Fig. 1, highlighting the interplay between the SDN

controller, the network switches, and the deployed agents.

To establish a connection between devices, the controller

performs a pseudo-random selection of one of the available

paths labeled 1, 2, and 3 in the diagram. Data exchange takes

place over the selected route for the duration defined by the

mutation interval.

During operation, packets transmitted in the network are

subject to modification to obscure their actual source and

destination addresses. Temporary false addressing is applied,

referred to as tMAC (temporary MAC address) and tIP

(temporary IP address). After the mutation interval expires,

the controller generates new temporary addresses and selects

new transmission paths for each end device connected to the

network.

The real addresses, corresponding to the physical configu-

ration of device interfaces, are denoted as pMAC (permanent

MAC address) and pIP (permanent IP address). From the per-

spective of communicating hosts, it is impossible to discover

the actual address of the machine involved in data exchange,

ensuring complete address obfuscation within the system. As a

result, all packets transmitted within the network contain only

temporary, falsified source and destination addresses in their

headers.

This mechanism can operate successfully provided all com-

municating devices, including SDN switches, remain under

the organization’s control. The system also assumes that the

organization has access to a large address pool within a given

subnet, allowing for effective masking of real IP addresses. To

avoid raising suspicion from a potential attacker, temporary IP

addresses are selected from the available address space within

the corresponding subnet.

Agent

Agent

Agent

Agent

Agent

SDN Network

Control
application

SDN Controller

1

2

3

Fig. 1. The architecture of the proposed network

A. Connection Establishment and Handling

Fig. 2 presents a sequence diagram illustrating the phases of

a sample connection establishment between Host 1 and Server

1. This process includes:

1) ARP Request for the DNS Server

Communication with the DNS Server is the first step in

establishing the connection. Assuming that the ARP ta-

bles on the end devices are initially empty, Host 1 sends

an ARP request to the broadcast address (ff:ff:ff:ff:ff:ff)

asking for the MAC address of the DNS Server. The H1

Agent intercepts this request and replies to Host 1 with

a packet containing a temporary MAC address for the

DNS Server, marked as tMACDNS in the diagram.

2) DNS Query

Host 1, now knowing the temporary MAC address of

the DNS Server (tMACDNS), sends a query requesting

the IP address of a specific domain. In the presented

diagram, the DNS query concerns the domain server1.pl,

corresponding to the device Server 1. The query is

received by the H1 Agent and then sent to the SDN

Controller using a PACKET_IN message.

Upon receiving the query, the SDN Controller performs

a pseudo-random path selection to determine through

which switch the communication will proceed. It also

verifies whether the requested domain is handled by the

DNS Server. If the domain does not exist, the connection

attempt fails. If the domain is valid, the controller uses

temporary addresses created for the current mutation

state.

One of these temporary addresses is the fake IP address

of Server 1 (tIPS1). The SDN Controller uses this

address to modify the DNS server’s configuration file,

which maps actual server addresses to domain names.

In the next step, the controller uses the temporary

addressing to generate rules for appropriate agents and

switches in the network. These rules are installed us-

ing FLOW_MOD messages. Rules are installed on the

H1, S1, and DNS agents. The rules for H1 and S1

handle address obfuscation and ARP query handling
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tMACH1 pMACS1

Translation
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tMACH1 tMACS1

SYN ACK tIPH1 tIPS1

tMACH1 tMACS1

Translation

SYN ACK tIPH1 tIPS1

tMACH1 tMACS1

pMACH1 tMACS1

tMACH1 tMACDNS
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4

SYN ACK pIPH1 tIPS1

Fig. 2. Connection Establishment and Handling Diagram

for temporary IP addresses. The rule installed on the

DNS Agent ensures that the DNS response is delivered

to Host 1 through the network. To achieve this, the

SDN Controller additionally installs rules on Host 1’s

agent and on the switches in the SDN Network to allow

proper delivery of the response from the DNS Server.

The rules installed on the SDN Network switches serve

exclusively to forward packets between end devices

using obfuscated addressing.

The DNS query is directly forwarded to the DNS Agent

and then to the DNS Server. To send a response, the

DNS Server must obtain the MAC address of Host

1, from which the original query was received. It

sends an ARP request, which is intercepted by the

DNS Agent, who replies with a fake MAC address

00:00:00:aa:bb:cc. Due to the complexity of the

proposed system’s logic, the DNS Agent is configured

with a flow rule that returns this MAC address for

any IP in response to an ARP request. After receiving

the ARP response, the DNS Server sends back a DNS

response containing the fake IP address corresponding

to the requested domain (tIPS1). The DNS Agent, upon

receiving this response, sends it to the SDN Controller,

which then forwards the packet to the H1 Agent via

the SDN Network. While sending the response into the

network, the DNS Agent performs address translation,

inserting temporary addressing into the packet header:

tMACDNS and tIPDNS for the source, and tMACH1 and

tIPH1 for the destination. When the H1 Agent receives

the response, it performs reverse translation by replacing

the destination addresses with the real addressing of

Host 1 (pMACH1 and pIPH1).

3) ARP Request for Server 1

After receiving the DNS response containing tIPS1, Host

1 sends an ARP request to obtain the MAC address

assigned to this IP address. The rule installed by the

SDN Controller on the H1 Agent handles the request,

returning the temporary MAC address of Server 1,

marked in the diagram as tMACS1.

4) Communication Between Host and Server

The next part of the diagram presents a sample TCP

connection established between Host 1 and Server 1.

In the first phase, Host 1 sends a SY N message as

the initial step of the TCP three-way handshake. The

packet header includes the real source address (pIPH1

and pMACH1) and the temporary destination address

(tIPS1 and tMACS1). Upon receiving it, the H1 Agent

performs address translation using tMACH1 and tIPH1.

The packet sent into the network has fully obfuscated

addressing until it reaches the S1 Agent, who then
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performs reverse translation by replacing the temporary

destination address (tMACS1 and tIPS1) with the real

address (pMACS1 and pIPS1). After Server 1 success-

fully receives the segment, it replies with a SYN-ACK.

Meanwhile, the S1 Agent handles an ARP query for

the Host 1 address mapping, returning the temporary

address tMACH1. Since communication is bidirectional,

S1 Agent once again performs address translation for

the response, and on the receiving side, the H1 Agent

performs reverse translation.

B. Mutation State Change During Connection Duration

One of the assumptions of the system operation is the

continuation of the connection when a mutation state change

occurs. Fig. 3 illustrates the sequence diagram that fulfills this

assumption. The diagram shows a fragment of communication

between Server 1 and Host 1, which is downloading a file from

the server. It is assumed that the file is large enough for the

download process to be time-consuming. It is also assumed

that the mutation interval Tm is short enough to change a

mutation state during the file download process.

After the connection is successfully established, the file

download from Server 1 begins. Communication between Host

1 and Server 1 takes place using segments containing the

PUSHACK and ACK flags. The segment sent by Server

1 with the PUSHACK flag includes the data segment of

the file requested by Host 1. The ACK segment, on the

other hand, is the response from Host 1 indicating successful

reception of the segment from Server 1. This communication

continues until Server 1 sends all segments. At this point,

Server 1 sends a FIN flag segment, informing Host 1 that all

segments have been transmitted and initiating the connection

termination process.

During the connection establishment, the SDN Controller

places flow rules in the switch flow tables, enabling commu-

nication using temporary addressing marked in the diagram

as addresses t0. These rules have a defined time Tm, after

which they are permanently removed from the switch. When

the rule responsible for address obfuscation on the Agent H1 is

removed, it sends a FLOW_REMOVED message to the SDN

Controller, informing it that the rule has been deleted. The

SDN Controller then re-selects the path for communication.

Next, using the newly generated addressing in state t1, it

installs flow rules on the switches responsible, in the case of

Agent H1 and Agent S1, for translating addresses t1, and for

switches in the SDN Network, for communication using the

t1 addresses along the new path. After the rules are installed,

the client-server communication continues with the new data

path state and obfuscated addressing.

IV. IMPLEMENTATION

The experimental environment for the designed system was

implemented using the Containernet network emulator, run-

ning on a virtual machine with Ubuntu 20.04. Open vSwitch

(OVS) was used to implement the agents and SDN switches.

These components form the foundation of a software-defined

network architecture, which supports advanced dynamic be-

havior and fine-grained traffic control.

The SDN network is managed by the Ryu controller, which

runs a dedicated control application written in Python. This

application serves as the central intelligence of the system,

orchestrating all major network operations such as address

mutation, communication path management and DNS response

manipulation. It interacts continuously with switches and

agents, using the OpenFlow protocol to install and update flow

rules that define how packets are forwarded throughout the

network.

One of the core features of the control application is its

dynamic addressing mechanism. At fixed intervals, the system

triggers a mutation process that generates random temporary

IP and MAC addresses for all endpoints in the network,

including hosts, servers, and the DNS server. These addresses

replace the real ones in communication flows, significantly

reducing the feasibility of reconnaissance and tracking by

potential attackers. The mutation runs asynchronously in the

background, ensuring uninterrupted operation of other system

components.

In addition to address mutation, the control application

configures agent-hosted rules to intercept and respond to ARP

queries. When hosts send ARP requests for the DNS server, the

agents reply with dynamically assigned fake MAC addresses.

Another essential component of the architecture is a DNS

server built using the Python Dnslib library. It processes

traditional DNS queries but is tightly integrated with the

control logic. Upon receiving a DNS request, the control appli-

cation extracts the queried domain, verifies it against a known

mapping, and assigns a temporary IP address corresponding to

the correct service endpoint. The DNS server configuration is

then updated in real time to reflect the new address, ensuring

all clients receive the current valid mapping.

Once a DNS query is resolved, the control application

establishes the necessary flow rules to guide the DNS response

and subsequent communication across the SDN switches and

agents. For every transmission, source and destination ad-

dresses are translated to temporary counterparts, and then re-

stored on the receiving end, enabling seamless and transparent

bidirectional communication.

Communication paths themselves are also subject to muta-

tion. The system periodically selects different routes for data

transfer from a predefined set of options. New flow rules are

installed along the newly chosen path, while outdated ones are

removed.

All flow rules are configured with hard timeouts to ensure

that temporary addressing remains effective. The control ap-

plication is notified when a rule expires and installs a new

rule set with updated addresses and paths. This dynamic rule

replacement ensures continued communication fidelity while

preserving the ephemeral nature of all addressing and routing

information.

The overall logic of the control application described above

is presented in Algorithm 1.
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Fig. 3. Mutation State Change During the Connection
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Fig. 4. SDN Network Topology in the Research Environment

The structure of the implemented network, including ad-

dress allocation for individual components, is illustrated in

Fig. 4, and the logical system architecture is shown in Fig. 5.

Virtual Machine
Ubuntu 20.04 Wireshark

Custom Ryu controller
 written in Python

Ryu framework

OVS acted as
SDN switches

 and per-host agents.

Observes traffic at agents and switches.

Containernet

Docker containers
 functioning as

 end-hosts.

Fig. 5. Logical architecture of the implemented environment

V. VALIDATION AND RESULTS

A series of test scenarios were developed to verify the

implemented system’s operation.
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Algorithm 1 Control Application Logic for SDN Mutation

System

Require: Active SDN controller, initialized switches, known

domain-to-server mappings

Ensure: Continuous operation with dynamic addressing and

path mutation

1: Initialize mappings and path set

2: Start background MutationLoop

3: OnSwitchFeaturesReceived

4: if host agent then

5: Install ARP rule, redirect DNS to controller

6: else if DNS agent then

7: Install ARP rule

8: end if

9: OnPacketIn

10: if DNS query for known domain then

11: Select endpoint, assign temporary IP/MACs

12: Store mappings, update DNS config

13: Install translation and ARP rules

14: Select path, install forwarding rules

15: Forward modified DNS packet

16: end if

17: OnFlowRemoved

18: if ARP rule expired then

19: Reinstall ARP rule

20: else if IP flow expired then

21: Identify flow, retrieve temp addresses

22: Select path, reinstall updated rules

23: end if

24: MutationLoop (background)

25: while true do

26: Sleep for interval, generate temp IP/MACs

27: Update mappings, reinstall rules

28: end while

A. Address Mutation

The first test scenario illustrates network traffic on various

devices belonging to the selected path during communication

between H4 and Server 2 using the ping command.

Fig. 8 shows traffic on the interface of the agent connected

to H4. Initially, the agent responds to an ARP query regard-

ing the DNS server, returning the temporary MAC address

(t_MAC_DNS). Then, the host sends a DNS query for the IP

address of the server domain server2.pl. After forwarding

the query to the controller, it is sent to the DNS server, which

returns a response containing the temporary IP address of the

target server (t_IP_S2).

To begin the transmission of ICMP packets, the host must

still obtain the MAC address assigned to the server. In response

to the ARP query, the agent returns the temporary MAC

address of the server (t_MAC_S2). Following this, correct com-

munication occurs, using the temporary destination addressing.

The source addressing is obscured when the packet passes

through the agent. The agent then replaces the real addressing

with the temporary one corresponding to the given host

(t_MAC_H4 and t_IP_H4). Fig. 9 shows the observation of

traffic on a selected switch in the SDN Network located on

the communication path. The ICMP packets contain both

temporary source and destination addressing.

The observation of traffic on the Agent S2 device port,

connecting the agent to the server, is shown in Figure 10.

Upon receiving the appropriate packet from the network, the

agent performs a reverse translation, replacing the temporary

server addressing with the real one, labeled p_MAC_S2 and

p_IP_S2, allowing the response to be sent to the host.

B. Change of Address Mutation State

As part of the address mutation mechanism, after the time

Tm has passed, communication in the system takes place using

the temporary addressing of the new state. In the following Fig.

6 and Fig. 7, the communication between Host 1 and Server

1 during the download of an HTTP page is presented, using

temporary addresses in two different states of the system.

During the first two connections (lines 1-27 and 3-6 of

listings in Fig. 6 and Fig. 7 respectively), Host 1 communicates

with Server 1 using the temporary address 10.0.0.165, and

the server 10.0.0.53. After the time Tm, defined in the test

as 10 seconds, the subsequent page download (lines 29-41

and 7-8) takes place using a new pair of temporary addresses:

10.0.0.237 for Host 1 and 10.0.0.102 for Server 1.

1 root@h1:/# wget http://server1.pl:8080

2 --2025-01-07 17:28:49-- http://server1.pl:8080/

3 Resolving server1.pl (server1.pl)... 10.0.0.53

4 Connecting to server1.pl (server1.pl)

5 |10.0.0.53|:8080... connected.

6 HTTP request sent, awaiting response... 200 OK

7 Length: 1028 (1.0K) [text/html]

8 Saving to: 'index.html'

9

10 100%[============>] 1,028 --.-K/s in 0s

11

12 2025-01-07 17:28:49 (244 MB/s) -

13 'index.html' saved [1028/1028]

14

15 root@h1:/# wget http://server1.pl:8080

16 --2025-01-07 12:28:52-- http://server1.pl:8080/

17 Resolving server1.pl (server1.pl)... 10.0.0.53

18 Connecting to server1.pl (server1.pl)

19 |10.0.0.53|:8080... connected.

20 HTTP request sent, awaiting response... 200 OK

21 Length: 1028 (1.0K) [text/html]

22 Saving to: 'index.html.1'

23

24 100%[============>] 1,028 --.-K/s in 0s

25

26 2025-01-07 17:28:52 (213 MB/s) -

27 'index.html.1' saved [1028/1028]

28

29 root@h1:/# wget http://server1.pl:8080

30 --2025-01-07 17:29:09-- http://server1.pl:8080/

31 Resolving server1.pl (server1.pl)... 10.0.0.102

32 Connecting to server1.pl (server1.pl)

33 |10.0.0.102|:8080... connected.

34 HTTP request sent, awaiting response... 200 OK

35 Length: 1028 (1.0K) [text/html]

36 Saving to: 'index.html.2'

37

38 100%[============>] 1,028 --.-K/s in 0s

39

40 2025-01-07 17:29:09 (213 MB/s) -

41 'index.html.2' saved [1028/1028]

Fig. 6. Downloading a page from Server 1 on device Host 1
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1 root@server1:/# python3 -m http.server 8080

2 Serving HTTP on 0.0.0.0 port 8080 ...

3 10.0.0.165 - - [07/Jan/2025 17:28:49]

4 "GET / HTTP/1.1" 200 -

5 10.0.0.165 - - [07/Jan/2025 17:28:52]

6 "GET / HTTP/1.1" 200 -

7 10.0.0.237 - - [07/Jan/2025 17:29:09]

8 "GET / HTTP/1.1" 200 -

Fig. 7. Received requests of Server 1

C. Mutation of Path and Address State During the Connection

The implemented system supports mutation during the con-

nection, ensuring continuous communication. In the test on

device Host 5, a 1GB file was downloaded from Server 1. The

time Tm was set to 5 seconds, allowing for the observation of

frequent mutation state changes in the system.

Upon establishing a connection with Server 1, Host 1

received the following messages, shown in Fig. 11:

• temporary MAC address of the DNS Server

23:DA:A9:89:27:51 (t_MAC_DNS),

• temporary IP address of Server 1 10.0.0.185

(t_IP_S1_t0),

• temporary MAC address of Server 1 B1:56:ED:C4:2D:06

(t_MAC_S1_t0).

Subsequent communication involves downloading the file

"plik.bin" from Server 1. Fig. 12 shows the traffic ob-

served on switch S5 (chosen for path mutation) with com-

pletely obfuscated addressing. Host 5 uses the temporary

address D1:58:C0:F7:AE:3C (t_MAC_H5_t0) and 10.0.0.247

(t_IP_H5_t0). Fig. 13 depicts the situation of a mutation

state change. After the time Tm has passed, the flows on the

corresponding switches are updated, enabling continued com-

munication with a new address and path. In the new mutation

state for the path, the switch changes to S4, through which

the segments are transmitted. Additionally, new temporary

addresses appear in the packet headers:

• MAC address of Host 5 93:97:15:01:69:DC

(t_MAC_H5_t1),

• IP address of Host 5 10.0.0.236 (t_IP_H5_t1),

• MAC address of Server 1 D3:03:0A:06:8F:8A

(t_MAC_S1_t1),

• IP address of Server 1 10.0.0.21 (t_IP_S1_t1).

Upon the mutation state change, retransmission of the seg-

ments occurs. This happens so quickly that the connection

continues with the new addressing shortly afterward, enabling

the entire file to be downloaded.

VI. DISCUSSION

The test scenarios described above validate the correct

functioning of the proposed Moving Target Defense system

based on hybrid mutations at both the MAC and IP layers, as

well as dynamic path adjustments during communication.

The results from the Address Mutation test confirm that the

agents correctly perform address obfuscation and translation

at the network edges. Temporary addresses are assigned and

managed without impacting the continuity of communication

from the hosts’ perspective. This behavior is evident from

the consistent and uninterrupted exchange of ICMP packets

and successful DNS resolution processes involving mutated

addressing.

The Change of Address Mutation State scenario demon-

strates the system’s ability to transition between different

temporary address states during normal operations seamlessly.

After the predefined timeout interval (Tm), new sets of tem-

porary IP addresses are allocated and applied transparently,

while ongoing services (such as HTTP downloads) continue

unaffected. This dynamic reassignment capability significantly

increases the complexity for any adversary attempting to map

the network or track devices, reinforcing the defensive posture.

Finally, the Mutation of Path and Address State During the

Connection scenario showcases the most demanding feature of

the system—live mutation of both the data path and addressing

during an active session. During a large file transfer, the

system’s behavior proves that the agents and controller can

coordinate effectively to update switch flows and reassign

addressing without disrupting the data stream. Segment re-

transmissions and address switching occur within such short

intervals that the host application layer remains unaware of

the underlying changes.

The tests and observed results prove that the proposed

solution functions as intended. It achieves its core objective

of creating a dynamic and unpredictable network communi-

cation environment, effectively increasing potential attackers’

difficulty in exploiting static addressing schemes or consistent

routing paths.

Although effective in the test environment, the system uses

temporary IPv4 addresses from a limited subnet. In larger

networks, this may lead to address exhaustion. Supporting

IPv6 would expand the address pool and enhance scalability

and obfuscation.

VII. CONCLUSION

This paper presents an MTD system employing a hybrid

mutation strategy involving address and path alterations to

enhance network security. By cyclically mutating these ele-

ments during connection initiation and throughout the session

duration, the proposed approach significantly increases the

complexity of network reconnaissance for potential attackers.

The design leverages dedicated packet processing agents,

which can be efficiently implemented on SmartNICs at end

hosts, enabling high-performance execution with minimal im-

pact on system resources.

The prototype implementation, tested in an SDN-based

environment utilizing OVS switches, demonstrated that the

mutation mechanism operates seamlessly without disrupting

normal network operations. Experimental results validated the

system’s effectiveness in improving the security posture of

corporate networks by dynamically and unpredictably altering

attack surfaces. Future work will optimize mutation intervals,

integrate adaptive intelligence for mutation decisions, and

evaluate performance in larger and more diverse network

topologies.
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t_MAC_DNS

t_IP_S2

t_MAC_S2

Fig. 8. Traffic observed on the port of the Agent H4 device connecting the agent to the host

t_MAC_H4 t_IP_H4 t_IP_S2t_MAC_S2

Fig. 9. Traffic observed on the switch in the SDN Network

t_MAC_H4 t_IP_H4 p_MAC_S2 p_IP_S2

Fig. 10. Traffic observed on the port of the Agent S2 device connected to the server
t_MAC_DNS
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t_MAC_S1_t0

Fig. 11. Traffic observed on the Agent H5 device
t_MAC_H5_t0 t_IP_H5_t0 t_MAC_S1_t0 t_IP_S1_t0

Fig. 12. The traffic observed on switch S5 in state t0
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Fig. 13. Traffic observed on switch S4 in state t1
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