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Abstract—The goal of FedCSIS 2025 Challenge is to build a
model to predict the difficulty (measured as Lichess rating) of
given chess puzzles. To address this task, we propose a three-stage
joint visual–statistical framework for predicting Glicko-based
difficulty ratings. In the first stage, a convolutional model based
on MobileNetV2 integrates FEN-rendered board images with
structured features, including engine-predicted success proba-
bilities, move count, and piece counts, to generate baseline
predictions. The second stage employs LightGBM to perform
residual refinement, explicitly learning the residual errors of the
baseline predictions to correct systematic biases, particularly for
extreme difficulty levels. Finally, a domain-informed refinement
adjusts the outputs toward interpretable difficulty estimates
derived from failure probability distributions and rating-bucket
inflection points.

Our model ranked 9th in the challenge. Experimental results
show that residual refinement and domain-informed adjustment
significantly reduce mean squared error compared to the baseline
visual–statistical model.

Index Terms—chess puzzle difficulty, visual–statistical learning,
residual error correction, structure-guided refinement

I. INTRODUCTION

C
HESS puzzles—tactical positions requiring one or more

precise moves—are essential for chess training and skill

assessment. Online platforms such as Lichess employ Glicko

-based difficulty ratings to recommend puzzles appropriate to

players’ skill levels[1]. However, deriving such ratings directly

from player performance data is expensive and prone to biases

caused by uneven rating distributions, motivating research into

automated, feature-based prediction methods.

As FedCSIS 2025 Challenge [2] is the extension of IEEE

Big Data Cup 2024 [3] chess puzzle competition, both are

organized by the KnowledgePit platform1, we will mainly cite

those applied models with high ranking scores in the previous

challenge from the IEEE Big Data Cup 2024 report.

a) Deep Learning Methods: Representation learning has

recently dominated those image related AI tasks. Ruta et al.

[4] used convolutional neural networks (CNNs) to predict

difficulty from move sequences. Miłosz and Kapusta [5] in-

troduced Transformer-based architectures that treated puzzles

1https://knowledgepit.ai/

as sequential data, while Omori and Tadepalli [6] combined

CNNs and LSTMs to jointly encode move sequences and

timing information.

b) Hybrid and Cognitive-Inspired Models: Hybrid meth-

ods have shown strong performance in recent two compe-

titions. Woodruff et al. [7] integrated pretrained Maia/Leela

embeddings with tree-based regressors and won the last chal-

lenge. Schütt et al. [8] proposed cognitive-inspired neural

networks mimicking human problem-solving processes.

In this paper, we propose a three-stage framework for

predicting Glicko-based puzzle difficulty ratings, developed

for the FedCSIS 2025 Challenge on Predicting Chess Puzzle

Difficulty:

• A joint visual–statistical model based on MobileNetV2[9]

that integrates FEN-rendered board images with struc-

tured features, including engine-predicted success proba-

bilities, move count, and piece counts, to generate base-

line predictions;

• A LightGBM-based[10] prediction refinement stage that

adjusts the baseline predictions to mitigate systematic

errors, particularly for underrepresented extreme ratings;

• A domain-informed refinement stage that aligns predic-

tions with interpretable chess heuristics by incorporating

failure probability distributions and rating-bucket inflec-

tion points.

Additionally, we explore uncertainty estimation by introducing

a mask prediction strategy that identifies the most unreliable

predictions for targeted evaluation.

The remainder of this paper is organized as follows: Sec-

tion II describes the competition setup, dataset, and evaluation

metrics. Section III details the proposed methodology. Sec-

tion IV presents the mask prediction strategy for uncertainty

estimation. Section V reports experimental results and analy-

sis. Finally, Section VI concludes the paper and outlines future

work.

II. FEDCSIS 2025 CHALLENGE DESCRIPTION

The FedCSIS 2025 Challenge on Predicting Chess Puzzle

Difficulty provided a benchmark for assessing machine learn-

ing methods in estimating the difficulty of tactical chess puz-
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zles. Participants were required to predict continuous Glicko-

based ratings for each puzzle, derived from large-scale player

performance statistics on Lichess. Accurate prediction of such

ratings is crucial for adaptive training systems and automated

puzzle recommendation.

A. Problem Formulation

Formally, each puzzle xi is associated with a ground-truth

difficulty rating yi ∈ R. The objective is to learn a predictive

function:

f∗ : xi 7→ ŷi, with ŷi ≈ yi (1)

where ŷi denotes the predicted rating.

B. Dataset and Features

The official dataset consists of a large annotated training set

and an unlabeled test set prepared specifically for the FedCSIS

2025 Challenge on Predicting Chess Puzzle Difficulty:

• Training Set: 4,557,000 puzzles, each labeled with a

human-derived Glicko-2 difficulty rating and accompa-

nied by engine-computed auxiliary statistics.

• Test Set: 2,235 puzzles, sharing an identical feature

structure but without ground-truth ratings; predictions on

this set determine the final leaderboard ranking.

Each puzzle is represented by structured information that in-

tegrates human annotations, contextual metadata, and engine-

estimated success probabilities:

1) Core Descriptors: A unique PuzzleId, a

Forsyth–Edwards Notation (FEN)[?] string encoding

the complete board configuration (piece placement,

side to move, castling rights, and en passant state), and

a Portable Game Notation (PGN) sequence listing the

puzzle’s solution moves.

2) Human-Performance Annotations (training

only): Glicko-2 Rating, RatingDeviation,

Popularity (measured by user interactions), and

NbPlays (number of attempts).

3) Contextual Metadata: Descriptive tags such as Themes,

hyperlinks to the source games (GameUrl), and

opening-related tags (OpeningTags).

4) Engine-Derived Success Probabilities: 20 probability

columns estimating the likelihood of solving the puzzle

for different skill brackets, including 10 rapid-mode

features (success_prob_rapid_1050–2050)

and 10 blitz-mode features

(success_prob_blitz_1050–2050).

The feature sets differ slightly between training and test

partitions: the training set provides 32 features (including

human-performance annotations), whereas the test set contains

25 features, omitting labels and human-derived statistics. The

large size and rich heterogeneity of this dataset provide an

opportunity to combine statistical priors and visual-spatial

representations for accurate difficulty estimation, while also

posing significant challenges in balancing feature importance

across modalities.

C. Evaluation Protocol

The official evaluation metric was the Mean Squared Error

(MSE) between predicted and ground-truth ratings:

MSE =
1

N

N
∑

i=1

(yi − ŷi)
2 (2)

where N is the number of test puzzles. Lower MSE indicates

closer alignment with human-derived difficulty estimates.

D. Specific Challenges of the Task

Despite the availability of rich engine statistics, the task

presents several intrinsic challenges:

• Non-linear dependencies: Tactical motifs and player

success rates interact in complex, non-linear ways; vi-

sually similar positions can vary greatly in difficulty due

to subtle move-ordering or hidden tactical resources.

• Imbalanced rating distribution: The dataset is slightly

skewed toward higher-rated puzzles, with puzzles larger

than 1700 Elo constituting the largest portion, whereas

very easy puzzles are comparatively underrepresented.

• Multi-source feature fusion: Effective models must

jointly exploit structured numerical data (success proba-

bilities, move counts) and visual-spatial information from

FEN-rendered positions.

• Absence of player-specific metadata: Unlike human-

performance-based systems, the task relies solely on

puzzle-intrinsic features, forcing models to infer difficulty

without individualized performance history.

III. PROPOSED METHODOLOGY

This section introduces a three-stage hierarchical framework

for predicting chess puzzle difficulty ratings. The pipeline

integrates a joint visual–statistical model, a LightGBM-based

prediction refinement stage, and a domain-informed refinement

stage, designed to combine high-capacity representation learn-

ing with interpretable domain knowledge.

A. Overall Pipeline

The pipeline consists of three sequential stages, each de-

signed to progressively refine predictions by addressing dif-

ferent aspects of the task.

Step 1: Joint Visual–Statistical Model. The baseline

prediction ŷdeep is obtained by integrating visual and struc-

tured features. FEN-rendered board images are processed

through a convolutional backbone (MobileNetV2) to extract

positional and tactical representations, while structured fea-

tures—such as engine-derived success probabilities and move

counts—provide statistical priors. The two representations are

fused to generate the initial difficulty estimate.

Step 2: LightGBM-Based Prediction Refinement. The

baseline model exhibits systematic biases, particularly for

puzzles with extreme ratings that are underrepresented in the

training distribution. To mitigate these biases, a LightGBM re-

gressor is trained to refine the baseline predictions, leveraging

its ability to model non-linear relationships in tabular data and

to reveal feature importance for interpretability.
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Step 3: Domain-Informed Refinement. The final output is

adjusted by aligning ŷrefined with a domain-inspired difficulty

estimate S, derived from engine failure probabilities and

rating-bucket inflection points. A confidence-adaptive weight-

ing strategy regulates the strength of this adjustment, applying

stronger corrections only when prediction uncertainty is high.

Overall, the framework integrates data-driven representation

learning (Step 1), prediction refinement via statistical mod-

eling (Step 2), and consistency enforcement through domain

knowledge (Step 3), forming a hybrid approach well-suited for

applications that demand both accuracy and interpretability.

B. Data Preprocessing and Feature Engineering

Each puzzle xi is described by heterogeneous sources of

information that combine structural metadata, human perfor-

mance indicators, and engine-derived statistics:

• FEN String: Encodes the full board state, including piece

placement, side to move, and castling rights.

• PGN Sequence: Lists the solution moves; the total move

count is extracted as an indicator of tactical depth.

• Engine-Derived Success Probabilities: Estimates for

multiple rating buckets across blitz and rapid time con-

trols, serving as statistical priors of player performance

at different skill levels.

The structured feature vector xstruct integrates these com-

ponents:
xstruct = { pblitz

r | r ∈ R,

prapid
r | r ∈ R,

move_count,

side_to_move,

white_pieces,

black_pieces }

(3)

where R denotes the set of predefined rating buckets. Addi-

tional handcrafted features are defined as:

move_count = |Moves(xi)| (4)

side_to_move = I(White to move) (5)

white_pieces =
∑

c∈{P,N,B,R,Q,K}

count(c) (6)

black_pieces =
∑

c∈{p,n,b,r,q,k}

count(c) (7)

For visual encoding, each FEN string is rendered into a

160× 160 RGB image, preserving spatial and tactical motifs

not easily captured by numerical features.

Three training samples (puzzles) of PuzzleId,FEN,Moves

and Rating fields are illustrated in Table I.

The initial state of the chessboard decoded by FEN of

these three training samples (puzzles) with different ratings

is illustrated in Figure 1.

Puzzle difficulty ratings range from approximately 400 Elo,

corresponding to basic tactical exercises, to over 3000 Elo, rep-

resenting master-level combinations. The overall distribution

is relatively balanced across skill levels, although puzzles rated

(a) Rating 1353 (b) Rating 2005 (c) Rating 449

Figure 1. Initial Chess Board State of Different Ratings

Figure 2. Elo rating distribution of the training set.

>=1700 Elo constitute the largest portion (35.3%), followed by

intermediate ranges (1000–1399 Elo, 26.0%), as summarized

in Figure 2. This mild skew towards higher-rated puzzles may

still influence prediction performance for very easy puzzles,

which are comparatively less represented.

C. Stage 1: Joint Visual–Statistical Model

The first stage generates a baseline difficulty estimate ŷdeep
by jointly encoding visual representations of the chessboard

and structured numerical features. This stage serves as the

primary representation learning component of the pipeline.

a) Visual Branch: Each puzzle is rendered from its FEN

string into an RGB image ximg ∈ R
160×160 MobileNetV2.

The image is processed by a convolutional backbone followed

by global average pooling (GAP):

himg = ϕimg(ximg) (8)

where ϕimg(·) maps ximg to a compact latent vector himg ∈
R

dimg . In our implementation, we adopt MobileNetV2 pre-

trained on ImageNet due to its efficiency, achieved through

depthwise separable convolutions and inverted residual blocks,

which balance accuracy and computational cost.
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Table I
THREE SAMPLES OF THE CHESS PUZZLE TRAINING DATA

PUZZLEID FEN MOVES RATING

000Zo 4r3/1k6/pp3r2/1b2P2p/3R1p2/P1R2P2/1P4PP/6K1 w - - 0 35 e5f6 e8e1 g1f2 e1f1 1353

000qP 8/7R/8/5p2/4bk1P/8/2r2K2/6R1 w - - 7 51 f2f1 f4f3 f1e1 c2c1 e1d2 c1g1 2005

0042j 3r2k1/4nppp/pq1p1b2/1p2P3/2r2P2/2P1NR2/PP1Q2BP/3R2K1 b - - 0 24 d6e5 d2d8 b6d8 d1d8 449

b) Feature Branch: Structured statistical features are

projected into a dense embedding hfeat. Given the feature

vector:

xstruct =











pblitz
r , prapid

r | r ∈ R,

move_count, side_to_move,

white_pieces, black_pieces











(9)

hfeat = σ(Wfxstruct + bf ) (10)

where Wf ∈ R
df×|xstruct|, bf ∈ R

df , and σ(·) denotes the

ReLU activation.

c) Fusion and Baseline Prediction: The outputs from the

visual and statistical branches, himg and hfeat, are integrated

to jointly model their complementary information. Rather than

treating the two modalities independently, the concatenation

of these embeddings allows the network to learn non-linear

cross-modal interactions, which are critical for capturing re-

lationships such as how specific positional patterns influence

success probabilities.

Formally, the two embeddings are concatenated into a joint

representation:

hjoint = [himg;hfeat] ∈ R
dimg+dfeat (11)

where [·; ·] denotes vector concatenation. The joint representa-

tion is passed through a fully connected fusion layer to model

higher-order dependencies:

z = σ (Wzhjoint + bz) , z ∈ R
dz (12)

where Wz ∈ R
dz×(dimg+dfeat) and bz ∈ R

dz are trainable

parameters, and σ(·) is the ReLU activation introducing non-

linearity.

Finally, the fused representation z is mapped to a scalar

baseline difficulty estimate through a regression layer:

ŷdeep = Woz + bo, Wo ∈ R
1×dz , bo ∈ R (13)

The trainable parameters {Wz, bz,Wo, bo} are optimized to

minimize the mean squared error (MSE) between predictions

and true ratings:

LStage1 =
1

N

N
∑

i=1

(

yi − ŷdeep,i
)2

(14)

where N is the number of training samples.

This fusion design enables the network to exploit both local

spatial patterns (e.g., piece coordination or king exposure

encoded in himg) and global statistical priors (e.g., engine-

estimated success probabilities and material balance encoded

in hfeat). By training the fusion weights Wz , the model can

learn modality-specific importance and interaction strength,

allowing it to prioritize visual or statistical cues depending

on the puzzle context. However, the reliance on dense rating

regions during training tends to bias ŷdeep toward interme-

diate ratings, highlighting the need for the refinement stages

described later.
d) Analysis: The visual branch himg primarily captures

spatial and tactical configurations, such as open king exposure,

piece coordination, and typical mating patterns, which are

essential for modeling human-perceived difficulty. In contrast,

the feature branch hfeat encodes statistical priors derived

from engine-estimated success probabilities and basic material

information, providing a complementary perspective based on

aggregated player performance.

By concatenating and jointly processing himg and hfeat, the

model learns to approximate complex non-linear relationships

between board patterns and statistical success indicators. The

fusion weights Wz implicitly control the relative importance of

visual and statistical cues, enabling the network to emphasize

modality-specific features depending on the puzzle’s structural

complexity.

However, the training set is slightly skewed toward high-

difficulty puzzles, with puzzles rated ≥ 1700 Elo constituting

the largest portion (35.3%), followed by intermediate ranges

(1000–1399 Elo, 26.0%). This mild skew can cause the

baseline estimate ŷdeep to overfit patterns typical of high-

rated puzzles, which in turn may lead to overestimation of

moderately difficult puzzles and underestimation of very easy

ones. Such systematic biases motivate the introduction of a

prediction refinement stage (Stage 2) to explicitly adjust for

these distributional effects.

D. Stage 2: Prediction Refinement with LightGBM

Although the baseline predictions ŷdeep capture both visual

and statistical information, they exhibit systematic biases due

to the skewed rating distribution and the limited ability of

the deep model to generalize across underrepresented rating

ranges. To mitigate these biases, we introduce a refinement

stage based on residual learning with LightGBM, which ex-

plicitly models the prediction error of Stage 1.
a) Residual Definition: For each puzzle i, the residual ri

is defined as:

ri = yi − ŷdeep,i, i = 1, 2, . . . , N (15)

where ri > 0 indicates that the baseline underestimates the

difficulty, and ri < 0 indicates overestimation. The residual

learning task is formulated as finding a function flgb(·) that

maps an extended feature set to the residuals:

flgb : xlgb,i 7→ ri (16)
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where the input explicitly combines the baseline prediction

and structured statistical features:

xlgb,i =











ŷdeep,i,

pblitz
r , prapid

r | r ∈ R,

move count, side to move,

white piece count, black piece count, . . .











(17)

b) Residual Prediction: The residual is predicted as:

r̂i = flgb(xlgb,i), (18)

ŷrefined,i = ŷdeep,i + r̂i (19)

Thus, Stage 2 does not re-learn the entire rating function but

only adjusts the baseline estimates by adding the predicted

residual, following the principle of boosting-based refinement.

c) Optimization Objective: LightGBM minimizes a reg-

ularized differentiable objective:

LStage2 =
N
∑

i=1

l(ri, r̂i) + Ω(flgb), (20)

where l(·) is typically the squared loss:

l(ri, r̂i) = (ri − r̂i)
2,

and Ω(flgb) controls the complexity of the ensemble of re-

gression trees. Gradient boosting iteratively fits decision trees

to the negative gradients of the loss:

g
(t)
i =

∂l(ri, r̂
(t−1)
i )

∂r̂
(t−1)
i

, h
(t)
i =

∂2l(ri, r̂
(t−1)
i )

∂(r̂
(t−1)
i )2

(21)

where g
(t)
i and h

(t)
i denote the first- and second-order gradi-

ents at boosting iteration t, enabling LightGBM to prioritize

samples with larger residual errors.

Consequently, the refined predictions ŷrefined exhibit re-

duced systematic errors compared to ŷdeep, providing a more

reliable basis for the final adjustment in Stage 3.

E. Stage 3: Domain-Informed Refinement

The final stage refines the predictions by enforcing con-

sistency with domain-specific heuristics, which approximate

human-perceived puzzle difficulty. Unlike the purely data-

driven stages, this step introduces an interpretable adjustment

based on engine-derived structural signals.

a) Structural Difficulty Estimate: For each puzzle i,
a structure-based difficulty estimate Si is computed from

the engine-predicted success probabilities at different rating

buckets r ∈ R. The failure probability for bucket r is defined

as:

fail_probr,i = 1−
pblitz
r,i + prapid

r,i

2
, (22)

which approximates the likelihood that a player of rating r
fails to solve the puzzle. The structural difficulty estimate Si

is then formulated as the failure-probability-weighted average

of rating buckets:

Si =

∑

r∈R fail_probr,i · r
∑

r∈R fail_probr,i + ϵ
, (23)

where ϵ is a small constant to avoid division by zero. Intu-

itively, Si shifts toward higher ratings when high-rated players

are more likely to fail, aligning with human intuition that

“harder puzzles are those where stronger players also fail.”

b) Confidence-Adaptive Refinement: To combine the re-

fined prediction from Stage 2 with the structural estimate, we

apply a confidence-adaptive convex combination:

αi =

{

αlow = 0.2, σ(pblitz
r,i , p

rapid
r,i ) < 0.04,

αhigh = 0.3, otherwise,
(24)

ŷfinal,i = (1− αi)ŷrefined,i + αiSi (25)

where σ(·) denotes the standard deviation of success proba-

bilities across rating buckets. A lower variance implies higher

confidence in the baseline prediction ŷrefined,i and hence

a smaller correction weight (αlow), whereas high variance

suggests greater uncertainty, allowing stronger reliance on the

structural estimate.

c) Analysis: This domain-informed refinement stage pro-

vides two key benefits:

• Improved alignment with human intuition: The estimate

Si serves as an interpretable anchor, as it is derived

directly from engine-estimated success rates, which con-

verge to human-like difficulty judgments under large-

sample conditions.

• Adaptive correction strength: The confidence-based

weighting dynamically balances the refined prediction

and the structural prior, preventing overcorrection when

the model is already confident.

However, the manual tuning of αlow and αhigh limits flexi-

bility, as the optimal weights may vary across rating ranges or

puzzle types. Future work may replace these heuristics with

a meta-learned or uncertainty-calibrated weighting function

αi = gθ(xstruct,i, ŷrefined,i), where gθ(·) can be learned

jointly with Stage 2 to further improve consistency and adapt-

ability.

IV. MASK SCORING FOR UNCERTAINTY ESTIMATION

In addition to the main prediction task, we extend the

pipeline to an uncertainty estimation task. The goal is to

identify the 10% of test puzzles most likely to be mispredicted.

According to the challenge protocol, uncertainty estimation is

evaluated by recomputing the mean squared error (MSE) after

replacing the masked predictions with ground-truth values.

Better localization of uncertain samples yields a lower adjusted

MSE, quantified by the N/P ratio, where N is the adjusted

MSE and P is the theoretically optimal MSE.

The uncertainty score for puzzle i is computed as:

mask_scorei = ασpred,i + β∆i + γMoutlier,i (17)

where

σpred,i =

√

√

√

√

1

M

M
∑

m=1

(

ŷ
(m)
i − ȳi

)2
, (18)

∆i = |ŷfinal,i − ŷdeep,i| , (19)
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and there are

• σpred,i measures inter-model variance across M check-

points, capturing epistemic uncertainty (higher variance

⇒ lower confidence);

• ∆i quantifies the post-correction adjustment magnitude,

reflecting disagreement between Stage 1 and Stage 3

(aleatoric + model uncertainty);

• Moutlier,i ∈ {0, 1} flags structural anomalies (e.g., ex-

treme material imbalance);

• α, β, γ are tunable weights calibrated on validation data

(default: α = 1.0, β = 0.8, γ = 0.1).

The rationale for combining these three indicators is that no

single term sufficiently explains all failure cases:

• σpred,i alone fails when ensembles are consistently bi-

ased;

• ∆i highlights cases requiring strong heuristic correction,

often corresponding to difficult puzzles;

• Moutlier,i targets rare but structurally atypical puzzles,

typically hard for human players as well.

The mask is constructed by ranking samples by

mask_scorei.

Using this strategy, we achieved an uncertainty mask ratio

of 1.623, ranking 4th among the 9 teams that took part in

this additional challenge. Our submitted mask produced a final

score of roughly 59,027, whereas a perfect mask would have

resulted in about 36,371. The complete rankings and results

for all teams will be presented in the [2] paper.

V. RESULTS

A. Experimental Setup

The official training dataset was split into three mutually

exclusive subsets with a 7:1:2 ratio, ensuring that each subset

preserved the overall rating distribution:

• Training Set (70%): Used to train the Stage 1 deep

learning baseline (Dataset-1);

• Validation Set (10%): Used for monitoring early stop-

ping of Stage 1 (Dataset-2);

• Residual Learning Set (20%): Reserved for Stage 2

LightGBM training (Dataset-3), ensuring that refine-

ment was trained only on data unseen by Stage 1.

For Stage 2, LightGBM was trained to predict residuals:

ri = yi − ŷdeep,i (26)

using an extended feature set that explicitly included the

baseline prediction itself together with structured statistical

features, as defined in Eq. 17.

This design allows the residual model to explicitly leverage

both the baseline prediction and structured statistical features

to correct systematic errors.

Stage 3 applied the domain-informed refinement described

in Section III-E, producing the final predictions.

B. Main Results

Table II reports the incremental improvements on the public

(preliminary) leaderboard.

Table II
INCREMENTAL IMPROVEMENTS ACROSS STAGES.

Method Public MSE Improvement

Stage 1: Deep Learning (MobileNetV2) 82,266 –

Stage 2: + LightGBM Residual Refinement 72,819 ↓ 11.5%

Stage 3: + Domain-Informed Post-Correction 70,408 ↓ 14.4% (total)

The final private leaderboard score reached 67,408, rank-

ing 9th overall. Both residual refinement and domain-

informed post-correction significantly reduced mean squared

error (MSE) relative to the baseline.

VI. CONCLUSION AND FUTURE WORK

This paper presented a three-stage hybrid framework for

predicting chess puzzle difficulty, integrating a joint vi-

sual–statistical deep model, residual refinement via Light-

GBM, and a domain-informed structural correction. The pro-

posed pipeline achieved a top-10 ranking in the FedCSIS

Challenge and demonstrated substantial improvements in mean

squared error (MSE) compared to deep learning-only base-

lines. Furthermore, the introduced mask-based uncertainty

estimation strategy showed promising capability in accurately

localizing unreliable predictions, which is critical for real-

world applications such as adaptive puzzle recommendation.
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