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Abstract—The goal of FedCSIS 2025 Challenge is to build a
model to predict the difficulty (measured as Lichess rating) of
given chess puzzles. To address this task, we propose a three-stage
joint visual-statistical framework for predicting Glicko-based
difficulty ratings. In the first stage, a convolutional model based
on MobileNetV2 integrates FEN-rendered board images with
structured features, including engine-predicted success proba-
bilities, move count, and piece counts, to generate baseline
predictions. The second stage employs LightGBM to perform
residual refinement, explicitly learning the residual errors of the
baseline predictions to correct systematic biases, particularly for
extreme difficulty levels. Finally, a domain-informed refinement
adjusts the outputs toward interpretable difficulty estimates
derived from failure probability distributions and rating-bucket
inflection points.

Our model ranked 9th in the challenge. Experimental results
show that residual refinement and domain-informed adjustment
significantly reduce mean squared error compared to the baseline
visual-statistical model.

Index Terms—chess puzzle difficulty, visual-statistical learning,
residual error correction, structure-guided refinement

I. INTRODUCTION

HESS puzzles—tactical positions requiring one or more
C precise moves—are essential for chess training and skill
assessment. Online platforms such as Lichess employ Glicko
-based difficulty ratings to recommend puzzles appropriate to
players’ skill levels[1]. However, deriving such ratings directly
from player performance data is expensive and prone to biases
caused by uneven rating distributions, motivating research into
automated, feature-based prediction methods.

As FedCSIS 2025 Challenge [2] is the extension of IEEE
Big Data Cup 2024 [3] chess puzzle competition, both are
organized by the KnowledgePit platform', we will mainly cite
those applied models with high ranking scores in the previous
challenge from the IEEE Big Data Cup 2024 report.

a) Deep Learning Methods: Representation learning has
recently dominated those image related Al tasks. Ruta er al.
[4] used convolutional neural networks (CNNs) to predict
difficulty from move sequences. Mitosz and Kapusta [5] in-
troduced Transformer-based architectures that treated puzzles
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as sequential data, while Omori and Tadepalli [6] combined
CNNs and LSTMs to jointly encode move sequences and
timing information.

b) Hybrid and Cognitive-Inspired Models: Hybrid meth-
ods have shown strong performance in recent two compe-
titions. Woodruff et al. [7] integrated pretrained Maia/Leela
embeddings with tree-based regressors and won the last chal-
lenge. Schiitt et al. [8] proposed cognitive-inspired neural
networks mimicking human problem-solving processes.

In this paper, we propose a three-stage framework for
predicting Glicko-based puzzle difficulty ratings, developed
for the FedCSIS 2025 Challenge on Predicting Chess Puzzle
Difficulty:

« A joint visual—statistical model based on MobileNetV2[9]
that integrates FEN-rendered board images with struc-
tured features, including engine-predicted success proba-
bilities, move count, and piece counts, to generate base-
line predictions;

o A LightGBM-based[10] prediction refinement stage that
adjusts the baseline predictions to mitigate systematic
errors, particularly for underrepresented extreme ratings;

¢ A domain-informed refinement stage that aligns predic-
tions with interpretable chess heuristics by incorporating
failure probability distributions and rating-bucket inflec-
tion points.

Additionally, we explore uncertainty estimation by introducing
a mask prediction strategy that identifies the most unreliable
predictions for targeted evaluation.

The remainder of this paper is organized as follows: Sec-
tion II describes the competition setup, dataset, and evaluation
metrics. Section III details the proposed methodology. Sec-
tion IV presents the mask prediction strategy for uncertainty
estimation. Section V reports experimental results and analy-
sis. Finally, Section VI concludes the paper and outlines future
work.

II. FEDCSIS 2025 CHALLENGE DESCRIPTION

The FedCSIS 2025 Challenge on Predicting Chess Puzzle
Difficulty provided a benchmark for assessing machine learn-
ing methods in estimating the difficulty of tactical chess puz-
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zles. Participants were required to predict continuous Glicko-
based ratings for each puzzle, derived from large-scale player
performance statistics on Lichess. Accurate prediction of such
ratings is crucial for adaptive training systems and automated
puzzle recommendation.

A. Problem Formulation

Formally, each puzzle z; is associated with a ground-truth
difficulty rating y; € R. The objective is to learn a predictive
function:

I rxi— gs,  with g =y, e))

where ¢; denotes the predicted rating.

B. Dataset and Features

The official dataset consists of a large annotated training set
and an unlabeled test set prepared specifically for the FedCSIS
2025 Challenge on Predicting Chess Puzzle Difficulty:

o Training Set: 4,557,000 puzzles, each labeled with a
human-derived Glicko-2 difficulty rating and accompa-
nied by engine-computed auxiliary statistics.

o Test Set: 2,235 puzzles, sharing an identical feature
structure but without ground-truth ratings; predictions on
this set determine the final leaderboard ranking.

Each puzzle is represented by structured information that in-
tegrates human annotations, contextual metadata, and engine-
estimated success probabilities:

1) Core Descriptors: A unique PuzzleId, a
Forsyth—Edwards Notation (FEN)[?] string encoding
the complete board configuration (piece placement,
side to move, castling rights, and en passant state), and
a Portable Game Notation (PGN) sequence listing the
puzzle’s solution moves.

2) Human-Performance Annotations (training
only): Glicko-2 Rating, RatingDeviation,
Popularity (measured by user interactions), and
NbPlays (number of attempts).

3) Contextual Metadata: Descriptive tags such as Themes,
hyperlinks to the source games (GameUrl), and
opening-related tags (OpeningTags).

4) Engine-Derived Success Probabilities: 20 probability
columns estimating the likelihood of solving the puzzle
for different skill brackets, including 10 rapid-mode
features (success_prob_rapid_1050-2050)
and 10 blitz-mode features
(success_prob_blitz_1050-2050).

The feature sets differ slightly between training and test
partitions: the training set provides 32 features (including
human-performance annotations), whereas the test set contains
25 features, omitting labels and human-derived statistics. The
large size and rich heterogeneity of this dataset provide an
opportunity to combine statistical priors and visual-spatial
representations for accurate difficulty estimation, while also
posing significant challenges in balancing feature importance
across modalities.
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C. Evaluation Protocol

The official evaluation metric was the Mean Squared Error
(MSE) between predicted and ground-truth ratings:

N
1 © N2
MSE = ;(yi ) (@)
where N is the number of test puzzles. Lower MSE indicates
closer alignment with human-derived difficulty estimates.

D. Specific Challenges of the Task

Despite the availability of rich engine statistics, the task

presents several intrinsic challenges:

+ Non-linear dependencies: Tactical motifs and player
success rates interact in complex, non-linear ways; vi-
sually similar positions can vary greatly in difficulty due
to subtle move-ordering or hidden tactical resources.

« Imbalanced rating distribution: The dataset is slightly
skewed toward higher-rated puzzles, with puzzles larger
than 1700 Elo constituting the largest portion, whereas
very easy puzzles are comparatively underrepresented.

e Multi-source feature fusion: Effective models must
jointly exploit structured numerical data (success proba-
bilities, move counts) and visual-spatial information from
FEN-rendered positions.

o Absence of player-specific metadata: Unlike human-
performance-based systems, the task relies solely on
puzzle-intrinsic features, forcing models to infer difficulty
without individualized performance history.

III. PROPOSED METHODOLOGY

This section introduces a three-stage hierarchical framework
for predicting chess puzzle difficulty ratings. The pipeline
integrates a joint visual—statistical model, a LightGBM-based
prediction refinement stage, and a domain-informed refinement
stage, designed to combine high-capacity representation learn-
ing with interpretable domain knowledge.

A. Overall Pipeline

The pipeline consists of three sequential stages, each de-
signed to progressively refine predictions by addressing dif-
ferent aspects of the task.

Step 1: Joint Visual-Statistical Model. The baseline
prediction $geep is obtained by integrating visual and struc-
tured features. FEN-rendered board images are processed
through a convolutional backbone (MobileNetV2) to extract
positional and tactical representations, while structured fea-
tures—such as engine-derived success probabilities and move
counts—provide statistical priors. The two representations are
fused to generate the initial difficulty estimate.

Step 2: LightGBM-Based Prediction Refinement. The
baseline model exhibits systematic biases, particularly for
puzzles with extreme ratings that are underrepresented in the
training distribution. To mitigate these biases, a LightGBM re-
gressor is trained to refine the baseline predictions, leveraging
its ability to model non-linear relationships in tabular data and
to reveal feature importance for interpretability.
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Step 3: Domain-Informed Refinement. The final output is
adjusted by aligning ¢, fineq With a domain-inspired difficulty
estimate S, derived from engine failure probabilities and
rating-bucket inflection points. A confidence-adaptive weight-
ing strategy regulates the strength of this adjustment, applying
stronger corrections only when prediction uncertainty is high.

Overall, the framework integrates data-driven representation
learning (Step 1), prediction refinement via statistical mod-
eling (Step 2), and consistency enforcement through domain
knowledge (Step 3), forming a hybrid approach well-suited for
applications that demand both accuracy and interpretability.

B. Data Preprocessing and Feature Engineering

Each puzzle x; is described by heterogeneous sources of
information that combine structural metadata, human perfor-
mance indicators, and engine-derived statistics:

o FEN String: Encodes the full board state, including piece

placement, side to move, and castling rights.

o PGN Sequence: Lists the solution moves; the total move
count is extracted as an indicator of tactical depth.

o Engine-Derived Success Probabilities: Estimates for
multiple rating buckets across blitz and rapid time con-
trols, serving as statistical priors of player performance
at different skill levels.

The structured feature vector Xg,,c; integrates these com-

ponents: )
Xstruct = {pl:‘htz | S R»
PP r € R,
move_count,

3)

side_to_move,
white_pieces,
black_pieces }
where R denotes the set of predefined rating buckets. Addi-
tional handcrafted features are defined as:
move_count = |[Moves(z;)] 4)
side_to_move = I(White to move) (5)

Z count(c) (6)

c€{P,N,B,R,Q,K}

Z count(c) )

ce{p,n,b,r,q,k}

white_pieces =

black_pieces =

For visual encoding, each FEN string is rendered into a
160 x 160 RGB image, preserving spatial and tactical motifs
not easily captured by numerical features.

Three training samples (puzzles) of Puzzleld, FEN,Moves
and Rating fields are illustrated in Table I.

The initial state of the chessboard decoded by FEN of
these three training samples (puzzles) with different ratings
is illustrated in Figure 1.

Puzzle difficulty ratings range from approximately 400 Elo,
corresponding to basic tactical exercises, to over 3000 Elo, rep-
resenting master-level combinations. The overall distribution
is relatively balanced across skill levels, although puzzles rated
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Figure 1. Initial Chess Board State of Different Ratings

Elo Rating Distribution of Training Puzzles
<1000 Elo

20.4% =1700 Elo

35.3%

26.0%

1000-1399 Elo 18.4%

1400-1699 Elo

Figure 2. Elo rating distribution of the training set.

>=1700 Elo constitute the largest portion (35.3%), followed by
intermediate ranges (1000-1399 Elo, 26.0%), as summarized
in Figure 2. This mild skew towards higher-rated puzzles may
still influence prediction performance for very easy puzzles,
which are comparatively less represented.

C. Stage 1: Joint Visual-Statistical Model

The first stage generates a baseline difficulty estimate qeep
by jointly encoding visual representations of the chessboard
and structured numerical features. This stage serves as the
primary representation learning component of the pipeline.

a) Visual Branch: Each puzzle is rendered from its FEN
string into an RGB image @,,, € R'%0*160 MobileNetV2.
The image is processed by a convolutional backbone followed
by global average pooling (GAP):

himg = ¢img (xi7rLg) (8)

where @img(-) maps 4 to a compact latent vector A,y €
R%ms. In our implementation, we adopt MobileNetV2 pre-
trained on ImageNet due to its efficiency, achieved through
depthwise separable convolutions and inverted residual blocks,
which balance accuracy and computational cost.
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Table I
THREE SAMPLES OF THE CHESS PUZZLE TRAINING DATA
PUZZLEID FEN MOVES RATING
000zo 4r3/1k6/pp3r2/1b2P2p/3R1p2/P1R2P2/1P4PP/6Kl w - - 0 35 e5f6 eBel glf2 elfl 1353
000gP 8/7TR/8/5p2/4bk1P/8/2r2K2/6R1 w — — 7 51 £f2f1 f4£f3 flel c2cl eld2 clgl 2005
00423 3r2k1/4nppp/palplb2/1p2P3/2r2P2/2P1NR2/PP1Q2BP/3R2K1 b — — 0 24 | d6e5 d2d8 b6ds dlds 449

b) Feature Branch: Structured statistical features are
projected into a dense embedding h .. Given the feature
vector:

blitz

rapid
P o™ | reR,
Xstruct = § Move_count, side_to_move, &)

white_pieces, black_pieces

hfeat = U(fostruct + bf) (10)

where W; € R *Xstruetl b € R, and () denotes the
ReLU activation.
c¢) Fusion and Baseline Prediction: The outputs from the

visual and statistical branches, Ny, and hjfeq, are integrated
to jointly model their complementary information. Rather than
treating the two modalities independently, the concatenation
of these embeddings allows the network to learn non-linear
cross-modal interactions, which are critical for capturing re-
lationships such as how specific positional patterns influence
success probabilities.

Formally, the two embeddings are concatenated into a joint
representation:

c Rdi,mg +dfeat

(1D

where [; -] denotes vector concatenation. The joint representa-
tion is passed through a fully connected fusion layer to model
higher-order dependencies:

hjoint = [hinLg; hfeat]

2 =0 (W.hjoint +b.), z€R™ (12)

where W, € R%:*(dimg+dreat) and b, € R% are trainable
parameters, and o(-) is the ReLU activation introducing non-
linearity.

Finally, the fused representation z is mapped to a scalar
baseline difficulty estimate through a regression layer:

:gdeep =Woz+b,, W,E€ Rlez, b, € R (13)

The trainable parameters {W,,b,, W,,b,} are optimized to
minimize the mean squared error (MSE) between predictions
and true ratings:

N
1
@W=N§@ﬁmmf (14)
=1

where N is the number of training samples.

This fusion design enables the network to exploit both local
spatial patterns (e.g., piece coordination or king exposure
encoded in hg,g) and global statistical priors (e.g., engine-
estimated success probabilities and material balance encoded
in Afeqe). By training the fusion weights W, the model can

learn modality-specific importance and interaction strength,
allowing it to prioritize visual or statistical cues depending
on the puzzle context. However, the reliance on dense rating
regions during training tends to bias §gcc, toward interme-
diate ratings, highlighting the need for the refinement stages
described later.

d) Analysis: The visual branch h;,,, primarily captures
spatial and tactical configurations, such as open king exposure,
piece coordination, and typical mating patterns, which are
essential for modeling human-perceived difficulty. In contrast,
the feature branch hj.,; encodes statistical priors derived
from engine-estimated success probabilities and basic material
information, providing a complementary perspective based on
aggregated player performance.

By concatenating and jointly processing h;p,g and hgeqq, the
model learns to approximate complex non-linear relationships
between board patterns and statistical success indicators. The
fusion weights W, implicitly control the relative importance of
visual and statistical cues, enabling the network to emphasize
modality-specific features depending on the puzzle’s structural
complexity.

However, the training set is slightly skewed toward high-
difficulty puzzles, with puzzles rated > 1700 Elo constituting
the largest portion (35.3%), followed by intermediate ranges
(1000-1399 Elo, 26.0%). This mild skew can cause the
baseline estimate {ge.p to overfit patterns typical of high-
rated puzzles, which in turn may lead to overestimation of
moderately difficult puzzles and underestimation of very easy
ones. Such systematic biases motivate the introduction of a
prediction refinement stage (Stage 2) to explicitly adjust for
these distributional effects.

D. Stage 2: Prediction Refinement with LightGBM

Although the baseline predictions §gc., capture both visual
and statistical information, they exhibit systematic biases due
to the skewed rating distribution and the limited ability of
the deep model to generalize across underrepresented rating
ranges. To mitigate these biases, we introduce a refinement
stage based on residual learning with LightGBM, which ex-
plicitly models the prediction error of Stage 1.

a) Residual Definition: For each puzzle ¢, the residual r;
is defined as:

i=1,2,...,N (15)
where r; > 0 indicates that the baseline underestimates the
difficulty, and r; < O indicates overestimation. The residual

learning task is formulated as finding a function f;g(-) that
maps an extended feature set to the residuals:

Ti = Yi — Ydeep,i»

figp t Xigpi = 73 (16)
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where the input explicitly combines the baseline prediction
and structured statistical features:

gdeep,ia
blitz rapid
P PP | r e R,

(17

Xigb,i = .
o move count, side to move,

white piece count, black piece count, ...
b) Residual Prediction: The residual is predicted as:
(18)
(19)

7 = figp(Xign,i),
grefined,i = :l)deep,i + 721

Thus, Stage 2 does not re-learn the entire rating function but
only adjusts the baseline estimates by adding the predicted
residual, following the principle of boosting-based refinement.

c) Optimization Objective: LightGBM minimizes a reg-
ularized differentiable objective:

N
Lsager = > 1(ri;7s) + U figh), (20)

i=1
where [(-) is typically the squared loss:

Ui i) = (ri — 74)%,
and Q(f145) controls the complexity of the ensemble of re-

gression trees. Gradient boosting iteratively fits decision trees
to the negative gradients of the loss:

@ O, 7Yy 0%, 2 TY)

' oY

G D

) i
where ggt) and hl(t) denote the first- and second-order gradi-
ents at boosting iteration ¢, enabling LightGBM to prioritize
samples with larger residual errors.

Consequently, the refined predictions §refineqd €xhibit re-
duced systematic errors compared t0 §geep, providing a more
reliable basis for the final adjustment in Stage 3.

E. Stage 3: Domain-Informed Refinement

The final stage refines the predictions by enforcing con-
sistency with domain-specific heuristics, which approximate
human-perceived puzzle difficulty. Unlike the purely data-
driven stages, this step introduces an interpretable adjustment
based on engine-derived structural signals.

a) Structural Difficulty Estimate: For each puzzle i,
a structure-based difficulty estimate S; is computed from
the engine-predicted success probabilities at different rating
buckets r € R. The failure probability for bucket r is defined
as: ) oid

P+ Py

2 )
which approximates the likelihood that a player of rating r
fails to solve the puzzle. The structural difficulty estimate .S;
is then formulated as the failure-probability-weighted average
of rating buckets:

fail_probn ;=1 (22)

> rer fail_prob, ;-7

S; = ,
" Y ,cpfail_prob, ; +e€

(23)

where € is a small constant to avoid division by zero. Intu-
itively, .S; shifts toward higher ratings when high-rated players
are more likely to fail, aligning with human intuition that
“harder puzzles are those where stronger players also fail.”

b) Confidence-Adaptive Refinement: To combine the re-
fined prediction from Stage 2 with the structural estimate, we
apply a confidence-adaptive convex combination:

. W

o = Qow = 0.2, a(p';l)?z.,pflzl ) < 0.04, 24)
anigh = 0.3, otherwise,

yfinal,i = (1 - ai)grefined,i + Oéz‘Si (25)

where o(-) denotes the standard deviation of success proba-
bilities across rating buckets. A lower variance implies higher
confidence in the baseline prediction ¢ fined,; and hence
a smaller correction weight (ayow), Whereas high variance
suggests greater uncertainty, allowing stronger reliance on the
structural estimate.

¢) Analysis: This domain-informed refinement stage pro-
vides two key benefits:

o Improved alignment with human intuition: The estimate
S; serves as an interpretable anchor, as it is derived
directly from engine-estimated success rates, which con-
verge to human-like difficulty judgments under large-
sample conditions.

o Adaptive correction strength: The confidence-based
weighting dynamically balances the refined prediction
and the structural prior, preventing overcorrection when
the model is already confident.

However, the manual tuning of o, and opign limits flexi-
bility, as the optimal weights may vary across rating ranges or
puzzle types. Future work may replace these heuristics with
a meta-learned or uncertainty-calibrated weighting function
a; = go(Xstruct,is Yrefined,i), wWhere go(-) can be learned
jointly with Stage 2 to further improve consistency and adapt-
ability.

IV. MASK SCORING FOR UNCERTAINTY ESTIMATION

In addition to the main prediction task, we extend the
pipeline to an uncertainty estimation task. The goal is to
identify the 10% of test puzzles most likely to be mispredicted.
According to the challenge protocol, uncertainty estimation is
evaluated by recomputing the mean squared error (MSE) after
replacing the masked predictions with ground-truth values.
Better localization of uncertain samples yields a lower adjusted
MSE, quantified by the N/P ratio, where N is the adjusted
MSE and P is the theoretically optimal MSE.

The uncertainty score for puzzle ¢ is computed as:

mask_score; = a0preai + BA; + ¥ Mouttieri  (17)
where
1 M 2
Opredi = \| 77 Z (Q,(m) - i), (18)
m=1
Ai = |:gf7lnal,7l - gdeep,i‘ ) (19)
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and there are

e Opred,i Measures inter-model variance across M check-
points, capturing epistemic uncertainty (higher variance
= lower confidence);

e A; quantifies the post-correction adjustment magnitude,
reflecting disagreement between Stage 1 and Stage 3
(aleatoric + model uncertainty);

o Moystieri € {0,1} flags structural anomalies (e.g., ex-
treme material imbalance);

e «, 3,7 are tunable weights calibrated on validation data
(default: « = 1.0, =0.8,7 = 0.1).

The rationale for combining these three indicators is that no
single term sufficiently explains all failure cases:

e Opred,i alone fails when ensembles are consistently bi-
ased;

« A, highlights cases requiring strong heuristic correction,
often corresponding to difficult puzzles;

o Moytiiers targets rare but structurally atypical puzzles,
typically hard for human players as well.

The mask is
mask_score;.

constructed by ranking samples by

Using this strategy, we achieved an uncertainty mask ratio
of 1.623, ranking 4th among the 9 teams that took part in
this additional challenge. Our submitted mask produced a final
score of roughly 59,027, whereas a perfect mask would have
resulted in about 36,371. The complete rankings and results

for all teams will be presented in the [2] paper.

V. RESULTS

A. Experimental Setup

The official training dataset was split into three mutually
exclusive subsets with a 7:1:2 ratio, ensuring that each subset
preserved the overall rating distribution:

o Training Set (70%): Used to train the Stage 1 deep
learning baseline (Dataset—1);

« Validation Set (10%): Used for monitoring early stop-
ping of Stage 1 (Dataset-2);

« Residual Learning Set (20%): Reserved for Stage 2
LightGBM training (Dataset—3), ensuring that refine-
ment was trained only on data unseen by Stage 1.

For Stage 2, LightGBM was trained to predict residuals:

Ti = Yi — gdeep,i (26)
using an extended feature set that explicitly included the
baseline prediction itself together with structured statistical
features, as defined in Eq. 17.

This design allows the residual model to explicitly leverage
both the baseline prediction and structured statistical features
to correct systematic errors.

Stage 3 applied the domain-informed refinement described
in Section III-E, producing the final predictions.
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B. Main Results

Table II reports the incremental improvements on the public
(preliminary) leaderboard.

Table 11
INCREMENTAL IMPROVEMENTS ACROSS STAGES.

Method Public MSE Improvement
Stage 1: Deep Learning (MobileNetV2) 82,266 -

Stage 2: + LightGBM Residual Refinement 72,819 1 11.5%
Stage 3: + Domain-Informed Post-Correction 70,408 1 14.4% (total)

The final private leaderboard score reached 67,408, rank-
ing 9th overall. Both residual refinement and domain-
informed post-correction significantly reduced mean squared
error (MSE) relative to the baseline.

VI. CONCLUSION AND FUTURE WORK

This paper presented a three-stage hybrid framework for
predicting chess puzzle difficulty, integrating a joint vi-
sual-statistical deep model, residual refinement via Light-
GBM, and a domain-informed structural correction. The pro-
posed pipeline achieved a top-10 ranking in the FedCSIS
Challenge and demonstrated substantial improvements in mean
squared error (MSE) compared to deep learning-only base-
lines. Furthermore, the introduced mask-based uncertainty
estimation strategy showed promising capability in accurately
localizing unreliable predictions, which is critical for real-
world applications such as adaptive puzzle recommendation.
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