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Abstract—In this paper, we propose a novel method for
abnormality detection in Unmanned Surface Vehicles (USVs)
based on a Multi-Modal Bayesian generative model to enhance
safety and monitoring. During the training phase, we use a
Null Force Filter and an unsupervised clustering algorithm
on multimodal data collected from Global Positioning System
(GPS) and motor current sensors. In the testing phase, we use
a Coupled Modified Markov Jump Particle Filter (CM-MJPF)
to infer the GPS position and motor current of the USYV, as
well as to detect abnormalities in both modalities. Due to the
coupled methodology, the system is able to learn the statistical
similarity between the evolving GPS and motor current data. As
a result, the causality of defects is inherently captured within the
dynamical inference, making the proposed approach explainable.

Index Terms—Bayesian generative model, anomaly detection,
unmanned surface vehicle, unsupervised clustering, explain-
able AL

I. INTRODUCTION

N Intelligent Transportation Systems (ITS), the goal of im-
I proving transport safety has led to groundbreaking develop-
ments such as autonomous surface vehicles. Since unmanned
surface vehicles are autonomous, they are prone to mechanical
or electrical faults [1]. If such faults are not detected accurately
and in a timely manner, they may not only cause malfunction
of the agent but also cause critical hazard. Therefore, to
minimize potential risks and ensure robust functionality, the
agent might relay on its exteroceptive and proprioceptive
sensors, like motor current and GPS, to monitor its internal
states while interacting with the external environment.

An anomaly is an unexpected event or behavior that could
indicate a problem or fault (deviation from normality) [2],
[3]. Recently, as part of machine learning, Bayesian Networks
have proven well suited for anomaly detection because they
support both discrete and continuous variables, model uncer-
tainty, and allow for representation of time series data [4].
Sensors mounted on the agent help it sense and perceive
the environment, and the signal measured by the sensors can
reflect the agent condition. Relaying only on one sensor for
the detection of operational failures can lead to inaccuracies
due to inadequate information. Similarly, considering multi-
ple sensors independently also provides limited information.
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Therefore, it is important to have a comprehensive system that
integrates multiple interacting sensors [5].

In this work, we propose an interactive Multi-Modal
Bayesian generative model based on time series data, which
can detect USV operational faults. Unlike studies in literature,
our approach utilizes the interaction of multiple sensors using
the Bayesian learning mechanism. Additionally, our method
is able to differentiate the main source of the defect by
exploiting the causal behavior of Bayesian networks. The main
contributions of this paper are the following.

« A novel data-driven Bayesian generative model for USV's
is proposed.

o The proposed method uses an interactive multi-modal
approach, where we combine both GPS and motor current
for learning the model.

o The proposed framework can trace the cause of the
abnormality in an explainable way.

o The proposed method can be generalized to any kind of
multi-modal sensors.

The remainder of the paper is organized as follows: Sec-
tion 2 presents a review of related work on probabilistic
inference approaches for abnormality detection in autonomous
vehicles. Section 3 describes the proposed method in detail.
After this, the simulation and experimental results obtained
from the proposed approach, along with a discussion, are
presented in Section 4. Finally, Section 5 concludes the paper
and outlines directions for future work.

II. RELATED WORK

Model-based fault diagnosis uses physics-based or math-
ematical models to detect and identify system faults. These
models describe the expected behavior of vehicle components
under normal conditions, allowing for comparison with real-
time sensor data. In [6], the authors propose a steering
wheel fault diagnosis method for autonomous vehicles, using
a model-based residual generator with an SVM (Support
Vector Machine) classifier. Similarly, in [7], they use Position
Estimation Models, along with an Extended Kalman Filter
(EKF), to detect faults by computing residuals (Mahalanobis
distance) between estimated positions from sensor pairs. Abci
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B. et al. [8] also formulate a model-based fault detection and
isolation (FDI) system for autonomous mobile robots that can
detect and isolate sensor and actuator faults using an infor-
mational framework. Although model-based fault diagnosis
applications are useful, they have some drawbacks, such as
inaccuracies in modeling complex scenarios.

Due to the improvement of machine learning and compu-
tational techniques, there has been growing interest in data-
driven fault diagnosis. This paper, therefore, takes advan-
tage of data-based abnormality detection methods focused
on autonomous vehicles. While only a few studies in the
literature directly address the operational fault diagnosis for
USVs, as examined in this paper, several related works share
similar characteristics and offer relevant insights. In [10], the
authors use a data-driven Neural network to detect and isolate
faults, based on the differences between the measured and
estimated outputs (residuals). Furthermore, in [9], Gaussian
process regression to generate the residuals is used.

The methods mentioned above focus on a single data source.
However, as systems become more complex, relying on data
from just one source is not sufficient for effective monitor-
ing. To address this limitation, fault diagnosis systems now
employ multi-sensor technology to capture a wider range of
characteristic data. In [13], the authors propose convolutional
neural network (CNN) architectures for the fault diagnosis
of an induction motor, using different combinations of multi-
sensory signals such as vibration, current, voltage, and speed.
Similarly, O. Giiltekin et al. [5] utilize time—frequency rep-
resentations of time series data obtained from both vibration
and sound sensors, and use a CNN model for the classification
process to diagnose the operational faults of autonomous
transfer vehicles. Shaoxuan Xia et al. [14] applied a hier-
archical attention-based multi-source data fusion method for
fault diagnosis in Autonomous Underwater Vehicles (AUVs),
addressing challenges like multi-source data heterogeneity
and strong coupling. They used a Bidirectional Long Short-
Term Memory (BiLSTM) network for feature extraction and
a Multilayer perceptron (MLP) for fault detection. Although
multisensory fusion provides more information compared to
using a single type of sensor, previous studies in the literature
often consider each sensor independently. Moreover, they did
not explain the cause of a defect. Unlike most of the papers
available in the literature, our method is an interactive and
multi-modal approach, and is able to explain the cause of a
defect.

III. METHODOLOGY
A. Experimental Setup

We use a telemetry system to collect the necessary data for
our experiment, as shown in fig. 1. Data from the inverter
are gathered via the Controller Area Network bus (CANbus)
communication protocol. This is achieved by sending a request
to the inverter for a specific parameter reading, after which
the inverter responds with the corresponding measurement.
Moreover, the GPS module communicate via universal asyn-
chronous receiver / transmitter (UART). Data provided by
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GPS are encoded according to the NMEA (National Marine
Electronics Association) standard.

B. Preliminaries

o Generative models: There are two types of models in
machine learning, i.e., discriminative and generative. Dis-
criminative models focus on learning the probability of
a specific class label given an input, which is the ap-
proach commonly used in classification tasks. Conversely,
generative models learn the underlying data distribution,
enabling them to produce new data samples that follow
the same pattern.

« Bayesian Networks (BNs): They are a type of generative
model that allow us to model causal relationship between
random variables.

o Dynamic Bayesian networks (DBNs): They are a partic-

ular type of BN which can describe dynamic processes
that evolve over time.
The main advantage of a DBN is its capability to for-
mulate causal relationships between semantic information
(high level) and sensory data (low level) in a hierarchical
level. DBNs with hierarchical structure are called Hier-
archical Dynamic Bayesian networks (HDBNs). Fig. 2
shows a DBN representation for three hierarchical vari-
able levels. The nodes represent the random variables for
a continuous level state (X; and Z;) or a discrete level
state (S;). The links represent conditional dependencies
between nodes.

C. Proposed DBN for Learning Interaction

1) Training phase: Initially, the USV perceives its sur-
roundings under the static assumption that the environmental
state does not change. Therefore, the USV predicts its position
(GPS) and internal state (motor current) using a null force filter
with the following model:

X=X + W, ey
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Fig. 2: Three level DBN. The links highlighted in red are
inter-slice links, and the ones in green are intra-slice links at
different times.

Fig. 3: Learning interactions among GDBN Models for both
modalities (1 for motor current and 2 is for GPS), where D
is the Igteraction Discrete level, S is the Superstate Discrete

level, X is the continuous level and Z is the measurement
level

where W] represents the noise accounting for the measure-
ment uncertainty of the n-th sensor (with n=1 for motor current
and n=2 for GPS) at time t.

In order to explore the dynamic rule through time in the
environment, a new rule should be created by exploiting the
generalized error, which is the difference between prediction
and observation. Generalized errors X, are expressed as:

X = (X4, Xi]T @)

where X, is calculated using equation (1), and X, can be
considered as the innovation of the null force filter calculated
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Fig. 4: Clustered GPS data
using this equation:
X, =H'Z, - X, 3)

where Z; is the measurement acquired from the sensors at time
t and H is matrix that maps the observation to the state X.
Consequently, the Generalized errors collected from previ-
ous experience are used as input to an unsupervised clustering
algorithm (i.e., Growing Neural Gas (GNG)), which encodes
them to discrete variables or neurons (5‘”) called super states
(letters):
Sn=g6n S .., S (4)

where M is the total number of superstates.

Each generalized superstate Sf(gt” € S is associated
with its corresponding statistical properties mean (M 5) and
covariance matrix(Q>¢ ), as shown in figure 4.

Following the clustering of each sensor’s generalized errors,
a word or meta cluster ( ﬁt) is formed, containing the
superstate clusters (letters) of the two sensors, motor current
and GPS (5}1 and St2), at time t.
After meta-clustering, a P x P word transition matrix (II) is
defined as:

W(Dt = Dl) 11 P
I = : = 5)

w(D; = Dy) TPl Tpp

where P is the number of unique words in the dictionary.
This matrix is learned by estimating the transition probabilities
Tij = P(f)t = j|Dt,1 =1),j,1 € D over time.

2) Testing phase:

o Real time Joint Position and Motor current inference:
In order to perform inference at different hierarchical
levels, an interactive modified Markov Jump Particle
Filter IM-MJPF) has been employed, as illustrated in
figure 3, to extract the knowledge embodied in the
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coupled GDBN (C-GDBN). The MJPF is a switching
model that uses a combination of a particle filter (PF),
to predict discrete superstates, and Kalman Filters (KF)
for continuous states prediction and estimation. Such a
switching behavior, between the dynamic transitions at
discrete/continuous levels and observations, enables the
updating of the belief about the motor current state and
its corresponding position by passing local messages in
simultaneous inference modes, namely the predictive or
causal inference (top-down) and the diagnostic inference
(bottom-up). The top down messages from D to X de-
pend on the clustered values, including super states with
their corresponding mean and covariance statistics. The
temporal predictive messages (WQDN,:) = P(~D~t|)§t,1))
and (r(S,") = P(S,"Sp 1), m(X,") = P(X,"|X[)))
for both modalities depend on the dynamic rule stored in
the model (intra-slice messages) as shown in figure 2.
The particle filter is employed to predict the discrete
values (or words) relied in the word transition matrix
encoded in the dynamic model as a proposal distribution.
Once the word is predicted, each superstate of the two
modalities is inherently contained within the word. Then,
for each particle, a Kalman filter is employed to predict
continuous states (position and motor current) of the
agent using this equation: (6).

X' = AX], + BUS + W (6)
where A and B are the dynamic model matrix and the
control model matrix, respectively. And U is a control
vector which represents the dynamic rules of the signal
temporal evolution encoded in the superstate.

Once the evidence is observed, a message is backward-
propagated from the bottom level towards the higher
levels (A messages as shown in figure 2). This message
(reasoning) is based on likelihood models consisting of
messages (A(Dy), A(S;"), A(X;")), in which all continu-
ous nodes are Gaussian-distributed variables and the two
GDBN models are conditionally independent given the
interaction node:

n

A(Dy) = H XS 7
AS") = MXPXS) ®)

NX:")=P(Z"|X,") =~ N(ug,,Sz) 9

Consequently, each posterior distribution (belie f = m(.)x*
A(.)) at word, superstate, and state level is updated
according to A(Dy), M(S;"), A(X;"), respectively. Fur-
thermore, these beliefs will represent the initial states on
the next time instance.

Multi-modal Abnormality Measurements:

During the journey, the USV checks whether it is in an
optimal state or experiencing an abnormality by predict-
ing the motor current and GPS signal. When new data
arrive, the trained model uses the GDBN to make sense
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of it and spot different types or levels of unusual patterns.
To measure the motor current or GPS deviation we use
an abnormality indicator at superstate level defined as a
distance between the predictive message (W(gtl)) and the
diagnostic message (\(S; )) entering the node S, .

We use the symmetric Kullback-Leibler Divergence
(KLDA) to measure the similarity between the two
discrete probability distributions (w(Stl) and )\(S~t1))
defined by:

KLDA = Dy, (w(étl) [ A(Stl))

<1 1 (10)
+Dir (A8 I 7(8H)

where || identifies the divergence.

Similarly, we use the Bhattacharyya distance (BD) to

measure the probabilistic distance between the two con-

tinous probability distributions (W(th) and A(th)) de-

fined by:

k
BD(p,q) = ~In (Z N/ZEXT qi> (1)
=1

where p = W(th), q = )\(th), and k represents
the number of elements considered in the computation.
Furthermore, this can be calculated for all other possible
sensors attached to the agent including GPS.
o Evaluation matrices:

To assess the performance of our multi-modal abnormal-
ity detection approach, we use the Receiver Operating
Characteristic (ROC) curve. The ROC curve visually
shows how a model performs at different classification
thresholds. It is created by plotting the true positive rate
(TPR) against the false positive rate (FPR) for all possible
threshold values. The AUC, or Area Under the Curve,
summarizes this graph into a single number, indicating
the model’s ability to distinguish between classes. An
AUC of 1.0 reflects perfect classification, whereas an
AUC of 0.5 suggests the model is no better than making
random guesses.

IV. SIMULATION AND EXPERIMENTAL RESULTS

A permanent magnet synchronous motor (PMSM) is a
motor known for its outstanding dynamic performance and
high reliability. It is extensively applied in areas such as
electric vehicles, rail transportation, smart manufacturing, and
more [11]. Our USV uses PMSM as its core engine.

An inter-turn short circuit (ITSC) fault in a stator typically
happens when the insulation between the windings of the same
phase breaks down. In this section, we perform the simulation
of the ITSC fault to test our abnormality detection framework.
ITSC in the stator results in a huge eddy current in the short
circuit [12]. This will increase the RMS (Root Mean Square)
current amplitude in the motor. This is simulated by adding
Gaussian noise to the real motor current data, as shown in
figure 5.
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The multi-sensor tracking capability of the USV is demon-
strated by the spatio-temporal prediction of the trajectories, as
in figure 6. Consequently, the motor current can be estimated
based on the interaction between the two sensors as shown in
figure 7.

To enable scalable, efficient, and stochastic learning of
the posterior, we divided our dataset into 8 examples (mini-
batches) during the training of the Bayesian generative model.
During testing, we use one of the batches containing a simu-
lated motor fault as the test set.

The decision making process of the autonomous agent
is illustrated in figures 8 and 9, in which the abnormality
is detected if it passes the predefined threshold (set
during training). This demonstrates the effectiveness of our
framework in detecting abnormalities. Moreover, the cause
of the abnormality can be traced to either a GPS error or a
motor current fault. This makes our framework explainable.

In addition, we carried out a performance test for the
continuous state (motor current) abnormality detection. The
ROC curves shown in both figures 10 and 11 indicate that
our framework achieves good abnormality detection efficiency.

Motor current estimation vs testing
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current data cross ponding to GPS shown in figure 6)
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Fig. 8: Tracking abnormality at cluster level (Superstate level)

V. CONCLUSION AND FUTURE WORK

This paper proposes a multi-modal Bayesian generative
model for fault detection and probabilistic inference of system
states in an Unmanned Surface Vehicle (USV). The proposed
approach uses coupled Dynamic Bayesian Networks (DBNs)
to assimilate different observations over time, enabling in-
cremental learning and inherent explainability. The method
predicts future states based on past observations, providing
an interpretable explanation of the model’s reasoning.

The performance of the proposed method is evaluated using
real-world data and simulated faults that mimic actual motor
malfunctions. The results indicate that the approach can predict
and detect faults in a USV with high accuracy. Furthermore,
it is capable of identifying the root cause of the defect.
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Fig. 10: ROC (KLDA) curve for motor abnormality detection

In our future work, we are planning to calculate meta-cluster
level (word level) abnormality to detect possible anomalies

on

the agent and to learn the time evolution synchronization

between the multi-modal sensors used in our approach.
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