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Abstract—This study conducts a comparative analysis of Ar-
tificial Intelligence (AI) software and traditional GitHub reposi-
tories, focusing on workflow efficiency and sentiment dynamics.
Using process mining and sentiment analysis techniques, we ex-
amine repositories from eight prominent projects, encompassing
diverse datasets of issues and pull requests filtered for relevance
and consistency. Our findings reveal that AI software repositories
exhibit different workflow patterns and sentiment dynamics com-
pared to traditional repositories. Sentiment analysis uncovers that
contributors to AI software repositories experience more positive
sentiment dynamics, likely reflecting structured workflows and
collaborative tools. Conversely, traditional repositories exhibit
longer resolution times and more fluctuating sentiment pat-
terns, which may indicate higher complexity or less automation.
These insights provide valuable recommendations for optimizing
repository management, fostering contributor satisfaction, and
improving collaborative software development environments.

I. INTRODUCTION

M
ANAGING software development processes that are
multi-disciplinary, human-intensive, and prone to

change requires effective tools. Git, a free and open-source
distributed version control system, is widely used to manage
projects of all sizes with speed and efficiency. GitHub, an
open-source hosting platform, extends Git’s capabilities by
offering cloud-based version control and collaboration fea-
tures. As one of the leading data sources for software de-
velopment research [1], GitHub enables developers to manage
and store their code while providing a wealth of information
for analyzing software development processes, particularly in
collaborative software projects.

As artificial intelligence (AI) has become integral to modern
software systems, understanding the development processes
of AI software systems has emerged as a significant area of
research in software engineering [2]. GitHub provides rich
data, including information on issues, commits, projects, users,
comments, and the defined GitHub development flow.

Process mining is a data science technique that extracts
process insights from event logs stored in information systems
[3]. GitHub data, generated during the software development
can be converted to event logs to enable process discovery
and analysis. By identifying elements of the actual software
development process, such as issues, pull requests (PR), and

commits, along with their descriptive attributes, process devi-
ations and inefficiencies can be systematically investigated.

Mining Software Repositories (MSR) techniques focus on
extracting and analyzing data from software repositories to
uncover interesting, useful, and actionable insights about
software systems. MSR is considered one of the fastest-
growing and most compelling areas in the field of software
engineering [4]. The literature contains numerous studies
focused on mining GitHub repositories to analyze software
development processes for specific purposes. These include
detecting anomalies in PR processes [5], understanding and
improving students’ project workflows [6], [7], [8], managing
issues in AI software repositories [9], and analyzing the
effects of continuous integration and continuous deployment
(CI/CD) practices on repositories [10]. Several tools such
as GitHubDataViz [11], GitLab Analyser [6], and Git Truck
[12] have been introduced to support the analysis of software
development data by visualizing Git issue and commit data.

In this study, we present a GitHub-based data collection
framework for process mining and an empirical analysis com-
paring actual software development processes using process
mining techniques and sentiment dynamics in AI software
and traditional software repositories. Specifically, this research
explores whether AI software projects exhibit distinct patterns
in issue resolution, PR management, and contributor sentiment
compared to traditional repositories.

II. RELATED WORK AND BACKGROUND

Poncin et al. [13] demonstrated the application of process
mining in software repositories, facilitating the analysis of
developer roles and bug report handling. Expanding on this,
Macak et al. [7] used process mining techniques for the
Git log of students’ projects to understand their development
processes.

Sentiment analysis has become an important tool in under-
standing the emotional undertones in software development
processes. Comments of repository artifacts, such as issues,
PRs, and code, contain unstructured and valuable data to
understand the sentiment dynamics that impact workflow
efficiency and collaboration.
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Jurado and Rodriguez [14] conducted a study that explored
the use of sentiment analysis to monitor distributed teams,
highlighting how emotional analysis of developer-written
issues and tickets can provide a richer understanding of the
development environment. Yang et al. [15] carried out an
empirical study specifically focused on sentiment analysis
in the GitHub repositories, revealing that the emotional tone
of comments significantly affects the speed of bug fixing.
Guzman et al. [16] identified patterns indicating higher
negative sentiment in Java-based projects and more positive
sentiment in geographically distributed teams. Research
into developer behavior in open-source projects indicates a
strong correlation between developer activities and sentiment
shifts, which can serve as predictors of project success [17].
Robinson et al. [17] provided insights into how these factors
influence repository health and productivity. Sinha et al. [18]
also analyzed the sentiment in commit logs, exploring the
emotional undertones in commits and their impact on project
outcomes. While these studies offer valuable perspectives
on developer sentiment, our research differentiates itself by
investigating how the development processes of AI software
products might influence these sentiments.

Zhou Yang et al. [9]’s empirical study on issue management
in AI software repositories highlighted challenges such as
runtime errors and unclear instructions.

Our study extends previous studies to a broader range of
repository artifacts, including issues, code comments, and
commit messages, to provide a more holistic view of senti-
ment dynamics in software development processes, which are
discovered through process mining techniques.

III. METHODOLOGY

A. Repository Selection and Data Collection

Data was collected from publicly available GitHub reposito-
ries using the GitHub REST API. AI software repositories
(TensorFlow, PyTorch, scikit-learn, Keras) focus on machine
learning algorithms and frameworks. Traditional repositories
(Angular, React, Bootstrap, Node.js) emphasize conventional
software technologies. The selected repositories are listed in
Table I.

TABLE I: Selected Repositories for Analysis

Repository Type Stars Issues PRs

TensorFlow [19] AI software 187k 37k 31.1k
PyTorch [20] AI software 86.1k 31.1k 85.7k
Scikit-Learn [21] AI software 60.8k 9.9k 16.9k
Keras [22] AI software 62.4k 11.9k 7.3k
Node.js [23] Traditional 109k 16.1k 33.4k
Bootstrap [24] Traditional 171k 23.9k 15.1k
Facebook-React [25] Traditional 232k 10.4k 15.5k
Angular [26] Traditional 96.7k 27.9k 25.2k

Selection criteria included high repository activity, star
count indicating popularity, contributor diversity, and clear
domain classification.

B. Data Preparation

Issues, PRs, and comments from the repositories were
extracted. For issues, the title, body, state (open/closed), times-
tamps (created, updated, closed), and associated labels were
collected. For PRs, the title, body, state, timestamps, and merge
details were gathered. Additionally, comments associated with
both issues and PRs were extracted and used for sentiment
analysis.

The data collected from the repositories underwent several
data preprocessing stages to ensure its quality and suitability
for analysis. These steps included data cleaning, data filtering,
data formatting, data balancing, and data validation techniques.

Records with incomplete or missing critical information
were either supplemented with placeholder text or discarded.
Duplicate entries were identified and removed to ensure the
uniqueness of each record.

Text processing techniques such as tokenization, stopword
removal, and lemmatization were applied to the comment data.
A custom clean_text function was used to standardize text
data by converting to lowercase and removing unnecessary
characters such as punctuation marks and numbers.

Several filters were applied to ensure the dataset remained
focused and relevant. Records with fewer than five comments
were removed to focus on meaningful discussions. Issues or
PRs that had not been updated in the last year or were created
before 2020 were removed to ensure current relevance. Only
merged or closed PRs and issues were retained for further
analysis. Extreme outliers with unusually high or low comment
counts were removed to prevent skewing results.

Dates and times were standardized to ISO 8601 format.
Additional features such as time-to-close for issues and PRs
were created. Categorical variables were encoded numerically
for machine learning models.

To ensure fair representation of both AI software and
traditional repositories, the dataset was carefully balanced
using a stratified approach. Datasets from each category were
combined in proportional measures, maintaining equal repre-
sentation of issues and PRs across both repository types.

Data validation steps included spot checks using func-
tions like sample() and head(), statistical summaries of
key attributes, and missing data analysis using the k-nearest
neighbors (KNN) imputation for numerical values and mode
imputation for categorical values.

The dataset was enhanced by integrating process mining
data, structured into event logs containing key attributes such
as case ID, activity, timestamp, and resource attributes. These
logs were validated using process mining tools like Disco [27]
and PM4Py [28] to ensure they met the necessary quality
standards for analysis.

C. Data Modelling

The data model for this research integrates various data
entities, each representing key elements of the GitHub reposi-
tory workflow. Figure 1 illustrates the interconnections among
users, repositories, issues, PRs, commits, and comments.
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Fig. 1: Overview of the Developed Framework for GitHub Workflow Analysis

The core entities in the data model include users, reposito-
ries, issues, PRs, commits, and comments. A user can own
or contribute to multiple repositories and can create or be
assigned to various issues. Similarly, users can create or review
multiple PRs, as well as produce numerous commits and
comments.

Each repository in the model can contain multiple issues,
PRs, and commits. Issues are typically associated with multi-
ple comments, forming a one-to-many relationship. Similarly,
PRs can encompass multiple commits and comments, with
each commit associated with a specific PR.

Moreover, comments are crucial for communication during
the development process. They are linked to either an issue or
PR, serving as feedback or further discussion on a specific
task. These interactions enable developers to refine code,
resolve issues, and collaborate effectively.

The data is collected using the GitHub API, with retrieval
performed via Postman. The collected data is stored in an
H2 Database [29]. Subsequently, the raw data is transformed
into two files: issues.csv and pullrequest.csv. These files are
integrated into a third file, linkeddf.csv, which links issues to
their corresponding PRs for analysis. This integration is crucial
for understanding the relationship between issues and PRs and
enables the analysis of their lifecycle within the repository.

The dataset is subjected to extensive data cleaning and text
processing to prepare it for sentiment and emotion analysis.
Additionally, the processed data is analyzed using process
mining techniques to generate visual process maps, helping to
trace the flow of actions such as issue or PR creation, updates,
closures, and their relationship with sentiment.

D. Predictive Process Modeling

The structured dataset formed the basis for training various
machine learning models aimed at analyzing the workflow in
GitHub repositories. The predictive models developed in this
study focused on two primary tasks: classifying issues and
PRs, and predicting sentiment and emotional tone from text
data. This section outlines the steps followed in the modeling

process, which include feature engineering, model selection,
and model training.

1) Feature Engineering: The first step in predictive mod-
eling was feature engineering, where key attributes from
the ’issues.csv’ and ’pull_request.csv’ files were extracted.
The features considered for classification include text-based
attributes such as the length of issue descriptions, the titles
of PRs, and the presence of specific keywords that may
indicate the nature of the task (e.g., "bug", "feature", and
"documentation"). These features are crucial for distinguishing
between different types of issues and PRs.

Additionally, sentiment-related features were generated
from the text data. Sentiment scores (positive, negative, neu-
tral) were extracted using sentiment analysis tools, which
helped gauge the emotional tone of the text.

2) Predictive Model Selection and Training: A variety of
machine learning models were considered to classify issues
and PRs into categories such as "bug", "feature request",
or "documentation update". Models such as Random Forest,
Support Vector Machines (SVM), XGBoost, Naive Bayes, and
Logistic Regression were selected for their proven effective-
ness in text classification tasks.

Sentiment analysis was performed on comments within
issues and PRs using the Valence Aware Dictionary and sEn-
timent Reasoner (VADER) [30] model in this study. VADER
is well-suited for evaluating sentiment patterns, as it is specif-
ically designed to detect the intensity of sentiments expressed
in social media-like content. The analysis categorized com-
ments as positive, neutral, or negative, with aggregated results
providing insights into sentiment trends throughout the issue
resolution and PR processes.

To complement sentiment analysis, emotion analysis was
conducted using a pre-trained Bidirectional Encoder Repre-
sentations from Transformers (BERT) [31] model, which had
been fine-tuned for emotion classification. BERT was chosen
due to its ability to capture subtle contextual nuances in text,
making it particularly effective for analyzing the emotional
tone of developer comments. The model identified several
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emotions, including neutral, sadness, surprise, anger, joy, fear,
and disgust.

VADER and BERT have limitations with domain-specific
technical language and context length variations common in
software development discussions.

These emotional insights were then correlated with key
metrics such as issue resolution times and overall repository
activities, aiming to explore the potential impact of developer
emotions on workflow efficiency.

The final step in the modeling phase involved deploying
the best-performing models in a real-time environment. These
were integrated into an automated pipeline that classifies in-
coming issues and PRs, predicts their sentiment, and performs
process mining analysis.

IV. RESULTS AND DISCUSSION

A. Process Discovery of Software Repositories

Event logs of repositories are used to discover the process
map of the repositories using DFG Miner of the PM4Py
library [28]. Figure 2 illustrates the process maps of PyTorch
(AI software repository) and Angular (traditional software
repository), showing common states including issue created,
issue updated, PR created, issue closed, PR updated, and PR
closed.

The flow of issues typically follows a consistent pattern:
creation, updates, and eventual closure. However, certain is-
sues are directly closed without further updates, while others
may lead to the creation of corresponding PRs before they are
closed. Similarly, PRs generally undergo creation, updates, and
closure, although some are updated shortly before closure.

Notably, Angular exhibits a higher frequency of issues
and PR interactions, indicating a more rapid and iterative
development approach, which may be typical for traditional
software development practices. In contrast, PyTorch demon-
strates fewer PR updates and fewer instances where PRs are
generated following issues, suggesting a more cautious and
deliberate workflow, potentially attributed to the complexity
and specificity of AI-related code. These findings emphasize
key differences in workflow efficiency and developer behavior
between AI software and traditional repositories.

(a) PyTorch Process Map

(b) Angular Process Map

Fig. 2: Process Maps for AI software and Traditional Repos-
itories

B. Sentiment Analysis of the Repositories

Figure 3 depicts the distribution of sentiments across vary-
ing time-to-close durations for issues. AI software repositories
exhibit a greater density of issues with neutral to positive
sentiment and shorter resolution times. In contrast, traditional
repositories exhibit a wider spread and with more cases of
longer time-to-close, regardless of sentiment.

The data shows that issues with positive or neutral sentiment
are generally resolved more faster in both types of repositories,
possibly due to their less critical or complex nature. However,
traditional repositories have a more distributed model, suggest-
ing variability in the handling and resolution of issues, which
may reflect different workflows or resource allocations.

Fig. 3: Comparison of Issue Resolution Times

Figure 4 illustrates the distribution of sentiment scores. We
see that AI software repositories have a significant peak around
the neutral sentiment (0), with a lower positive sentiment
peak, suggesting that issues in AI repositories often maintain
a balanced or positive view, even with their complexity.
In traditional repositories, there is a larger spread towards
positive sentiments, potentially reflecting trust in established
development practices and community support.

Fig. 4: Sentiment Polarity Distribution

C. Emotion Analysis of the Repositories

Figure 5 provides insight into the common emotional re-
sponses in AI software and traditional repositories. In particu-
lar, "sadness" and "fear" emotions are high in both categories.
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However, AI software repositories show a significantly higher
frequency of "sadness" compared to traditional repositories.
Also, "anger" and "surprise" are observed more in AI software
repositories, while traditional repositories show slightly higher
levels of "fear".

This distribution suggests that problems in AI software
repositories may trigger stronger negative emotions. This is
probably due to the complexity and rapid evolution character-
istic of AI projects. Contributors may experience frustration
and even hesitation when working with advanced models and
algorithms, which may increase emotional reactions. Tradi-
tional repositories, in contrast, seem to reflect a more balanced
emotional distribution, possibly because they are dealing with
well-established technologies and often face problems with
familiar, predictable solutions.

Fig. 5: Emotion Distribution for AI software vs. Traditional
Repositories

D. Comparison of Issue Labels the Repositories

Figure 6a displays the top 10 most common issue labels in
and Figure 6b also displays the top 10 labels with the highest
average sentiment for both AI software repositories (left) and
traditional repositories (right).

Figure 6 compares issue labels. AI software repositories fre-
quently use "Merged," "ciflow/trunk," emphasizing automated
testing crucial in ML projects. Traditional repositories show
"Needs-ci," "action: merge," emphasizing formal CI processes.

The comparison reveals that while both AI software and
traditional repositories focus on merging contributions and
continuous integration, AI software repositories have a greater
emphasis on modularity and rapid integration of changes,
while traditional repositories follow more structured, incre-
mental workflows. These distinctions align with the exper-
imental nature of AI development versus the stability and
predictability required in traditional software engineering.

High-sentiment labels differ: AI software repositories
focus on performance optimization ("CUDA CI," "type-
performance"), while traditional repositories emphasize core
functionality ("Accessibility," "core: event listeners").

The comparison reveals that while both AI software and
traditional repositories foster positive sentiment toward issue
resolution, their focus areas differ. AI software repositories

emphasize modularity, performance optimization, and com-
patibility across frameworks, which are crucial in cutting-
edge AI/ML development. In contrast, traditional repositories
concentrate on core stability, accessibility, and detailed issue
investigation, which aligns with the needs of more mature,
stable software projects.

(a) Most Common Labels

(b) Highest Sentiment Labels

Fig. 6: Label Analysis in AI software and Traditional Repos-
itories

E. Resolution Time Comparison

We compare the resolution time of issues and PRs for each
repository type and list them in Table II and III. AI software
repositories take longer to close issues (55.04 vs 43.63 days)
but close PRs faster (36.68 vs 40.43 days). Both show similar
median times (2-3 days), indicating most items are resolved
quickly regardless of domain.

TABLE II: Time to Close Comparison for Issues

Category Mean (days) Median (days)

AI software 55.04 2
Traditional 43.63 2

TABLE III: Time to Close Comparison for Pull Requests

Category Mean (days) Median (days)

AI software 36.68 3
Traditional 40.43 3

V. CONCLUSION

This study provides a comparative analysis of AI software
and traditional GitHub repositories, focusing on workflow
efficiency and sentiment dynamics.
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A comparison between AI software repositories, such as
PyTorch, and traditional repositories, such as Angular, high-
lighted significant differences in development practices. The
process maps indicated that workflows in AI software repos-
itories are often more deliberate and cautious, with fewer PR
updates, while traditional repositories tend to exhibit more
iterative processes with frequent PR updates. These findings
are instrumental for assessing workflow efficiency and serve as
a foundation for exploring how sentiment and emotion analysis
might impact productivity and developer behavior within these
repositories.

These findings demonstrate how software domain charac-
teristics influence development patterns, workflow efficiency,
and contributor sentiment.

Despite these promising results, this study has several
limitations. The dataset is limited to eight repositories due
to GitHub REST API rate limits (5,000 requests/hour), po-
tentially restricting the generalizability of the findings. Ad-
ditionally, the analysis does not account for code coverage of
AI code of the repositories and variations in team size, project
complexity, or contributor demographics, which may influence
repository performance.

Future research could address these limitations by exploring
a broader range of repositories and incorporating additional
contextual factors. Furthermore, integrating explainable AI
methods to assess issue complexity dynamically could provide
deeper insights into the decision-making processes of contrib-
utors and administrators.
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