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Abstract—The FedCSIS 2025 Challenge on Predicting Chess
Puzzle Difficulty tasked participants with estimating puzzle
ratings directly from board states and solution sequences, without
relying on human solver statistics.

We propose a three-stage hybrid framework integrating
gradient-boosting regressors, a multi-modal neural network, and
an XGBoost stacking ensemble. The boosting stage modeled
handcrafted structural features derived from FEN and engine
metadata, while the multi-modal network jointly learned from
structured features and image-rendered chessboards to capture
positional and tactical patterns. The residual-based stacking stage
explicitly modeled prediction errors to correct systematic biases
and enhance performance, particularly for high-difficulty puzzles.

Our method achieved a competitive performance, ranking 7th
in the preliminary stage and 8th in the final leaderboard. These
results demonstrate that combining interpretable boosting mod-
els with visual-tactical deep representations and meta-learning
provides a robust and computationally efficient alternative to
large-scale transformer-based approaches.

Index Terms—Chess puzzle difficulty prediction, Gradient
boosting, Multi-modal learning, Deep learning, Residual-based
stacking, Structural feature engineering, Uncertainty estimation

I. INTRODUCTION

T
HE prediction of chess movements has evolved dramat-

ically since the landmark achievement of IBM’s Deep

Blue in 1997[1], when it famously defeated world champion

Garry Kasparov. Automated prediction of chess puzzle diffi-

culty plays an increasingly important role in online training

platforms, enabling adaptive puzzle recommendation and ac-

curate tracking of player progression.

Early research focused on handcrafted features, employ-

ing gradient-boosting or support vector regressors trained on

material balance, king safety, and piece mobility [2], [3].

Although these models lacked scalability, they demonstrated

the importance of domain knowledge and interpretability

in difficulty estimation. With the advent of deep learning,

convolutional neural networks (CNNs) [4] were introduced

to treat the chessboard as an image, successfully capturing

spatial and tactical patterns such as attacking piece clusters

and exposed kings. Later, hybrid CNN-LSTM [5] architectures

integrated sequential move information, showing that temporal

reasoning improves alignment with human-rated difficulty.

Transfer learning approaches, such as DeepChess [6], adapted

game prediction networks for puzzle rating, implicitly learning

tactical patterns from large-scale game data.

More recently in the IEEE Big Data Cup 2024 [7],

transformer-based architectures, such as GlickFormer [8],

achieved state-of-the-art results by modeling spatio-temporal

dependencies in move sequences. However, these models are

computationally expensive and thus less practical for real-time

puzzle rating systems. Competition-oriented solutions, such as

the Bread Emoji team’s hybrid ensemble combining engine-

derived success probabilities with neural embeddings [9],

have demonstrated that combining interpretable features with

lightweight neural models can remain competitive while being

computationally efficient.

Our team has an extensive history of successful participation

in data science competitions hosted on the KnowledgePit

platform1. We have consistently leveraged Gradient Boosting

Decision Tree (GBDT) algorithms to tackle a wide range of

predictive tasks—including classification, regression, forecast-

ing, and image recognition—achieving top-ranked results and

earning multiple awards[10] - [20]. Motivated by this strong

background, we approach the present challenge with the same

commitment to excellence.

Our work proposes a hybrid three-stage framework designed

to achieve high predictive accuracy while maintaining inter-

pretability and efficiency. We integrate 3 parts, which are

• three gradient-boosting models for robust tabular predic-

tions,

• a multi-modal neural network to extract visual-tactical

cues from rendered chessboard images,

• and an XGBoost stacking ensemble to fuse predictions

into a single optimized output.

Additionally, we extend the method with a mask-based uncer-

tainty estimation task, where the goal is to identify the most

error-prone puzzles.

The remainder of this paper is organized as follows. Sec-

tion II describes the challenge setup, dataset, and evaluation

metric. Section III details the proposed methodology. Sec-

tion IV presents the mask extension for uncertainty estimation.

Section V reports experimental results and ablation studies.

Finally, Section VI concludes the paper and discusses future

research directions.

1https://knowledgepit.ai/
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II. CHALLENGE DESCRIPTION

The FedCSIS 2025 Challenge [21] is the second edition

of IEEE BigData Cup 2024 chess puzzle competition [7] on

Predicting Chess Puzzle Difficulty addressed the problem of

estimating puzzle difficulty ratings directly from board con-

figurations and solution sequences. The task was formulated

as a regression problem, where each puzzle was assigned

a continuous difficulty rating analogous to Lichess2 puzzle

ratings, typically ranging between 800 and 2800. These ratings

approximate the skill level of players expected to solve the

puzzle with a 50% success probability, making the task closer

to modeling human cognitive difficulty than engine evaluation.

The dataset, derived primarily from real games on Lichess,

contained tens of thousands of puzzles. Each puzzle was

described by:

• FEN (Forsyth–Edwards Notation)3: Encodes the board

state at the start of the puzzle, including piece placement,

side to move, castling rights, and en passant possibilities.

• PGN4 moves: The sequence of solution moves forming

the intended tactical line.

• Puzzle rating: The target variable representing human-

perceived puzzle difficulty.

• Optional metadata: Additional information such as puzzle

tags or themes, which some participants used as auxiliary

features.

The dataset was divided into training and test sets, with

ground-truth ratings provided only for the training set. No

official validation split was released, requiring participants to

design their own validation protocols. In our case, a random

10% split of the training set was used to approximate unseen

data. The rating distribution was broad but skewed, with most

puzzles clustered in the intermediate range (1400–2000) and

long tails toward very easy and extremely difficult puzzles.

This imbalance increased the impact of errors on rare high-

difficulty puzzles, as large deviations in such cases signifi-

cantly influenced the evaluation metric.

A training chess board initial state sample decoded by FEN

was shown in the below Figure 1 with the rating 1575.

Submissions were scored using the Mean Squared Er-

ror(MSE)5 between predicted ratings ŷi and ground-truth

ratings yi:

MSE =
1

N

N
∑

i=1

(yi − ŷi)
2, (1)

where N denotes the number of test samples. Because MSE

penalizes large deviations quadratically, extreme mispredic-

tions (e.g., predicting 1500 for a puzzle rated 2300) had a

disproportionately large effect, making robust handling of such

outliers crucial.

In addition to these technical considerations, the challenge

imposed practical constraints. The test set was unlabeled,

2https://lichess.org/
3https://en.wikipedia.org/wiki/ForsythEdwards_Notation
4https://en.wikipedia.org/wiki/Portable_Game_Notation
5https://en.wikipedia.org/wiki/Mean_squared_error

Figure 1. A training chess board state sample of rating 1575 and FEN
"8/8/4k1p1/2KpP2p/5PP1/8/8/8 w - - 0 53".

which increased the risk of overfitting without carefully de-

signed validation procedures. The diversity of puzzle types,

i.e. forced checkmates, defensive resource puzzles, and quiet

positional tactics, made simple statistical baselines inadequate

to capture nuanced difficulty differences.

Finally, there was a trade-off between accuracy and inter-

pretability. Deep neural networks, while expressive, are prone

to overfitting or unstable predictions with limited training

data, whereas classical machine learning models often fail

to capture sequential and visual information. Consequently,

prior top-performing approaches combined interpretable boost-

ing models with engine-derived features to balance robust-

ness and computational efficiency. Our method was designed

with these considerations in mind, integrating complementary

model strengths to improve generalization while maintaining

interpretability.

III. METHODOLOGY

Our solution follows a three-stage hybrid pipeline that

integrates gradient-boosting models, a multi-modal neural net-

work, and an XGBoost-based stacking ensemble. This design

leverages the stability of boosting methods for structured data,

while incorporating deep neural representations to capture

tactical and spatial patterns from chessboard images.

A. Gradient-Boosting Base Models

The first stage of our framework employs gradient boosting,

an ensemble learning technique that constructs a strong predic-

tive model by combining multiple weak learners in an additive

manner. Given a differentiable loss function L(y, F (x)), gra-

dient boosting iteratively fits a new base learner to the negative

gradient of the loss with respect to the current prediction. At

the m-th iteration, the ensemble is updated as:

Fm(x) = Fm−1(x) + η · hm(x), (2)

where Fm(x) is the updated ensemble prediction, and hm(x)
is the weak learner trained on the residuals:

ri,m = −
∂L(yi, Fm−1(xi))

∂Fm−1(xi)
, (3)
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and η ∈ (0, 1] is the learning rate controlling the contribution

of each learner. This formulation effectively reduces bias while

controlling variance, making gradient boosting well-suited for

modeling tabular data with complex non-linear interactions.

a) XGBoost: XGBoost (Extreme Gradient Boosting) [3]

introduces second-order gradient optimization and sparsity-

aware split finding, with regularization to control model com-

plexity. The overall objective function is:

LXGB =

N
∑

i=1

ℓ(yi, ŷi) +

K
∑

k=1



γTk +
1

2
λ
∑

j

w2
kj



 , (4)

where:

• Tk is the number of leaves in the k-th decision tree,

• wkj is the weight of leaf j in tree k,

• γ and λ are regularization coefficients controlling tree

complexity and weight shrinkage.

This regularized formulation makes XGBoost robust against

overfitting and variance, making it particularly effective for

structured chess features.

b) LightGBM: LightGBM (Light Gradient Boosting Ma-

chine) [2] is optimized for high-dimensional tabular data

through histogram-based feature binning and a leaf-wise

growth strategy with depth constraints. Its split gain is com-

puted as:

Gain =
1

2

(

G2
L

HL + λ
+

G2
R

HR + λ
−

(GL +GR)
2

HL +HR + λ

)

−γ, (5)

where GL, HL and GR, HR are the accumulated gradients and

Hessians of the left and right nodes. This strategy balances

accuracy and efficiency, making LightGBM a reliable baseline

for modeling chess-specific structured features.

c) CatBoost: CatBoost [22] is designed to handle cat-

egorical variables natively, avoiding target leakage through

permutation-driven encoding. Its ordered target encoding for

a categorical feature is:

ŷcat =

∑

i<j yi + p

n+ q
, (6)

where p and q are prior parameters for Bayesian smoothing,

and n is the number of preceding samples. This makes

CatBoost particularly effective for categorical chess features,

such as castling rights and the side-to-move indicator.

d) Input Features and Training Objective: All three

models were trained on handcrafted features extracted from

FEN, PGN, and engine metadata:

• Structural features: Material balance, piece counts for

both sides, castling rights, and check status—key indica-

tors of positional complexity.

• Move count: Total number of moves in the puzzle’s

solution sequence, often correlated with tactical depth.

• Engine-derived probabilities: Success probabilities for

rapid and blitz rating buckets across Elo levels.

• Average success rate:

savg = 0.5× (srapid + sblitz), (7)

providing a balanced indicator of expected human solv-

ability.

• Aggregated statistics: Maximum and standard deviation

of success probabilities (smax, sstd) to capture tactical

ambiguity—high variance typically indicates multiple

equally strong candidate moves, increasing cognitive

complexity.

All boosting models were optimized with the Mean Squared

Error (MSE):

LMSE =
1

N

N
∑

i=1

(yi − ŷi)
2
, (8)

where yi and ŷi denote the ground-truth and predicted ratings.

e) Rationale: This boosting stage provides a strong and

interpretable baseline for structured features and produces

complementary predictions for the stacking stage, where di-

verse model biases are effectively combined.

B. Multi-Modal Neural Network

While gradient-boosting models are effective for structured

tabular features, they are inherently limited in capturing spa-

tial and visual cues that strongly influence human-perceived

puzzle difficulty. To address this limitation, we designed a

multi-modal neural network that jointly learns from structured

numeric features and visual representations of chessboard

configurations.

a) Structured Feature Encoder: The numeric branch

encoded the same handcrafted features as in the boosting stage,

enriched with additional structural and interaction terms to

capture tactical and positional complexity more effectively:

• New structural features: Piece density, defined as:

dp =
nw + nb

64
, (9)

where nw and nb denote the counts of white and black

pieces, respectively, serves as a compact measure of

board congestion. A binary last-move success flag indi-

cates whether the most recent move had a high engine-

predicted success probability. Cross features were intro-

duced to model interactions between key factors:

f1 = sm ·mb, (10)

f2 = nm · savg, (11)

where sm is the side-to-move indicator (1 for White, 0 for

Black), mb is the material balance, nm is the total move

count, and savg is the average engine-predicted success

probability.

• Engine statistics: Aggregated success probabilities, in-

cluding mean (smean), maximum (smax), and standard

deviation (sstd), were used to capture tactical ambiguity.

High variance (sstd) typically indicates multiple equally

strong candidate moves, increasing cognitive difficulty for

human players.
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The numeric features were standardized and passed through

two fully connected layers (64 and 32 neurons, ReLU activa-

tion). Formally:

h1 = σ(W1x+ b1), (12)

znum = σ(W2h1 + b2), (13)

where x is the standardized feature vector, W1,W2 and

b1,b2 are trainable parameters, and σ(·) denotes the ReLU

activation.

b) Image Feature Encoder: Each FEN string was con-

verted into a chessboard image using python-chess and

cairosvg, enabling the network to learn spatial and tactical

patterns that are difficult to model through explicit numeric

features alone. Accurate representation of visual configurations

is crucial because human-perceived difficulty is strongly influ-

enced by positional complexity, such as piece clustering, open

lines, and king safety, which are more naturally encoded in a

spatial format.

A single high-capacity convolutional backbone was adopted.

We selected EfficientNetB3 [23] due to its superior trade-

off between accuracy and computational cost. Its compound

scaling strategy jointly optimizes network depth, width, and

input resolution, allowing fine-grained tactical features—such

as discovered attacks or forced mating nets—to be captured

effectively. The backbone was initialized with ImageNet-

pretrained weights and fine-tuned on the chess puzzle dataset

to adapt to domain-specific patterns.

Let ϕE3(·) denote the EfficientNetB3 backbone and GAP (·)
the Global Average Pooling operation. The encoded visual

representation is given by:

zimg = GAP (ϕE3(Ifen)) , (14)

where Ifen is the rendered chessboard image.

c) Fusion and Output Layer: The visual embedding zimg

was concatenated with the numeric branch embedding znum to

form a joint latent representation:

zfusion =

[

znum

zimg

]

, (15)

which was passed through a fully connected fusion head:

ŷ = W3 σ(W2 σ(W1 zfusion + b1) + b2) + b3, (16)

where σ(·) is the ReLU activation. A dropout layer (p = 0.3)

was applied after the first dense layer to reduce overfitting by

encouraging robustness to co-adaptations between visual and

numeric features.

d) Training Procedure: The network was trained end-to-

end using the Adam optimizer (learning rate = 10−4) and the

Mean Squared Error (MSE) loss:

LMSE =
1

N

N
∑

i=1

(yi − ŷi)
2, (17)

where yi and ŷi denote the ground-truth and predicted dif-

ficulty ratings for sample i. EarlyStopping and ReduceL-

ROnPlateau strategies were applied to prevent overfitting and

improve convergence stability.

Despite its moderate computational requirements, the in-

clusion of a visual branch substantially improved predictions,

particularly for high-difficulty puzzles where spatial complex-

ity such as multi-piece coordination or long forced sequences

plays a crucial role in human perception.

C. Residual-Based XGBoost Stacking Fusion

The final stage refines the predictions by explicitly modeling

the residual errors from the first two stages. Instead of directly

stacking the base predictions, we train an XGBoost meta-

learner to learn the systematic residuals and correct the base

prediction accordingly.
a) Base Prediction and Residual Definition: Let pboost ∈

R
3 denote the three boosting model predictions from Step 1,

and pnn ∈ R denote the multi-modal neural network prediction

from Step 2. The base prediction p̄i for sample i is defined as

the simple average of all four models:

p̄i =
1

4

(

p
(1)
boost,i + p

(2)
boost,i + p

(3)
boost,i + pnn,i

)

, (18)

although in practice, weighted averages were also evaluated

during validation.

The residual for each sample is computed as:

ri = yi − p̄i, (19)

where yi is the ground-truth puzzle rating.
b) Stacking Input Construction: The XGBoost meta-

learner is trained to predict the residuals ri rather than the

final ratings directly. Its input vector is constructed from:

• The individual residual components of each base learner:

r
(k)
i = yi − p

(k)
i , k = 1, 2, 3, nn, (20)

where p
(k)
i is the prediction of the k-th base learner.

• Key structural features correlated with human difficulty:

fkey,i =





savg,i

nm,i

mb,i



 , (21)

where savg,i is the average success rate (Eq. 7), nm,i the

move count, and mb,i the material balance.

The complete stacking input is:

xstack,i =















r
(1)
i

r
(2)
i

r
(3)
i

r
(nn)
i

fkey,i















∈ R
7. (22)

c) Meta-Learner Training and Final Prediction: The

XGBoost meta-learner FXGB minimizes the Mean Squared

Error (MSE) of the residuals:

Lstack =
1

N

N
∑

i=1

(ri − r̂i)
2
, (23)

where r̂i = FXGB(xstack,i) is the predicted residual.

Finally, the corrected prediction for sample i is obtained by

adding the predicted residual to the base prediction:

ŷfinal,i = p̄i + r̂i. (24)
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d) Rationale: This residual-based stacking approach ef-

fectively treats the meta-learner as a non-linear residual cor-

rector. By modeling residuals instead of direct predictions, the

meta-learner focuses on learning systematic errors of the base

models, such as the underestimation of high-difficulty puzzles.

Incorporating structural features (Eq. 21) further allows the

meta-learner to exploit domain-specific correlations between

residual errors and puzzle characteristics, yielding significant

accuracy gains, especially for puzzles with ratings above 2200.

IV. MASK PREDICTION – COMPETITION EXTENSION

In addition to the main regression task, the organizers intro-

duced an optional extension to evaluate a model’s uncertainty

estimation ability. Participants were required to identify the

10% of test puzzles for which their predictions were most

likely to be erroneous. By replacing predicted ratings for these

puzzles with their ground-truth values, the leaderboard score

was recomputed, providing an indirect measure of a model’s

ability to assess its own confidence. Formally, each submission

consisted of a binary mask M ∈ {0, 1}N satisfying

Mi =

{

1, if puzzle i is highly uncertain (masked),

0, otherwise,

s.t.

N
∑

i=1

Mi = N × 10%

(25)

where N is the total number of test samples. The evaluation

used two scores: the Perfect Score P , defined as the minimum

achievable MSE if the top 10% highest-error samples were

perfectly masked, and the New Score N , the recomputed MSE

after replacing predictions at masked indices with ground truth.

The optimization objective was to minimize the ratio

score =
N

P
, (26)

with the optimal value approaching 1.

The mask task can be interpreted as an uncertainty-ranking

problem, where an ideal mask should prioritize puzzles whose

predictions are expected to deviate most from the true rating.

Our heuristic design followed two intuitive assumptions:

• samples whose predicted ratings deviate strongly from the

overall rating distribution are more likely to be erroneous,

• and puzzles with longer solution sequences tend to in-

volve deeper tactical reasoning and are thus harder for

both humans and models.

To operationalize these assumptions, we designed a deter-

ministic composite uncertainty score. For each puzzle i, the

score is defined as

mask_scorei = 0.6ui + 0.4 ci, (27)

where ui measures normalized prediction deviation and ci
quantifies move-based complexity:

ui =
|ŷi − µy|

σy

, (28)

ci =
nm,i − µnm

σnm

, (29)

with ŷi denoting the predicted rating, µy and σy the mean and

standard deviation of predicted ratings, nm,i the move count

of puzzle i, and µnm
, σnm

its distribution statistics. The top

10% samples with the highest mask_scorei were selected as

Mi =

{

1, if rank(mask_scorei) ≤ 0.1N,

0, otherwise.
(30)

This rule required no additional calibration or access to

ground-truth labels, making it computationally efficient and

stable. Its main advantages are simplicity, consistency, and

domain relevance, as it incorporates move count, a known

correlate of puzzle difficulty.

Based on the competition report[21], our uncertainty mask

ratio is equal to 1.648. It gives us the 6th place among 9

teams that decided to participate in this additional task. Our

final score with the submitted mask is approximately equal to

56563. And our final score with the perfect mask would be

equal to 34312.

V. EXPERIMENTAL RESULTS

This section presents the empirical evaluation of our

method, including ablation analysis and leaderboard perfor-

mance, followed by a discussion of the contributions of each

stage and their implications for generalization.

All experiments were conducted on the official training

dataset. For the first and third stages, we employed a 10-

fold cross-validation strategy to fully exploit the available data

and obtain stable validation estimates. In each fold, 90% of

the data were used for training and 10% for validation, and

the final stage-wise performance was averaged across folds.

For the second stage, due to the higher computational cost of

CNN training, a fixed 10% hold-out validation set stratified by

rating range was used. All boosting models were implemented

with the official LightGBM, CatBoost, and XGBoost libraries,

while the multi-modal neural network was implemented in

TensorFlow/Keras. Early stopping based on validation MSE

was applied for all models.

Our final submission ranked 7th in the preliminary stage and

8th in the final leaderboard. The public preliminary MSE was

66,658, and the private test MSE was 63,009, confirming good

generalization. Table I summarizes the performance across all

stages and the final leaderboard results.

The first stage achieved an average MSE of 87,378 across

boosting models under 10-fold cross-validation, establishing a

strong tabular baseline. The second stage reduced the MSE

to 78,379 (+10.3%), demonstrating that the visual-tactical

features extracted by the EfficientNetB3 backbone provided

complementary information, particularly for complex tactical

puzzles.

The residual-based XGBoost stacking in the third stage

brought the most significant improvement, reducing the error

to 68,029 (+22.1%). By explicitly modeling residuals and

using 10-fold cross-validation to stabilize training, the meta-

learner effectively captured systematic error patterns, partic-

ularly in high-rating puzzles where difficulty estimation is

highly non-linear.
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Table I
OVERALL RESULTS: ABLATION STUDY AND LEADERBOARD PERFORMANCE

Stage Public LB MSE Improvement (%) Remarks

Best Average of Boosting Models
(10-fold)

87,378 – Average predictions from LightGBM, CatBoost, and XGBoost

Multi-Modal CNN (EfficientNetB3,
hold-out)

78,379 10.3 Visual-tactical features complement structured predictions

Residual XGBoost Stacking (10-
fold)

68,029 22.1 Explicit residual modeling, effective in high-rating puzzles

Final Ensemble Averaging (Public
LB)

66,658 23.7 Combines top models for stable leaderboard score (7th place)

Private Test MSE (Final Ensemble) 63,009 27.9 Generalizes well to unseen data (8th place)

Finally, averaging several top-performing models achieved a

public leaderboard MSE of 66,658 (+23.7%) and a private test

MSE of 63,009 (+27.9%), confirming strong generalization.

The relatively small gap between the public leaderboard and

private test performance suggests that overfitting was effec-

tively controlled, and the residual modeling contributed to

robust predictions even for rare high-difficulty cases.

VI. CONCLUSION AND FUTURE WORK

This paper presented a hybrid framework for predicting

chess puzzle difficulty in the FedCSIS 2025 Challenge on

Predicting Chess Puzzle Difficulty. By integrating gradient-

boosting models, a multi-modal neural network, and residual-

based XGBoost stacking, our approach achieved a competi-

tive 7th and 8th places in the preliminary and final stages,

relatively, with a MSE score of 63,009. The combination of

interpretable handcrafted features and learned visual-tactical

representations proved effective, offering a robust and compu-

tationally efficient alternative to transformer-based methods.
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