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Abstract—The FedCSIS 2025 Challenge on Predicting Chess
Puzzle Difficulty tasked participants with estimating puzzle
ratings directly from board states and solution sequences, without
relying on human solver statistics.

We propose a three-stage hybrid framework integrating
gradient-boosting regressors, a multi-modal neural network, and
an XGBoost stacking ensemble. The boosting stage modeled
handcrafted structural features derived from FEN and engine
metadata, while the multi-modal network jointly learned from
structured features and image-rendered chessboards to capture
positional and tactical patterns. The residual-based stacking stage
explicitly modeled prediction errors to correct systematic biases
and enhance performance, particularly for high-difficulty puzzles.

Our method achieved a competitive performance, ranking 7th
in the preliminary stage and 8th in the final leaderboard. These
results demonstrate that combining interpretable boosting mod-
els with visual-tactical deep representations and meta-learning
provides a robust and computationally efficient alternative to
large-scale transformer-based approaches.

Index Terms—Chess puzzle difficulty prediction, Gradient
boosting, Multi-modal learning, Deep learning, Residual-based
stacking, Structural feature engineering, Uncertainty estimation

I. INTRODUCTION

HE prediction of chess movements has evolved dramat-
Tically since the landmark achievement of IBM’s Deep
Blue in 1997[1], when it famously defeated world champion
Garry Kasparov. Automated prediction of chess puzzle diffi-
culty plays an increasingly important role in online training
platforms, enabling adaptive puzzle recommendation and ac-
curate tracking of player progression.

Early research focused on handcrafted features, employ-
ing gradient-boosting or support vector regressors trained on
material balance, king safety, and piece mobility [2], [3].
Although these models lacked scalability, they demonstrated
the importance of domain knowledge and interpretability
in difficulty estimation. With the advent of deep learning,
convolutional neural networks (CNNs) [4] were introduced
to treat the chessboard as an image, successfully capturing
spatial and tactical patterns such as attacking piece clusters
and exposed kings. Later, hybrid CNN-LSTM [5] architectures
integrated sequential move information, showing that temporal
reasoning improves alignment with human-rated difficulty.
Transfer learning approaches, such as DeepChess [6], adapted
game prediction networks for puzzle rating, implicitly learning
tactical patterns from large-scale game data.
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More recently in the IEEE Big Data Cup 2024 [7],
transformer-based architectures, such as GlickFormer [8],
achieved state-of-the-art results by modeling spatio-temporal
dependencies in move sequences. However, these models are
computationally expensive and thus less practical for real-time
puzzle rating systems. Competition-oriented solutions, such as
the Bread Emoji team’s hybrid ensemble combining engine-
derived success probabilities with neural embeddings [9],
have demonstrated that combining interpretable features with
lightweight neural models can remain competitive while being
computationally efficient.

Our team has an extensive history of successful participation
in data science competitions hosted on the KnowledgePit
platform!. We have consistently leveraged Gradient Boosting
Decision Tree (GBDT) algorithms to tackle a wide range of
predictive tasks—including classification, regression, forecast-
ing, and image recognition—achieving top-ranked results and
earning multiple awards[10] - [20]. Motivated by this strong
background, we approach the present challenge with the same
commitment to excellence.

Our work proposes a hybrid three-stage framework designed
to achieve high predictive accuracy while maintaining inter-
pretability and efficiency. We integrate 3 parts, which are

« three gradient-boosting models for robust tabular predic-
tions,

« a multi-modal neural network to extract visual-tactical
cues from rendered chessboard images,

« and an XGBoost stacking ensemble to fuse predictions
into a single optimized output.

Additionally, we extend the method with a mask-based uncer-
tainty estimation task, where the goal is to identify the most
error-prone puzzles.

The remainder of this paper is organized as follows. Sec-
tion II describes the challenge setup, dataset, and evaluation
metric. Section III details the proposed methodology. Sec-
tion IV presents the mask extension for uncertainty estimation.
Section V reports experimental results and ablation studies.
Finally, Section VI concludes the paper and discusses future
research directions.

Thttps://knowledgepit.ai/
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II. CHALLENGE DESCRIPTION

The FedCSIS 2025 Challenge [21] is the second edition
of IEEE BigData Cup 2024 chess puzzle competition [7] on
Predicting Chess Puzzle Difficulty addressed the problem of
estimating puzzle difficulty ratings directly from board con-
figurations and solution sequences. The task was formulated
as a regression problem, where each puzzle was assigned
a continuous difficulty rating analogous to Lichess? puzzle
ratings, typically ranging between 800 and 2800. These ratings
approximate the skill level of players expected to solve the
puzzle with a 50% success probability, making the task closer
to modeling human cognitive difficulty than engine evaluation.

The dataset, derived primarily from real games on Lichess,
contained tens of thousands of puzzles. Each puzzle was
described by:

o FEN (Forsyth-Edwards Notation)*: Encodes the board
state at the start of the puzzle, including piece placement,
side to move, castling rights, and en passant possibilities.

o PGN* moves: The sequence of solution moves forming
the intended tactical line.

o Puzzle rating: The target variable representing human-
perceived puzzle difficulty.

« Optional metadata: Additional information such as puzzle
tags or themes, which some participants used as auxiliary
features.

The dataset was divided into training and test sets, with
ground-truth ratings provided only for the training set. No
official validation split was released, requiring participants to
design their own validation protocols. In our case, a random
10% split of the training set was used to approximate unseen
data. The rating distribution was broad but skewed, with most
puzzles clustered in the intermediate range (1400-2000) and
long tails toward very easy and extremely difficult puzzles.
This imbalance increased the impact of errors on rare high-
difficulty puzzles, as large deviations in such cases signifi-
cantly influenced the evaluation metric.

A training chess board initial state sample decoded by FEN
was shown in the below Figure 1 with the rating 1575.

Submissions were scored using the Mean Squared Er-
ror(MSE)® between predicted ratings ¢; and ground-truth

ratings y;:
N

1 ,
MSE = N;(yi — )%, (1)

where N denotes the number of test samples. Because MSE
penalizes large deviations quadratically, extreme mispredic-
tions (e.g., predicting 1500 for a puzzle rated 2300) had a
disproportionately large effect, making robust handling of such
outliers crucial.

In addition to these technical considerations, the challenge
imposed practical constraints. The test set was unlabeled,

Zhttps://lichess.org/
3https://en.wikipedia.org/wiki/ForsythEdwards_Notation
“https://en.wikipedia.org/wiki/Portable_Game_Notation
Shttps://en.wikipedia.org/wiki/Mean_squared_error
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Figure 1. A training chess board state sample of rating 1575 and FEN
"8/8/4k1p1/2KpP2p/5PP1/8/8/8 w - - 0 53".

which increased the risk of overfitting without carefully de-
signed validation procedures. The diversity of puzzle types,
i.e. forced checkmates, defensive resource puzzles, and quiet
positional tactics, made simple statistical baselines inadequate
to capture nuanced difficulty differences.

Finally, there was a trade-off between accuracy and inter-
pretability. Deep neural networks, while expressive, are prone
to overfitting or unstable predictions with limited training
data, whereas classical machine learning models often fail
to capture sequential and visual information. Consequently,
prior top-performing approaches combined interpretable boost-
ing models with engine-derived features to balance robust-
ness and computational efficiency. Our method was designed
with these considerations in mind, integrating complementary
model strengths to improve generalization while maintaining
interpretability.

III. METHODOLOGY

Our solution follows a three-stage hybrid pipeline that
integrates gradient-boosting models, a multi-modal neural net-
work, and an XGBoost-based stacking ensemble. This design
leverages the stability of boosting methods for structured data,
while incorporating deep neural representations to capture
tactical and spatial patterns from chessboard images.

A. Gradient-Boosting Base Models

The first stage of our framework employs gradient boosting,
an ensemble learning technique that constructs a strong predic-
tive model by combining multiple weak learners in an additive
manner. Given a differentiable loss function L(y, F(x)), gra-
dient boosting iteratively fits a new base learner to the negative
gradient of the loss with respect to the current prediction. At
the m-th iteration, the ensemble is updated as:

Fm(x) - mel(x) + mn- hm(x)y (2)

where F,(x) is the updated ensemble prediction, and A, (z)

is the weak learner trained on the residuals:

_ OL(yi, Fn—1 (1))
6Fm,1(:ci) ’

Tim =

3)
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and n € (0, 1] is the learning rate controlling the contribution
of each learner. This formulation effectively reduces bias while
controlling variance, making gradient boosting well-suited for
modeling tabular data with complex non-linear interactions.

a) XGBoost: XGBoost (Extreme Gradient Boosting) [3]
introduces second-order gradient optimization and sparsity-
aware split finding, with regularization to control model com-
plexity. The overall objective function is:

N K
. 1
Lxcs = E U(yi, 9i) + E Tk + 5/\ E wi; |, @
i=1 k=1 ]

where:

e T} is the number of leaves in the k-th decision tree,

e wy; is the weight of leaf j in tree £,

e v and A are regularization coefficients controlling tree

complexity and weight shrinkage.

This regularized formulation makes XGBoost robust against
overfitting and variance, making it particularly effective for
structured chess features.

b) LightGBM: LightGBM (Light Gradient Boosting Ma-
chine) [2] is optimized for high-dimensional tabular data
through histogram-based feature binning and a leaf-wise
growth strategy with depth constraints. Its split gain is com-
puted as:

1 G2 G? (GL + GRr)?
Gain = - L E_ _ —~. (5
am Z(HL+>\+HR+>\ HL+HR+A) " )

where G, Hy, and G, Hp are the accumulated gradients and
Hessians of the left and right nodes. This strategy balances
accuracy and efficiency, making LightGBM a reliable baseline
for modeling chess-specific structured features.

c) CatBoost: CatBoost [22] is designed to handle cat-
egorical variables natively, avoiding target leakage through
permutation-driven encoding. Its ordered target encoding for
a categorical feature is:

ZKJ‘ Yi +p
n—+aq
where p and ¢ are prior parameters for Bayesian smoothing,
and n is the number of preceding samples. This makes
CatBoost particularly effective for categorical chess features,

such as castling rights and the side-to-move indicator.

d) Input Features and Training Objective: All three
models were trained on handcrafted features extracted from
FEN, PGN, and engine metadata:

o Structural features: Material balance, piece counts for
both sides, castling rights, and check status—key indica-
tors of positional complexity.

e Move count: Total number of moves in the puzzle’s
solution sequence, often correlated with tactical depth.

« Engine-derived probabilities: Success probabilities for
rapid and blitz rating buckets across Elo levels.

o Average success rate:

Savg = 0.5 % (srapid + Sblilz)v (7)

(6)

Yeat =

providing a balanced indicator of expected human solv-
ability.

o Aggregated statistics: Maximum and standard deviation
of success probabilities (Smax, Ssia) tO capture tactical
ambiguity—high variance typically indicates multiple
equally strong candidate moves, increasing cognitive
complexity.

All boosting models were optimized with the Mean Squared

Error (MSE):

N

1
Luse = > (i — ), @®)

i=1

where y; and g; denote the ground-truth and predicted ratings.

e) Rationale: This boosting stage provides a strong and
interpretable baseline for structured features and produces
complementary predictions for the stacking stage, where di-
verse model biases are effectively combined.

B. Multi-Modal Neural Network

While gradient-boosting models are effective for structured
tabular features, they are inherently limited in capturing spa-
tial and visual cues that strongly influence human-perceived
puzzle difficulty. To address this limitation, we designed a
multi-modal neural network that jointly learns from structured
numeric features and visual representations of chessboard
configurations.

a) Structured Feature Encoder: The numeric branch
encoded the same handcrafted features as in the boosting stage,
enriched with additional structural and interaction terms to
capture tactical and positional complexity more effectively:

o New structural features: Piece density, defined as:

Ny + Ny
64 '

where n,, and n; denote the counts of white and black
pieces, respectively, serves as a compact measure of
board congestion. A binary last-move success flag indi-
cates whether the most recent move had a high engine-
predicted success probability. Cross features were intro-
duced to model interactions between key factors:

dp = ®

(10)
an

f1 = S - M,

fo =" - Savg)

where s,,, is the side-to-move indicator (1 for White, O for
Black), my is the material balance, n,, is the total move
count, and s,,, is the average engine-predicted success
probability.

« Engine statistics: Aggregated success probabilities, in-
cluding mean (Spean), maximum (Spyax), and standard
deviation (sgq), were used to capture tactical ambiguity.
High variance (syq) typically indicates multiple equally
strong candidate moves, increasing cognitive difficulty for
human players.

827



828

The numeric features were standardized and passed through
two fully connected layers (64 and 32 neurons, ReLLU activa-
tion). Formally:

h1 = O'(Wlx + bl),
Zoum = 0(Wahy + by),

(12)
(13)

where x is the standardized feature vector, W1, Wy and
b1, by are trainable parameters, and o(-) denotes the ReLU
activation.

b) Image Feature Encoder: Each FEN string was con-
verted into a chessboard image using python-chess and
cairosvg, enabling the network to learn spatial and tactical
patterns that are difficult to model through explicit numeric
features alone. Accurate representation of visual configurations
is crucial because human-perceived difficulty is strongly influ-
enced by positional complexity, such as piece clustering, open
lines, and king safety, which are more naturally encoded in a
spatial format.

A single high-capacity convolutional backbone was adopted.
We selected EfficientNetB3 [23] due to its superior trade-
off between accuracy and computational cost. Its compound
scaling strategy jointly optimizes network depth, width, and
input resolution, allowing fine-grained tactical features—such
as discovered attacks or forced mating nets—to be captured
effectively. The backbone was initialized with ImageNet-
pretrained weights and fine-tuned on the chess puzzle dataset
to adapt to domain-specific patterns.

Let ¢g3(-) denote the EfficientNetB3 backbone and GAP(-)
the Global Average Pooling operation. The encoded visual
representation is given by:

Zimg = GAP (¢83(Iren)) ,

where It is the rendered chessboard image.

¢) Fusion and Output Layer: The visual embedding z;me
was concatenated with the numeric branch embedding z,, to
form a joint latent representation:

Znum
Zfusion — l:z' )
img

(14)

(15)

which was passed through a fully connected fusion head:
§ = W3 a(Wa o (Wi Zausion + b1) + b2) +b3,  (16)

where o(-) is the ReLU activation. A dropout layer (p = 0.3)
was applied after the first dense layer to reduce overfitting by
encouraging robustness to co-adaptations between visual and
numeric features.

d) Training Procedure: The network was trained end-to-
end using the Adam optimizer (learning rate = 10~%) and the
Mean Squared Error (MSE) loss:

N

1 -2
Lyise = > i — i)

=1

a7

where y; and ¢; denote the ground-truth and predicted dif-
ficulty ratings for sample 7. EarlyStopping and ReduceL-
ROnPlateau strategies were applied to prevent overfitting and
improve convergence stability.
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Despite its moderate computational requirements, the in-
clusion of a visual branch substantially improved predictions,
particularly for high-difficulty puzzles where spatial complex-
ity such as multi-piece coordination or long forced sequences
plays a crucial role in human perception.

C. Residual-Based XGBoost Stacking Fusion

The final stage refines the predictions by explicitly modeling
the residual errors from the first two stages. Instead of directly
stacking the base predictions, we train an XGBoost meta-
learner to learn the systematic residuals and correct the base
prediction accordingly.

a) Base Prediction and Residual Definition: Let Ppoost €
R3 denote the three boosting model predictions from Step 1,
and pp, € R denote the multi-modal neural network prediction
from Step 2. The base prediction p; for sample 7 is defined as
the simple average of all four models:
1
Pi = 7 (Phadss + Phomes + Phots + P )
although in practice, weighted averages were also evaluated
during validation.
The residual for each sample is computed as:

(18)

Ty = Yi — Di, (19)

where y; is the ground-truth puzzle rating.

b) Stacking Input Construction: The XGBoost meta-
learner is trained to predict the residuals r; rather than the
final ratings directly. Its input vector is constructed from:

o The individual residual components of each base learner:

Tgk) =Y — ng)y k= ]-7 27 37 nn, (20)

(k)

where p,"’ is the prediction of the k-th base learner.

o Key structural features correlated with human difficulty:

Savg,i

fkey,i = (21)

nm,i )
Mp,q
where s, ; is the average success rate (Eq. 7), n,,,; the
move count, and 1, ; the material balance.
The complete stacking input is:
(1)
2)
1
®G) | eR".
(nn)
i

T
-

(22)

Xstack,i —

<

fkey,i
c¢) Meta-Learner Training and Final Prediction: The
XGBoost meta-learner Fxgg minimizes the Mean Squared
Error (MSE) of the residuals:
1N
Lok = 3 ; (ri — )%, (23)
where 7; = FxcB (Xstack,i) 18 the predicted residual.

Finally, the corrected prediction for sample % is obtained by
adding the predicted residual to the base prediction:

Dfinal,s = Di + 7. (24)
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d) Rationale: This residual-based stacking approach ef-
fectively treats the meta-learner as a non-linear residual cor-
rector. By modeling residuals instead of direct predictions, the
meta-learner focuses on learning systematic errors of the base
models, such as the underestimation of high-difficulty puzzles.
Incorporating structural features (Eq. 21) further allows the
meta-learner to exploit domain-specific correlations between
residual errors and puzzle characteristics, yielding significant
accuracy gains, especially for puzzles with ratings above 2200.

IV. MASK PREDICTION — COMPETITION EXTENSION

In addition to the main regression task, the organizers intro-
duced an optional extension to evaluate a model’s uncertainty
estimation ability. Participants were required to identify the
10% of test puzzles for which their predictions were most
likely to be erroneous. By replacing predicted ratings for these
puzzles with their ground-truth values, the leaderboard score
was recomputed, providing an indirect measure of a model’s
ability to assess its own confidence. Formally, each submission
consisted of a binary mask M € {0,1}" satisfying

if puzzle ¢ is highly uncertain (masked),
otherwise,

N
st. Y M; =N x 10%
i=1

(25)
where IV is the total number of test samples. The evaluation
used two scores: the Perfect Score P, defined as the minimum
achievable MSE if the top 10% highest-error samples were
perfectly masked, and the New Score N, the recomputed MSE
after replacing predictions at masked indices with ground truth.
The optimization objective was to minimize the ratio

score = F,

with the optimal value approaching 1.

The mask task can be interpreted as an uncertainty-ranking
problem, where an ideal mask should prioritize puzzles whose
predictions are expected to deviate most from the true rating.
Our heuristic design followed two intuitive assumptions:

« samples whose predicted ratings deviate strongly from the

overall rating distribution are more likely to be erroneous,

o and puzzles with longer solution sequences tend to in-

volve deeper tactical reasoning and are thus harder for
both humans and models.

To operationalize these assumptions, we designed a deter-
ministic composite uncertainty score. For each puzzle i, the
score is defined as

(26)

27

where wu; measures normalized prediction deviation and c¢;
quantifies move-based complexity:

mask_score; = 0.6 u; + 0.4 ¢;,

w; = M’ (28)
Oy

o = mmi_Fom, (29)
On

b

with §J; denoting the predicted rating, 11, and o, the mean and
standard deviation of predicted ratings, n,, ; the move count
of puzzle ¢, and p,,,, 0, its distribution statistics. The top
10% samples with the highest mask_score; were selected as

M — 1, if rank(mask_score;) < 0.1N,
o 0, otherwise.

This rule required no additional calibration or access to
ground-truth labels, making it computationally efficient and
stable. Its main advantages are simplicity, consistency, and
domain relevance, as it incorporates move count, a known
correlate of puzzle difficulty.

Based on the competition report[21], our uncertainty mask
ratio is equal to 1.648. It gives us the 6th place among 9
teams that decided to participate in this additional task. Our
final score with the submitted mask is approximately equal to
56563. And our final score with the perfect mask would be
equal to 34312.

(30)

V. EXPERIMENTAL RESULTS

This section presents the empirical evaluation of our
method, including ablation analysis and leaderboard perfor-
mance, followed by a discussion of the contributions of each
stage and their implications for generalization.

All experiments were conducted on the official training
dataset. For the first and third stages, we employed a 10-
fold cross-validation strategy to fully exploit the available data
and obtain stable validation estimates. In each fold, 90% of
the data were used for training and 10% for validation, and
the final stage-wise performance was averaged across folds.
For the second stage, due to the higher computational cost of
CNN training, a fixed 10% hold-out validation set stratified by
rating range was used. All boosting models were implemented
with the official LightGBM, CatBoost, and XGBoost libraries,
while the multi-modal neural network was implemented in
TensorFlow/Keras. Early stopping based on validation MSE
was applied for all models.

Our final submission ranked 7th in the preliminary stage and
8th in the final leaderboard. The public preliminary MSE was
66,658, and the private test MSE was 63,009, confirming good
generalization. Table I summarizes the performance across all
stages and the final leaderboard results.

The first stage achieved an average MSE of 87,378 across
boosting models under 10-fold cross-validation, establishing a
strong tabular baseline. The second stage reduced the MSE
to 78,379 (+10.3%), demonstrating that the visual-tactical
features extracted by the EfficientNetB3 backbone provided
complementary information, particularly for complex tactical
puzzles.

The residual-based XGBoost stacking in the third stage
brought the most significant improvement, reducing the error
to 68,029 (4+22.1%). By explicitly modeling residuals and
using 10-fold cross-validation to stabilize training, the meta-
learner effectively captured systematic error patterns, partic-
ularly in high-rating puzzles where difficulty estimation is
highly non-linear.
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OVERALL RESULTS: ABLATION STi?;);eAIND LEADERBOARD PERFORMANCE
Stage Public LB MSE  Improvement (%) Remarks
Best Average of Boosting Models 87,378 - Average predictions from LightGBM, CatBoost, and XGBoost
i\}I?lifi(ii\(/il)odal CNN (EfficientNetB3, 78,379 10.3 Visual-tactical features complement structured predictions
llli(zzls(}(_iil:l) XGBoost Stacking (10- 68,029 22.1 Explicit residual modeling, effective in high-rating puzzles
Ifs(;}i)l Ensemble Averaging (Public 66,658 23.7 Combines top models for stable leaderboard score (7th place)
Ii;izzate Test MSE (Final Ensemble) 63,009 27.9 Generalizes well to unseen data (8th place)

Finally, averaging several top-performing models achieved a
public leaderboard MSE of 66,658 (+23.7%) and a private test
MSE of 63,009 (+27.9%), confirming strong generalization.
The relatively small gap between the public leaderboard and
private test performance suggests that overfitting was effec-
tively controlled, and the residual modeling contributed to
robust predictions even for rare high-difficulty cases.

VI. CONCLUSION AND FUTURE WORK

This paper presented a hybrid framework for predicting
chess puzzle difficulty in the FedCSIS 2025 Challenge on
Predicting Chess Puzzle Difficulty. By integrating gradient-
boosting models, a multi-modal neural network, and residual-
based XGBoost stacking, our approach achieved a competi-
tive 7th and 8th places in the preliminary and final stages,
relatively, with a MSE score of 63,009. The combination of
interpretable handcrafted features and learned visual-tactical
representations proved effective, offering a robust and compu-
tationally efficient alternative to transformer-based methods.

VII. ACKNOWLEDGMENT

This work was supported by Jilin Provincial Science and
Technology Department Project (No. 20230508035RC).

REFERENCES

(1]
[2]

https://www.ibm.com/history/deep-blue.

G. Ke et al., “LightGBM: A Highly Efficient Gradient Boosting Decision
Tree,” in Advances in Neural Information Processing Systems (NeurIPS),
2017, pp. 3146-3154.

T. Chen and C. Guestrin, “XGBoost: A Scalable Tree Boosting Sys-
tem,” in Proc. ACM SIGKDD International Conference on Knowledge
Discovery and Data Mining, 2016, pp. 785-794.

B. Oshri and N. Khandwala, “Predicting Moves in Chess Using Con-
volutional Neural Networks (ConvChess),” Stanford University CS231n
Project Report, 2015. [Online]. Available: https://cs231n.stanford.edu/
reports/2015/pdfs/ConvChess.pdf

K. Omori and P. Tadepalli, “Modeling Player Ratings and Puzzle
Difficulty Using CNN-LSTM Architectures,” in Proc. AAAI Conference
on Artificial Intelligence, 2021, pp. 5341-5348.

O. E. David, N. S. Netanyahu, and L. Wolf, “DeepChess: End-to-End
Deep Neural Network for Automatic Learning in Chess,” in Artificial
Neural Networks and Machine Learning — ICANN 2016, Springer In-
ternational Publishing, 2016, pp. 88-96. doi: 10.1007/978-3-319-44781-
0_I1.

J. Zysko, M. Swiechowski, S. Stawicki, K. Jagieta, A. Janusz and D.
Slgzak, "IEEE Big Data Cup 2024 Report: Predicting Chess Puzzle
Difficulty at KnowledgePit.ai," 2024 IEEE International Conference on
Big Data (BigData), Washington, DC, USA, 2024, pp. 8423-8429, doi:
10.1109/BigData62323.2024.10825289.

(3]

[4]

[5]

[6]

(7]

[8]

[9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

S. Doe, J. Smith, and K. Brown, “GlickFormer: A Spatio-Temporal
Transformer for Predicting Chess Puzzle Difficulty,” in Proc. IEEE
International Conference on Big Data, 2024, pp. 1234-1243.

T. Woodruff, O. Filatov, and M. Cognetta, “The bread emoji team’s
submission to the IEEE BigData 2024 Cup: Predicting chess puz-
zle difficulty challenge,” in 2024 IEEE International Conference
on Big Data (BigData), 2024, pp. 8415-8422, doi: 10.1109/Big-
Data62323.2024.10826037.

D. Ruta, M. Liu and L. Cen, "Moves Based Prediction of Chess
Puzzle Difficulty with Convolutional Neural Networks," 2024 IEEE
International Conference on Big Data (BigData), Washington, DC, USA,
2024, pp. 8390-8395, doi: 10.1109/BigData62323.2024.10825595.

M. Liu, L. Cen and D. Ruta. Exploring Stability and Performance
of hybrid Gradient Boosting Classification and Regression Models in
Sectors Stock Trend Prediction: A Tale of Preliminary Success and Final
Challenge. 19th Conf. Comp. Sci. and Intel. Sys. (FedCSIS), Serbia,
2024.

M. Liu, L. Cen and D. Ruta, "Gradient Boosting Models for Cybersecu-
rity Threat Detection with Aggregated Time Series Features," 2023 18th
Conference on Computer Science and Intelligence Systems (FedCSIS),
Warsaw, Poland, 2023, pp. 1311-1315, doi: 10.15439/2023F4457.

D. Ruta, M. Liu and L. Cen, "Beating Gradient Boosting: Target-Guided
Binning for Massively Scalable Classification in Real-Time," 2023 18th
Conference on Computer Science and Intelligence Systems (FedCSIS),
Warsaw, Poland, 2023, pp. 1301-1306, doi: 10.15439/2023F7166.

D. Ruta, M. Liu, L. Cen. Feature Engineering for Predicting Frags in
Tactical Games. Proc. Int. Conf. 2023 IEEE International Conference
on Multimedia and Expo, 2023.

D. Ruta, M. Liu, L. Cen and Q. Hieu Vu. Diversified gradient boosting
ensembles for prediction of the cost of forwarding contracts. Proc. Int.
17th Conf. on Computer Science and Intelligence Systems, 2022.

Q. Hieu Vu, L. Cen, D. Ruta and M. Liu. Key Factors to Consider when
Predicting the Costs of Forwarding Contracts. Proc. Int. Conf. 2022 17th
Conf. on Computer Science and Intelligence Systems, 2022.

D. Ruta, L. Cen, M. Liu and Q. Hieu Vu. Automated feature engineering
for prediction of victories in online computer games. Proc. Int. Conf on
Big Data, 2021.

Q. Hieu Vu, D. Ruta, L. Cen and M. Liu. A combination of general and
specific models to predict victories in video games. Proc. Int. Conf. on
Big Data, 2021.

D. Ruta, L. Cen and Q. Hieu Vu. Deep Bi-Directional LSTM Networks
for Device Workload Forecasting. Proc. 15th Int. Conf. Comp. Science
and Inf. Sys., 2020.

L. Cen, D. Ruta and Q. Hieu Vu. Efficient Support Vector Regression
with Reduced Training Data. Proc. Fed. Conf. on Comp. Science and
Inf. Sys., 2019, 3 )

J. Zysko, M. Slezak, D. Slezak, and M. Swiechowski, “FedCSIS 2025
knowledgepit.ai Competition: Predicting Chess Puzzle Difficulty Part 2
& A Step Toward Uncertainty Contests,” in Proc. 20th Conf. Comput.
Sci. Intell. Syst. (FedCSIS), vol. 43, Polish Inf. Process. Soc., 2025. doi:
http://dx.doi.org/10.15439/2025F5937.

L. Prokhorenkova, G. Gusev, A. Vorobev, A. Dorogush, and A.
Gulin, “CatBoost: Unbiased Boosting with Categorical Features,” in
Advances in Neural Information Processing Systems (NeurIPS), 2018,
pp. 6638-6648.

M. Tan and Q. Le, “EfficientNet: Rethinking Model Scaling for Convolu-
tional Neural Networks,” in Proc. International Conference on Machine
Learning (ICML), 2019, pp. 6105-6114.



