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Abstract—Effective and efficient disease detection is crucial,
particularly for economically important crops like cotton. In this
paper, we move from the initial development of a deep-learning
model for cotton leaf disease detection, called Deep-CCNet, to
a more comprehensive comparison of different feature selection
algorithms, such as RainWater Algorithm, Particle Swarm
Optimization, Bee Evolutionary Algorithm, Genetic Algorithm,
and Binary Dragonfly Algorithm. Although Deep-CCNet achieved
satisfactory classification performance, the goal of this study is
to improve the classification performance and efficiency of deep
learning models with meta-heuristic feature selection techniques.
This study aims to determine which feature selection method
achieves the best balance between performance and computational
efficiency. We used the Kaggle “cotton leaf disease dataset”, which
has 1,711 images from four classes (namely curl virus, bacterial
blight, fusarium wilt, and healthy leaf images), to compare these
techniques systematically. Our research attempts to find the
most effective method that maximizes model performance while
minimizing computing resources, in addition to benchmarking
the computational and performance parameters of each approach.
The results of this study provide a new approach for the choice
of feature selection methods in plant pathology, leading to better
early disease diagnosis and increased crop resilience via efficient
farming practices.

I. INTRODUCTION

C
OTTON, also referred to as the “silver fiber”, is among

the most significant world agricultural products, the

cornerstone of the textile industry, and a means of livelihood

for millions of farmers, exporters, processors, and producers,

particularly in developing nations [1], [2]. Cotton production,

however, is facing threats from numerous pests and diseases,

which considerably reduce the quantity and quality of the cotton

crop, resulting in significant economic losses [3], [4]. Some of

these issues are cotton leaf diseases, which are directly harmful

to the health of a plant and ultimately its fiber production. Some

familiar infections include fusarium wilt, bacterial blight, and

cotton leaf curl virus. These diseases reduce crop yield and

weaken plants, increasing vulnerability to pests and secondary

infections. [3].

Studies show that pests and diseases cause a loss of

approximately 42% of world agricultural production each year

[4]. Traditional disease diagnosis methods, which are mainly

based on manual inspection and chemical treatment, are labor-

intensive, time-consuming, and often prone to errors. For rural

areas where agricultural experts are not available, a precise

manual diagnosis is even harder. Therefore, there is a critical

need for improved, more efficient, accurate, and timely disease

diagnosis techniques [5], [6].

To address the above limitations, the farm sector has

witnessed a strong shift towards applying computer vision (CV)

and artificial intelligence (AI) technology to automatic, early

detection of plant disease [7]–[9]. Leaves have been discovered

to be most suitable for such analysis due to their ease of access

and visibility compared to other plant components, including

stems and roots [10]. Modern CV pipelines typically involve

processes such as dataset collection, image pre-processing,

feature extraction, feature selection, and classification [11],

[12].

Deep convolutional neural networks (DCNNs) have been

found effective for automatic feature extraction and classifica-

tion [13]. In particular, the fully connected layers in DCNNs

play an important role by integrating spatial features, such as

edges, textures, and color intensities, from the preceding layers

to predict the correct class labels [14]. Nevertheless, deep

models tend to generate an enormous number of redundant

or irrelevant features, thereby leading to overfitting and

inefficiencies.

To enhance model resilience and performance, optimization-

based feature selection algorithms have been gaining momen-

tum [15]. Techniques such as Particle Swarm Optimization

(PSO) [16], Binary Dragonfly Algorithm (BDA) [17], and

various meta-heuristic techniques are well suited to select

the most salient features with the elimination of noisy or

uninformative features. This process of feature selection not

only enhances classification accuracy but also reduces the

computational cost and results in models that are efficient and

lightweight.

In the context of these advancements, this study proposes

an integrated approach in which a novel Deep-CCNet deep

Proceedings of the 20th Conference on Computer
Science and Intelligence Systems (FedCSIS) pp. 605–614

DOI: 10.15439/2025F3752
ISSN 2300-5963 ACSIS, Vol. 43

IEEE Catalog Number: CFP2585N-ART ©2025, PTI 605 Thematic Session: Self Learning and
Self Adaptive Systems



learning (DL) model is coupled with meta-heuristic feature

selection methods to better improve cotton leaf disease classi-

fication performance. Through optimization of feature subsets

derived using DeepCCNetFS, we aim to develop a robust and

computationally capable model with real-time usage potential

in precision farming.

A. Motivation

The key aim of this work is to fulfill the essential requirement

of proper early diagnosis of cotton leaf diseases with the least

dependency on chemical treatment and facilitate farmers in

taking wise decisions using real-time tools. Being highly suscep-

tible to diseases, cotton crops need precise and timely diagnosis

for sustainable agriculture, enhanced crop management, and

improved yield.

But the use of DL models in such tasks is generally

hindered by high-dimensional feature spaces that not only

incur computational expense but also introduce redundant

information, leading to overfitting and reduced generalization

capability. Thus, efficient feature selection is very important

in avoiding these constraints.

Lastly, this research seeks to facilitate sustainable agriculture

by reducing the application of unnecessary pesticides through

efficient early disease detection while making such AI tools

accessible and feasible for in-field implementation in cotton

farming.

B. Feature Selection Strategies and Proposed Framework

Feature selection is a key component of the modern

machine learning pipeline, particularly when dealing with

high-dimensional learned feature spaces from deep neural

networks. It is crucial to select a subset of the most critical

features in building lightweight, efficient, but very accurate

models [18]. Without effective feature selection, models can

overfit, become computationally more expensive, and be less

generalizable, characteristics particularly undesirable in real-

world applications such as smart agriculture.

In this context, the deep features extracted from the Deep-

CCNet model need to be passed from the feature selection step.

Since the extracted feature vectors have a high dimensionality,

an optimal feature optimization method is essential to enhance

the model’s performance with computational efficiency.

To address this, we comprehensively evaluate and compare

five meta-heuristic feature selection algorithms with different

approaches to dynamic exploration and exploitation of the vast

and complex feature space: Rainwater Algorithm (RWA) [19],

Genetic Algorithm (GA) [20], Particle Swarm Optimization

(PSO) [21], Binary Dragonfly Algorithm (BDA) [22], and Bee

Evolutionary Algorithm (BEA) [23].

All of these methods are implemented within the Deep-

CCNet pipeline to optimize feature subsets derived from Deep-

CCNet for the highest classification performance and the lowest

model complexity. Comparative evaluation of these feature

selection algorithms is performed based on two key criteria:

1) Classification Performance: Assessment of how well the

selected features enable accurate disease diagnosis over

the cotton leaf disease dataset.

2) Computational Efficiency: Measuring the overall execu-

tion time, feature selection time, and classification time,

which is important for effective deployment in resource-

constrained agricultural settings.

Furthermore, we used the grid search to carefully optimize

the hyperparameters, guaranteeing the best possible model

efficiency and performance. For empirical validation, we

employ the publicly available Cotton Leaf Disease dataset

with 1710 images corresponding to four classes of diseases.

II. RELATED WORKS

Recently, the accurate and early detection of cotton leaf

diseases using computational methods has been the subject of

much research because of its potential effects on agricultural

production and sustainability. Conventional ML methods have

been the mainstay of previous research, but deep learning (DL)

and evolutionary algorithms (nature-inspired feature selection)

techniques have lately gained traction and provided notable

gains in automation and accuracy.

A. Traditional Methods

Image processing methods and traditional ML algorithms

were the main tools used in the early stages of plant disease

identification efforts. For example, Sarangdhar et al., [24]

proposed a method for the classification and control of diseases

on cotton leaf along with soil quality monitoring. The study

suggested a regression approach based on support vector

machines (SVM) for the diagnosis of five diseases that affect

cotton leaves: Alternaria, Bacterial Blight, Cereospra, Fusarium

wilt, and Gray Mildew. Farmers were given access to the

identification of disease along with its cures through an Android

app upon illness detection. Along with the water level in a tank,

the Android app was also utilized to display the values of soil

factors, including temperature, moisture content, and humidity.

Shakel et al., [25] divided the images of Cercospora cotton

leaves into clusters using the K-means clustering technique. The

hybrid approach for extracting texture and color characteristics

was used to extract features. Ultimately, Cercospora cotton

leaves were classified using SVM. Similarly, a Multi-SVM-

based categorization system for cotton leaf diseases was pro-

posed by Jenifa et al. [26]. The suggested algorithm processed

the crops automatically at every stage, identifying defects at

an early stage and preventing losses to the farmer in terms of

products and money. When provided with the necessary data,

the aforementioned Multi-SVM algorithm models, which are

either human or robot-supervised, enable the segmentation and

classification of various disease kinds. Despite being innovative,

these methods have several difficulties. The quality and diversity

of the input photos had a significant impact on the accuracy

of disease identification, and the manual feature extraction

procedure was labor-intensive and prone to human error, which

made it challenging to scale and adapt to various plant diseases.

B. Deep Learning Advances

To address the shortcomings of manual feature extraction,

the shift towards DL, particularly DCNNs, has significantly
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enhanced the robustness and accuracy of plant disease detection

systems. These models automate the feature extraction process,

capturing complex patterns more effectively than traditional

methods. Compared to conventional techniques, these models

capture complicated patterns more successfully by automating

the feature extraction process [27]. For example, Rai et al. [28]

concentrated on developing an enhanced DCNN-based model

to address the issue of disease detection and classification in

cotton plants. Three distinct experimental setups were examined

to examine the effects of varying data split ratios, pooling

layer selections (max-pooling vs. average-pooling), and epoch

length. A collection including 2293 photos of plants and cotton

leaves was used to train the models. Four different leaf classes,

plant disease combinations, and the corresponding categories

were included in the data. The paper in [29] introduces a

dynamic feature selection methodology applied to deep neural

networks for univariate and multivariate time series forecasting,

based on the Coronavirus Optimization Algorithm [30]. The

proposed method, evaluated against random forest models,

demonstrated superior performance in terms of mean squared

error, highlighting the efficiency and effectiveness of dynamic

feature selection. The network that Rajasekar et al. [31]

proposed outperformed previous state-of-the-art methods by

combining the advantages of the Xception component with

the ResNet pre-trained on ImageNet. Kotian et al. [32] used

the ResNet50 and KNN ML model for the classification of

cotton leaf diseases. Numerous studies have lately used DL

methods for the categorization of cotton leaf diseases, as Table

1 illustrates. However, for real-world agricultural applications,

their high computing complexity and opaque decision-making

procedures often make them more difficult to trust and less

accessible. In addition to the studies discussed above, several

other DL-based approaches are summarized in Table I for

completeness and broader context.

C. Limitations

Our research intends to solve the following important short-

comings of current approaches, despite significant advances in

agricultural diagnostics, especially in the diagnosis of cotton

leaf disease:

1) Limited Integration of Feature Selection with DL: DL

models are commonly used in plant pathology research to detect

diseases, although adaptive and dynamic-feature selection

methods are not fully integrated. DL models are extremely

strong, but their efficacy is sometimes limited by static feature

sets that don’t change in response to fresh information or

intricate disease patterns. Moreover, evolutionary algorithms are

rarely used in research, despite their potential to improve model

accuracy and computing efficiency by constantly optimizing

and refining feature selection.

2) Computational Efficiency and Practical Deployment:

The computing needs of training large-scale models are often

overlooked by DL techniques, which restricts their application

in resource-constrained situations common to many agricultural

contexts. This disparity emphasizes the requirement for optimal

models that strike a compromise between operational viability

and performance.

D. Solutions

Presently, our research methodology rigorously examines and

assesses several feature selection algorithms inside the Deep-

CCNet approach, including RWA, PSO, BDA, GA, and BEA.

The goal of this comparison study is to evaluate how each

strategy affects the model’s accuracy, computing efficiency,

flexibility, and understandability. By doing this, we close

important knowledge gaps regarding feature selection efficien-

cies in agricultural applications and establish new standards

for the creation of systems that are scalable, trustworthy,

and understandable for the diagnosis of cotton leaf disease.

This effort opens the door for more sophisticated AI-driven

agriculture systems to be used on a global scale.

III. METHODOLOGY

We performed two types of experiments. Firstly, we con-

ducted end-to-end training, validation, and testing of our Deep-

CCNet model. Secondly, to improve the performance and

reduce the computational cost of our approach, we extracted

deep features from the last fully connected layer of the Deep-

CCNet model and subjected them to various feature selection

algorithms to determine their effectiveness in reducing feature

dimensionality and improving classifier performance. We used

SVM, KNN, Decision Tree, and Naive Bayes classifiers for

the classification of the selection features. The basic workflow

of the proposed method is given in Fig. 1.

A. Image Resizing

To maintain uniformity in input size throughout the dataset,

all input images are resized to 224 by 224 pixels.

B. Dataset Partitioning

The Deep-CCNet model is evaluated with a twofold ap-

proach: 10% of the images are used as a hold-out test set

for testing, and the rest, 90% are used in a five-fold cross-

validation setup, where in each iteration a different fold (data)

is used as a validation set. This approach ensures strong testing

against overfitting and encourages generalization.

C. Deep-CCNet Architecture details

The architecture of the Deep-CCNet model is based on

the ResNet18’s architectural principles; however, it also in-

cludes notable modifications specifically designed to maxi-

mize the classification performance and reduce computational

costs (Table II). The proposed Deep-CCNet architecture is a

lightweight convolutional neural network that is optimized for

efficiency and fast convergence, ideal for small or medium-sized

datasets such as cotton leaf disease classification. Deep-CCNet

possesses approximately 5.4 million learnable parameters,

significantly lower than ResNet18’s 11.18 million parameters.

Unlike ResNet18, which uses default ReLU activations, Deep-

CCNet uses Leaky ReLU activation units throughout the

network to correct the dying neuron problem and facilitate

gradient flow.
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TABLE I
RECENT WORK ON AUTOMATIC COTTON LEAF DISEASE DETECTION USING DL AND ML TECHNIQUES

Reference
Number of

classes
Method

Images in
the dataset

Advantages Limitation Year

Lakshmi et
al. [33]

Seven
Pre-trained ResNet50 and region
based segmentation

2,384 Satisfactory results
No Explainability (NE)
and computationally
expensive approach

2024

Bhujade et
al. [34]

Ten
Hybrid approach (CNN with
Multi-Resolution Feature
Optimization )

990
Good generalization
ability and efficient

No Unseen Samples
Testing (NUST) and NE

2024

Mohammad
et al. [35]

Six
Pre-trained models and custom
CNN

1,200

Proposed a new dataset
with high-quality images,
satisfactory results on
unseen samples

NE 2024

Irfan et al.
[36]

Eight
Deep CNN with modified
dragonfly optimization

4,107

Good generalization
ability and satisfactory
performance on four
datasets

NE and manual
hyper-parameter selection 2,024

Manurkar et
al. [37]

Six CNNs 3,600
Balanced dataset used and
efficient approach

NUST, low-performance
results and NE

2024

Rai et al.
[28]

Four Improved Alexnet 2,293
Satisfactory results,
testing on unseen samples,
less complex and efficient

Low generalization ability 2023

Arathi et al.
[38]

Four Pre-trained DenseNet-121 model 781 Simple approach
Computationally
expensive and NE

2023

Zafar et al.
[39]

Four

Feature extraction using
EfficientNet-b0 and Inception-v3,
feature selection using Emperor
Penguin Optimizer, and
classification using Quadratic
Discriminant Analysis

1,786
Satisfactory performance
and good generalization
ability

NE 2023

Naeem et al.
[40]

Four VGG16 700
Custom dataset and
satisfactory results with a
small dataset

NE, low generalization
ability, and NUST

2023

Govin-
dasamy et al.
[41]

Five
Filated convolutional feature
pyramid network

26,100
Efficient and reliable
approach

Low classification
accuracy

2023

Pandey et al.
[42]

Four Hybrid model (CNN plus SVM) 1,710
Accurate and effective
approach of classification

NE, computationally
expensive, and low
generalization ability

2023

Fig. 1. Overview of the proposed methodology for cotton leaf disease classification.

Furthermore, Deep-CCNet reduces the residual block ar-

chitecture by eliminating every other convolutional block,

creating a shallower but effective model without over-sacrificing

feature learning. Deep-CCNet introduces an additional fully

connected layer of 1096 neurons preceded by a dropout layer

(probability = 0.5) to mitigate overfitting, which is not included

in ResNet18.

Moreover, although both networks employ strided convolu-

tions to downsample, Deep-CCNet is specifically architected

to predict for 4 classes (i.e., three types of cotton leaf diseases

and a healthy class), as opposed to ResNet18’s native 1000-

class ImageNet configuration. This change in structure yields

a computationally more lightweight model that is simpler to

train and better suited to domain-specific classification tasks.

D. Feature Extraction

Following preprocessing, images are sent to the DeepCC-

NetFS, where feature extraction is handled by many layers.

Images are subjected to several filter applications as they go

through the convolutional layers, such as conv1 of the first

residual unit, which produces feature maps that capture different
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TABLE II
KEY DIFFERENCES BETWEEN RESNET18 AND DEEPCCNETFS.

S. No Property DeepCCNetFS ResNet18

1 Number of Learnable Layers 12 18

2
Number of Fully Connected

(FC) Layers
2 1

3
Number of Convolutional

Layers
12 17

4 Number of Dropout Layers 1 0

5 Activation Function (AF) Leaky ReLU (LReLU) ReLU

6 Focus
Optimized for specific patterns in cotton leaf

diseases
General-purpose image

recognition

7 Computational Efficiency
Enhanced by reducing convolutional blocks and

simplifying architecture
Standard efficiency with more

layers

8 Layer Configuration
Customized layers and fewer residual blocks for

specific disease feature extraction
Standardized residual blocks
for diverse feature extraction

9 Total learnable parameters 5.4 Million 11.18 Million

10 Residual Blocks 4 8

aspects of the images, such as edges and textures, and can be

represented as:

fkij =
∑

((ck × x) + bk) (1)

Here, x represents the local region of the image being

convolved, k is used to represent the kth layer, f denotes the

feature’s value, (i, j) represents pixel coordinates, ck represents

the convolution kernel of current layer, and bk denotes the bias.

Batch normalization layers are then used to normalize these

feature maps, which reduces internal covariate shifts and allows

for faster and more stable training.

Max pooling layers, such as pool1, assist in lowering the

computational burden and model complexity by controlling

overfitting and summarizing the convolutional layer outputs

into more abstract representations. This reduces the spatial

dimension. The network can learn identification functions from

residual connections, like res2a, to make sure that no data is

lost between layers. Because these connections give gradients

direct paths during backpropagation, they are essential for

enabling the training of very deep networks. The function f(x)
yields the ideal feature map.

f(x) = max(x1, x2, x3, ...xn) (2)

where x1, x2, x3, . . . , xn are the activation values within

a local region (e.g., 3×3 window) of the feature map. This

operation retains the most prominent features while discarding

less significant ones, making the representation more robust

and compact. Higher-level reasoning in the network takes

place in the FC layers, where fc7 and fc8 are essential

building blocks for condensing the distilled information into

a format appropriate for categorization. The most important

characteristics in Deep-CCNet are effectively highlighted by

a global average pooling layer (pool5) that first reduces the

feature maps to a single value per map.

The output from the last fully connected layer (fc8) serves

as the extracted feature set for downstream tasks. Finally, the

softmax layer computes class probabilities, enabling the model

to classify cotton leaf images into specific disease categories.

E. Feature Selection Algorithms

Our study’s feature selection procedure uses sophisticated

algorithms that combine local and global search techniques to

extract the most pertinent characteristics from high-dimensional

data. By removing redundant and unnecessary features, these

techniques decrease the dimensionality of the data and improve

the classification models’ performance.

1) Binary Dragonfly Algorithm (BDA): The BDA is a nature-

inspired optimization method based on the foraging behavior of

dragonflies. This algorithm uses a swarm of candidate solutions

as binary vectors. It iterates in steps where each solution is

updated according to local best (exploitation) and global best

(exploration) strategies. The algorithm uses a combination of

velocity updates and binary transformations (with sigmoid-like

updates) to search the feature space for an optimal feature

subset. The fitness function evaluates the feature subsets using

a classification model, with the best features selected based on

minimum classification error.

2) Bee Evolutionary Algorithm (BEA): The BEA is inspired

by the foraging process of bees, i.e., employed, onlooker, and

scout stages. The algorithm starts by initializing a population

of binary solutions (representations of feature subsets) and

evaluating their fitness based on a classification model (KNN).

The employed bees attempt to mutate solutions to reach better

fitness, and onlooker bees select solutions probabilistically

based on fitness. Scout bees search randomly in the solution

space when they cannot find better solutions. These steps are

repeated by the algorithm iteratively, tracking convergence and

improving the population for better feature selection.

3) Genetic Algorithm (GA): The GA is a metaheuristic

algorithm inspired by natural selection that is used to solve

search and optimization problems. In this algorithm, every

member of the population is a binary vector where every

bit corresponds to a feature being included or not. The

algorithm determines the fitness of every member by training

a classifier (for example, KNN) using the selected features. In

each generation, the population is refreshed using selection,

crossover, and mutation. Selection serves as a promise of
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carrying forward superior individuals to the next generation.

Crossover exchanges traits among individuals, and mutation

introduces randomness using bit flipping. The iterations are

iterated over a defined number of generations, and the optimal

individual (set of features) is employed in model construction.

4) Particle Swarm Optimization (PSO): The PSO algorithm

is an optimization method that is based on the social behavior

of bird flocking. The PSO uses a population of particles, and

each particle is a possible feature subset. Each particle updates

its position according to its own best position and the global

best position discovered by the swarm. The algorithm balances

exploration (moving towards new areas of the solution space)

and exploitation (refining current good solutions) through

velocity updates. The particles converge to an optimal subset

of features after iterating around the solution space. Fitness is

evaluated in terms of classification accuracy on a selected set

of features.

5) RainWater Algorithm (RWA): RWA is inspired by rain-

drop movement, where raindrops “move down” to lower levels,

representing a natural minimization search for the location

of the minimum in the feature space. It simulates raindrop

behavior through iterative solution movement by fitness in

trying to achieve the best set of features, reducing classification

error. The solutions (sets of features as subsets) are refined

through multiple iterations. The algorithm initializes with a

random population of feature subsets, computes their fitness

from their sum of feature values, and shifts them to a new

position by adjusting velocities toward the optimal solution.

A dynamic threshold guarantees that the correct features are

selected, even when the initial threshold does not yield any

selection.

IV. RESULTS AND DISCUSSION

A. Dataset

In this work, a publicly available Kaggle data set named the

“Cotton leaf disease data set” is used [43]. The dataset consists

of 1,711 images representing four classes: Curl Virus (418

images), Bacterial Blight (448 images), Fusarium Wilt (419

images), and Healthy (426 images). The images were captured

under real-world conditions in the fields of the Southern Punjab

region of Pakistan, a major cotton-producing area. Some of the

images were also downloaded from the internet. This dataset

aims to assist in the identification and classification of cotton

leaf diseases, which are critical for the agriculture industry,

particularly for cotton cultivation and export to Europe and

the US. The representative samples of the dataset are given in

Figure 2.

B. Performance of Deep-CCNet without Feature Selection

The Deep-CCNet model is first evaluated without feature

selection as a baseline performance. The five-fold cross-

validation results are shown in Table III, and the test results

on unseen data are shown in Table IV.

Deep-CCNet achieved a good mean accuracy of 98.06%

under cross-validation, with precision, recall, and F1 score all

well aligned around 98.0% (Table III). The model is very stable

in its performance, indicated by the low standard deviations

(below 0.7 for all metrics) and low variance values. The best

accuracy achieved is 99.03%, indicating the model generalized

well when trained.

On unseen test samples (Table IV), the model performed

consistently with a mean accuracy of 96.13%, precision of

96.09%, recall of 96.26%, and F1-score of 96.15%. The results

show minimal performance loss between the validation and

testing phases, indicating the generalizability of the model.

Furthermore, the values of standard deviation on the test set

remained low, pointing towards the stability of the model across

different data splits.

Overall, the Deep-CCNet model alone without feature

selection already exhibits a very good classification capacity for

the detection of cotton leaf disease and offers a high baseline for

achievable improvement through feature selection techniques.

TABLE III
FIVE-FOLD CROSS-VALIDATION RESULTS FOR THE COTTON LEAF DISEASE

DATASET (VALIDATION).

Metric Accuracy
Preci-
sion

Recall
F1-

score

Average 98.06 97.97 98.02 97.99

Median 97.73 97.70 97.80 97.75

Maximum 99.03 98.72 98.72 98.71

Minimum 97.09 97.07 97.08 97.08

Standard deviation 0.63 0.69 0.22 0.62

Variance 0.50 0.40 0.48 0.39

TABLE IV
TESTING ON UNSEEN SAMPLES FOR THE COTTON LEAF DISEASE DATASET.

Metric Accuracy
Preci-
sion

Recall
F1-

score

Average 96.13 96.09 96.26 96.15

Median 96.43 96.43 96.43 96.43

Maximum 96.51 96.47 96.59 96.53

Minimum 95.35 95.26 95.55 95.37

Standard deviation 0.48 0.37 0.37 0.44

Variance 0.20 0.23 0.14 0.20

C. Performance Evaluation of Meta-Heuristic Feature Selection

Methods

The objective of this experiment is to evaluate systematically

the performance of various meta-heuristic feature selection

algorithms, including RWA, PSO, DBA, GA, and BEA, in

improving the performance of classification models of cotton

leaf disease. The classification using four different classifiers—

SVM, Naı̈ve Bayes, KNN, and Decision Tree is shown in Table

V.

Among the tested methods, the BEA algorithm combined

with Naı̈ve Bayes yielded the best overall performance, achiev-

ing the highest accuracy (97.66%), precision (97.62%), recall

(97.65%), and F1-score (97.63%). The next best results are

obtained using BEA with KNN (accuracy: 97.08%, F1-score:

97.07%) and SVM (accuracy: 95.32%, F1-score: 95.30%)
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Fig. 2. Sample images from the Cotton Leaf Disease Dataset.

classifiers, respectively. The DBA method also demonstrated

strong performance, particularly with KNN, which achieved

a precision of 97.22% and an F1-score of 97.56%. Similarly,

the GA algorithm combined with Naı̈ve Bayes produced

competitive results, with an accuracy of 97.14%, precision

of 97.22%, recall of 97.22%, and F1-score of 97.22%. These

results suggest that while BEA leads in overall classification

performance, both DBA and GA also offer robust alternatives

when paired with appropriate classifiers.

On the other hand, RWA generated the poorest classification

performances of all the classifiers, with accuracies between

58.00% and 72.00%, which means that its feature selection

quality is inferior for this task. PSO and GA showed comparable

performance, particularly when applied with Naı̈ve Bayes

and Decision Tree classifiers, which means that they offer

good trade-offs between feature selection quality and model

generalization.

In general, BEA and DBA proved to be the best feature

selection methods for improving model performance, with RWA

being less ideal in this situation.

Furthermore, as shown in Table V, the number of selected

features varies across methods, with RWA selecting only 1

feature, PSO selecting 9, and other algorithms like DBA, GA,

and BEA consistently selecting 4 features, demonstrating the

impact of feature subset size on classification performance.

D. Computational Cost Analysis of Meta-Heuristic Feature

Selection Methods

The objective of this experiment is to compare the computa-

tional efficiency of all algorithms used for feature selection in

terms of feature selection time, classifier training and testing

time, and total running time, as illustrated in Table VI.

RWA recorded the fastest total execution time (7.55 seconds)

because of its relatively simple optimization process, but poor

classification accuracy limits its practical applicability. PSO

and DBA recorded moderate execution times (16.65 and 14.71

seconds, respectively) but excellent classification accuracy,

making them good options where both efficiency and accuracy

matter.

GA, although ranking well, took significantly more overall

execution time (60.15 seconds) than PSO and DBA due

mainly to the iterative nature of genetic operations. BEA,

although showing the best classification performance, took the

highest computational cost (451.39 seconds), which highlights

a trade-off between predictive performance and computational

resource usage. This substantial computational overhead is

largely attributed to the ensemble-based nature and nested

search operations within BEA, which, while improving feature

selection quality, lead to increased time complexity.

From a practical standpoint, the high execution time of BEA

raises concerns regarding scalability and real-time deployment

feasibility, especially for edge devices or resource-constrained

environments. For instance, in large-scale time series applica-

tions or streaming scenarios, such computational demand may

hinder timely decision-making or exhaust device resources. In

contrast, PSO and DBA strike a more favorable balance by

offering competitive accuracy at a fraction of the computational

cost, making them more viable for real-world deployment.

Therefore, while BEA may be suitable for offline analysis or

batch processing tasks where accuracy is prioritized over speed,

PSO and DBA are better suited for operational settings requir-

ing rapid inference and low-latency processing. This analysis

underscores the need to carefully match algorithm selection

with deployment requirements and hardware constraints.

Briefly, although BEA offers higher classification accuracy,

its deployment may be impractical in latency-sensitive environ-

ments. PSO and DBA are more balanced choices for scenarios

where computational expense is a key consideration.

V. CONCLUSION

In this work, we have introduced an end-to-end deep learning

architecture, Deep-CCNet, for detecting cotton leaf disease and
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TABLE V
PERFORMANCE COMPARISON OF FEATURE SELECTION METHODS AND CLASSIFICATION ALGORITHMS

Feature Selection Algorithm Classifier # Selected Features Accuracy Precision Recall F1-Score

RWA SVM 1 72.55 72.66 73.30 72.57

RWA Naı̈ve Bayes 1 72.55 72.80 72.58

RWA KNN 1 58.82 58.99 57.73 58.03

RWA Decision Tree 1 58.82 59.15 58.33 58.69

PSO SVM 9 91.43 91.32 91.87 91.63

PSO Naı̈ve Bayes 9 85.71 86.11 88.19 86.65

PSO KNN 9 82.35 84.99 85.78 84.47

PSO Decision Tree 9 88.24 88.19 88.54 88.06

DBA SVM 4 94.12 94.95 94.95 94.95

DBA Naı̈ve Bayes 4 91.81 92.67 92.22 92.34

DBA KNN 4 97.06 97.22 97.91 97.56

DBA Decision Tree 4 94.12 94.95 94.95 94.95

GA SVM 4 94.12 93.75 95.00 94.21

GA Naı̈ve Bayes 4 97.14 97.22 97.22 97.22

GA KNN 4 91.18 90.50 91.87 91.27

GA Decision Tree 4 91.18 90.62 93.18 91.00

BEA SVM 4 95.32 95.28 95.33 95.30

BEA Naı̈ve Bayes 4 97.66 97.62 97.65 97.63

BEA KNN 4 97.08 97.06 97.16 97.07

BEA Decision Tree 4 94.15 94.13 94.21 94.16

TABLE VI
COMPUTATIONAL COST ANALYSIS OF FEATURE SELECTION METHODS.

Feature
Selection

Algorithm
Best Accuracy Feature Selection Time (s)

Classifier Training and
Testing Time (s)

Total Execution Time (s)

RWA 72.55 0.24 6.24 7.55

PSO 91.43 15.73 0.44 16.65

DBA 97.06 12.99 1.01 14.71

GA 97.14 58.92 1.02 60.15

BEA 97.66 448.65 2.61 451.39

have extensively analyzed the impact of various meta-heuristic

feature selection techniques, including RWA, PSO, DBA, GA,

and BEA, on classification performance and computational

expense. The Deep-CCNet model has achieved high baseline

accuracy (96.13% on unseen samples without feature selection),

which is proof of its effectiveness for this task.

Through comprehensive experimentation, we found that the

BEA achieved the highest classification performance among

different classifiers, followed by DBA and PSO, providing a

better balance between classification accuracy and computa-

tional cost. However, RWA, though having low computational

cost, reported significantly lower predictive performance and

was therefore less suitable for this application.

Aside from these promising results, there are several

limitations to this work. First, the study is conducted on a

single cotton leaf disease dataset; hence, the generalizability

of the Deep-CCNet model and feature selection techniques to

other crops and general plant pathology tasks has not been

established. Second, while the study achieved high classification

performance, it did not incorporate explainability techniques

to interpret model predictions or feature selection outcomes,

limiting the transparency and trustworthiness of the system for

end users such as farmers and agronomists. Finally, the current

approach uses traditional classifiers after feature selection;

more advanced classifiers or ensemble techniques could further

improve results.

Future work can extend this research in many directions. One

direction would be to apply the Deep-CCNet model and feature

selection steps to larger, multi-crop datasets for their scalability

and robustness. Exploring light-weight models optimized for

deployment on mobile and edge devices would also enhance

the real-world usability of the system in actual agricultural

settings. Last but not least, developing explainable AI (XAI)

modules for model prediction and feature importances could

provide actionable insights to farmers and agronomists and

bring the study closer to the overall goals of interpretable and

trustworthy AI in agriculture.

CODE AVAILABILITY

The source code used in this study is publicly available1.

This facilitates reproducibility, enables validation of the results,

and encourages further research and development in the field.

1https://github.com/Engr-Naeem-Ullah/Optimizing-Deep-Learning-with-
Meta-Heuristic-Feature-Selection-Algorithms
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