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Abstract—Effective and efficient disease detection is crucial,
particularly for economically important crops like cotton. In this
paper, we move from the initial development of a deep-learning
model for cotton leaf disease detection, called Deep-CCNet, to
a more comprehensive comparison of different feature selection
algorithms, such as RainWater Algorithm, Particle Swarm
Optimization, Bee Evolutionary Algorithm, Genetic Algorithm,
and Binary Dragonfly Algorithm. Although Deep-CCNet achieved
satisfactory classification performance, the goal of this study is
to improve the classification performance and efficiency of deep

learning models with meta-heuristic feature selection techniques.

This study aims to determine which feature selection method
achieves the best balance between performance and computational
efficiency. We used the Kaggle “cotton leaf disease dataset”, which
has 1,711 images from four classes (namely curl virus, bacterial
blight, fusarium wilt, and healthy leaf images), to compare these
techniques systematically. Our research attempts to find the
most effective method that maximizes model performance while
minimizing computing resources, in addition to benchmarking

the computational and performance parameters of each approach.

The results of this study provide a new approach for the choice
of feature selection methods in plant pathology, leading to better
early disease diagnosis and increased crop resilience via efficient
farming practices.

I. INTRODUCTION

OTTON, also referred to as the “silver fiber”, is among
the most significant world agricultural products, the
cornerstone of the textile industry, and a means of livelihood
for millions of farmers, exporters, processors, and producers,
particularly in developing nations [1], [2]. Cotton production,
however, is facing threats from numerous pests and diseases,
which considerably reduce the quantity and quality of the cotton
crop, resulting in significant economic losses [3], [4]. Some of
these issues are cotton leaf diseases, which are directly harmful
to the health of a plant and ultimately its fiber production. Some
familiar infections include fusarium wilt, bacterial blight, and
cotton leaf curl virus. These diseases reduce crop yield and
weaken plants, increasing vulnerability to pests and secondary
infections. [3].
Studies show that pests and diseases cause a loss of
approximately 42% of world agricultural production each year
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[4]. Traditional disease diagnosis methods, which are mainly
based on manual inspection and chemical treatment, are labor-
intensive, time-consuming, and often prone to errors. For rural
areas where agricultural experts are not available, a precise
manual diagnosis is even harder. Therefore, there is a critical
need for improved, more efficient, accurate, and timely disease
diagnosis techniques [5], [6].

To address the above limitations, the farm sector has
witnessed a strong shift towards applying computer vision (CV)
and artificial intelligence (Al) technology to automatic, early
detection of plant disease [7]-[9]. Leaves have been discovered
to be most suitable for such analysis due to their ease of access
and visibility compared to other plant components, including
stems and roots [10]. Modern CV pipelines typically involve
processes such as dataset collection, image pre-processing,
feature extraction, feature selection, and classification [11],
[12].

Deep convolutional neural networks (DCNNs) have been
found effective for automatic feature extraction and classifica-
tion [13]. In particular, the fully connected layers in DCNNs
play an important role by integrating spatial features, such as
edges, textures, and color intensities, from the preceding layers
to predict the correct class labels [14]. Nevertheless, deep
models tend to generate an enormous number of redundant
or irrelevant features, thereby leading to overfitting and
inefficiencies.

To enhance model resilience and performance, optimization-
based feature selection algorithms have been gaining momen-
tum [15]. Techniques such as Particle Swarm Optimization
(PSO) [16], Binary Dragonfly Algorithm (BDA) [17], and
various meta-heuristic techniques are well suited to select
the most salient features with the elimination of noisy or
uninformative features. This process of feature selection not
only enhances classification accuracy but also reduces the
computational cost and results in models that are efficient and
lightweight.

In the context of these advancements, this study proposes
an integrated approach in which a novel Deep-CCNet deep
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learning (DL) model is coupled with meta-heuristic feature
selection methods to better improve cotton leaf disease classi-
fication performance. Through optimization of feature subsets
derived using DeepCCNetFS, we aim to develop a robust and
computationally capable model with real-time usage potential
in precision farming.

A. Motivation

The key aim of this work is to fulfill the essential requirement
of proper early diagnosis of cotton leaf diseases with the least
dependency on chemical treatment and facilitate farmers in
taking wise decisions using real-time tools. Being highly suscep-
tible to diseases, cotton crops need precise and timely diagnosis
for sustainable agriculture, enhanced crop management, and
improved yield.

But the use of DL models in such tasks is generally
hindered by high-dimensional feature spaces that not only
incur computational expense but also introduce redundant
information, leading to overfitting and reduced generalization
capability. Thus, efficient feature selection is very important
in avoiding these constraints.

Lastly, this research seeks to facilitate sustainable agriculture
by reducing the application of unnecessary pesticides through
efficient early disease detection while making such Al tools
accessible and feasible for in-field implementation in cotton
farming.

B. Feature Selection Strategies and Proposed Framework

Feature selection is a key component of the modern
machine learning pipeline, particularly when dealing with
high-dimensional learned feature spaces from deep neural
networks. It is crucial to select a subset of the most critical
features in building lightweight, efficient, but very accurate
models [18]. Without effective feature selection, models can
overfit, become computationally more expensive, and be less
generalizable, characteristics particularly undesirable in real-
world applications such as smart agriculture.

In this context, the deep features extracted from the Deep-
CCNet model need to be passed from the feature selection step.
Since the extracted feature vectors have a high dimensionality,
an optimal feature optimization method is essential to enhance
the model’s performance with computational efficiency.

To address this, we comprehensively evaluate and compare
five meta-heuristic feature selection algorithms with different
approaches to dynamic exploration and exploitation of the vast
and complex feature space: Rainwater Algorithm (RWA) [19],
Genetic Algorithm (GA) [20], Particle Swarm Optimization
(PSO) [21], Binary Dragonfly Algorithm (BDA) [22], and Bee
Evolutionary Algorithm (BEA) [23].

All of these methods are implemented within the Deep-
CCNet pipeline to optimize feature subsets derived from Deep-
CCNet for the highest classification performance and the lowest
model complexity. Comparative evaluation of these feature
selection algorithms is performed based on two key criteria:

1) Classification Performance: Assessment of how well the

selected features enable accurate disease diagnosis over
the cotton leaf disease dataset.
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2) Computational Efficiency: Measuring the overall execu-
tion time, feature selection time, and classification time,
which is important for effective deployment in resource-
constrained agricultural settings.

Furthermore, we used the grid search to carefully optimize
the hyperparameters, guaranteeing the best possible model
efficiency and performance. For empirical validation, we
employ the publicly available Cotton Leaf Disease dataset
with 1710 images corresponding to four classes of diseases.

II. RELATED WORKS

Recently, the accurate and early detection of cotton leaf
diseases using computational methods has been the subject of
much research because of its potential effects on agricultural
production and sustainability. Conventional ML methods have
been the mainstay of previous research, but deep learning (DL)
and evolutionary algorithms (nature-inspired feature selection)
techniques have lately gained traction and provided notable
gains in automation and accuracy.

A. Traditional Methods

Image processing methods and traditional ML algorithms
were the main tools used in the early stages of plant disease
identification efforts. For example, Sarangdhar et al., [24]
proposed a method for the classification and control of diseases
on cotton leaf along with soil quality monitoring. The study
suggested a regression approach based on support vector
machines (SVM) for the diagnosis of five diseases that affect
cotton leaves: Alternaria, Bacterial Blight, Cereospra, Fusarium
wilt, and Gray Mildew. Farmers were given access to the
identification of disease along with its cures through an Android
app upon illness detection. Along with the water level in a tank,
the Android app was also utilized to display the values of soil
factors, including temperature, moisture content, and humidity.
Shakel et al., [25] divided the images of Cercospora cotton
leaves into clusters using the K-means clustering technique. The
hybrid approach for extracting texture and color characteristics
was used to extract features. Ultimately, Cercospora cotton
leaves were classified using SVM. Similarly, a Multi-SVM-
based categorization system for cotton leaf diseases was pro-
posed by Jenifa et al. [26]. The suggested algorithm processed
the crops automatically at every stage, identifying defects at
an early stage and preventing losses to the farmer in terms of
products and money. When provided with the necessary data,
the aforementioned Multi-SVM algorithm models, which are
either human or robot-supervised, enable the segmentation and
classification of various disease kinds. Despite being innovative,
these methods have several difficulties. The quality and diversity
of the input photos had a significant impact on the accuracy
of disease identification, and the manual feature extraction
procedure was labor-intensive and prone to human error, which
made it challenging to scale and adapt to various plant diseases.

B. Deep Learning Advances

To address the shortcomings of manual feature extraction,
the shift towards DL, particularly DCNNs, has significantly
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enhanced the robustness and accuracy of plant disease detection
systems. These models automate the feature extraction process,
capturing complex patterns more effectively than traditional
methods. Compared to conventional techniques, these models
capture complicated patterns more successfully by automating
the feature extraction process [27]. For example, Rai et al. [28]
concentrated on developing an enhanced DCNN-based model
to address the issue of disease detection and classification in
cotton plants. Three distinct experimental setups were examined
to examine the effects of varying data split ratios, pooling
layer selections (max-pooling vs. average-pooling), and epoch
length. A collection including 2293 photos of plants and cotton
leaves was used to train the models. Four different leaf classes,
plant disease combinations, and the corresponding categories
were included in the data. The paper in [29] introduces a
dynamic feature selection methodology applied to deep neural
networks for univariate and multivariate time series forecasting,
based on the Coronavirus Optimization Algorithm [30]. The
proposed method, evaluated against random forest models,
demonstrated superior performance in terms of mean squared
error, highlighting the efficiency and effectiveness of dynamic
feature selection. The network that Rajasekar et al. [31]
proposed outperformed previous state-of-the-art methods by
combining the advantages of the Xception component with
the ResNet pre-trained on ImageNet. Kotian et al. [32] used
the ResNet50 and KNN ML model for the classification of
cotton leaf diseases. Numerous studies have lately used DL
methods for the categorization of cotton leaf diseases, as Table
1 illustrates. However, for real-world agricultural applications,
their high computing complexity and opaque decision-making
procedures often make them more difficult to trust and less
accessible. In addition to the studies discussed above, several
other DL-based approaches are summarized in Table I for
completeness and broader context.

C. Limitations

Our research intends to solve the following important short-
comings of current approaches, despite significant advances in
agricultural diagnostics, especially in the diagnosis of cotton
leaf disease:

1) Limited Integration of Feature Selection with DL: DL
models are commonly used in plant pathology research to detect
diseases, although adaptive and dynamic-feature selection
methods are not fully integrated. DL models are extremely
strong, but their efficacy is sometimes limited by static feature
sets that don’t change in response to fresh information or
intricate disease patterns. Moreover, evolutionary algorithms are
rarely used in research, despite their potential to improve model
accuracy and computing efficiency by constantly optimizing
and refining feature selection.

2) Computational Efficiency and Practical Deployment:
The computing needs of training large-scale models are often
overlooked by DL techniques, which restricts their application
in resource-constrained situations common to many agricultural
contexts. This disparity emphasizes the requirement for optimal

models that strike a compromise between operational viability
and performance.

D. Solutions

Presently, our research methodology rigorously examines and
assesses several feature selection algorithms inside the Deep-
CCNet approach, including RWA, PSO, BDA, GA, and BEA.
The goal of this comparison study is to evaluate how each
strategy affects the model’s accuracy, computing efficiency,
flexibility, and understandability. By doing this, we close
important knowledge gaps regarding feature selection efficien-
cies in agricultural applications and establish new standards
for the creation of systems that are scalable, trustworthy,
and understandable for the diagnosis of cotton leaf disease.
This effort opens the door for more sophisticated Al-driven
agriculture systems to be used on a global scale.

III. METHODOLOGY

We performed two types of experiments. Firstly, we con-
ducted end-to-end training, validation, and testing of our Deep-
CCNet model. Secondly, to improve the performance and
reduce the computational cost of our approach, we extracted
deep features from the last fully connected layer of the Deep-
CCNet model and subjected them to various feature selection
algorithms to determine their effectiveness in reducing feature
dimensionality and improving classifier performance. We used
SVM, KNN, Decision Tree, and Naive Bayes classifiers for
the classification of the selection features. The basic workflow
of the proposed method is given in Fig. 1.

A. Image Resizing

To maintain uniformity in input size throughout the dataset,
all input images are resized to 224 by 224 pixels.

B. Dataset Partitioning

The Deep-CCNet model is evaluated with a twofold ap-
proach: 10% of the images are used as a hold-out test set
for testing, and the rest, 90% are used in a five-fold cross-
validation setup, where in each iteration a different fold (data)
is used as a validation set. This approach ensures strong testing
against overfitting and encourages generalization.

C. Deep-CCNet Architecture details

The architecture of the Deep-CCNet model is based on
the ResNet18’s architectural principles; however, it also in-
cludes notable modifications specifically designed to maxi-
mize the classification performance and reduce computational
costs (Table II). The proposed Deep-CCNet architecture is a
lightweight convolutional neural network that is optimized for
efficiency and fast convergence, ideal for small or medium-sized
datasets such as cotton leaf disease classification. Deep-CCNet
possesses approximately 5.4 million learnable parameters,
significantly lower than ResNet18’s 11.18 million parameters.
Unlike ResNet18, which uses default ReLU activations, Deep-
CCNet uses Leaky ReLU activation units throughout the
network to correct the dying neuron problem and facilitate
gradient flow.

607



608

TABLE I
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RECENT WORK ON AUTOMATIC COTTON LEAF DISEASE DETECTION USING DL AND ML TECHNIQUES

Reference Number of Method Images in Advantages Limitation Year
classes the dataset
Lakshmi et Pre-trained ResNet50 and region . No Explamab} lity (NE)
Seven . 2,384 Satisfactory results and computationally 2024
al. [33] based segmentation .
expensive approach
Bhujade et Ten ;{3{:;225{3322 giljr;vlth 990 Good generalization No Unseen Samples 2004
al. [34] R ability and efficient Testing (NUST) and NE
Optimization )
Proposed a new dataset
Mohammad . Pre-trained models and custom with high-quality images,
et al. [35] Six CNN 1,200 satisfactory results on NE 2024
unseen samples
Good generalization
Irfan et al. Eicht Deep CNN with modified 4107 ability and satisfactory NE and manual
[36] g dragonfly optimization ’ performance on four hyper-parameter selection 2,024
datasets
Manurkar et . Balanced dataset used and ~ NUST, low-performance
al. [37] Six CNNs 3,600 efficient approach results and NE 2024
Rai et al Satisfactory results,
28] ' Four Improved Alexnet 2,293 testing on unseen samples, Low generalization ability 2023
less complex and efficient
Arathi et al. . . . Computationally
(38] Four Pre-trained DenseNet-121 model 781 Simple approach expensive and NE 2023
Feature extraction using
EfficientNet-b0 and Inception-v3, .
Zafar et al feature selection using Emperor Satisfactory performance
: Four - . 1,786 and good generalization NE 2023
[39] Penguin Optimizer, and abilit
classification using Quadratic y
Discriminant Analysis
Custom dataset and o
Nacem et al. Four VGGI16 700 satisfactory results with a NE low generalization 2023
[40] ability, and NUST
small dataset
Govin- Filated convolutional feature Efficient and reliable Low classification
dasamy et al. Five o K 26,100 . ach L 2023
[41] pyramid networ! approac! accuracy
. NE, computationally
Pandey et al. Four Hybrid model (CNN plus SVM) 1,710 Accurate and effective expensive, and low 2023

[42]

approach of classification

generalization ability

Dataset

Image
Resizing

DeepCCNetFS
Training

Data Partitioning

Feature Extraction Feature Selection

Classification

Fig. 1. Overview of the proposed methodology for cotton leaf disease classification.

Furthermore, Deep-CCNet reduces the residual block ar-
chitecture by eliminating every other convolutional block,
creating a shallower but effective model without over-sacrificing
feature learning. Deep-CCNet introduces an additional fully
connected layer of 1096 neurons preceded by a dropout layer
(probability = 0.5) to mitigate overfitting, which is not included
in ResNetl8.

Moreover, although both networks employ strided convolu-
tions to downsample, Deep-CCNet is specifically architected
to predict for 4 classes (i.e., three types of cotton leaf diseases
and a healthy class), as opposed to ResNet18’s native 1000-

class ImageNet configuration. This change in structure yields
a computationally more lightweight model that is simpler to
train and better suited to domain-specific classification tasks.

D. Feature Extraction

Following preprocessing, images are sent to the DeepCC-
NetFS, where feature extraction is handled by many layers.
Images are subjected to several filter applications as they go
through the convolutional layers, such as convl of the first
residual unit, which produces feature maps that capture different
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TABLE II
KEY DIFFERENCES BETWEEN RESNET18 AND DEEPCCNETFS.

S. No Property DeepCCNetFS ResNet18
1 Number of Learnable Layers 12 18
2 Number of Fully Connected 5 1
(FC) Layers
3 Number of Convolutional 12 17
Layers
4 Number of Dropout Layers 1 0
5 Activation Function (AF) Leaky ReLU (LReLU) ReLLU
6 Focus Optimized for speci_ﬁc patterns in cotton leaf General—purp_o_se image
diseases recognition
7 Computational Efficiency Enhanced by_redl{cir}g convqlutional blocks and Standard efficiency with more
simplifying architecture layers
3 Layer Configuration Customized_layer_s and fewer residual _blocks for Stan(_iardized residual bloc?ks
specific disease feature extraction for diverse feature extraction
9 Total learnable parameters 5.4 Million 11.18 Million
10 Residual Blocks 4 8

aspects of the images, such as edges and textures, and can be
represented as:

£ =) "((c* x x) + b) (1)

Here, = represents the local region of the image being
convolved, % is used to represent the kth layer, f denotes the
feature’s value, (4, j) represents pixel coordinates, c* represents

the convolution kernel of current layer, and b;, denotes the bias.

Batch normalization layers are then used to normalize these
feature maps, which reduces internal covariate shifts and allows
for faster and more stable training.

Max pooling layers, such as pooll, assist in lowering the
computational burden and model complexity by controlling
overfitting and summarizing the convolutional layer outputs
into more abstract representations. This reduces the spatial
dimension. The network can learn identification functions from
residual connections, like res2a, to make sure that no data is
lost between layers. Because these connections give gradients
direct paths during backpropagation, they are essential for
enabling the training of very deep networks. The function f(x)
yields the ideal feature map.

©))

f(x) = max(zl, 22,23, ...x,)

where x1,xs,x3,...,2T, are the activation values within
a local region (e.g., 3x3 window) of the feature map. This
operation retains the most prominent features while discarding
less significant ones, making the representation more robust
and compact. Higher-level reasoning in the network takes
place in the FC layers, where fc7 and fc8 are essential
building blocks for condensing the distilled information into
a format appropriate for categorization. The most important
characteristics in Deep-CCNet are effectively highlighted by
a global average pooling layer (pool5) that first reduces the
feature maps to a single value per map.

The output from the last fully connected layer (fc8) serves
as the extracted feature set for downstream tasks. Finally, the
softmax layer computes class probabilities, enabling the model
to classify cotton leaf images into specific disease categories.

E. Feature Selection Algorithms

Our study’s feature selection procedure uses sophisticated
algorithms that combine local and global search techniques to
extract the most pertinent characteristics from high-dimensional
data. By removing redundant and unnecessary features, these
techniques decrease the dimensionality of the data and improve
the classification models’ performance.

1) Binary Dragonfly Algorithm (BDA): The BDA is a nature-
inspired optimization method based on the foraging behavior of
dragonflies. This algorithm uses a swarm of candidate solutions
as binary vectors. It iterates in steps where each solution is
updated according to local best (exploitation) and global best
(exploration) strategies. The algorithm uses a combination of
velocity updates and binary transformations (with sigmoid-like
updates) to search the feature space for an optimal feature
subset. The fitness function evaluates the feature subsets using
a classification model, with the best features selected based on
minimum classification error.

2) Bee Evolutionary Algorithm (BEA): The BEA is inspired
by the foraging process of bees, i.e., employed, onlooker, and
scout stages. The algorithm starts by initializing a population
of binary solutions (representations of feature subsets) and
evaluating their fitness based on a classification model (KNN).
The employed bees attempt to mutate solutions to reach better
fitness, and onlooker bees select solutions probabilistically
based on fitness. Scout bees search randomly in the solution
space when they cannot find better solutions. These steps are
repeated by the algorithm iteratively, tracking convergence and
improving the population for better feature selection.

3) Genetic Algorithm (GA): The GA is a metaheuristic
algorithm inspired by natural selection that is used to solve
search and optimization problems. In this algorithm, every
member of the population is a binary vector where every
bit corresponds to a feature being included or not. The
algorithm determines the fitness of every member by training
a classifier (for example, KNN) using the selected features. In
each generation, the population is refreshed using selection,
crossover, and mutation. Selection serves as a promise of
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carrying forward superior individuals to the next generation.
Crossover exchanges traits among individuals, and mutation
introduces randomness using bit flipping. The iterations are
iterated over a defined number of generations, and the optimal
individual (set of features) is employed in model construction.

4) Particle Swarm Optimization (PSO): The PSO algorithm
is an optimization method that is based on the social behavior
of bird flocking. The PSO uses a population of particles, and
each particle is a possible feature subset. Each particle updates
its position according to its own best position and the global
best position discovered by the swarm. The algorithm balances
exploration (moving towards new areas of the solution space)
and exploitation (refining current good solutions) through
velocity updates. The particles converge to an optimal subset
of features after iterating around the solution space. Fitness is
evaluated in terms of classification accuracy on a selected set
of features.

5) RainWater Algorithm (RWA): RWA is inspired by rain-
drop movement, where raindrops “move down” to lower levels,
representing a natural minimization search for the location
of the minimum in the feature space. It simulates raindrop
behavior through iterative solution movement by fitness in
trying to achieve the best set of features, reducing classification
error. The solutions (sets of features as subsets) are refined
through multiple iterations. The algorithm initializes with a
random population of feature subsets, computes their fitness
from their sum of feature values, and shifts them to a new
position by adjusting velocities toward the optimal solution.
A dynamic threshold guarantees that the correct features are
selected, even when the initial threshold does not yield any
selection.

IV. RESULTS AND DISCUSSION
A. Dataset

In this work, a publicly available Kaggle data set named the
“Cotton leaf disease data set” is used [43]. The dataset consists
of 1,711 images representing four classes: Curl Virus (418
images), Bacterial Blight (448 images), Fusarium Wilt (419
images), and Healthy (426 images). The images were captured
under real-world conditions in the fields of the Southern Punjab
region of Pakistan, a major cotton-producing area. Some of the
images were also downloaded from the internet. This dataset
aims to assist in the identification and classification of cotton
leaf diseases, which are critical for the agriculture industry,
particularly for cotton cultivation and export to Europe and
the US. The representative samples of the dataset are given in
Figure 2.

B. Performance of Deep-CCNet without Feature Selection

The Deep-CCNet model is first evaluated without feature
selection as a baseline performance. The five-fold cross-
validation results are shown in Table III, and the test results
on unseen data are shown in Table IV.

Deep-CCNet achieved a good mean accuracy of 98.06%
under cross-validation, with precision, recall, and F1 score all
well aligned around 98.0% (Table III). The model is very stable
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in its performance, indicated by the low standard deviations
(below 0.7 for all metrics) and low variance values. The best
accuracy achieved is 99.03%, indicating the model generalized
well when trained.

On unseen test samples (Table IV), the model performed
consistently with a mean accuracy of 96.13%, precision of
96.09%, recall of 96.26%, and F1-score of 96.15%. The results
show minimal performance loss between the validation and
testing phases, indicating the generalizability of the model.
Furthermore, the values of standard deviation on the test set
remained low, pointing towards the stability of the model across
different data splits.

Overall, the Deep-CCNet model alone without feature
selection already exhibits a very good classification capacity for
the detection of cotton leaf disease and offers a high baseline for
achievable improvement through feature selection techniques.

TABLE III
FIVE-FOLD CROSS-VALIDATION RESULTS FOR THE COTTON LEAF DISEASE
DATASET (VALIDATION).

Metric Accuracy Preci- Recall F1-
sion score
Average 98.06 97.97 98.02 97.99
Median 97.73 97.70 97.80 97.75
Maximum 99.03 98.72 98.72 98.71
Minimum 97.09 97.07 97.08 97.08
Standard deviation 0.63 0.69 0.22 0.62
Variance 0.50 0.40 0.48 0.39
TABLE IV

TESTING ON UNSEEN SAMPLES FOR THE COTTON LEAF DISEASE DATASET.

Metric Accuracy Preci- Recall F1-

sion score
Average 96.13 96.09 96.26 96.15
Median 96.43 96.43 96.43 96.43
Maximum 96.51 96.47 96.59 96.53
Minimum 95.35 95.26 95.55 95.37
Standard deviation 0.48 0.37 0.37 0.44
Variance 0.20 0.23 0.14 0.20

C. Performance Evaluation of Meta-Heuristic Feature Selection
Methods

The objective of this experiment is to evaluate systematically
the performance of various meta-heuristic feature selection
algorithms, including RWA, PSO, DBA, GA, and BEA, in
improving the performance of classification models of cotton
leaf disease. The classification using four different classifiers—
SVM, Naive Bayes, KNN, and Decision Tree is shown in Table
V.

Among the tested methods, the BEA algorithm combined
with Naive Bayes yielded the best overall performance, achiev-
ing the highest accuracy (97.66%), precision (97.62%), recall
(97.65%), and F1-score (97.63%). The next best results are
obtained using BEA with KNN (accuracy: 97.08%, F1-score:
97.07%) and SVM (accuracy: 95.32%, Fl-score: 95.30%)
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Bacterial Blight Curl Virus

Fusarium Wilt

Healthy

Fig. 2. Sample images from the Cotton Leaf Disease Dataset.

classifiers, respectively. The DBA method also demonstrated
strong performance, particularly with KNN, which achieved
a precision of 97.22% and an F1-score of 97.56%. Similarly,
the GA algorithm combined with Naive Bayes produced
competitive results, with an accuracy of 97.14%, precision
of 97.22%, recall of 97.22%, and F1-score of 97.22%. These
results suggest that while BEA leads in overall classification
performance, both DBA and GA also offer robust alternatives
when paired with appropriate classifiers.

On the other hand, RWA generated the poorest classification
performances of all the classifiers, with accuracies between
58.00% and 72.00%, which means that its feature selection
quality is inferior for this task. PSO and GA showed comparable
performance, particularly when applied with Naive Bayes
and Decision Tree classifiers, which means that they offer
good trade-offs between feature selection quality and model
generalization.

In general, BEA and DBA proved to be the best feature
selection methods for improving model performance, with RWA
being less ideal in this situation.

Furthermore, as shown in Table V, the number of selected
features varies across methods, with RWA selecting only 1
feature, PSO selecting 9, and other algorithms like DBA, GA,
and BEA consistently selecting 4 features, demonstrating the
impact of feature subset size on classification performance.

D. Computational Cost Analysis of Meta-Heuristic Feature
Selection Methods

The objective of this experiment is to compare the computa-
tional efficiency of all algorithms used for feature selection in
terms of feature selection time, classifier training and testing
time, and total running time, as illustrated in Table VI.

RWA recorded the fastest total execution time (7.55 seconds)
because of its relatively simple optimization process, but poor
classification accuracy limits its practical applicability. PSO
and DBA recorded moderate execution times (16.65 and 14.71

seconds, respectively) but excellent classification accuracy,
making them good options where both efficiency and accuracy
matter.

GA, although ranking well, took significantly more overall
execution time (60.15 seconds) than PSO and DBA due
mainly to the iterative nature of genetic operations. BEA,
although showing the best classification performance, took the
highest computational cost (451.39 seconds), which highlights
a trade-off between predictive performance and computational
resource usage. This substantial computational overhead is
largely attributed to the ensemble-based nature and nested
search operations within BEA, which, while improving feature
selection quality, lead to increased time complexity.

From a practical standpoint, the high execution time of BEA
raises concerns regarding scalability and real-time deployment
feasibility, especially for edge devices or resource-constrained
environments. For instance, in large-scale time series applica-
tions or streaming scenarios, such computational demand may
hinder timely decision-making or exhaust device resources. In
contrast, PSO and DBA strike a more favorable balance by
offering competitive accuracy at a fraction of the computational
cost, making them more viable for real-world deployment.

Therefore, while BEA may be suitable for offline analysis or
batch processing tasks where accuracy is prioritized over speed,
PSO and DBA are better suited for operational settings requir-
ing rapid inference and low-latency processing. This analysis
underscores the need to carefully match algorithm selection
with deployment requirements and hardware constraints.

Briefly, although BEA offers higher classification accuracy,
its deployment may be impractical in latency-sensitive environ-
ments. PSO and DBA are more balanced choices for scenarios
where computational expense is a key consideration.

V. CONCLUSION

In this work, we have introduced an end-to-end deep learning
architecture, Deep-CCNet, for detecting cotton leaf disease and
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TABLE V
PERFORMANCE COMPARISON OF FEATURE SELECTION METHODS AND CLASSIFICATION ALGORITHMS

Feature Selection Algorithm  Classifier # Selected Features Accuracy Precision Recall F1-Score
RWA SVM 1 72.55 72.66 73.30 72.57
RWA Naive Bayes 1 72.55 72.80 72.58
RWA KNN 1 58.82 58.99 57.73 58.03
RWA Decision Tree 1 58.82 59.15 58.33 58.69
PSO SVM 9 91.43 91.32 91.87 91.63
PSO Naive Bayes 9 85.71 86.11 88.19 86.65
PSO KNN 9 82.35 84.99 85.78 84.47
PSO Decision Tree 9 88.24 88.19 88.54 88.06
DBA SVM 4 94.12 94.95 94.95 94.95
DBA Naive Bayes 4 91.81 92.67 92.22 92.34
DBA KNN 4 97.06 97.22 97.91 97.56
DBA Decision Tree 4 94.12 94.95 94.95 94.95
GA SVM 4 94.12 93.75 95.00 94.21
GA Naive Bayes 4 97.14 97.22 97.22 97.22
GA KNN 4 91.18 90.50 91.87 91.27
GA Decision Tree 4 91.18 90.62 93.18 91.00
BEA SVM 4 95.32 95.28 95.33 95.30
BEA Naive Bayes 4 97.66 97.62 97.65 97.63
BEA KNN 4 97.08 97.06 97.16 97.07
BEA Decision Tree 4 94.15 94.13 94.21 94.16
TABLE VI
COMPUTATIONAL COST ANALYSIS OF FEATURE SELECTION METHODS.
Feature . ..
Selection Best Accuracy Feature Selection Time (s) Cla;,Slﬁ?r Trz‘unmg and Total Execution Time (s)
Algorithm esting Time (s)

RWA 72.55 0.24 6.24 7.55

PSO 9143 15.73 0.44 16.65

DBA 97.06 12.99 1.01 14.71

GA 97.14 58.92 1.02 60.15

BEA 97.66 448.65 2.61 451.39

have extensively analyzed the impact of various meta-heuristic
feature selection techniques, including RWA, PSO, DBA, GA,
and BEA, on classification performance and computational
expense. The Deep-CCNet model has achieved high baseline
accuracy (96.13% on unseen samples without feature selection),
which is proof of its effectiveness for this task.

Through comprehensive experimentation, we found that the
BEA achieved the highest classification performance among
different classifiers, followed by DBA and PSO, providing a
better balance between classification accuracy and computa-
tional cost. However, RWA, though having low computational
cost, reported significantly lower predictive performance and
was therefore less suitable for this application.

Aside from these promising results, there are several
limitations to this work. First, the study is conducted on a
single cotton leaf disease dataset; hence, the generalizability
of the Deep-CCNet model and feature selection techniques to
other crops and general plant pathology tasks has not been
established. Second, while the study achieved high classification
performance, it did not incorporate explainability techniques
to interpret model predictions or feature selection outcomes,
limiting the transparency and trustworthiness of the system for

end users such as farmers and agronomists. Finally, the current
approach uses traditional classifiers after feature selection;
more advanced classifiers or ensemble techniques could further
improve results.

Future work can extend this research in many directions. One
direction would be to apply the Deep-CCNet model and feature
selection steps to larger, multi-crop datasets for their scalability
and robustness. Exploring light-weight models optimized for
deployment on mobile and edge devices would also enhance
the real-world usability of the system in actual agricultural
settings. Last but not least, developing explainable Al (XAI)
modules for model prediction and feature importances could
provide actionable insights to farmers and agronomists and
bring the study closer to the overall goals of interpretable and
trustworthy Al in agriculture.

CODE AVAILABILITY

The source code used in this study is publicly available!.
This facilitates reproducibility, enables validation of the results,
and encourages further research and development in the field.

Thttps://github.com/Engr-Naeem-Ullah/Optimizing-Deep-Learning-with-
Meta-Heuristic-Feature-Selection-Algorithms
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