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Abstract—Hedge funds (HF) are actively managed invest-
ment vehicles employing diverse and often complex strategies.
Accurate returns forecasting is essential for optimizing their
performance and managing risk. This paper investigates the
application of nonlinear dimensionality reduction (DR) meth-
ods in forecasting HF strategy performance, building upon
prior work in financial time series analysis. We evaluate the ef-
fectiveness of Kernel Principal Component Analysis (KPCA), t-
Distributed Stochastic Neighbor Embedding (t-SNE), Uniform
Manifold Approximation and Projection (UMAP), and autoen-
coders on predictive performance of machine learning models.
The extracted features are fed into several forecasting models,
Support Vector Machine (SVM) with linear and nonlinear ker-
nels, Neural Network (NN), and Extreme Gradient Boosting
(XGB), to predict returns of five diverse HF investment strate-
gies: Commodity Trading Advisors, Equity Long Short, Equity
Market Neutral, Fixed Income Arbitrage, and Global Macro.
The results demonstrate that nonlinear DR methods, particu-
larly autoencoders, and KPCA combined with NN, significantly
outperform other techniques. Our findings highlight the value
of nonlinear transformations in enhancing predictive accuracy
for HF returns time series.

Index Terms—dimensionality reduction, hedge funds, PCA,
KPCA, t-SNE, UMAP, autoencoders.

I. INTRODUCTION

HE hedge fund industry has experienced substantial

growth [1], due to investors’ demand for alternative
sources of return and portfolio diversification. Compared to
traditional financial market forecasting, hedge funds intro-
duce further layers of complexity, including the lack of
transparency, and very diverse strategies [2]. A wide array
of factors in investment models often lead to noise and over-
fitting causing poor decision-making. However, by effec-
tively using DR techniques, hedge fund analysts can en-
hance predictive model accuracy, gain deeper insights into
portfolio risk, and make smarter investment decisions.
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DR techniques in machine learning (ML) are typically im-
plemented for several key reasons: to mitigate the curse of
dimensionality, prepare data for ML algorithms, boost
model performance, and enhance interpretability and ex-
plainability [3]. DR algorithms are commonly distinguished
based on linearity, interpretability, computational cost, data
type, hyper-parameters, etc. [4], while the success of DR al-
gorithms is highly dependent on data characteristics, quality
and size [S]. A recent survey [3] highlights approaches de-
veloped for time-series analysis e.g. autoencoders, Principal
Component Analysis (PCA) and KPCA, while PCA and
UMAP are commonly used for financial times series [6].
Popular nonlinear techniques, t-SNE and UMAP, are shown
to be successful for both visualization and DR in financial
time series analysis [7]. Finally, more transparent ap-
proaches, e.g. based on fuzzy sets and fuzzy rough sets, are
proposed in literature [8]. Still, the authors conclude that
while nonlinear DR approaches often yield superior results
on artificial datasets, this performance does not necessarily
translate to real-world datasets [5].

In forecasting, DR algorithms serve as inputs to predictive
models to enhance forecasting performance. The widespread
adoption of ML models in financial forecasting is driven by
their ability to capture nonlinear relationships and adapt to
rapidly changing market conditions. According to a recent
review [9], the predominant ML algorithms for stock market
prediction are SVM and NN, followed by deep learning
models. In [10], the authors demonstrate benefits of using
ML approach to forecasting stock returns; the best perform-
ing models are boosting techniques and neural networks. Fi-
nally, many approaches tend to incorporate DR in their ML
framework, e.g. [11]

In this research, we examine the effect of nonlinear DR
techniques, selected from various category groups on perfor-
mance of hedge fund returns forecasting. In our study, PCA
will serve as a linear benchmark, and KPCA, t-SNE, UMAP
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and autoencoders will be exploited to uncover the underlying
structure of the data, modeling nonlinearity from different
perspectives. As part of ML forecasting framework, predom-
inant ML algorithms are selected based on the surveyed re-
search papers, i.e. linear and kernel SVM are chosen to match
diverse combinations of linear/nonlinear DR algorithms, NNs
as most effective in hedge fund return prediction, and XGB as
advanced representative of boosting algorithms. The datasets
used in this research contain time series of monthly returns
for the period of 1999-2023 for 5 HF investment, diverse in
types of risks, financial instruments and investment philoso-
phy [12]. The research addresses the following questions
aimed at exploring the effectiveness of nonlinear DR in case
of hedge funds’ returns forecasting:

RQ1: How does the selection of nonlinear DR techniques af-
fect the predictive power of ML forecasting models for hedge
funds’ return time series?

RQ2: Which ML forecasting models demonstrate best perfor-
mance when utilizing specific DR techniques?

RQ3: How do forecasting outcomes contribute to investment
decision making for hedge fund managers in terms of explain-
ability and meaningful insights?

By evaluating the performance of nonlinear DR in forecasting
HF returns, this paper aims to address the broader investment
community interested in the intersection of ML and financial
modeling.

The rest of this paper is organized as follows. In Section II
we outline the theoretical background of DR techniques, high-
lighting their benefits and drawbacks. In Section III we cover
the problem setup, dataset analysis, and experimental design.
Main results and discussion appear in Section IV.

II. THEORETICAL BACKGROUND

Due to the increasing challenges set by enormous amounts
of financial data, dimensionality reduction is one of the nec-
essary steps during data preprocessing. When it comes to var-
ious technical and fundamental analysis indicators, infor-
mation from social networks, as well as numerous historical
data, this is a significant technique for improving the perfor-
mance of algorithms, reducing model training, eliminating
noise and irrelevant data for specific problems.

A. Principal Component Analysis

PCA is the widely used linear orthogonal DR technique
with main goal to identify the principal components (PCs) that
capture the maximum variance of data [13]. During transfor-
mation, the first PC represents a linear combination of the
original features and explains the biggest amount of variance.
Each subsequent component is performed with the next high-
est score of variances.

The main advantage of PCA is its speed and ability to effi-
ciently process large datasets, as well as a clear mathematical
interpretation of the variance of the data [13]. However, the
principle of linearity limits its ability to capture nonlinear re-
lationships that are present in many real-life datasets. Hence,
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this inability to model nonlinearity drives the need for the de-
velopment of more advanced, nonlinear dimensionality re-
duction techniques, such as KPCA [14].

KPCA is a nonlinear approach of generalizing PCA. Using
the kernel method, KPCA first maps data to a higher dimen-
sional space [14]:

R% - RP, whereD » d (1)

Once the kernel method has been applied to transform data
into a linearly separable form, PCA is used to dimensionality
reduction [5]. KPCA uses several kernel functions like RBF
kernel, polynomial and sigmoid. The choice of the kernel
function plays an important role, since the performance of the
methods depends on the choice.

B. t-Distributed Stochastic Neighbor Embedding

t-SNE is a nonlinear technique of DR with primary purpose
to visualize high dimension datasets into low dimension
spaces, usually two or three-dimension spaces [15]. Further-
more, the main aim of t-SNE is to preserve complex relation-
ships between original data.

Firstly, t-SNE applies SNE to the dataset which assigns a
higher probability to similar pairs of high-dimensional ob-
jects, and a lower probability to different data points [5]:
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where pgp is conditional probability, x, high-dimensional
data, x;, low-dimensional data and o2 given variance. This is
achieved with a Gaussian kernel, which represents the simi-
larity between data points as a conditional probability. There-
after, t-SNE defined SNE in a low-dimension map using the
Student's t-distribution to avoid the crowding problem.

Even though this method is widely recognized for its ex-
cellence in visualizing and preserving local structure, t-SNE
produces high computational costs and time complexity,
which is limited for large datasets.

C. Uniform Manifold Approximation and Projection

UMAP is one more nonlinear method for DR based on ad-
vanced mathematical concepts, manifold theory and topolog-
ical data analysis. UMAP stands out in preserving local and
global data structure, which is a significant advantage over t-
SNE, which focuses on local structure [16]. At the same time,
UMAP overcomes the limitation of t-SNE such as execution
speed and feature limitation [17].

The algorithm consists of two key steps, graph construction
for the high dimensional space and optimization of low di-
mensional graph layout. In the first step, UMAP constructs a
probability distributions graph of nearest neighbors, while the
optimization step implies stochastic gradient descent on indi-
vidual observations [17]. Precisely, initial construction of the
graph is crucial in ensuring preservation of both local and
global structure. Moreover, two hyperparameters are key for
embedding results and control of structure preservation, the
number of nearest neighbors that the algorithm takes and the
minimum distance between data points in a low-dimensional
space [17].
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D. Autoencoders

An autoencoder is an unsupervised NN architecture de-
signed to compress (encode) input data into its essential at-
tributes and then reconstruct (decode) the original input from
this compressed representation [18]. Therefore, this NN con-
sists of three components: encoder, code and decoder [19].
The encoder is defined by the function that reduces the input
data into projection within latent space, while the decoder is
defined by the function that decodes the projection into its re-
construction [19]. The code part incorporates the projection
as the output from the encoder to the decoder. The output is
the reconstruction of the input data [18].

Training of autoencoders aims to minimize the reconstruc-
tion loss which measures the difference between the decoder's
reconstruction and the original input [19]. This loss function
is used to optimize model weights via gradient descent during
backpropagation. Furthermore, the performance of autoen-
coder depends on the tuning of the hyperparameters.

One of the main advantages of autoencoders is the de-
noising in the data as well as the detection of anomalies and
adaptation to changing distributions. However, their imple-
mentation requires careful consideration of resources, given
the computational complexity.

E. Comparative analysis of dimensionality reduction
methods

For easier comparison of techniques, a comparative analy-
sis is provided in Table I. The table summarizes all relevant
aspects of applied DR methods, including goal, explainabil-
ity, computational complexity, linearity, topology, strengths
and weaknesses. This review allows a clear insight into the
limitations of each method, as well as advantages depending
on the specific requirements.

III. PROBLEM STATEMENT AND METHODOLOGY

A. The problem setup

Our specific case study addresses a problem of forecasting
HFs’ returns using complex and broad feature space. For in-
vestment managers, both predictive accuracy and understand-
ing of key drivers are important for informed investment de-
cision making as they enable effective risk management and

portfolio optimization. Given the inherent complexity of fi-
nancial data, dimensionality reduction becomes a necessary
step to simplify data, remove noise and redundancy, and adapt
data for building robust and scalable forecasting models for
HF's investment returns.

Thus, we address the research questions Q1-Q3 (section 1)
and analyze the effectiveness of advanced nonlinear DR tech-
niques in predictive ML models’ performance i.e. accuracy
and interpretability. The case study includes the analysis of
HF's returns for five various investment strategies that suit dif-
ferent investment styles and risk tolerance, as to provide cred-
ible and general insights.

B. Datasets

As a follow-up, we further analyze the five datasets from
our previous research in [12].

Similarly, this case study is intended to analyze and predict
monthly returns of five hedge funds strategies from Morning
CISDM Database: Commodity Trading Advisors (CTA), Eqg-
uity Long Short (ELS), Equity Market Neutral (EMS), Fixed
Income Arbitrage (FIA), and Global Macro (GM) strategies.
Each strategy suits a different investment style and risk toler-
ance, allowing traders to choose approaches that align with
their financial goals, time horizons, and market outlooks.
CTA mostly uses managed futures contracts and trend-fol-
lowing approaches to forecast commodity price. ELS and
EMN strategies primarily focus on analyzing and trading
companies’ stocks listed on stock exchanges. ELS typically
involves taking long positions in undervalued stocks and short
positions in overvalued ones, while also utilizing options to
hedge risks and leverage to enhance potential returns. EMN
aims to maintain minimal correlation with the broader equity
market by hedging against factors such as currency fluctua-
tions, sector exposure, and market volatility. FIA targets un-
dervalued debt securities of traded companies, such as bonds
and other fixed income products. To mitigate risks associated
with high-yield positions, FIA may also involve equity posi-
tions in the issuing firms as a hedging mechanism. Finally,
the GM strategy is based on analyzing macroeconomic trends
in countries or regions, using instruments like stocks, bonds,
and commodities, and managing risk through derivatives.
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TABLE L.
DEFINING CHARACTERISTICS OF FIVE DIMENSIONALITY REDUCTION METHODS
S Computational R
Method Goal Explainability Complexity Linearity Topology Strength Weakness
PCA Maximize Medium O(d’n+n’) Linear Random Computational Linear projection
variance projection efficiency
KPCA Lincarly separate Low O(n®) Nonlinear Manifold Capturmg High training time
data nonlinear patterns
-SNE Preserve local Low o) Nonlincar Manifold E_xcep_tlor_lal Provide only 2 to 3
structure visualization features
Preserve local Strong Finding the
UMAP and global Low O(n"'%) Nonlinear Manifold mathematical spurious structure
structure foundations of the multiplicity
Autoencoder Effectlv.e Low Depends on the Nonlinear Manifold Denoising Tramm.g data
compression structure required
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Following the recommendations of financial experts and
literature review, for each HF strategy we include data on four
groups of factors describing trends, debt, capital market con-
ditions, and macroeconomic aspects. Several factors were se-
lected from each group:

o Interest rates are represented by a 3-month treasury bill, 5-
year constant maturity, and 10-year constant maturity rates,
minus federal funds rates.

¢ Credit rating categories include investment grade, high
yield below investment grade, and high yield below invest-
ment grade.

¢ Elements of Fama-French 5-factor model [20]: NYSE,
AMEX, and NASDAQ stock exchanges minus federal
funds rate, average return on the small capitalization stock
portfolios minus the average return on the large stock port-
folios, average return on the value portfolios minus the av-
erage return on the growth portfolios, average return on the
robust operating profitability portfolios minus the aver-age
return on the weak operating profitability portfolios, and av-
erage return on the conservative investment portfolios mi-
nus the average return on the aggressive investment portfo-
lios.

¢ Primitive trend following strategies on bonds, commodi-
ties, interest rates and stocks.
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The data was collected monthly over a period of 25 years,
from January 1999 to December 2023. For each HF, the final
dataset consists of 15 features and 300 instances in total.

C. Data preprocessing and experimental setup

As part of the data preprocessing, the five HFs returns se-
ries were divided into training set which include the first 22.5
years, and test set, i.e. the last 2.5 years. Since the data are on
different scales, we applied min-max normalization as the
preprocessing step. The data also shows peaks and draw-
downs, such as “dotcom” stock market bubble in the 2000s,
he global economic crisis from 2007 to 2009, and Covid-19
in 2019 [12]. There is also evidence of strong correlations be-
tween factors within interest rate group and credit rating cat-
egories, as well as performance of conservative against ag-
gressive portfolios and performance of value against growth
portfolios.

To address the research questions, we aim to identify a ML
prediction algorithm that performs best on transformed data.
The forecasting algorithms are implemented in Python, using
default hyperparameter values to isolate the influence of DR
techniques. The selected algorithms range from simple linear
models, such as linear SVM (epsilon value 0.1), to more com-
plex ones, NN with two hidden layers with 64 and 32 neurons
and a RELU activation function, as default hyperparameters.

TABLE II.
PERFORMANCE OF PREDICTION MODELS EVALUATED USING RRMSE

CTA ELS EMN FIA GM
STD RRMSE STD RRMSE STD RRMSE | STD RRMSE STD RRMSE
SVM - linear kernel | 0.0510 | 0.0828 0.2661 | 0.4504 0.0415 | 0.0675 0.2346 |0.4513 0.0698 |0.1513
SVM - RBF kernel 0.0510 ]0.0828 0.1950 ]0.3397 0.0415 | 0.0675 0.0229 03778 0.0698 |0.1513
Non-reduced NN 0.0847 |0.1086 0.2051 ]0.3261 0.0615 |0.1078 0.1825 |0.2813 0.1073 | 0.1812
XGB 0.0744 ] 0.1035 0.1349 ]0.2742 0.0351 |0.0684 0.4164 |0.6141 0.0654 | 0.1290
SVM - linear kernel | 0.0510 | 0.0828 0.1887 |0.3789 0.0415 | 0.0675 0.2720 | 0.4455 0.0698 | 0.1513
PCA SVM - RBF kernel 0.0510 | 0.0828 0.1176 | 0.1849 0.0415 | 0.0675 0.2006 |0.4124 0.0698 | 0.1513
NN 0.0554 | 0.0840 0.1933 | 0.3248 0.0574 | 0.0891 0.1637 |0.3025 0.0815 | 0.1394
XGB 0.0546 | 0.0892 0.1725 |0.3361 0.0491 |0.0794 0.1390 |0.2489 0.0904 | 0.1524
SVM - linear kernel | 0.0510 | 0.0828 0.1856 | 0.3637 0.0415 | 0.0675 0.3028 |0.4773 0.0698 | 0.1513
SVM - RBF kernel 0.0510 | 0.0828 0.1202 | 0.2004 0.0415 | 0.0675 0.1775 | 0.3687 0.0698 | 0.1513
Kpea NN 0.0514 | 0.0825 0.1730 | 0.2749 0.0493 | 0.0740 0.1504 |0.2390 0.0675 | 0.1351
XGB 0.0618 | 0.0969 0.1651 |0.3031 0.0438 | 0.0731 0.1504 |0.2609 0.0779 | 0.1482
SVM - linear kernel | 0.0510 | 0.0828 0.1793 | 0.2877 0.0415 | 0.0675 0.1676 | 0.3209 0.0698 | 0.1513
+-SNE SVM - RBF kernel 0.0510 | 0.0828 0.1917 10.3543 0.0415 | 0.0675 0.2020 |0.3986 0.0698 | 0.1513
NN 0.1326 | 0.2006 0.6024 | 0.8879 0.2847 |0.4307 0.7113 | 1.0910 0.3966 | 0.5741
XGB 0.0752 | 0.1086 0.1844 | 0.2958 0.0372 | 0.0683 0.1496 | 0.2353 0.0723 | 0.1297
SVM - linear kernel | 0.0510 | 0.0828 0.1839 |0.3027 0.0415 | 0.0675 0.3211 [0.5134 0.0698 | 0.1513
SVM - RBF kernel 0.0510 | 0.0828 0.1723 | 0.2920 0.0415 | 0.0675 0.2396 | 0.4991 0.0698 | 0.1513
UMAP NN 0.0958 | 0.1981 0.3228 | 0.7567 0.1823 | 0.3648 0.3520 |0.8028 0.2826 | 0.5249
XGB 0.0745 |0.1072 0.2449 | 0.3906 0.0335 | 0.0699 0.1471 | 0.2409 0.1059 | 0.1680
SVM - linear kernel | 0.0510 | 0.0828 0.1770 | 0.2933 0.0415 | 0.0675 0.2245 | 0.3694 0.0698 | 0.1513
SVM - RBF kernel 0.0510 | 0.0828 0.1494 | 0.2732 0.0415 | 0.0675 0.2395 |0.4932 0.0698 | 0.1513
Autoencoder NN 0.0573 | 0.0822 0.1522 | 0.2300 0.0299 | 0.0571 0.1246 |0.2071 0.0645 | 0.1078
XGB 0.0635 | 0.0932 0.2678 | 0.4082 0.0472 | 0.0860 0.1905 |0.2904 0.0998 | 0.1717
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We also employ nonlinear SVM (RBF kernel and epsilon
value 0.1) to account for the nonlinear nature of financial data
and to explore how a nonlinear feature extraction technique
aligns with a relatively simple nonlinear predictor. Finally, we
utilize XGB (100 decision trees with a maximum depth of 6),
as a representative of ensemble learning methods particularly
effective in prediction tasks.

The success of the proposed methods will be measured us-
ing standard evaluation metrics for regression: mean absolute
error (MAE) and relative root mean squared error (RRMSE).
RRMSE is normalized error using the average of actual val-
ues and is often expressed as a percentage.

IV. EXPERIMENTAL RESULTS

The effectiveness of DR methods is validated by compar-
ing predicted values with actual hedge fund returns across all
five HF strategies. The performance of ML predictive models,
using RRMSE and MAE, is shown in Tables II and III.

As expected, more sophisticated techniques, such as auto-
encoders, deliver better performance in all cases except for
the ELS strategy. This exception may stem from the Fama-
French asset pricing factors already being carefully selected
by domain experts. From an investment perspective, the anal-
ysis of individual principal component loadings indicates that

factors such as investment-grade (BAA), high-yield below in-
vestment grade (BBB), and 5-year and 10-year constant ma-
turity rates have a significant impact on most strategies. This
is also expected, as these are key drivers of performance
across various industries and sectors.

Furthermore, the empirical results are used to address main
research questions. The prediction results of HFs return series
confirm that dimensionality reduction, both linear and nonlin-
ear, in most cases, positively affects the predictive capacity of
ML forecasting models. However, nonlinear DR and nonlin-
ear ML predictors together potentially generate more noise in
the data e.g. combination of t-SNE/UMAP with NN increases
error.

In general, linear PCA provides equal or better prediction
results compared to non-reduced input datasets. It was ex-
pected that adding nonlinear NN and XGB predictors to non-
reduced and/or PCA-reduced data will significantly reduce er-
ror. However, that was not the case for most strategies, even
though linear DR did contribute to reducing error in general.
This indicates the potential presence of nonlinear dependence
in the original data which required analysis of more complex
DR algorithms.

Among the tested nonlinear DR methods, t-SNE and
UMAP resulted in higher prediction errors across strategies

TABLE IIL.
PERFORMANCE OF PREDICTION MODELS EVALUATED USING MAE
CTA ELS EMN FIA GM

STD |MAE | STD |MAE | STD |MAE |STD |MAE | STD | MAE

SVM - linear kernel | 0.0294 [0.0375 |0.0434 |0.0593 |0.0120 [0.0154 |0.0296 |0.0486 |0.0147 |0.0283

SVM - RBF kernel | 0.0294 [0.0375 [0.0318 |0.0454 |0.0120 [0.0154 [0.0289 |0.0378 |0.0147 |0.0283

Non-reduced - g 0.0488 |0.0391 [0.0335 |0.0414 |0.0177 |0.0256 |0.0230 [0.0270 |0.0227 |0.0308
XGB 0.0428 |0.0414 [0.0220 [0.0390 |0.0101 |0.0170 |0.0525 |0.0569 |0.0138 |0.0235

SVM - linear kernel | 0.0294 |0.0375 |0.0308 |0.0537 |0.0120 |0.0154 |0.0343 |0.0445 |0.0147 |0.0283

SVM - RBF kernel | 0.0294 |0.0375 |0.0192 |0.0233 |0.0120 |0.0154 |0.0253 |0.0454 |0.0147 |0.0283

FeA NN 0.0319 |0.0363 |0.0316 |0.0426 |0.0166 |0.0197 [0.0206 |0.0321 |0.0172 |0.0239
XGB 0.0314 |0.0406 |0.0282 |0.0471 |0.0142 |0.0180 |0.0175 [0.0260 |0.0191 |0.0259

SVM - linear kernel | 0.0294 |0.0375 |0.0303 |0.0511 |0.0120 [0.0154 |0.0382 |0.0465 |0.0147 |0.0283

KPCA SVM - RBF kernel | 0.0294 |0.0375 |0.0196 |0.0262 |0.0120 [0.0154 |0.0224 |0.0407 |0.0147 |0.0283
NN 0.0296 |0.0371 |0.0282 |0.0349 |0.0142 |0.0159 [0.0190 [0.0234 |0.0143 |0.0247

XGB 0.0355 |0.0429 |0.0270 |0.0415 |0.0126 |0.0169 |0.0190 [0.0269 |0.0164 |0.0266

SVM - linear kernel | 0.0294 |0.0375 |0.0293 |0.0367 |0.0120 [0.0154 |0.0211 |0.0345 |0.0147 |0.0283

SNE SVM - RBF kernel | 0.0294 |0.0375 |0.0313 |0.0487 |0.0120 |0.0154 |0.0255 |0.0433 |0.0147 |0.0283
NN 0.0763 |0.0866 |0.0984 |0.1065 |0.0822 |0.0933 [0.0897 [0.1043 |0.0837 |0.0876

XGB 0.0432 |0.0451 |0.0301 |0.0378 |0.0107 |0.0165 |0.0189 [0.0229 |0.0153 |0.0227

SVM - linear kernel | 0.0294 |0.0375 |0.0300 |0.0393 |0.0120 [0.0154 |0.0405 |0.0505 |0.0147 |0.0283

UMAP SVM - RBF kernel | 0.0294 |0.0375 |0.0281 [0.0385 |0.0120 [0.0154 |0.0302 |0.0552 |0.0147 |0.0283
NN 0.0551 |0.0997 |0.0527 |0.1117 |0.0526 |0.0912 |0.0444 [0.0909 |0.0597 |0.0934

XGB 0.0429 |0.0443 |0.0400 |0.0497 |0.0097 |0.0177 |0.0185 |0.0240 |0.0224 |0.0275

SVM - linear kernel | 0.0294 | 0.0375 |0.0289 |0.0382 |0.0120 [0.0154 |0.0283 |0.0370 |0.0147 |0.0283

SVM - RBF kernel | 0.0294 |0.0375 |0.0244 [0.0374 |0.0120 [0.0154 |0.0302 |0.0544 |0.0147 |0.0283

Autoencoder 00 0.0330 |0.0339 |0.0248 |0.0282 |0.0086 |0.0140 |0.0157 [0.0209 |0.0136 |0.0182
XGB 0.0366 |0.0392 |0.0437 |0.0503 |0.0136 |0.0207 |0.0240 |0.0276 |0.0211 |0.0295
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(e.g., GM and FIA), indicating its limitations for this forecast-
ing task. On the other hand, autoencoders are proven to con-
tribute to predictive power to most ML models, and for all
analyzed HF strategies. For all HF strategies, the best perfor-
mance is achieved with two nonlinear DR techniques, KPCA
and autoencoders, combined with NN forecasting model.

When considering algorithm characteristics, KPCA is com-
putationally intensive and sensitive to high dimensionality,
while autoencoders are better suited for processing larger da-
tasets. From the perspective of HF managers, improved fore-
casting helps reduce performance uncertainty to some extent,
supporting more informed decision-making when selecting
among diverse hedge fund strategies. However, both ap-
proaches lack explainability, making it challenging for man-
agers to justify their decisions.

V.CONCLUSION

This paper extends the research initiated in [12] on identi-
fying and extracting key features in financial time series fore-
casting. In this study, the influence of various nonlinear DR
methods was analyzed for HF performance forecasting. An
evaluation of effectiveness of KPCA, t-SNE, UMAP and au-
toencoders was examined on real-world data. Reduced data
serves as inputs to SVM with linear and nonlinear kernel, NN
and XGB as predominant ML predictors for financial time se-
ries. To provide credible conclusions, we utilized HF returns
data that represent different investment styles like CTA, ELS,
EMN, FIA, and GM [12]. The four group of factors (15 fea-
tures in total) covering interest rate, credit rating, trend and
Fama-French model were included into analysis, over 25
years period.

The empirical findings address the primary research ques-
tions. The analysis shows that both linear and nonlinear DR
contribute to ML forecasting results for diverse HF strategies.
Linear PCA was not effective enough, even when combined
with nonlinear ML predictors. The best performance was
achieved with nonlinear DR, KPCA and autoencoders when
paired with neural networks. Other critical DR characteristics
were discussed for the most effective combinations. From the
point of view of HF managers, the results provide better fore-
casting accuracy and contribute to more informed investment
decision making. Besides the necessity for domain ML
knowledge (e.g. hyper-parameters), the lack of explainability
was identified as the main drawback, as expected.

Our future work will be oriented towards the development
and application of investment-based DR methods that offer
explainability as a baseline for effective decision-making (e.g.
[12]). Also, investment metrics will be included to validate
investment performance.
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