
Abstract—Hedge  funds  (HF)  are  actively  managed  invest-

ment vehicles employing diverse and often complex strategies. 

Accurate  returns forecasting is  essential  for  optimizing their 

performance  and managing risk.  This  paper investigates  the 

application of nonlinear dimensionality reduction (DR) meth-

ods  in  forecasting  HF  strategy  performance,  building  upon 

prior work in financial time series analysis. We evaluate the ef-

fectiveness of Kernel Principal Component Analysis (KPCA), t-

Distributed Stochastic Neighbor Embedding (t-SNE), Uniform 

Manifold Approximation and Projection (UMAP), and autoen-

coders on predictive performance of machine learning models. 

The extracted features are fed into several forecasting models, 

Support Vector Machine (SVM) with linear and nonlinear ker-

nels,  Neural  Network (NN),  and Extreme Gradient  Boosting 

(XGB), to predict returns of five diverse HF investment strate-

gies: Commodity Trading Advisors, Equity Long Short, Equity 

Market Neutral, Fixed Income Arbitrage, and Global Macro. 

The results demonstrate that nonlinear DR methods, particu-

larly autoencoders, and KPCA combined with NN, significantly 

outperform other techniques. Our findings highlight the value 

of nonlinear transformations in enhancing predictive accuracy 

for HF returns time series.

Index Terms—dimensionality reduction, hedge funds, PCA, 

KPCA, t-SNE, UMAP, autoencoders.

I. INTRODUCTION

HE  hedge  fund  industry  has  experienced  substantial 

growth  [1],  due  to  investors’  demand  for  alternative 

sources of return and portfolio diversification. Compared to 

traditional financial market forecasting, hedge funds intro-

duce  further  layers  of  complexity,  including  the  lack  of 

transparency, and very diverse strategies [2]. A wide array 

of factors in investment models often lead to noise and over-

fitting  causing  poor  decision-making.  However,  by  effec-

tively  using  DR techniques,  hedge  fund  analysts  can  en-

hance predictive model accuracy, gain deeper insights into 

portfolio risk, and make smarter investment decisions.

T

DR techniques in machine learning (ML) are typically im-

plemented for several key reasons: to mitigate the curse of 

dimensionality,  prepare  data  for  ML  algorithms,  boost 

model  performance,  and  enhance  interpretability  and  ex-

plainability [3]. DR algorithms are commonly distinguished 

based on linearity, interpretability, computational cost, data 

type, hyper-parameters, etc. [4], while the success of DR al-

gorithms is highly dependent on data characteristics, quality 

and size [5]. A recent survey [3] highlights approaches de-

veloped for time-series analysis e.g. autoencoders, Principal 

Component  Analysis  (PCA)  and  KPCA,  while  PCA  and 

UMAP are  commonly  used for  financial  times  series  [6]. 

Popular nonlinear techniques, t-SNE and UMAP, are shown 

to be successful for both visualization and DR in financial 

time  series  analysis  [7].  Finally,  more  transparent  ap-

proaches, e.g. based on fuzzy sets and fuzzy rough sets, are 

proposed  in  literature  [8].  Still,  the  authors  conclude  that 

while nonlinear DR approaches often yield superior results 

on artificial datasets, this performance does not necessarily 

translate to real-world datasets [5].

In forecasting, DR algorithms serve as inputs to predictive 

models to enhance forecasting performance. The widespread 

adoption of ML models in financial forecasting is driven by 

their ability to capture nonlinear relationships and adapt to 

rapidly changing market conditions. According to a recent 

review [9], the predominant ML algorithms for stock market 

prediction  are  SVM  and  NN,  followed  by  deep  learning 

models. In [10], the authors demonstrate benefits of using 

ML approach to forecasting stock returns; the best perform-

ing models are boosting techniques and neural networks. Fi-

nally, many approaches tend to incorporate DR in their ML 

framework, e.g. [11]

In this research, we examine the effect of nonlinear DR 

techniques, selected from various category groups on perfor-

mance of hedge fund returns forecasting. In our study, PCA 

will serve as a linear benchmark, and KPCA, t-SNE, UMAP
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and autoencoders will be exploited to uncover the underlying 

structure of the data, modeling nonlinearity from different 

perspectives. As part of ML forecasting framework, predom-

inant ML algorithms are selected based on the surveyed re-

search papers, i.e. linear and kernel SVM are chosen to match 

diverse combinations of linear/nonlinear DR algorithms, NNs 

as most effective in hedge fund return prediction, and XGB as 

advanced representative of boosting algorithms. The datasets 

used in this research contain time series of monthly returns 

for the period of 1999-2023 for 5 HF investment, diverse in 

types of risks, financial instruments and investment philoso-

phy [12]. The research addresses the following questions 

aimed at exploring the effectiveness of nonlinear DR in case 

of hedge funds’ returns forecasting: 
RQ1: How does the selection of nonlinear DR techniques af-

fect the predictive power of ML forecasting models for hedge 

funds’ return time series?  

RQ2: Which ML forecasting models demonstrate best perfor-

mance when utilizing specific DR techniques? 

RQ3: How do forecasting outcomes contribute to investment 

decision making for hedge fund managers in terms of explain-

ability and meaningful insights? 

By evaluating the performance of nonlinear DR in forecasting 

HF returns, this paper aims to address the broader investment 

community interested in the intersection of ML and financial 

modeling. 

The rest of this paper is organized as follows. In Section II 

we outline the theoretical background of DR techniques, high-

lighting their benefits and drawbacks. In Section III we cover 

the problem setup, dataset analysis, and experimental design. 

Main results and discussion appear in Section IV.  

II. THEORETICAL BACKGROUND 

Due to the increasing challenges set by enormous amounts 

of financial data, dimensionality reduction is one of the nec-

essary steps during data preprocessing. When it comes to var-

ious technical and fundamental analysis indicators, infor-

mation from social networks, as well as numerous historical 

data, this is a significant technique for improving the perfor-

mance of algorithms, reducing model training, eliminating 

noise and irrelevant data for specific problems.  

A. Principal Component Analysis 

PCA is the widely used linear orthogonal DR technique 

with main goal to identify the principal components (PCs) that 

capture the maximum variance of data [13]. During transfor-

mation, the first PC represents a linear combination of the 

original features and explains the biggest amount of variance. 

Each subsequent component is performed with the next high-

est score of variances.  

The main advantage of PCA is its speed and ability to effi-

ciently process large datasets, as well as a clear mathematical 

interpretation of the variance of the data [13]. However, the 

principle of linearity limits its ability to capture nonlinear re-

lationships that are present in many real-life datasets. Hence, 

this inability to model nonlinearity drives the need for the de-

velopment of more advanced, nonlinear dimensionality re-

duction techniques, such as KPCA [14]. 

KPCA is a nonlinear approach of generalizing PCA. Using 

the kernel method, KPCA first maps data to a higher dimen-

sional space [14]: ℝௗ → ℝ஽, ≪ ܦ ݁ݎℎ݁ݓ ݀      (1) 

Once the kernel method has been applied to transform data 

into a linearly separable form, PCA is used to dimensionality 

reduction [5]. KPCA uses several kernel functions like RBF 

kernel, polynomial and sigmoid. The choice of the kernel 

function plays an important role, since the performance of the 

methods depends on the choice. 

B. t-Distributed Stochastic Neighbor Embedding 

t-SNE is a nonlinear technique of DR with primary purpose 

to visualize high dimension datasets into low dimension 

spaces, usually two or three-dimension spaces [15]. Further-

more, the main aim of t-SNE is to preserve complex relation-

ships between original data. 

Firstly, t-SNE applies SNE to the dataset which assigns a 

higher probability to similar pairs of high-dimensional ob-

jects, and a lower probability to different data points [5]: ݌௔|௕ = ௘௫௣−‖ೣ್−ೣೌ‖22഑2∑ −‖ೣೖ−ೣೌ‖22഑2ೌ≠ೖ         (2) 

where ݌௔|௕ is conditional probability, ݔ௔ high-dimensional 

data, ݔ௕ low-dimensional data and 2ߪ given variance. This is 

achieved with a Gaussian kernel, which represents the simi-

larity between data points as a conditional probability. There-

after, t-SNE defined SNE in a low-dimension map using the 

Student's t-distribution to avoid the crowding problem.  

Even though this method is widely recognized for its ex-

cellence in visualizing and preserving local structure, t-SNE 

produces high computational costs and time complexity, 

which is limited for large datasets.  

C. Uniform Manifold Approximation and Projection  

UMAP is one more nonlinear method for DR based on ad-

vanced mathematical concepts, manifold theory and topolog-

ical data analysis. UMAP stands out in preserving local and 

global data structure, which is a significant advantage over t-

SNE, which focuses on local structure [16]. At the same time, 

UMAP overcomes the limitation of t-SNE such as execution 

speed and feature limitation [17]. 

The algorithm consists of two key steps, graph construction 

for the high dimensional space and optimization of low di-

mensional graph layout. In the first step, UMAP constructs a 

probability distributions graph of nearest neighbors, while the 

optimization step implies stochastic gradient descent on indi-

vidual observations [17]. Precisely, initial construction of the 

graph is crucial in ensuring preservation of both local and 

global structure. Moreover, two hyperparameters are key for 

embedding results and control of structure preservation, the 

number of nearest neighbors that the algorithm takes and the 

minimum distance between data points in a low-dimensional 

space [17]. 
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D. Autoencoders 

An autoencoder is an unsupervised NN architecture de-

signed to compress (encode) input data into its essential at-

tributes and then reconstruct (decode) the original input from 

this compressed representation [18]. Therefore, this NN con-

sists of three components: encoder, code and decoder [19]. 

The encoder is defined by the function that reduces the input 

data into projection within latent space, while the decoder is 

defined by the function that decodes the projection into its re-

construction [19]. The code part incorporates the projection 

as the output from the encoder to the decoder. The output is 

the reconstruction of the input data [18].  

Training of autoencoders aims to minimize the reconstruc-

tion loss which measures the difference between the decoder's 

reconstruction and the original input [19]. This loss function 

is used to optimize model weights via gradient descent during 

backpropagation. Furthermore, the performance of autoen-

coder depends on the tuning of the hyperparameters. 

One of the main advantages of autoencoders is the de-

noising in the data as well as the detection of anomalies and 

adaptation to changing distributions. However, their imple-

mentation requires careful consideration of resources, given 

the computational complexity.  

E. Comparative analysis of dimensionality reduction 

methods 

For easier comparison of techniques, a comparative analy-

sis is provided in Table I. The table summarizes all relevant 

aspects of applied DR methods, including goal, explainabil-

ity, computational complexity, linearity, topology, strengths 

and weaknesses. This review allows a clear insight into the 

limitations of each method, as well as advantages depending 

on the specific requirements. 

III. PROBLEM STATEMENT AND METHODOLOGY 

A. The problem setup 

Our specific case study addresses a problem of forecasting 

HFs’ returns using complex and broad feature space. For in-
vestment managers, both predictive accuracy and understand-

ing of key drivers are important for informed investment de-

cision making as they enable effective risk management and 

portfolio optimization. Given the inherent complexity of fi-

nancial data, dimensionality reduction becomes a necessary 

step to simplify data, remove noise and redundancy, and adapt 

data for building robust and scalable forecasting models for 

HFs investment returns.  

Thus, we address the research questions Q1-Q3 (section 1) 

and analyze the effectiveness of advanced nonlinear DR tech-

niques in predictive ML models’ performance i.e. accuracy 
and interpretability. The case study includes the analysis of 

HFs returns for five various investment strategies that suit dif-

ferent investment styles and risk tolerance, as to provide cred-

ible and general insights. 

B. Datasets 

As a follow-up, we further analyze the five datasets from 

our previous research in [12].  

Similarly, this case study is intended to analyze and predict 

monthly returns of five hedge funds strategies from Morning 

CISDM Database: Commodity Trading Advisors (CTA), Eq-

uity Long Short (ELS), Equity Market Neutral (EMS), Fixed 

Income Arbitrage (FIA), and Global Macro (GM) strategies. 

Each strategy suits a different investment style and risk toler-

ance, allowing traders to choose approaches that align with 

their financial goals, time horizons, and market outlooks. 

CTA mostly uses managed futures contracts and trend-fol-

lowing approaches to forecast commodity price. ELS and 

EMN strategies primarily focus on analyzing and trading 

companies’ stocks listed on stock exchanges. ELS typically 
involves taking long positions in undervalued stocks and short 

positions in overvalued ones, while also utilizing options to 

hedge risks and leverage to enhance potential returns. EMN 

aims to maintain minimal correlation with the broader equity 

market by hedging against factors such as currency fluctua-

tions, sector exposure, and market volatility. FIA targets un-

dervalued debt securities of traded companies, such as bonds 

and other fixed income products. To mitigate risks associated 

with high-yield positions, FIA may also involve equity posi-

tions in the issuing firms as a hedging mechanism. Finally, 

the GM strategy is based on analyzing macroeconomic trends 

in countries or regions, using instruments like stocks, bonds, 

and commodities, and managing risk through derivatives. 

TABLE I. 

DEFINING CHARACTERISTICS OF FIVE DIMENSIONALITY REDUCTION METHODS 

Method Goal Explainability 
Computational 

Complexity 
Linearity Topology Strength Weakness 

PCA 
Maximize 

variance 
Medium O(d2n+n3) Linear 

Random 

projection 

Computational 

efficiency 
Linear projection 

KPCA 
Linearly separate 

data 
Low O(n3)  Nonlinear Manifold 

Capturing 

nonlinear patterns 
High training time 

t-SNE 
Preserve local 

structure 
Low O(n2) Nonlinear Manifold 

Exceptional 

visualization 

Provide only 2 to 3 

features 

UMAP 
Preserve local 

and global 

structure 

Low O(n1.14) Nonlinear Manifold 
Strong 

mathematical 

foundations 

Finding the 
spurious structure 

of the multiplicity 

Autoencoder 
Effective 

compression 
Low 

Depends on the 

structure  
Nonlinear Manifold Denoising 

Training data 

required 
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Following the recommendations of financial experts and 

literature review, for each HF strategy we include data on four 

groups of factors describing trends, debt, capital market con-

ditions, and macroeconomic aspects. Several factors were se-

lected from each group: 

• Interest rates are represented by a 3-month treasury bill, 5-

year constant maturity, and 10-year constant maturity rates, 

minus federal funds rates. 

• Credit rating categories include investment grade, high 

yield below investment grade, and high yield below invest-

ment grade. 

• Elements of Fama-French 5-factor model [20]: NYSE, 

AMEX, and NASDAQ stock exchanges minus federal 

funds rate, average return on the small capitalization stock 

portfolios minus the average return on the large stock port-

folios, average return on the value portfolios minus the av-

erage return on the growth portfolios, average return on the 

robust operating profitability portfolios minus the aver-age 

return on the weak operating profitability portfolios, and av-

erage return on the conservative investment portfolios mi-

nus the average return on the aggressive investment portfo-

lios. 

• Primitive trend following strategies on bonds, commodi-

ties, interest rates and stocks. 

The data was collected monthly over a period of 25 years, 

from January 1999 to December 2023. For each HF, the final 

dataset consists of 15 features and 300 instances in total. 

C.  Data preprocessing and experimental setup 

As part of the data preprocessing, the five HFs returns se-

ries were divided into training set which include the first 22.5 

years, and test set, i.e. the last 2.5 years. Since the data are on 

different scales, we applied min-max normalization as the 

preprocessing step. The data also shows peaks and draw-

downs, such as “dotcom” stock market bubble in the 2000s, 
he global economic crisis from 2007 to 2009, and Covid-19 

in 2019 [12]. There is also evidence of strong correlations be-

tween factors within interest rate group and credit rating cat-

egories, as well as performance of conservative against ag-

gressive portfolios and performance of value against growth 

portfolios.  

To address the research questions, we aim to identify a ML 

prediction algorithm that performs best on transformed data.  

The forecasting algorithms are implemented in Python, using 

default hyperparameter values to isolate the influence of DR 

techniques. The selected algorithms range from simple linear 

models, such as linear SVM (epsilon value 0.1), to more com-

plex ones, NN with two hidden layers with 64 and 32 neurons 

and a RELU activation function, as default hyperparameters. 

TABLE II. 

PERFORMANCE OF PREDICTION MODELS EVALUATED USING RRMSE 

 CTA ELS EMN FIA GM 

 STD RRMSE STD RRMSE STD RRMSE STD RRMSE STD RRMSE 

Non-reduced 

SVM - linear kernel 0.0510 0.0828 0.2661 0.4504 0.0415 0.0675 0.2346 0.4513 0.0698 0.1513 

SVM - RBF kernel 0.0510 0.0828 0.1950 0.3397 0.0415 0.0675  0.0229  0.3778 0.0698 0.1513 

NN 0.0847 0.1086 0.2051 0.3261 0.0615 0.1078  0.1825  0.2813 0.1073 0.1812 

XGB 0.0744 0.1035 0.1349 0.2742 0.0351 0.0684 0.4164 0.6141 0.0654 0.1290 

PCA 

SVM - linear kernel 0.0510 0.0828 0.1887 0.3789 0.0415 0.0675 0.2720 0.4455 0.0698 0.1513 

SVM - RBF kernel 0.0510 0.0828 0.1176 0.1849 0.0415 0.0675 0.2006 0.4124 0.0698 0.1513 

NN 0.0554 0.0840 0.1933 0.3248 0.0574 0.0891 0.1637 0.3025 0.0815 0.1394 

XGB 0.0546 0.0892 0.1725 0.3361 0.0491 0.0794 0.1390 0.2489 0.0904 0.1524 

KPCA 

SVM - linear kernel 0.0510 0.0828 0.1856 0.3637 0.0415 0.0675 0.3028 0.4773 0.0698 0.1513 

SVM - RBF kernel 0.0510 0.0828 0.1202 0.2004 0.0415 0.0675 0.1775 0.3687 0.0698 0.1513 

NN 0.0514 0.0825 0.1730 0.2749 0.0493 0.0740 0.1504 0.2390 0.0675 0.1351 

XGB 0.0618 0.0969 0.1651 0.3031 0.0438 0.0731 0.1504 0.2609 0.0779 0.1482 

t-SNE 

SVM - linear kernel 0.0510 0.0828 0.1793 0.2877 0.0415 0.0675 0.1676 0.3209 0.0698 0.1513 

SVM - RBF kernel 0.0510 0.0828 0.1917 0.3543 0.0415 0.0675 0.2020 0.3986 0.0698 0.1513 

NN 0.1326 0.2006 0.6024 0.8879 0.2847 0.4307 0.7113 1.0910 0.3966 0.5741 

XGB 0.0752 0.1086 0.1844 0.2958 0.0372 0.0683 0.1496 0.2353 0.0723 0.1297 

UMAP 

SVM - linear kernel 0.0510 0.0828 0.1839 0.3027 0.0415 0.0675 0.3211 0.5134 0.0698 0.1513 

SVM - RBF kernel 0.0510 0.0828 0.1723 0.2920 0.0415 0.0675 0.2396 0.4991 0.0698 0.1513 

NN 0.0958 0.1981 0.3228 0.7567 0.1823 0.3648 0.3520 0.8028 0.2826 0.5249 

XGB 0.0745 0.1072 0.2449 0.3906 0.0335 0.0699 0.1471 0.2409 0.1059 0.1680 

Autoencoder 

SVM - linear kernel 0.0510 0.0828 0.1770 0.2933 0.0415 0.0675 0.2245 0.3694 0.0698 0.1513 

SVM - RBF kernel 0.0510 0.0828 0.1494 0.2732 0.0415 0.0675 0.2395 0.4932 0.0698 0.1513 

NN 0.0573 0.0822 0.1522 0.2300 0.0299 0.0571 0.1246 0.2071 0.0645 0.1078 

XGB 0.0635 0.0932 0.2678 0.4082 0.0472 0.0860 0.1905 0.2904 0.0998 0.1717 
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We also employ nonlinear SVM (RBF kernel and epsilon 

value 0.1) to account for the nonlinear nature of financial data 

and to explore how a nonlinear feature extraction technique 

aligns with a relatively simple nonlinear predictor. Finally, we 

utilize XGB (100 decision trees with a maximum depth of 6), 

as a representative of ensemble learning methods particularly 

effective in prediction tasks. 

The success of the proposed methods will be measured us-

ing standard evaluation metrics for regression: mean absolute 

error (MAE) and relative root mean squared error (RRMSE). 

RRMSE is normalized error using the average of actual val-

ues and is often expressed as a percentage. 

IV. EXPERIMENTAL RESULTS 

The effectiveness of DR methods is validated by compar-

ing predicted values with actual hedge fund returns across all 

five HF strategies. The performance of ML predictive models, 

using RRMSE and MAE, is shown in Tables II and III. 

As expected, more sophisticated techniques, such as auto-

encoders, deliver better performance in all cases except for 

the ELS strategy. This exception may stem from the Fama-

French asset pricing factors already being carefully selected 

by domain experts. From an investment perspective, the anal-

ysis of individual principal component loadings indicates that 

factors such as investment-grade (BAA), high-yield below in-

vestment grade (BBB), and 5-year and 10-year constant ma-

turity rates have a significant impact on most strategies. This 

is also expected, as these are key drivers of performance 

across various industries and sectors.  

Furthermore, the empirical results are used to address main 

research questions. The prediction results of HFs return series 

confirm that dimensionality reduction, both linear and nonlin-

ear, in most cases, positively affects the predictive capacity of 

ML forecasting models. However, nonlinear DR and nonlin-

ear ML predictors together potentially generate more noise in 

the data e.g. combination of t-SNE/UMAP with NN increases 

error.  

In general, linear PCA provides equal or better prediction 

results compared to non-reduced input datasets. It was ex-

pected that adding nonlinear NN and XGB predictors to non-

reduced and/or PCA-reduced data will significantly reduce er-

ror. However, that was not the case for most strategies, even 

though linear DR did contribute to reducing error in general. 

This indicates the potential presence of nonlinear dependence 

in the original data which required analysis of more complex 

DR algorithms. 

Among the tested nonlinear DR methods, t-SNE and 

UMAP resulted in higher prediction errors across strategies 

TABLE III. 

PERFORMANCE OF PREDICTION MODELS EVALUATED USING MAE 

 CTA ELS EMN FIA GM 

 STD MAE STD MAE STD MAE STD MAE STD MAE 

Non-reduced 

SVM - linear kernel 0.0294 0.0375 0.0434 0.0593 0.0120 0.0154 0.0296 0.0486 0.0147 0.0283 

SVM - RBF kernel 0.0294 0.0375 0.0318 0.0454 0.0120 0.0154  0.0289  0.0378 0.0147 0.0283 

NN 0.0488 0.0391 0.0335 0.0414 0.0177 0.0256  0.0230  0.0270 0.0227 0.0308 

XGB 0.0428 0.0414 0.0220 0.0390 0.0101 0.0170 0.0525 0.0569 0.0138 0.0235 

PCA 

SVM - linear kernel 0.0294 0.0375 0.0308 0.0537 0.0120 0.0154 0.0343 0.0445 0.0147 0.0283 

SVM - RBF kernel 0.0294 0.0375 0.0192 0.0233 0.0120 0.0154 0.0253 0.0454 0.0147 0.0283 

NN 0.0319 0.0363 0.0316 0.0426 0.0166 0.0197 0.0206 0.0321 0.0172 0.0239 

XGB 0.0314 0.0406 0.0282 0.0471 0.0142 0.0180 0.0175 0.0260 0.0191 0.0259 

KPCA 

SVM - linear kernel 0.0294 0.0375 0.0303 0.0511 0.0120 0.0154 0.0382 0.0465 0.0147 0.0283 

SVM - RBF kernel 0.0294 0.0375 0.0196 0.0262 0.0120 0.0154 0.0224 0.0407 0.0147 0.0283 

NN 0.0296 0.0371 0.0282 0.0349 0.0142 0.0159 0.0190 0.0234 0.0143 0.0247 

XGB 0.0355 0.0429 0.0270 0.0415 0.0126 0.0169 0.0190 0.0269 0.0164 0.0266 

t-SNE 

SVM - linear kernel 0.0294 0.0375 0.0293 0.0367 0.0120 0.0154 0.0211 0.0345 0.0147 0.0283 

SVM - RBF kernel 0.0294 0.0375 0.0313 0.0487 0.0120 0.0154 0.0255 0.0433 0.0147 0.0283 

NN 0.0763 0.0866 0.0984 0.1065 0.0822 0.0933 0.0897 0.1043 0.0837 0.0876 

XGB 0.0432 0.0451 0.0301 0.0378 0.0107 0.0165 0.0189 0.0229 0.0153 0.0227 

UMAP 

SVM - linear kernel 0.0294 0.0375 0.0300 0.0393 0.0120 0.0154 0.0405 0.0505 0.0147 0.0283 

SVM - RBF kernel 0.0294 0.0375 0.0281 0.0385 0.0120 0.0154 0.0302 0.0552 0.0147 0.0283 

NN 0.0551 0.0997 0.0527 0.1117 0.0526 0.0912 0.0444 0.0909 0.0597 0.0934 

XGB 0.0429 0.0443 0.0400 0.0497 0.0097 0.0177 0.0185 0.0240 0.0224 0.0275 

Autoencoder 

SVM - linear kernel 0.0294 0.0375 0.0289 0.0382 0.0120 0.0154 0.0283 0.0370 0.0147 0.0283 

SVM - RBF kernel 0.0294 0.0375 0.0244 0.0374 0.0120 0.0154 0.0302 0.0544 0.0147 0.0283 

NN 0.0330 0.0339 0.0248 0.0282 0.0086 0.0140 0.0157 0.0209 0.0136 0.0182 

XGB 0.0366 0.0392 0.0437 0.0503 0.0136 0.0207 0.0240 0.0276 0.0211 0.0295 
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(e.g., GM and FIA), indicating its limitations for this forecast-

ing task. On the other hand, autoencoders are proven to con-

tribute to predictive power to most ML models, and for all 

analyzed HF strategies. For all HF strategies, the best perfor-

mance is achieved with two nonlinear DR techniques, KPCA 

and autoencoders, combined with NN forecasting model. 

When considering algorithm characteristics, KPCA is com-

putationally intensive and sensitive to high dimensionality, 

while autoencoders are better suited for processing larger da-

tasets. From the perspective of HF managers, improved fore-

casting helps reduce performance uncertainty to some extent, 

supporting more informed decision-making when selecting 

among diverse hedge fund strategies. However, both ap-

proaches lack explainability, making it challenging for man-

agers to justify their decisions.  

V. CONCLUSION 

This paper extends the research initiated in [12] on identi-

fying and extracting key features in financial time series fore-

casting. In this study, the influence of various nonlinear DR 

methods was analyzed for HF performance forecasting. An 

evaluation of effectiveness of KPCA, t-SNE, UMAP and au-

toencoders was examined on real-world data. Reduced data 

serves as inputs to SVM with linear and nonlinear kernel, NN 

and XGB as predominant ML predictors for financial time se-

ries. To provide credible conclusions, we utilized HF returns 

data that represent different investment styles like CTA, ELS, 

EMN, FIA, and GM [12]. The four group of factors (15 fea-

tures in total) covering interest rate, credit rating, trend and 

Fama-French model were included into analysis, over 25 

years period. 

The empirical findings address the primary research ques-

tions. The analysis shows that both linear and nonlinear DR 

contribute to ML forecasting results for diverse HF strategies. 

Linear PCA was not effective enough, even when combined 

with nonlinear ML predictors. The best performance was 

achieved with nonlinear DR, KPCA and autoencoders when 

paired with neural networks. Other critical DR characteristics 

were discussed for the most effective combinations. From the 

point of view of HF managers, the results provide better fore-

casting accuracy and contribute to more informed investment 

decision making. Besides the necessity for domain ML 

knowledge (e.g. hyper-parameters), the lack of explainability 

was identified as the main drawback, as expected. 

Our future work will be oriented towards the development 

and application of investment-based DR methods that offer 

explainability as a baseline for effective decision-making (e.g. 

[12]). Also, investment metrics will be included to validate 

investment performance. 
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