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Abstract—Clothing production is an important sector within
manufacturing. It includes the sewing, knitting and leather
industries. It is important for a manufacturer to organize the
production process well. This organization includes personnel
allocation, machine loading, and material allocation. The goal is
to complete the given order in the shortest time and, if possible,
at the lowest cost. This paper addresses the task of producing
knitted shirts. An ant colony optimization algorithm has been
proposed to solve the problem. The objective is to complete the
order in the shortest possible time.

Index Terms—Feshion production, Optimization, Scheduling

I. INTRODUCTION

O
PTIMIZING knitted garment production is a special part

of job shop scheduling problem. Job shop scheduling

problem is an important problem arising in manufacturing

and industry. The production consists of producing various

elements/parts on different machines. Sometimes it matters in

what order the individual elements are produced. Individual

machines may have some specialization, as well as different

productivity. Therefore, it is important to find the optimal

distribution of the production across machines so that the final

product can be produced in minimal time or within a certain

period of time and, if possible, at a lower cost. There is a wide

variety of job shop scheduling problems, depending on the

specific production processes, requirements, and constraints. A

survey was conducted in about the various job shop problems

and algorithms solving them [1]. This is a typical machine

scheduling problem. For the first time, an algorithm for solving

a variant of this problem, with machine setup time included,

was made in 1954 in [2]. Next years other variants of the

problem called flow shop scheduling problem is solved in [3],

[4]. These publications solve small-sized problems. There are

1 to 4 operations that are performed on 2 to 4 machines. Exact

methods are used to solve the problem. The term job shop was

first used by Sisson in 1959 [5].

In general, the job shop scheduling problem can be defined

as follows:

There is a set of m machines M = {M1,M2, . . . ,Mm}.
There is a set of n jobs J = {J1, J2, . . . , Jn}.
The job Ji has a set of operations Oi = {O

1

1
, Oi

2
, . . . , Oi

ni
}.

The operations have predefined technological sequence.

The operation O
j
i has an operation time pij and is assigned

on machine Mk from the set of machines M .

The solution is a scheduling of the jobs on the machines.

The aim is to minimize the completing time of all the jobs.

When the problem is large, it is difficult to solve it in

a reasonable time using exact methods. For this reason,

metaheuristic methods are applied, which find an approximate

solution in a short time.

In this article, we solve a variant of the job shop scheduling

problem, related to the production of knitted clothes. To solve

the problem, we propose an algorithm based on the ant colony

optimization.

The organization of the rest of the paper is as follows.

Section 2 gives literature review of the variants of job shop

scheduling problems and methods to solve them. Section 3

provides the definition of the considered variant of the job

shop scheduling problem. Section 4 describes the algorithm

for solving the problem. Computational examples are given

in Section 5. Section 6 gives some concluding remarks and

direction for future work.

II. LITERATURE REVIEW

When manufacturing a product, we have various measures

and constraints. There may be a requirement that jobs be

completed in a minimum time or within a given interval.

Another requirement may be minimizing the cost of the

production, and others. The problem may relate to optimizing

one of the measures or to meeting a maximum number of

criteria.

In [6] scheduling considers flexible manufacturing system.

They solve the problem by applying an adaptive genetic algo-

rithm. Machine flexibility is the focus of the problem solved

in [7], [8]. They consider energy efficiency too. Job shop

scheduling problem is applied on semiconductor production

[9], manufacturing of machines [10], automobile industry [11],

metallurgical industry [12].

Wang [13] solves robust job shop problem with a specific

structure. Dynamic flexible job shop problem is solved in

[14]. Biogeography-based optimization algorithm for solving

flexible multi-objective job shop problem has been proposed

in [15].

Anghinolfi [16] apply a split greedy heuristic for parallel

machine scheduling. In [17] has been proposed a hybrid

genetic algorithm for energy adaptive production. Scalia [18]
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proposed mixed integer programming model for solving job

shop scheduling problem. In [19] is applied implementation in

Python using pyomo library for solving the problem. A review

of flexible job shop scheduling problem is done in [20].

III. KNITWEAR PRODUCTION PROBLEM

In this article, we consider the problem of optimizing the

production of knitted garments. This is a variant of job shop

scheduling problem. Suppose there is an order to produce

knitted shirts. The shirts come in s = 3 sizes: M, L and

XL. Ni,j units of type i and size j must be produced, where

i = 1, . . . , d and j = 1, . . . , s. Each shirt consists of d = 4
types of parts: front, back, collar and two sleeves. tij is the

time for manufacturing part i of size j, i = 1, . . . , d and

j = 1, . . . , s. There is a set M of m machines available.

Mi,j,k is the number of parts of type i and size j that are

manufactured on machine k, i = 1, . . . , d, j = 1, . . . , s and

k = 1, . . . ,m. All machines are identical. The material used

to make the shirts is the same and therefore does not require

recharging.

The time during which machine k operates is:

Tk =

d
∑

i=1

s
∑

j=1

Mi,j,k ∗ ti,j (1)

We assume that all machines start working on the order at

the same time. Thus the order completion time is:

T =
m

max
k=1

Tk (2)

or this is the time by which all the machines will have finished

working.

The objective is to minimize T , or to find the minimal

order completion time, minT . The solution is described by

the matrix M with elements Mi,j,k, indicating which parts

will be manufactured on which machine.

The mathematical description of the problem is as follows:

We look for:

min



maxm
k=1





d
∑

i=1

s
∑

j=1

Mi,j,k ∗ tij







 (3)

fulfilling the conditions:
∑m

k=1
Mi,j,k = Ni,j i = 1, . . . d j = 1 . . . s

(4)

The aim is to finish the order for the minimal time.

IV. PRODUCTION SCHEDULING

The job shop scheduling problem is NP-hard combinatorial

optimization problem. This type of problem requires a large

amount of computer memory and an exponential number of

calculations. For this reason, when the size of the problem

is large, it could not be solved by an exact method or

traditional numerical method. In such cases, metaheuristic

algorithms are applied. Metaheuristic methods are iterative

stochastic methods, based on random searches or searches with

probability and statistical feedback from the results of previous

iterations. Prior knowledge of the task and estimates, if any,

are also used to improve and guide the search.

One of the most successful method for solving combi-

natorial optimization problems is Ant Colony Optimization

(ACO) [21], [22]. In the early 1990s, Marco Dorigo proposed

a stochastic method for solving combinatorial optimization

problems, based on observations of the behavior of ants in

nature [23]. The main thing is how ants manage to find

the shortest path to a food source, marking the paths with

pheromone and following the one with the highest concentra-

tion of pheromone. In order for ants to be imitated, the problem

to be solved must be reduced to finding the shortest path. This

is done by representing the problem in terms of a graph. A

shortest path is searched in the graph under certain conditions,

using numerical information (weight) on the edges or nodes

of the graph, imitating the pheromone in nature. Ants use a

combination of pheromone and random search to improve their

path.

Artificial ants move to a new node in the task graph using

a transition probability. This consists of heuristic information

and the pheromone corresponding to that transition.

Pi,j =
τai,j · η

b
i,j

∑

k∈Unused

τai,k · η
b
i,k

, (5)

where Pij is the transition probability to go from node i to

node j, ηij is the heuristic information related to the problem

and τij is the quantity of the pheromone, Unused is the set

of nodes which are not used yet in the solution.

It starts with a small positive pheromone value, the same

for all elements of the graph τ0, 0 < τ0 < 1. After each

iteration, the pheromone is updated depending on whether the

corresponding vertex belongs to a solution and how good this

solution is compared to the other solutions found. The main

pheromone update rule is:

τi,j ← ρ · τi,j +∆τi,j , (6)

ρ mimics evaporation in nature, which reduces the amount of

pheromone over time. Then, a new pheromone is added ∆τi,j ,

which depends on the quality of the solution and is inversely

proportional to the value of the objective function.

The iteration ends when all ants have built their solutions,

i.e. the transition probability is 0. The algorithm ends its

work when: it has performed its predetermined number of

iterations; when there is no improvement in the result for a

fixed number of iterations; when the value of the objective

function is sufficiently close to a predetermined lower bound.

One of the important elements in applying the ant method

is the description of the problem with a graph. The graph

we use to describe the problem we are solving is three-

dimensional, and node (i, j, k) corresponds to element i of

size j manufactured on machine k, i = 1, . . . , d, j = 1, . . . , s,

k = 1, . . . ,m. This node is assigned a value Mi,j,k, which

indicates how many units of element i of size j to be

manufactured on machine k. So if on machine k produces

parts of type i, size j, then Mi,j,k > 0. If on machine k
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does not produced parts of type i, size j, then Mi,j,k = 0.

This means that a single part and size can be manufactured

on several machines, and different parts with different sizes

can be manufactured on one and the same machine.

Graph of the problem is completely connected. An ant

begins building the solution from a random node in the graph.

At the begining the value of Mi,j,k = 0, i = 1, . . . , d,

j = 1, . . . , s, k = 1, . . . ,m, because the distribution of the

parts along the machine is not fixed. When the ant passes

through node (i, j, k), the value of Mi,j,k increases by 1 or

Mi,j,k ←Mi,j,k +1. The ant can go through the same vertex

(i, j, k) multiple times adding 1 to Mi,j,k. The important thing

is not to violate the constraints of the problem.

The pheromone will be associated with the nodes of the

graph. It indicates the importance of the node to the solution.

Thus, pheromone τi,j,k corresponds to node (i, j, k) and its

value indicates how important it was for the solutions of the

previous iteration. So, the quantity of the pheromone τi,j,k
indicates how significant the node was for the decisions of

previous iterations.

At the beginning, we randomly select one of the elements to

be manufactured and assign it to a randomly selected machine.

Every time an element i of size j is assigned to machine k,

we increase the value of Mi,.j,k by 1.

To assign the next elements for fabrication, we select

element i of size j at random and we calculate the transition

probability to assign it to one of the machines. The transition

probability is a product of the amount of pheromone and the

heuristic function uses prior knowledge of the problem to

guide the search for a good solution. We propose the following

heuristic function:

ηi,j,k =
1

Tk

(7)

where the value of Tk is calculated for the current values of the

elements of the matrices M by increasing the value of Mi,j,k

by 1. We calculate the transition probability for the selected

element i of size j for all possible machines k. We choose the

node (machine) with maximum probability. If there are two

or more nodes (i, j, k1), . . . , (i, j, ks), 1 ≤ s ≤ m, with the

same transition probability value, then we choose one of them

randomly.

After an element i of size j is selected to be manufactured

on machine k, we increase the value of Mi,j,k by 1, Mi,j,k ←
Mi,j,k + 1. At the same time we decrease the value of Ni,j

by 1 Ni,j ← Ni,j − 1. The current value of Ni,j shows how

many items of type i and size j have not yet been assigned

to the machines for the production.

The algorithm repeats until Ni,j = 0, for all i = 1, . . . , d
and j = 1, . . . , s. This means that all the parts have already

been assigned for the production on the machines, i.e. the ant

has built the solution. The matrix M shows for each type and

size of parts on which machine and how many are produced.

The order of the production of the parts is not important, so

for each machine k it is possible to produce first all the parts

of type 1 and size 1, then all the parts of type 1 size 2 and so

on, and at the end all the parts of type d and size s.

When all the ants have built their solutions, we calculate

the value of the objective function, i.e. the time to complete

the order. Then we update the pheromone. After reduc-

ing/evaporating the pheromone with the evaporation parameter

ρ, we add a new pheromone.

∆τi,j,k = (1− ρ) 1

T
if Mi,j,k ̸= 0

∆τi,j,k = 0 if Mi,j,k = 0
(8)

This concludes the current iteration. The algorithm performs

a predetermined number of iterations or there is a fixed number

of iterations without updating the results. In our problem,

updating the results occurs when the time for filling the

document is reduced.

V. COMPUTATIONAL EXAMPLES

The organization of the production is very important for its

success. Given a variety of elements and a fixed number of the

production machines, the elements must be distributed so that

the order can be completed in the shortest possible time. In the

task of producing knitted garments, there are knitting machines

that can produce each of the elements. The material used to

make the garments is the same for the entire order. Therefore,

there is no delay in moving from one item to another because

there is no need to load new material. The garments produced

come in three sizes: M, L, XL. The machines available for the

production are identical and the same item is produced on each

of the machines in the same amount of time. Each garment

consists of four parts/elements, a front, a back, a collar and

two sleeves. The individual elements can be manufactured

on different machines. It is important that for each size the

number of fronts is equal to the number of backs, is equal

to the number of collar and the number of sleeves is twice

as large as the number of other elements. This is a necessary

requirement so that the garments can then be assembled. Let

the time for making the individual elements be as indicated in

Table I.

TABLE I: Knitted shirt production time

element size M size L size XL

front 17 min 18 min 19 min

back 13 min 14 min 15 min

sleeve 10.5 min 11 min 12.5 min

collar 3 min 3 min 3 min

The data on the production time for each element was taken

from a Bulgarian company producing knitted garments.

Let the company have 3 machines. The machines are

identical and each of them can knit each of the elements. Let

an order be received for the production of knitted shirts as

noted in Table II.

TABLE II: Knitted shirt order

shirts size M size L size XL

10 pieces 20 pieces 10 pieces

Each size could be produced on a separate machine. This

is one possible solution, but not optimal. If the production of

STEFKA FIDANOVA ET AL.: KNITWEAR PRODUCTION SCHEDULING 695



the parts is distributed in this way, each of the machines will

complete its assigned work in the following time Table III.

TABLE III: Knitted shirt production time solution 1

shirts machine 1 machine 2 machine 3

shirt quantity 10M 20L 10 XL

front 10M 20L 10XL

back 10M 20L 10XL

sleeve 20M 40L 20XL

collar 10M 20L 10XL

production time 540 min 1140 min 620 min

With this distribution of work, the order will be completed

in 1140 minutes, which is 19 hours. This is the time by

which all machines will have finished working. The machine 2

finished last and it determines the order execution time.

Another valid solution is to have machine 1 produces all 10

risques of size M and only 4 of size L. Machine 2 produces

13 risques of size L, and machine 3 produces all 10 risques of

size XL and 3 risques of size L. This way, the distribution of

work across machines will be almost even. The machines will

complete its assigned work in the following time Table IV.

TABLE IV: Knitted shirt production time solution 2

shirts machine 1 machine 2 machine 3

shirt quantity 10 M + 4 L 13 L 3 L + 10 XL

front 10M, 4L 13L 10XL

back 10M, 4L 13L 10XL

sleeve 20M, 8L 20L 10XL

collar 10M, 4L 13L 10XL

production time 768 min 741 min 791 min

With this distribution of work, the order will be completed

in 791 minutes, which is 13 hours and 11 minutes, which is

shorter than previous solution. The machine 3 finished last and

it determines the order execution time.

Let’s apply the ant colony optimization to solving the

problem of making knitted shirts. We use 2 ants. Every ant

constructs his own solution and after we compare them and

choose the better and it will be the iteration best solution. We

compare it with the current global best solution and if it is bet-

ter it is the new global best solution. The ant chose randomly

an element from the order and assigns it to randomly chosen

machine. After the ant chose randomly other element from the

order and calculates the transition probability to be assigned

to every one of the existing machines. The element is assigned

for the production to the machine with a higher probability.

This procedure is repeated till all elements from the order are

assigned. After several iterations our ant algorithm achieves

following solutions, see Table V and Table VI.

TABLE V: Ant’s solution 1

element machine 1 machine 2 machine 3

front 10M, 4L 14L, 1XL 2L, 9XL

back 10M, 4L 14L, 1XL 2L, 9XL

sleeve 20M, 8L 28L, 2XL 4L, 18XL

collar 10M, 4L 14L, 1XL 2L, 9XL

time 768 min 760 min 770 min

With this distribution of work, the order will be completed

in 770 minutes, which is 12 hours and 50 minutes, which is

shorter than previous solution. The machine 3 finished last and

it determines the order execution time.

TABLE VI: Ant’s solution 2

element machine 1 machine 2 machine 3

front 10M, 4L 14L, 1XL 2L, 9XL

back 10M, 4L 14L, 1XL 2L, 9XL

sleeve 20M, 8L 28L, 2XL 4L, 18XL

collar 10M, 3L 16L, 1XL 1L, 9XL

time 765 min 766 min 767 min

With this distribution of work, the order will be completed

in 767 minutes, which is 12 hours and 47 minutes, which is

shorter than previous solution. The machine 3 finished last

and it determines the order execution time. We observe that

the time during which the machines work to fulfill the order

is almost the same. The difference in time is within 1 to 2

minutes, which is less than the time for producing any of the

elements. Therefore, if we move a part from one machine to

another, the total order execution time will not be reduced

any further. This gives us reason to assume that the proposed

algorithm, based on the ant colony optimization, has found the

optimal solution for this example.

VI. CONCLUSION

This paper proposes an ant colony optimization algorithm

for solving the knitwear production scheduling problem. This

is a problem coming from the industry. The simplest variant of

the task is solved, where we have a single type of machine and

the manufactured parts are of the same type and differ only

in size. In our future work, we will test the algorithm with

large examples with a range of several hundred numbers of

elements. We will include the creation of clothes in different

colors, which will require a recharge of the machine, which

takes time , but it will not require a reconfiguration. Another

variant of this problem involves producing multiple types of

garments, which would require machine reconfiguration time.
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