&l

Proceedings of the 20" Conference on Computer

DOI: 10.15439/2025F4310

Science and Intelligence Systems (FedCSIS) pp. 461-470 ISSN 2300-5963 ACSIS, Vol. 43

Hybrid Approaches for Pneumonia Detection in
X-rays: Combining CNNs and ML Classifiers

Gabriele S. Aratjo
0000-0003-1143-507X
Center for Technological Sciences,
State University of Maranhao,
Sdo Luis/Maranhio, Brazil
gabriele.20231002966 @ aluno.uema.br

Olaf Reinhold
0000-0003-1977-1641
University of Cooperative Education Saxony
Social CRM Research Center,
Riesa/Leipzig, Germany
olaf.reinhold@dhsn.de

Abstract—Pneumonia is a disease that impacts millions of
people worldwide, and X-ray image detection is one of the
primary diagnostic tools used. This study presents a hybrid
diagnostic approach combining Convolutional Neural Networks
(CNNs) with traditional classifiers, namely Random Forest (RF)
and Support Vector Machine (SVM), to detect pneumonia from
chest X-ray images. Features were extracted from MobileNetV2,
VGG16, and EfficientNetB0 and used to train RF and SVM
models with hyperparameter tuning via GridSearchCYV. Ensemble
models were also explored: (i) CNNs + RF, (ii) CNNs + SVM,
and (iii) RF + SVM. Experiments were conducted using a
public pediatric dataset (5.856 X-rays) with stratified k-fold
cross-validation and data augmentation. CNNs + RF achieved
the highest 0.977 AUC and 91.9% accuracy, while individual
models like VGG16 showed competitive performance (91.8%
accuracy, 0.969 AUC). Results were statistically validated and
showed strong potential for clinical support, particularly in
settings with limited resources. In future work, we propose
extending the approach to multiclass classification and refining
model optimization strategies.

Index Terms—Deep Learning, Ensemble Learning, Medical
Imaging

I. INTRODUCTION

NEUMONIA is one of the leading causes of death
Pglobally. According to the World Health Organization
(WHO)', over 808,000 children under the age of five died from
pneumonia in 2017, which accounted for 15% of all deaths
in that age group. Additionally, data from the 2024 Global
Burden of Disease study conducted by the Institute for Health
Metrics and Evaluation? revealed that the highest mortality
rates from pneumonia in 2019 were among individuals aged
70 and older. In Brazil, prolonged droughts and recent Amazon
wildfires have worsened air quality and increased respiratory

Uhttps://www.who.int/health-topics/pneumonia
Zhttps://ourworldindata.org/pneumonia
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illnesses, especially among children, highlighting the need for
urgent public health action, as confirmed by a 2024 UNICEF
report® [1].

X-ray imaging has become a standard method for detecting
pneumonia. However, manual interpretation of these images
requires time and expertise from health professionals [2]. In
addition, there has been a significant increase in the costs
associated with diagnostic imaging, especially in universal
healthcare systems such as the Brazilian or the British ones,
where resources are often limited and unevenly distributed [3].
In this context, deep learning methods have shown potential
for optimizing the diagnostic process, reducing costs, and
increasing efficiency and accessibility [4].

Sharma et al. [4] systematically review pneumonia detection
studies using chest X-ray images, presenting models based
on Convolutional Neural Networks (CNNs), pre-trained, and
Ensemble models. The latter, which combines the predictions
of different architectures, has outperformed individual models
in metrics such as accuracy, sensitivity, and specificity. Each
implementation has advantages and disadvantages, depending
on the data characteristics and the number of samples. Models
based on CNNs can extract relevant features directly from
X-ray images, but face challenges related to the need for
large volumes of data to avoid overfitting [5]. Pre-trained
models have shown high efficiency due to transfer learning,
reducing training time, and using prior knowledge. Ensemble
models excelled, achieving an accuracy of up to 99.61% in
some studies [6], due to the integration of complementary
architectures [4], [7].

Despite these advances, few studies have explored how
traditional classifiers, such as Random Forest (RF) or Support

3https://bit.ly/4jzNPXy
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Vector Machines (SVM), perform with features extracted
from modern CNNs. This combination may offer benefits in
scenarios with limited data or noisy inputs [8], [9]. Moreover,
many works do not assess the statistical significance of model
comparisons or provide publicly available code to support
reproducibility, issues increasingly emphasized in recent re-
views [10].

Inspired by recent advances in deep learning and hybrid
modeling, this study proposes a classification pipeline that
combines CNN-based feature extraction (e.g., MobileNetV2,
EfficientNetB0O, and VGG16) with traditional machine learn-
ing classifiers, namely RF and SVM. Additionally, ensemble
models that aggregate predictions from multiple classifiers are
evaluated. The objective is to assess whether conventional
classifiers can outperform end-to-end deep models when lever-
aging CNN-derived features and whether combining predic-
tions improves diagnostic accuracy. The approach is applied to
the publicly available pneumonia X-ray dataset by [11], with
experiments incorporating hyperparameter tuning, data aug-
mentation, and statistical validation to ensure reproducibility.

The results demonstrate the potential of hybrid pipelines
in improving diagnostic performance, particularly their ap-
plicability in low-resource clinical settings. By integrating
deep learning with lightweight classifiers, the approach seeks
to balance diagnostic efficacy with computational efficiency,
contributing to scalable and affordable diagnostic tools for
real-world healthcare settings.

The remainder of this paper is organized as follows: The
related works are discussed in Section II. The proposed method
is described in Section III, and results are presented in Section
IV. Finally, conclusions, limitations, and directions for future
work are given in Section V.

II. RELATED WORKS

General studies in the field of medical diagnostics show
that image analysis, such as X-rays, is one of the main tools
for detecting diseases, including pneumonia [12], [6], [7],
[13], [9]. According to [4], the early diagnosis of pneumonia
via chest images is widely studied, with approaches rang-
ing from CNNs created from scratch to pre-trained models
(e.g., VGGI16, VGG19, DenseNet, ResNet, and Inception)
and ensemble techniques. The study highlights the benefits
of deep learning for feature extraction and classification, em-
phasizing the relevance of combining deep feature extractors
with traditional machine learning classifiers such as SVM,
KNN, and RF. Additionally, the authors discuss challenges
such as limited datasets, the need for data augmentation,
the absence of standardized comparisons across models, and
insufficient studies on hyperparameter tuning. Although the
reviewed models have shown promising results, they suggest
that further improvements are possible, primarily through more
diverse datasets and integrating multiple architectures and
classification strategies.

Diniz et al. [12] describes a novel algorithm for diagnosing
breast cancer in ultrasound images, called EfficientNet Ensem-
ble, evaluating many image preprocessing methods and data
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augmentation. The proposed method can extract Regions of
Interest (ROIs), apply guided and median filters, and train three
EfficientNet variants (BO, B1, B2) combined in an ensemble
with majority voting. After adjusting the hyperparameters
(learning rate, batch size, and epochs), the method achieved
96.67% accuracy, outperforming the individual EfficientNetB0
(86.57%) and several other related studies. The architecture
demonstrated the benefits of integrating preprocessing with
CNN ensembles.

Munzlinger, Yepes, and Rieder [14] presented a detector
of COVID-19, pneumonia, and tuberculosis in chest X-rays.
The system is based on the ResNet-50 architecture, employing
transfer learning. After model adjustments, custom dense
layers were added, and the last five layers were trained while
retaining the pre-trained weights. The model was trained on a
dataset of 7,097 images collected from multiple open repos-
itories (Kaggle, Vindr-CXR, FIPS), achieving an accuracy
of 89%, slightly below the predefined goal of 90%, due to
computational constraints (Google Colab limit of 100 epochs).

Togacar et al. [6] proposed a hybrid classification model
combining CNN feature extraction (VGG16, VGGI19, and
AlexNet) with traditional machine learning classifiers such as
SVM and LDA. The features extracted from the final fully
connected layers were reduced using the mRMR (minimum
Redundancy Maximum Relevance) method to 100 per model,
and then concatenated. Their approach achieved an accuracy of
up to 99.41%, showing that combining CNN-derived features
with classical classifiers can yield highly competitive results.
This highlights the potential of hybrid pipelines and reinforces
the motivation for exploring CNN + ML classifier combina-
tions in this study.

Varshni et al. [9], pre-trained CNN models such as
DenseNet-169 are evaluated for diagnosing pneumonia in
chest X-rays, using feature extraction and supervised clas-
sifiers, especially SVM (kernel RBF). The ChestX-rayl4
database contained 2,862 images balanced between normal
and pneumonia. The method included image resizing and
feature extraction with DenseNet-169, which showed superior
performance with an AUC of 0.8002 after hyperparameter op-
timization. The proposed model outperforms previous studies,
demonstrating the effectiveness of DenseNet-169 combined
with SVM for accurate and efficient diagnosis in medical
images.

Akgundogdu [8], the model based on combining the 2D
Discrete Wavelet Transform (2D DWT) for extracting features
from chest X-ray images and using RF as a classifier for
detecting pneumonia, is introduced. The dataset contained
5,856 images (4,273 with pneumonia and 1,583 normal). The
method uses 24 features extracted from the wavelet sub-bands
(LL, LH, HL, HH), including minimum, maximum, mean,
standard deviation, variance, and third-order moment values.
Their results showed that the model achieved an accuracy of
97.11%, sensitivity of 91.79%, and specificity of 99.09%, with
an area under the curve (AUC) of 0.99. The study highlights
the efficiency of the proposed model in terms of speed and
accuracy, making it a promising and less complex alternative
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to deep learning methods for diagnosing pneumonia. In future
work, the authors mentioned that deep learning methods
should be incorporated for comparison and improvement.

Mabrouk and Dias Redondo [7] proposed an Ensemble
Learning (EL) model, combining DenseNet169, MobileNetV2,
and Vision Transformer (VIT), adjusted with transfer learning
on the ImageNet database and trained on pneumonia chest X-
rays. The method outperformed the state-of-the-art, achieving
93.91% accuracy and 93.88% F1-score. The approach com-
bines the features extracted by the models with pooling, nor-
malization, and regularization techniques, reducing the risk of
overfitting. In addition, the integration of Vision Transformer
stands out for its ability to capture relationships between image
patches, complementing the limitations of traditional CNNs.
Despite the success, challenges such as the hyperparameter
tuning and more significant variation in the data are mentioned.
Moreover, strategies for weight assignments are interesting to
investigate.

Recent advances in deep learning for medical images have
also explored the integration of attention mechanisms and
Transformer-based architectures. These approaches, by allow-
ing models to focus on the most salient regions of an image,
have shown promising results in tasks such as chest X-ray
classification with improved interpretability and performance
by dynamically weighting the importance of features. For ex-
ample, [15] proposed an attention-based deep learning model
for medical image classification, demonstrating its effective-
ness on various medical datasets. [16] presented an attention-
driven Spatial Transformer Network (STERN) for abnormality
detection in chest X-ray images, highlighting its ability to
dynamically scale and align images to maximize classifier
performance by selecting the thorax and eliminating artifacts,
achieving a mean AUC of 85.67% on the CheXpert dataset.
Similarly, [17] introduced ResfEANet, a novel architecture
combining ResNet with an external attention mechanism for
tuberculosis diagnosis from chest X-rays, achieving high ac-
curacy (97.59%) and sensitivity (100%) even without pre-
training on a multi-source TB dataset. While this study focuses
on established CNN backbones and hybrid classifiers, the
evolving landscape of deep learning presents further avenues
for investigation.

The reviewed literature demonstrates that combining CNN-
based models [9], [14], traditional classifiers such as RF
and SVM [8], [6], and ensemble strategies [7] can enhance
pneumonia detection from chest X-rays. Despite high reported
accuracies, many studies rely on limited datasets, lack external
validation, underexplored hyperparameter tuning, and often
restrict classification to single-view X-rays. Additionally, some
works are constrained by limited computational resources,
which affects model complexity and training duration. While
DWT + RF [8] offer simplicity and high accuracy (97.11%),
they depend on handcrafted features and lack scalability. This
motivates exploring deep feature extractors such as VGGI6,
widely used in medical imaging tasks due to its simplicity
and effectiveness [11], alongside more modern CNNs like
MobileNetV2 and EfficientNet. A systematic hyperparameter

search (GridSearchCV), k-fold cross-validation, and data aug-
mentation techniques are employed to improve robustness and
generalization. Similar strategies have proven valuable in other
domains, such as image captioning, where the effectiveness
of visual representation is highly dependent on the backbone
CNN used [18]. In line with open science practices, the
experimental framework and results are publicly available to
support reproducibility and enable adaptation to other medical
imaging modalities.

III. MATERIAL AND METHODS

This work proposes a systematic approach for diagnosing
pneumonia in chest X-rays using different machine-learning
models selected from existing literature. The experimental
framework includes the definition of a computational envi-
ronment for the experiments, the use of a dataset widely
referenced in the literature, the application of pre-processing
techniques to improve data quality, the implementation of
a classifier architecture based on deep and ensemble learn-
ing models, and a validation process using K-Fold Cross-
Validation. The following subsections detail the experimental
framework, the dataset used, the pre-processing procedures ap-
plied, the model architectures, and the training and evaluation
strategies.

A. Setup

The experiments used Google Colab Pro+, leveraging a
Google Compute Engine backend with an NVIDIA T4 GPU.
The system had 51 GB of RAM and 15 GB of GPU memory
and ran Python scripts in version 3. This cloud-based envi-
ronment provided efficient computational resources, enabling
faster training and experimentation.

The main libraries and tools used include: TensorFlow,
NumPy, Scikit-learn, Matplotlib, Seaborn and
Pandas. The pre-trained CNNs were tuned using the Tensor-
Flow framework, while the RF and SVM model was imple-
mented with Scikit-learn. In addition, data augmentation tech-
niques were applied using ImageDataGenerator from
TensorFlow/Keras, and EarlyStopping callbacks were em-
ployed to prevent overfitting during CNN training [19], [4].
The corresponding subsections detail the hyperparameter tun-
ing, including specific configurations for the CNN networks,
classifiers, and the ensemble methods.

B. Dataset

The dataset used in this work consists of chest X-ray
images, made publicly available* and presented initially by
[11], [20]. This dataset is widely used in research to detect
pneumonia [4]. It contains 5,857 images, which are distributed
into two main sets: a training set with 5,233 images (1,349
Normal and 3,884 Pneumonia), and a fixed test set with 624
images (234 Normal and 390 Pneumonia). Figure 1 illustrates
representative examples of both classes. A chest X-ray of a
healthy patient shows clear lungs with no areas of abnormal
opacification. In contrast, pneumonia usually shows focal lobar

“https://data.mendeley.com/datasets/rscbjbr9sj/3
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consolidation (bacterial pneumonia) or manifests with a more
diffuse “interstitial” pattern in both lungs (viral pneumonia),
as described for [11].

The images are in JPEG format and have a resolution
suitable for analysis by deep learning models. All X-rays
were selected from retrospective cohorts of pediatric patients
aged between one and five years from the Guangzhou Women
and Children’s Medical Center in Guangzhou, China. The X-
ray examinations were performed as part of routine clinical
care, and the image diagnoses were evaluated by two medical
specialists, with the test set evaluation subsequently reviewed
by a third specialist to mitigate possible classification errors

[11].
C. Pre-Processing

To ensure the reliability of the experiments and improve
model generalization, a 5-fold Stratified Cross-Validation was
used. This technique preserves the class distribution across
folds, allowing each sample to be used for training and
validation in different iterations while maintaining a consistent
proportion of NORMAL and PNEUMONIA cases [8]. The test
set, comprising 624 images (234 Normal and 390 Pneumonia),
was held out from the total dataset and remained fixed through-
out the process to enable standardized performance evaluation
across models. [4].

All images were resized to 224x224 pixels, a standard
input format for pre-trained architectures like MobileNetV2,
EfficientNetB0, and VGG16. This resolution balances compu-
tational efficiency and preserves key visual patterns critical for
diagnosis. Pixel values were normalized to the range [0,1] to
facilitate training convergence.

For the training set, data augmentation techniques were
applied to mitigate overfitting, increase data diversity, and
improve the generalization capacity of the models [19]. These
augmentations simulate real-world variations observed in X-
ray images, such as patient positioning, lighting, and equip-
ment differences. These transformations help models gener-
alize better to opacities or consolidations located in various
lung regions [21], [13], [6]. The selected augmentations are
summarized in Table I and follow recommendations from
recent literature [6], [13], [4].

TABLE 1
DATA AUGMENTATION TECHNIQUES APPLIED TO THE TRAINING SET

Transformation Values
Rotations (rotation_range) 30°
Horizontal Shifts (width_shift_range) 30%
Vertical Shifts (height_shift_range) 30%
Zoom (zoom_range) 20%
Brightness Adjustments (brightness_range) [0.8, 1.2]
Shear (shear_range) 20°
Horizontal Flip (horizontal flip) True

As presented in Table I, these transformations which include
rotation, shear, displacement, brightness adjustments, and hori-
zontal flipping, are clinically relevant because they improve the
model’s ability to detect pneumonia manifestations that may
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appear in different lung zones or vary due to patient orientation
or image quality [4].

D. Model Architecture and Training

This study proposes a hybrid architecture that combines
deep feature extraction using CNNs with traditional machine
learning classifiers, represented by the state-of-the-art dis-
cussed in Section II. The overall architecture of the proposed
method is summarized in Figure 2.

Six classification strategies were tested: three end-to-end
CNNs (MobileNetV2, EfficientNetB0O, VGG16), two tradi-
tional classifiers (RF, SVM) trained on CNN-derived features,
and ensemble configurations. The goal is to evaluate whether
classical classifiers can outperform deep models when pro-
vided with expressive representations and whether combining
several models yields additional performance gains, consid-
ering computational limitations. The CNNs were implemented
using transfer learning, a technique shown to be efficient in
medical image classification tasks [4].

MobileNetV2: The first model is an efficient architecture
for devices with limited resources. It employs separable con-
volutions (depthwise and pointwise) to reduce computational
cost and model size, as described by [22]. The MobileNetV2
is optimized with layers of batch normalization (ReLU), ac-
tivation (ReLU), and global pooling (pooling global) before
the fully connected layer, which makes it suitable for transfer
learning in specific tasks [4], [7].

EfficientNetBO: This model features a scalable design,
combining efficiency and superior performance by automati-
cally adjusting the network’s depth, width, and resolution [23].
It uses transfer learning techniques and is designed to max-
imize accuracy while reducing the computational resources
required, as suggested by [13].

VGGI6: Developed by the Visual Geometry Group in
partnership with DeepMind, expands the AlexNet architecture
by using smaller convolutional layers (3x3) and pooling layers
(2x2) to increase the network’s depth [20]. This allows for
more detailed feature extraction, excelling in visual classifica-
tion and transfer learning tasks [4].

The parameter settings for the CNNs were primarily based
on the literature reviewed in the previous sections. All models
were initialized with ImageNet weights and personalized using
transfer learning. The last 20 layers of each base CNN were
unfrozen and fine-tuned on the dataset to allow the networks
to specialize in domain-specific features. They share the same
general training settings, so the architecture was extended with
a global average pooling layer, followed by batch normaliza-
tion, a dense layer with 128 neurons (with ReLU activation),
and a 50% dropout layer to deal with overfitting. Then, a
second dense layer with 64 neurons and ReLU activation
(called “feature_dense”) was added for feature extraction,
which feeds into a final sigmoid output neuron for binary
classification. This 64-dimensional output was chosen as a bal-
anced representation that retains important information while
significantly reducing dimensionality for classical classifiers,
thereby managing computational complexity and mitigating
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Fig. 2. Proposed hybrid architecture. Features extracted from MobileNetV2, VGG16, and EfficientNetB0 are concatenated and used to train classical classifiers
(RF and SVM). The predicted labels are combined into ensemble models: CNNs+RF, CNNs+SVM, and RF+SVM.

the risks of overfitting for subsequent tasks [9], [6]. The
models were trained using the Adam optimizer with a learning
rate of 1 x 1075 and the loss function binary crossentropy.

The 64-dimensional outputs from the “feature_dense” layer
were extracted for all images in the training and test sets.
These features were concatenated across the CNNs to form
comprehensive input vectors for the classical classifiers. This
hybrid approach combines the expressive power of deep neural
networks with the interpretability and efficiency of traditional
machine learning algorithms. The extracted features were
subsequently used to train the classifiers described below.

RF: was selected due to its robustness to noise, ability
to handle redundant features, and relatively low computational
cost. According to previous studies, it can be trained and

show significant results using features extracted from the
CNNs [8], [4], [9]. This study was implemented with 200
trees (n_estimators=100), a maximum depth of 15, and
class balancing enabled. It was also evaluated using 5-fold
cross-validation with ROC AUC as the scoring function. The
importance of the features was also extracted and analyzed.

SVM: is a well-established algorithm known for its
strong performance in high-dimensional spaces, especially
when dealing with limited data samples [9], [13], [4]. Its
hyperparameters were optimized using a GridSearch strat-
egy, and the kernel types were tested, including linear and
Radial Basis Functions (RBF). Key parameters such as the
regularization term (C) and kernel coefficient () were tuned
based on AUC performance, with the following search space:
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C €{0.1,1,10,100} and v € {scale,auto,0.01,0.1}. The
best parameters were kernel=poly, C=1, gamma=scale,
which were evaluated using 5-fold cross-validation, using
metrics such as accuracy, balanced accuracy, F1-score (macro
and weighted), and AUC were computed per fold.

The ensemble prediction was generated by averaging the
predicted probabilities from the individual models. This
method aligns with prior studies emphasizing the benefits of
combining heterogeneous architectures to increase robustness
and compensate for weaknesses of individual models [7], [6].
It is worth mentioning that four test scenarios were conducted
during the experiments: two Ensemble CNNs + RF/SVM,
created by combining the three proposed CNNs using either
RF or SVM; and Ensemble RF + SVM; finally, Ensemble
MN + VGG + RF generated by combining MobileNetV2,
VGG16, and RE, only for testing due to the performance of
EfficientNetBO.

E. Evaluation

For model evaluation, multiple metrics were considered
to know: i) accuracy - represents the overall proportion of
correct predictions and serves as a general indicator of model
effectiveness. However, in clinical settings with imbalanced
datasets, it may be misleading; ii) precision - quantifies the
proportion of predicted positive cases that are truly positive.
Clinically, a high precision reduces the risk of incorrectly di-
agnosing healthy individuals with pneumonia; iii) recall (also
known as sensitivity)- represents the model’s ability to identify
all true positives correctly. This metric is particularly critical in
the medical context, as a low recall could lead to undiagnosed
pneumonia cases, potentially resulting in delayed or missed
treatment; iv) F/-score - the harmonic mean between precision
and recall, providing a balanced metric handy for imbalanced
data, handy when both false positives and false negatives carry
significant clinical implications; and v) the Area Under the
ROC Curve (AUC-ROC), which assesses the model’s ability
to distinguish between positive and negative classes across
different decision thresholds - indicates strong discriminative
capacity, essential when defining clinically appropriate cut-off
points. [24].

The CNNs were evaluated using 5-fold cross-validation. The
resulting models were consolidated by averaging their weights,
and final predictions were made on the test set. Classical
classifiers (RF and SVM) and their ensembles were evaluated
using the same metrics on the test set.

The Kruskal-Wallis test was applied to statistically com-
pare model performances. This non-parametric test evaluates
whether significant differences exist between multiple classi-
fiers across different folds by analyzing the mean ranks of
different groups [25]. It quantifies the dissimilarities using a
single metric (the p-value), testing the null hypothesis (Hy)
that the observed differences between group medians can
be attributed to random sampling, meaning the groups may
originate from the same population [26], [27].

If the Kruskal-Wallis test indicated statistically significant
differences (p < 0.05), post-hoc pairwise comparisons were
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conducted using Dunn’s test to determine which models pre-
sented significantly different performances [28]. This test is
widely used in diagnostic and fault detection studies where
normality and homoscedasticity assumptions do not hold [29],
[10]. Applying these statistical tests ensures a more reliable
model performance evaluation by minimizing biases arising
from single-test comparisons.

IV. RESULTS

This section discusses the comparative performance of
all tested classification models, including individual CNNs,
ensemble strategies, and baseline approaches from the litera-
ture. All metrics reported consider class imbalance, following
recommendations by [4]. Table II presents the performance
evaluated through multiple metrics.

Among the individual CNN architectures, VGG16 achieved
the highest performance, with an accuracy of 91.8% and an
AUC of 0.969. These results are consistent with prior findings
from [11], who reported competitive accuracy using the same
architecture for pediatric pneumonia detection. The stability
and convergence behavior of VGGI16, despite its relative
architectural simplicity, support its continued use in medical
imaging tasks where model transparency and reliability are
valued.

MobileNetV2 obtained 88.9% accuracy, making it a vi-
able candidate for low-resource applications. EfficientNetBO,
though theoretically promising, underperformed slightly
(89.6% accuracy and 0.896 Fl-score), suggesting potential
sensitivity to hyperparameters or training instability, as pre-
viously noted in [13].

When applied to CNN-extracted features, Random Forest
achieved 87.8% accuracy, validating the idea of combining
handcrafted or statistical features with decision tree-based
models, as done by [8].

Ensemble models outperformed individual classifiers across
most metrics. The CNNs + RF ensemble achieved the highest
overall accuracy (91.9%) and F1-score (0.918), demonstrating
a balanced and consistent prediction capability. The CNNs
+ SVM ensemble yielded the best recall (0.979), a critical
factor in clinical diagnosis scenarios where false negatives
must be minimized. Despite lower precision (0.862), its F1-
score (0.917) and AUC (0.963) confirm its practical effective-
ness, aligning with results from [13] using hybrid CNN-SVM
methods.

In contrast, the RF + SVM ensemble presented the weakest
performance (accuracy = 72.4%, F1 = 0.703), indicating that
naive classifier fusion strategies may not effectively capture
model complementarity. Despite being from different families,
both classifiers operated on identical CNN-extracted features,
which may have limited their diversity and led to overlapping
decision boundaries, since the effectiveness of the ensemble
depends not only on accuracy but also on the diversity among
the basic learners [30].

Compared to the literature, the proposed ensembles gener-
alize well over the same Kermany dataset [20]. The CNNs
+ SVM ensemble, for example, achieved recall comparable to
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TABLE II
PERFORMANCE METRICS FOR INDIVIDUAL AND ENSEMBLE MODELS (PROPOSED AND LITERATURE)

Model Accuracy Precision Recall (Sens.) Fl-score Fl-macro AUC
Literature Models
[6] - VGG16 + SVM 0.967 0.966 0.968 0.967 - -
[8] - 2D DWT + RF 0.971 0.990 0.917 0.980 0.926 0.990
[8] - 2D DWT + SVM 0.934 0.946 0.852 0.875 0.830 0.908
[13] — Hybrid (EffNetBO + SVM) 0.970 1.000 0.958 0.979 - 0.980
[13] — EfficientNetBO (sigmoid) 0.967 0.999 0.956 0.977 - 0.976
[11] - InceptionV3 + TL 0.928 0.901 0.932 0.928 - 0.968
Proposed Models
MobileNetV2 0.889 0.893 0.889 0.887 0.877 0.954
VGGI16 0.918 0.921 0.918 0.917 0.911 0.969
EfficientNetBO 0.896 0.898 0.896 0.896 0.890 0.963
Random Forest 0.878 0.882 0.878 0.875 0.864 0.945
Ensemble CNNs + RF 0.919 0.921 0.919 0.918 0.911 0.977
Ensemble MN + VGG + RF 0911 0.915 0911 0.909 0.901 0.974
Ensemble CNNs + SVM 0.897 0.862 0.979 0.917 0.889 0.963
Ensemble RF + SVM 0.724 0.725 0.724 0.703 0.670 0.802
the EffNetBO + SVM hybrid from [13] (0.979 vs. 0.958), while TABLE III

offering better balance in precision (0.862 vs. 1.000). Addi-
tionally, the proposed methods rival traditional pipelines such
as 2D DWT + RF and 2D DWT + SVM [8], despite relying
on raw image features rather than handcrafted descriptors.

This balance is also reflected in the confusion matrices
(Figure 3), where ensemble models, particularly CNNs + SVM
and CNNs + RF, demonstrate reduced false negatives and
improved sensitivity in detecting pneumonia cases, confirming
their clinical relevance.

Figure 3 presents the confusion matrices obtained from the
best-performing fold of each model. The results indicate model
efficacy in distinguishing Normal and Pneumonia cases, with
ensembles achieving more balanced predictions. Ensemble
methods, especially CNNs + SVM and CNNs + RF, resulted
in fewer false negatives, confirming their higher recall and
Fl-scores. CNNs + SVM had the lowest number of missed
pneumonia cases (only 8), while CNNs + RF maintained a
strong balance across both classes (only 15 false negatives
and 29 false positives). Among individual models, VGG16
demonstrated strong overall performance with low false pos-
itive and false negative counts (18 and 27, respectively),
outperforming EfficientNetBO and MobileNetV2, which had
higher error rates. Random Forest showed the highest number
of false positives (48), suggesting a tendency to over-predict
the Pneumonia class, which aligns with its slightly lower
precision.

To assess the statistical significance of performance differ-
ences across models, the Kruskal-Wallis test was applied to
all metrics. As shown in Table III the test revealed significant
differences (p < 0.05) for all metrics, including accuracy, pre-
cision, recall, Fl-score, and AUC (only statistically significant
pairwise comparisons - Accuracy, are shown).

Dunn’s post-hoc test confirmed that Random Forest was
significantly outperformed by VGG16 and the CNNs + RF

KRUSKAL-WALLIS AND DUNN’S TEST RESULTS COMPARING MODELS
USING 5-FOLD CROSS-VALIDATION.

Kruskal-Wallis test results

Metric H-statistic  p-Value

Accuracy 22.3256 0.0005

Balanced Accuracy 18.2603 0.0026

Precision 23.0593 0.0003

Recall 22.3256 0.0005

F1-score 22.1094 0.0005

F1l-macro 20.7827 0.0009

AUC 25.6245 0.0001
Dunn’s Post-Hoc test results (Accuracy)

Comparison p-Value

Ensemble CNNs + RF vs Random For- 0.0068

est

Random Forest vs VGG16 0.0078

ensemble, with p-values of 0.0078 and 0.0068, respectively.
No statistically significant differences were observed between
the remaining models, suggesting comparable performance
among top classifiers.

These findings confirm that ensemble approaches, especially
those integrating multiple CNNs with RF or SVM, are practi-
cal for pneumonia classification. The models achieved results
comparable to or better than prior studies while maintain-
ing practical implementation advantages through lightweight,
image-only pipelines.

V. CONCLUSION

This study investigated hybrid and ensemble strategies for
detecting pneumonia in chest X-ray images, combining CNN-
based feature extraction with classical machine learning clas-
sifiers. The results confirm that ensemble models, especially
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Fig. 3. Confusion matrices representative of the best fold’s performance for each individual and ensemble model, evaluated on the fixed test set (624 samples).
Each matrix displays (top-left) True Negatives, (top-right) False Positives, (bottom-left) False Negatives, and (bottom-right) True Positives.

those integrating CNNs with RF or SVM, are promising ap-
proaches compared to individual models in several evaluation
metrics. In particular, the CNNs + RF ensemble obtained the
highest accuracy (91.9%) and AUC (0.977), while CNNs +
SVM maximized recovery (0.979), an essential metric for
minimizing false negatives in clinical diagnosis. Nevertheless,
indicator models such as VGGI16 also showed significant
individual performance (91.8% accuracy), reinforcing their
continued relevance in medical imaging tasks, as seen in other
studies.

The RF performance suggests that traditional classifiers
combined with deep feature extraction remain competitive in
medical applications, especially in data-limited scenarios. This
can be attributed to RF’s tolerance of redundant features and
outliers, an aspect worth exploring in future feature importance
analyses. In contrast, naive fusion models such as RF + SVM
underperformed, highlighting the need for more ensemble
strategies and further investigation.

In addition to reinforcing the utility of ensemble strategies,
this study offers a refined pipeline for pneumonia detection
in X-ray images. The proposed methodology is generalizable
to other imaging modalities, such as ultrasound, computed
tomography (CT), and magnetic resonance imaging (MRI),
particularly when datasets are limited or noisy. A key contri-
bution is the full public release of the experimental code and
data pipeline, adhering to open science principles to support
reproducibility and community-driven development [31], [32].

In addition to empirical performance, the results also present
relevant theoretical and practical implications. Theoretically,
this work corroborates the growing evidence that deep feature

extractors combined with classical classifiers can be a viable
alternative to purely end-to-end models, particularly when
training data is limited, noisy, or imbalanced. The practical
implications of this study are significant, especially for low-
resource healthcare environments where access to specialized
radiologists or advanced computational infrastructure may be
limited. The hybrid approach provides a cost-effective and
computationally efficient solution for automated pneumonia
screening, potentially facilitating rapid diagnosis and early
intervention by offering scalable and affordable diagnostic
tools for real-world healthcare settings. Using lightweight
CNNs and interpretable classifiers, such as RF and SVM,
allows for deployment in real-world scenarios with constrained
computational resources. These characteristics are especially
relevant for diagnostic support in underserved healthcare set-
tings, where scalable and efficient solutions must be consid-
ered.

Some limitations of this study include computational con-
straints, the exclusive focus on a pediatric dataset (aged be-
tween one and five years), which limits direct generalizability
to adult populations, and the focus on binary classification.
Although clinically justified for early pneumonia screening,
the expansion to multiclass scenarios should be evaluated
and applied for future work, particularly in the differential
diagnosis of conditions such as tuberculosis, COVID-19, and
other lung diseases with larger classes.

Given this, future directions include hyperparameter opti-
mization for underperforming models such as EfficientNetB0,
experimentation with advanced ensemble fusion strategies,
such as weighted averaging schemes, stacking, or boosting
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techniques that can leverage the complementary strengths of
diverse hybrid models, and incorporation of explainability
techniques to support clinical decision-making and model
transparency. Furthermore, exploring more advanced archi-
tectures, such as those integrating attention mechanisms or
Transformer-based models, as demonstrated by recent studies
like [17], [16] and [15], could yield further performance
improvements and enhance interpretability for critical clin-
ical tasks. Broader validation on external datasets is also
recommended to assess generalizability in real-world clinical
scenarios, especially across diverse age groups and multi-
institutional cohorts to enhance clinical translatability.

The code developed is available publicly®, promoting the
reproduction and extension of the experiments carried out.
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