
Abstract—Distributed  applications  now span  sensors,  edge 

nodes, fog clusters, and hyperscale clouds. Meeting service-level 

objectives  across  this  “Distributed  Computing  Continuum” 

persistently fails when management is reactive, centralized, and 

blind to uncertainty. I argue for  predictive equilibrium as the 

control objective and for a concrete diagnostic: the Kullback–

Leibler divergence between a system’s expected and observed 

causal  behavior  under  perturbations,  each  modeled  with  a 

Bayesian network. This perspective draws from predictive reg-

ulation in neuroscience and the fluctuation–dissipation view of 

equilibrium in physics, and it sets the stage for  antifragility—

systems that get better because they were stressed, not despite 

it.

I. INTRODUCTION

HE practical difficulty of continuum computing is 

not merely scale or heterogeneity but  nonstation-

arity:  workloads,  topologies,  energy  states,  and  net-

work conditions drift faster than operators can retune 

thresholds.  Threshold  rules  act  only  after  damage  is 

visible; they presume that the future resembles the past 

and that  a  central  brain has enough signal  to  decide 

well for everyone. In real deployments, devices often 

act with partial information, and local decisions inter-

act  in  nontrivial  ways,  which  makes  steady  Service 

Level Objective (SLO) compliance brittle. A different 

organizing principle is needed—one that regulates for 

stability while learning in the face of novelty.

T

A helpful lens comes from biology. Bodies do not 

maintain temperature or glucose by passively waiting 

for deviations; they  predict and prepare.  Homeostasis 

is reactive stabilization; allostasis generalizes it to pre-

dictive regulation, adjusting internal states in anticipa-

tion of expected demands. The Free Energy Principle 

reframes this as minimizing prediction error so organ-

isms preserve their form and functions. Transported to 

engineered systems, the analogue is clear: components 

should  anticipate  loads,  not  just  recover  from viola-

tions, and success should be judged by how well pre-

dictions align with reality when the world is nudged.

The second lens is physical. In many systems, the re-

lationship between internal fluctuations and responses 

to small perturbations is codified by the Fluctuation–

Dissipation Theorem;  departures  from that  relation-

ship  mark  distance  from equilibrium.  Recent  studies 

show how FDT violations reveal nonequilibrium brain 

dynamics.  For  computing,  the  physics  is  an  analogy 

rather than a derivation, but it is a useful one: if a de-

ployment’s internal model predicts how a nudge will 

propagate and the observed response matches, we are 

near  equilibrium;  if  prediction  and  observation  dis-

agree, we are not.
Putting these lenses together yields a working definition: 

predictive equilibrium is the condition in which a contin-

uum system’s internal model accurately represents its behav-

ior  under perturbations,  such that  deviations remain small 

enough to meet goals. This is not a static point but an active 

property sustained through ongoing modeling, anticipation, 

and reorganization. It  entails  dynamic balance (local parts 

keeping global SLOs on track), continuous reconfiguration 

(structure  in  service  of  goals),  and  predictive  consistency 

(forecasts match outcomes under realistic nudges). Equilib-

rium so defined is the platform upon which antifragility can 

emerge.

To operationalize the idea, represent the deployment 

as a  Bayesian network whose nodes are salient met-

rics and whose directed edges encode probabilistic de-

pendencies within and across tiers. Choose a small, ac-

tionable vocabulary—latency percentiles by tier, queue 

depths,  utilization,  link  RTT/loss,  battery  state,  SLO 

flags—so the model remains interpretable and fast to 

update. Then specify a perturbation with clear seman-

tics (bandwidth throttle, dependency delay, CPU cap, 

synthetic burst). Apply it twice: once to the model to 

produce  an  expected network  (updating  the  affected 

conditionals) and once to the live system or a faithful 

twin to produce an observed network. The KL diver-

gence between  these  distributions  is  the  “distance-

from-equilibrium”  signal.  Small  divergence  indicates 

predictive alignment; a spike signals a breakdown that 

warrants model revision, policy change, or both.

Why privilege KL divergence over raw SLOs? A la-

tency breach only states that a guarantee failed. KL di-

vergence localizes  why predictions broke: edges may 

rewire  (emergent  dependency),  weights  may  shift 

(weaker coupling), or noise may increase (stochasticity 

rose), all of which are visible in the comparative struc-

ture and parameters of the two networks. Moreover, the 

same divergence that  warns  of  impending SLO drift 
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doubles as a learning signal for improving the internal 

model—a property traditional thresholds lack. Concep-

tually, this aligns with active-inference accounts where 

action is chosen to balance pragmatic value and infor-

mation gain; minimizing KL between expected and ob-

served behavior is precisely minimizing that mismatch.

An architecture built  around predictive equilibrium 

emphasizes  local  modeling,  safe  perturbation,  and 

hierarchical  synthesis.  Edge  devices  maintain  com-

pact, incremental BNs over their local neighborhoods 

and expose an “expectation API” that  answers  What 

should happen here if bandwidth drops by 20% for 30  

seconds? Fog nodes orchestrate small, isolated pertur-

bation  campaigns  (canaries,  synthetic  traffic),  fit  the 

observed BN, and compute divergence, while also en-

acting  reorganizations—operator  placement,  replica-

tion factors, routing. A cloud-level meta-controller ag-

gregates divergence summaries and, crucially,  modu-

lates  the  exploration–exploitation  balance.  Here  the 

physics analogy pays off again: use an  FDT-inspired 

signal as  a  modulator on  the  active-inference  drive, 

transiently biasing decisions toward information gain 

when prediction degrades, then annealing back as equi-

librium returns. 
Consider a city-scale video analytics deployment. A fog 

controller periodically reduces uplink bandwidth by fifteen 

percent for a handful of cameras. The expected BN predicts 

mild queue growth and a compensatory frame-rate dip, pre-

serving tail latency. Instead, observations reveal that a co-lo-

cated GPU tenant injects bursty contention, creating a new 

dependency from that tenant’s utilization to the canary’s la-

tency.  KL  divergence  jumps.  The  controller  updates  the 

model (adding the edge), raises isolation for GPU tenants in 

that cell, and adjusts placement to avoid co-scheduling band-

width-sensitive pipelines with bursty neighbors. In the next 

probe, divergence falls and the new policy holds. The sys-

tem did not merely “heal”; it learned a structural lesson and 

retained it—an instance of antifragility in miniature. 

Antifragility is not a slogan but a design criterion: 

systems should improve  because stress  exposes  mis-

matches. In Taleb’s sense, antifragile entities gain from 

volatility.  In  our  setting,  the  gain  is  a  better  causal 

model and a sharper policy encoded in the BN and the 

controller; perturbations become training data that in-

crease predictive fidelity and coordination skill. Equi-

librium supplies the safety rails—keeping the system 

within acceptable performance bands while it harvests 

information from controlled nudges. There are limits. 

This  is  a  conceptual framework;  practical  feasibility 

and cost remain to be demonstrated at scale. Perturba-

tions must be safe and ethically scoped. BN learning 

must be sparse, incremental, and bounded in overhead. 

Multi-objective trade-offs (latency vs. energy vs. pri-

vacy), partial observability, and compliance constraints 

complicate  modeling  and  may  require  task-specific 

variables and priors.  Yet these are engineering ques-

tions, not theoretical roadblocks. A sensible validation 

path is to start in a digital twin, calibrate divergence 

thresholds to the system’s natural variability, and then 

graduate to canary slices in production.

In sum, predictive equilibrium reframes continuum 

operations  as  a  dialogue  between  model  and  world. 

Neuroscience supplies the instinct—prepare rather than 

react—and  physics  offers  a  ruler  for  distance  from 

equilibrium. With Bayesian networks to represent ex-

pectations and KL divergence to measure their failure 

modes, we obtain both an early-warning gauge and a 

learning gradient. That combination is the essence of 

antifragility in engineered systems: stay stable enough 

to learn, and learn enough to become more stable the  

next time. In our previous work [1-5] some of the as-

pects above are detailed.
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