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Abstract—Distributed applications now span sensors, edge
nodes, fog clusters, and hyperscale clouds. Meeting service-level
objectives across this “Distributed Computing Continuum”
persistently fails when management is reactive, centralized, and
blind to uncertainty. I argue for predictive equilibrium as the
control objective and for a concrete diagnostic: the Kullback—
Leibler divergence between a system’s expected and observed
causal behavior under perturbations, each modeled with a
Bayesian network. This perspective draws from predictive reg-
ulation in neuroscience and the fluctuation—dissipation view of
equilibrium in physics, and it sets the stage for antifragility—
systems that get better because they were stressed, not despite
it.

I. INTRODUCTION

THE practical difficulty of continuum computing is
not merely scale or heterogeneity but nonstation-
arity: workloads, topologies, energy states, and net-
work conditions drift faster than operators can retune
thresholds. Threshold rules act only after damage is
visible; they presume that the future resembles the past
and that a central brain has enough signal to decide
well for everyone. In real deployments, devices often
act with partial information, and local decisions inter-
act in nontrivial ways, which makes steady Service
Level Objective (SLO) compliance brittle. A different
organizing principle is needed—one that regulates for
stability while learning in the face of novelty.

A helpful lens comes from biology. Bodies do not
maintain temperature or glucose by passively waiting
for deviations; they predict and prepare. Homeostasis
is reactive stabilization; allostasis generalizes it to pre-
dictive regulation, adjusting internal states in anticipa-
tion of expected demands. The Free Energy Principle
reframes this as minimizing prediction error so organ-
isms preserve their form and functions. Transported to
engineered systems, the analogue is clear: components
should anticipate loads, not just recover from viola-
tions, and success should be judged by how well pre-
dictions align with reality when the world is nudged.

The second lens is physical. In many systems, the re-
lationship between internal fluctuations and responses
to small perturbations is codified by the Fluctuation—
Dissipation Theorem; departures from that relation-
ship mark distance from equilibrium. Recent studies
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show how FDT violations reveal nonequilibrium brain
dynamics. For computing, the physics is an analogy
rather than a derivation, but it is a useful one: if a de-
ployment’s internal model predicts how a nudge will
propagate and the observed response matches, we are
near equilibrium; if prediction and observation dis-
agree, we are not.

Putting these lenses together yields a working definition:
predictive equilibrium is the condition in which a contin-
uum system’s internal model accurately represents its behav-
ior under perturbations, such that deviations remain small
enough to meet goals. This is not a static point but an active
property sustained through ongoing modeling, anticipation,
and reorganization. It entails dynamic balance (local parts
keeping global SLOs on track), continuous reconfiguration
(structure in service of goals), and predictive consistency
(forecasts match outcomes under realistic nudges). Equilib-
rium so defined is the platform upon which antifragility can
emerge.

To operationalize the idea, represent the deployment
as a Bayesian network whose nodes are salient met-
rics and whose directed edges encode probabilistic de-
pendencies within and across tiers. Choose a small, ac-
tionable vocabulary—Iatency percentiles by tier, queue
depths, utilization, link RTT/loss, battery state, SLO
flags—so the model remains interpretable and fast to
update. Then specify a perturbation with clear seman-
tics (bandwidth throttle, dependency delay, CPU cap,
synthetic burst). Apply it twice: once to the model to
produce an expected network (updating the affected
conditionals) and once to the live system or a faithful
twin to produce an observed network. The KL diver-
gence between these distributions is the “distance-
from-equilibrium” signal. Small divergence indicates
predictive alignment; a spike signals a breakdown that
warrants model revision, policy change, or both.

Why privilege KL divergence over raw SLOs? A la-
tency breach only states that a guarantee failed. KL di-
vergence localizes why predictions broke: edges may
rewire (emergent dependency), weights may shift
(weaker coupling), or noise may increase (stochasticity
rose), all of which are visible in the comparative struc-
ture and parameters of the two networks. Moreover, the
same divergence that warns of impending SLO drift
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doubles as a learning signal for improving the internal
model—a property traditional thresholds lack. Concep-
tually, this aligns with active-inference accounts where
action is chosen to balance pragmatic value and infor-
mation gain; minimizing KL between expected and ob-
served behavior is precisely minimizing that mismatch.

An architecture built around predictive equilibrium
emphasizes local modeling, safe perturbation, and
hierarchical synthesis. Edge devices maintain com-
pact, incremental BNs over their local neighborhoods
and expose an “expectation API” that answers What
should happen here if bandwidth drops by 20% for 30
seconds? Fog nodes orchestrate small, isolated pertur-
bation campaigns (canaries, synthetic traffic), fit the
observed BN, and compute divergence, while also en-
acting reorganizations—operator placement, replica-
tion factors, routing. A cloud-level meta-controller ag-
gregates divergence summaries and, crucially, modu-
lates the exploration—exploitation balance. Here the
physics analogy pays off again: use an FDT-inspired
signal as a modulator on the active-inference drive,
transiently biasing decisions toward information gain
when prediction degrades, then annealing back as equi-
librium returns.

Consider a city-scale video analytics deployment. A fog
controller periodically reduces uplink bandwidth by fifteen
percent for a handful of cameras. The expected BN predicts
mild queue growth and a compensatory frame-rate dip, pre-
serving tail latency. Instead, observations reveal that a co-lo-
cated GPU tenant injects bursty contention, creating a new
dependency from that tenant’s utilization to the canary’s la-
tency. KL divergence jumps. The controller updates the
model (adding the edge), raises isolation for GPU tenants in
that cell, and adjusts placement to avoid co-scheduling band-
width-sensitive pipelines with bursty neighbors. In the next
probe, divergence falls and the new policy holds. The sys-
tem did not merely “heal”; it learned a structural lesson and
retained it—an instance of antifragility in miniature.

Antifragility is not a slogan but a design criterion:
systems should improve because stress exposes mis-
matches. In Taleb’s sense, antifragile entities gain from
volatility. In our setting, the gain is a better causal
model and a sharper policy encoded in the BN and the
controller; perturbations become training data that in-
crease predictive fidelity and coordination skill. Equi-
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librium supplies the safety rails—keeping the system
within acceptable performance bands while it harvests
information from controlled nudges. There are limits.
This is a conceptual framework; practical feasibility
and cost remain to be demonstrated at scale. Perturba-
tions must be safe and ethically scoped. BN learning
must be sparse, incremental, and bounded in overhead.
Multi-objective trade-offs (latency vs. energy vs. pri-
vacy), partial observability, and compliance constraints
complicate modeling and may require task-specific
variables and priors. Yet these are engineering ques-
tions, not theoretical roadblocks. A sensible validation
path is to start in a digital twin, calibrate divergence
thresholds to the system’s natural variability, and then
graduate to canary slices in production.

In sum, predictive equilibrium reframes continuum
operations as a dialogue between model and world.
Neuroscience supplies the instinct—prepare rather than
react—and physics offers a ruler for distance from
equilibrium. With Bayesian networks to represent ex-
pectations and KL divergence to measure their failure
modes, we obtain both an early-warning gauge and a
learning gradient. That combination is the essence of
antifragility in engineered systems: stay stable enough
to learn, and learn enough to become more stable the
next time. In our previous work [1-5] some of the as-
pects above are detailed.
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