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Abstract—Accurately predicting whether consent for or-
gan donation will be granted is essential for optimizing
timing and resource use in donor management. This study
develops and evaluates machine learning models to estimate
the likelihood of obtaining consent based on donor and
contextual factors. The goal is to support early clinical
decision-making by identifying cases where consent is
more or less likely. Using real-world data from a regional
transplant center operating under an opt-in system, we
conduct data preprocessing, feature selection, and model
training with various algorithms. Model performance is
assessed using standard classification metrics, and key
predictors of consent outcomes are identified. Results show
accuracy levels exceeding 80%, highlighting the importance
of including information about the relatives responsible for
the decision. We also find that prediction accuracy varies
with donor nationality, being higher for non-Italian donors.
These findings demonstrate the value of predictive analytics
in improving organ procurement efficiency and reducing
unnecessary costs.

Index Terms—Health care, Modeling and prediction,
Machine learning, Decision support

I. INTRODUCTION

O
RGAN transplantation remains the most effective

and economically viable treatment for patients with

end-stage organ failure. However, despite ongoing efforts

to raise awareness and increase donor registrations, a

persistent and critical gap remains between the demand

for and supply of transplantable organs [1], [2]. Among

the key barriers contributing to this shortage is the high

rate of opposition to organ donation, particularly when

consent must be obtained post-mortem from next-of-kin.
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The acquisition of consent is a pivotal step in the organ

donation process. In systems where explicit authorization

is required—such as the opt-in framework in place in

many regions—the inability to secure timely consent

can lead to lost donation opportunities, unnecessary

delays, and avoidable costs. Even in jurisdictions with

opt-out legislation, in practice, healthcare professionals

often still seek family confirmation, making the consent

process a practical and ethical bottleneck.

In this paper, we propose a data-driven approach

to support and optimize the consent acquisition phase

through predictive modeling. Specifically, we develop

and evaluate machine learning models aimed at fore-

casting the likelihood of obtaining consent for organ

donation. By leveraging available demographic, clinical,

and contextual data, our models seek to provide early es-

timates of consent probability, offering valuable decision

support for clinicians involved in donor management.

As it is better discussed in Section III-B, this predic-

tive capability has the potential to significantly enhance

operational efficiency. For example, if a high probability

of consent is anticipated, preparatory clinical activities

can be initiated earlier, minimizing the time to transplan-

tation and reducing organ deterioration risks. Conversely,

in cases where consent is unlikely, healthcare teams

may choose to delay or forego certain cost-intensive

procedures, thus conserving resources.

Our study contributes to the field of healthcare infor-

mation systems by introducing a predictive tool for esti-

mating the likelihood of consent or opposition in organ

donation. The practical relevance of such predictions lies

in their integration into transplant logistics, where they

can support informed decision-making and improve both

clinical efficiency and cost-effectiveness.
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The main contributions of the paper are as follows.

• We develop predictive models based on established

machine learning algorithms to estimate the like-

lihood of family consent (or opposition) to organ

donation, with a focus on the Italian opt-in system.

• We present a context-specific analysis using real-

world data from the Lazio region, contributing the

first known predictive study on consent acquisition

in Europe.

• We compare various machine learning algorithms

and identify the most effective approaches for con-

sent prediction under data scarcity conditions.

• We highlight differences in predictive performance

across different nationality groups.

The remainder of the paper is organized as follows.

In Section II, we review the relevant literature. In Sec-

tion III, we describe the donor management process,

with a particular focus on the critical role of consent

acquisition. The input data used in this study, along

with the preprocessing and transformation procedures

(including feature deletion, grouping, and refinement),

are presented in Section IV. In Section V, we outline

the predictive modeling methodology, detailing the al-

gorithms, performance metrics, and selected features.

The results of the predictive analysis are reported and

discussed in Section VI. Finally, conclusions and future

research directions are presented in Section VII.

II. RELATED LITERATURE

Organ donation consent is a critical component of

the transplantation process, with direct implications for

timing, cost, and overall success rates. As highlighted

in the introduction, delays in consent acquisition can

lead to suboptimal organ preservation and increased

process costs [3]–[6]. In this section, we review the

literature across three main areas: (i) barriers and refusal

patterns in consent acquisition, (ii) strategies and policy

frameworks aimed at improving consent rates, and (iii)

the use of artificial intelligence and predictive analytics

in organ transplantation.

A number of studies have investigated the sociocul-

tural and procedural factors that hinder the acquisition

of post-mortem consent. For example, the refusal rate in

South Korea was examined in [7], where the authors

identified structural and cultural barriers to obtaining

consent. The intersection of ethics, religion, and policy

was found to influence organ donation practices in

South Asia [8]. Similarly, Lewis et al. discussed general

barriers to organ donation across different populations

[9]. In the Italian context, Grossi et al. found that

refusal rates were significantly higher among immigrant

populations compared to native citizens, highlighting the

importance of demographic and cultural variables in

consent prediction [10].

Efforts to proactively increase donation rates and

consent have also been widely studied. In [11], hos-

pitals were benchmarked based on their consent rates,

with key influencing factors including donor age and

ethnic background. A number of studies [9], [12], [13]

have compared opt-in and opt-out systems, with opt-out

systems generally associated with higher donation rates.

However, these studies also acknowledge the complex

ethical and political considerations surrounding such

transitions. The role of family members in the final

consent decision is emphasized in [14]–[16], even in

jurisdictions with presumed consent. Additionally, many

studies have revealed that one of the most influential

issues is the expertise of the person approaching the

family to obtain consent for organ donation. For instance,

[17] highlighted the crucial influence of healthcare pro-

fessionals’ engagement and communication skills in fa-

cilitating positive consent outcomes, while [18] reviews

studies on differences in consent rates based on the

type of professional doing the asking. Expanding on

these findings, [19] presents the practices adopted by

Spanish transplant coordinators during consent requests

for Irreversible Cessation of Circulatory and Respiratory

Functions (ICOD). The study outlines the sequence of

preparatory steps coordinators follow prior to engag-

ing families in decision-making. Many of these steps

are not only rooted in a structured and empathetic

communication approach but are also recognized as

best practices in broader organ donation contexts. This

method has been associated with a notably low rate

of family refusals, reinforcing the importance of pro-

fessional training and protocol in achieving favorable

consent outcomes. Additionally, some studies explore

effective strategies for obtaining consent from families.

For example, [19] presents the practices adopted by

Spanish transplant coordinators when requesting consent

for Irreversible Cessation of Circulatory and Respiratory

Functions (ICOD). The study outlines the sequence of

steps coordinators follow before engaging the family in

decision-making. Many of these steps are recognized as

best practices in broader organ donation contexts and are

associated with a notably low rate of family refusals.

Broader applications of AI in organ donation and

transplantation have also been explored. In [20], a com-

prehensive review was conducted on the use of artificial

intelligence across various stages of the transplant pro-

cess, including organ allocation, process optimization,

and clinical decision support. However, the application

of AI specifically to predict consent outcomes remains

largely unexplored.

While the importance of timely consent acquisition in

organ donation is widely acknowledged, research em-

ploying predictive modeling in this context remains lim-

ited. Notable exceptions include the studies by Khan et
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al. [2] and Tutun et al. [21], both of which apply machine

learning techniques to forecast consent outcomes. In

particular, the methodologies proposed by Khan et al. [2]

demonstrate high levels of accuracy, indicating that such

approaches are both viable and effective. Ultimately, they

have the potential to increase consent rates and thereby

save more lives among individuals on organ transplant

waiting lists.

In [2], the authors develop a predictive framework

that integrates machine learning and network science

to estimate the likelihood of family consent in organ

donation. Their model is designed not only to predict

outcomes but also to uncover the most influential factors

driving family decisions. The basic goal is to provide

Organ Procurement Organizations (OPOs) and hospital

staff with actionable insights that support more effective

communication strategies during consent discussions.

This work emphasizes the role of predictive models

as expert systems to improve consent rates and, by

extension, help mitigate the persistent mismatch between

organ supply and demand.

Similarly, Tutun et al. [21] propose a responsible AI

framework that merges network science with machine

learning to enhance consent prediction. Their study

leverages a large dataset collected from approximately

1,500 consent discussions across 92 hospitals in New

York, recorded between January 2016 and March 2018.

Results indicate that incorporating network-based fea-

tures significantly improves the performance of tradi-

tional ML algorithms. The study highlights how algorith-

mic insights can support ethical and effective approaches

to organ procurement.

Despite their relevance, both studies above differ from

our work. First, their primary objective is to reduce the

rate of family refusal, with a strong focus on optimizing

the approach strategies of healthcare professionals. In

contrast, our goal is to develop a predictive framework

that provides a probabilistic estimate of consent likeli-

hood, which can be integrated into transplant logistics

and used to inform cost-effective and timely decision-

making throughout the donor management process. Sec-

ond, the methodological approaches vary considerably.

While [2] and [21] rely on extensive sets of features

and large datasets—enabling more complex models and

improved predictive performance—our study operates on

a significantly smaller dataset collected in Italy. This

naturally constrains model complexity but provides a

novel, context-specific perspective.

This context-specific perspective builds on previous

investigations of the Italian case study [22], [23]. In

[22], a probabilistic model was developed to estimate

the time required to obtain consent, using real-world data

from successful organ donation cases in the Lazio region,

where an opt-in consent system is in effect. However,

that study focused on modeling the timing of consent

acquisition, rather than predicting the binary outcome of

whether consent would be granted. The same case study

was further explored in [23], where the pre-transplant

process was modeled and simulated to identify time-

critical activities through critical path analysis. Building

on that work, [24] conducted a cost-benefit analysis

to evaluate management strategies aimed at balancing

time efficiency and cost-effectiveness throughout the pre-

transplant phase.

To the best of our knowledge, our study is the first

to address consent prediction using real-world data from

Italy, and more broadly, among the first of its kind in

Europe. This regional focus enables us to explore con-

sent dynamics within the specific legal and procedural

framework of an opt-in system, offering valuable insights

for local policy and process optimization.

III. OVERVIEW OF DONOR MANAGEMENT AND

CONSENT DYNAMICS

Transplant centers worldwide generally follow a hier-

archical structure, with a national coordinating authority

and regional and local healthcare facilities. This is also

the case in the center we consider here. Namely, we

focus on the Italian Transplant System, involving the

National Transplant Center (NTC), Regional Transplant

Centers (RTCs), and local hospital units. Organ trans-

plantation is a complex process involving many phases

and actors. In this paper, we are interested in the process

leading to consent acquisition. In this section, we de-

scribe the donor management process and the relevance

of the timeliness of consent acquisition for the overall

efficiency of the process.

A. The organ donor management process

The organ donor management process is a structured

set of activities that begins with the identification of a

potential donor and ends with the retrieval of organs and

their allocation to compatible recipients. Its primary aim

is to ensure the quality and availability of transplantable

organs while safeguarding recipient health.

This work focuses on the process currently imple-

mented at the RTC of the Lazio region in Italy. The

UML (Unified Modelling Language) diagram in Figure 1

represents a sketch of the donation process, which begins

when a potential donor is identified. The identification

of a donor starts with the recognition of the brain death

status of a patient, which qualifies him/her as a potential

donor. A six-hour period is required for Brain Death

Assessment (BDA). After BDA, two parallel streams of

activities are triggered:

• Acquisition of consent for organ donation;

• Initial clinical and diagnostic evaluations.
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Fig. 1: Compact UML diagram of the process.

The following phases involve a comprehensive as-

sessment of donor suitability, including laboratory anal-

yses, virological testing, and instrumental diagnostics.

Although there are no strict technical constraints, higher-

cost exams are generally performed only after consent is

obtained, in order to avoid unnecessary expenses when

the transplant cannot proceed due to a lack of consent.

If consent arrives in due time, it allows the medical staff

to proceed with all the medical tests needed to properly

carry out the transplant. If consent is denied, any further

medical test for transplant is cancelled. Some activities

are susceptible to be advanced, i.e., carried out even if

consent has not arrived yet, so as to reduce the overall

process time. Those activities are shown as advance-

eligible in Fig. 1. Dashed arrows indicate precedence

relations that are not mandatory. After the examina-

tions are carried out to assess the clinical suitability of

the potential donor, a risk level is defined—sometimes

following consultation with the Second Opinion team

appointed by the National Transplant Center (NTC).

If the evaluations indicate that the donor presents an

unacceptable risk to recipients, the process is imme-

diately stopped. Once the donor’s risk level has been

defined, the process moves into the Organ Allocation and

Harvesting phase. In this stage, potential recipients are

identified and matched based on clinical compatibility

and logistical considerations, through coordinated efforts

involving the NTC, Regional Transplant Centers (RTCs),

local transplant teams, and logistics services, ensuring

timely and efficient organ retrieval and distribution.

B. Impact of Consent activity on process time and cost

If a potential donor has not expressed their wishes

regarding organ donation while alive, the responsibility

for releasing consent is transferred to their relatives. The

Consent acquisition phase becomes a critical crosspoint

in the donation process—regardless of whether consent

is ultimately granted or denied by those legally empow-

ered to decide. This phase significantly affects both the

duration and cost of the process.

To illustrate, imagine that the family or other autho-

rized individuals communicate their decision at some

unknown time point T after the donation process begins.

By that time, a possibly empty subset S of activities

(eligible to be initiated before the consent is given) may

already have been started or completed. Let cS denote

the cumulative cost of these activities. If consent is not

granted, then a cost cS is effectively wasted.

This would suggest a conservative strategy: delaying

costly actions until consent is confirmed to keep S,

and thus cS , minimal. However, such caution comes

at a price. Postponing action until the decision time T

prolongs the process—especially in cases where consent

is eventually given. The more activities completed before

T , the more progress has been made by the time consent

is secured, allowing transplantation to proceed more

quickly. Since organs are perishable and their viability

deteriorates over time, any delay can compromise the

success of the transplant.

This tension calls for a cost-benefit analysis to guide

decision-making, weighing the trade-off between mini-

mizing wasted costs and maximizing time efficiency in

cases where consent is ultimately granted (see [24]).

In short, cost-efficiency favors deferring activities un-

til consent is certain, while time-sensitivity and organ

viability argue for initiating tasks early—even at the

risk of incurring unrecoverable costs if consent is later

denied, particularly when T is large. If we indicate the

process times as Tadv and Tdel > Tadv, respectively,

when activities are advanced or postponed with respect

to consent acquisition, we can summarize the time-cost

trade-offs in the matrix shown in Fig. 2, where each

bracket contains the time needed to complete the process

and the wasted cost.

In this context, a predictive tool that can estimate the

likelihood of consent with reasonable accuracy would be

highly valuable. High confidence in a positive outcome

justifies starting preparations sooner, improving both

patient outcomes and resource utilization. Conversely,

if the predicted probability of denial is high, delaying
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Fig. 2: Trade-offs in donor management process strategy

costly tasks becomes the prudent course, helping to avoid

unnecessary expenditure.

IV. DATASET

We collected and analysed a dataset concerning po-

tential donors at the Regional Transplant Center for

the Lazio region in Italy. In Italy, the opt-in regulation

applies where the potential donor may have given or

denied his/her consent to transplant when they were

alive. In the case the potential donor did not express their

decision concerning organ transplant during their life, it

is up to the family members to decide after the potential

donor’s brain death. The decision about donation as well

as the personal details of the potential donor and their

relatives are recorder. In this section, we describe the

dataset including that information.

Our data collection took place over four years, from

2021 to 2024. We can first see how the consent in-

formation is distributed over the years in Table I. A

significant growth year-on-year can be observed, with

a CAGR (Compound Annual Growth Rate) of 6.7%.

The overall number of instances is 867 (the data for

2024 do not cover the whole year). However, the dataset

is heavily imbalanced, with the Silent group (i.e., those

not expressing their opinion during their lifetime) being

the large majority (80.2% of the total). The overall

dataset has been processed through Bootstrap and 10-

fold cross-validation to get the final dataset to be fed to

the algorithms described in Section V-A for training and

testing. Since our focus is to predict consent for potential

donors after brain death (DBD), we are not interested

in those donors expressing their consent during their

lifetime. Actually, for those potential donors, the donor

management process either starts with all the medical

tests to be carried out as soon as possible, or does not

start at all. Hence, in the following, we will focus on the

silent potential donors. After examining the dataset, we

removed those instances where most features are absent.

The overall number of silent donors has then reduced to

653, which is the reference number we will consider in

the following.

In addition, in order to examine how the nationality

of the donor may influence the decision and may be

TABLE I: CONSENT EXPRESSION IN THE DATASET

Year Consent Opposition Silent Total

2021 18 18 196 232
2022 32 14 202 248
2023 34 28 202 264
2024 23 5 95 123

Total 107 65 695 867

TABLE II: NUMBER OF SILENT DONORS BY NATION-

ALITY

Nationality Numerosity

European 585
Italian 542
non-Italian 111

predicted with larger or lesser accuracy, we considered

the following subsets of potential donors:

• European donors;

• Italian donors;

• non-Italian donors.

The numerosity of the three subsets is shown in Table

II. As can be seen, Italians make up roughly 90% of the

whole set of European potential donors, as expected.

We can see in Fig. 3 how nationality influences the

decision about organ donation during lifetime. While

we see a balanced distribution for European and South

American potential donors, the distribution is heavily

imbalanced for the other continents. The culture of

donation is quite widespread in North America, where

just a small minority opts for opposing donation. On

the other end of the spectrum, we find Asia and Africa,

where oppositions largely outnumber consents.

For each potential donor, 67 features have been col-

lected. Those features may be subdivided into six groups:

1) General;

2) Personal data;

3) Information on relatives;

4) Risk level;

5) Organ information;

6) Consent.

Group 1 contains information related to the death

of the potential donor, including time and cause of

death. Group 2 includes all personal data pertaining to

the donor: name, surname, age, gender, date of birth,

place of birth, place of residence, height, and weight.

Group 3 provides data necessary to determine the de-

gree of kinship of the relatives involved in the consent

process (e.g., parents or siblings). Group 4 comprises

information regarding the donor’s risk profile, based on

second opinions obtained by the medical staff during

the organ compatibility assessment. Finally, Group 5 is
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included only if consent has been obtained, and contains

specific details about the organ that may be considered

for transplantation.

It is to be noted that Group 6 actually includes the

target variable (whether Consent has been released), but

also information on the source of consent (the donors

themselves or their relatives).

V. METHODOLOGY

The problem of consent prediction has been modelled

as a binary classification one, where the two classes are

Consent or Opposition (Consent denial) and the potential

features are the 67 mentioned in Section IV. In this

section, we describe the classification algorithms that

we have employed, the performance metrics that we

have adopted to assess the algorithms, and the feature

selection process.

A. Algorithms and tools

We have employed the following established classifi-

cation algorithms:

• Decision Tree;

• Logistic Regression;

• AdaBoost;

• Feedforward neural network.

Each method in this selection has its own character-

istics.

Decision Trees split data into subsets using feature

thresholds, creating a tree-like structure where each node

represents a feature condition, and leaves represent class

labels. They are easy to interpret, but are prone to

overfitting, especially on small datasets like ours.

Logistic Regression is a linear model where the

probability of a class is predicted by using a logistic

function. Regularization is achieved through LASSO

(L1 Regularization) by adding a penalty term to reduce

overfitting and performing feature selection by shrinking

some coefficients to zero. It is simple, interpretable, good

for high-dimensional data with irrelevant features. It has

been chosen since we have a relatively large number

of features (we are considering non-image data) many

of which may prove to be not relevant. It has limited

capacity for complex relationships.

AdaBoost (Adaptive Boosting) is an ensemble method

that combines multiple weak learners (often decision

stumps) by iteratively focusing on previously misclas-

sified examples. It should be more accurate than single

models like decision trees or logistic regression and

works well with less data (as in our case). However,

it is sensitive to noisy data and outliers.

Finally, feedforward Neural Networks represent a

very simple type of deep learning model where data

flows through multiple layers of interconnected nodes

(neurons) from input to output. They are powerful for

modeling complex, non-linear relationships. However,

they require large datasets, which we do not have at

present, and are less interpretable.

In the following we describe the configuration details

for each classification algorithm.

For decision trees we have employed a general (non-

binary) structure, where splitting was carried out just for

nodes with at least five instances. The maximum tree

depth was kept at 50 and pruning was employed for

nodes where the majority class includes more than 95%

of the instances.

Logistic Regression was employed with LASSO reg-

ularization with L1 norm and the classification threshold

set at 0.5 probability..

In AdaBoost 60 trees were used as base estimators,

with the learning rate set to 1.

A multilayer network with 100 neurons per hidden

layer was employed with a feedforward structure. A

logistic sigmoid function was chosen as the activation

function used, and ADAM was selected as solver, based

on the gradient descent algorithm for calculating weights

during the training phase [25]. The maximum number of

iterations (stopping condition) was set to 200.

B. Performance metrics

Our aim is to identify the cases where consent to

donation is obtained. We have then a binary classifier,

where we label as Positive the cases where consent is

actually obtained. With the usual 4-cell confusion matrix,

we have then the following possible outcomes: True and

False Positives (TP and FP, respectively) as well as True
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TABLE III: MOST SIGNIFICANT FEATURES

Feature Overall European Italian non-Italian

Donor’s hospital ✓ ✓ ✓ ✓

Nationality ✓ ✓

Birthplace region ✓ ✓ ✓

Continent ✓ ✓

Cause of death ✓ ✓ ✓ ✓

Region of residence ✓ ✓ ✓ ✓

Donor’s age ✓ ✓ ✓ ✓

Size of birth city ✓ ✓ ✓

Donor gender ✓ ✓ ✓ ✓

Year of death ✓ ✓ ✓ ✓

Donor blood type ✓ ✓

Size of city of residence ✓ ✓ ✓ ✓

Part of Italy (residence) ✓ ✓ ✓ ✓

Country of birth ✓

Country of residence ✓

and False Negatives (TN and FN, respectively). We adopt

the following extablished performance metrics [26]:

• Accuracy = TP+TN
TP+TN+FP+FN

• Precision = TP
TP+FP

• Recall = TP
TP+FN

• F1 Score = 2
1

1

Precision
+ 1

Recall

C. Features

Though we have a large number of potential features

(67), most of them have proved to be of small signif-

icance for the performance. For that reason, we have

chosen a subset of significant features by employing

three metrics: the information gain, the gain ratio, and

the Gini index. The choice of features depends on

the subset of interest, so that we have selected the

most relevant features for each data subset. In Table

III, we show the selection for the full dataset and the

three subsets investigated in this paper. Some features

appear to be significant for all the sets, namely: Donor’s

hospital, Cause of death, Location of residence, Donor’s

age, Year of death, and Size of city of residence.

VI. RESULTS

We have examined our dataset by employing all

the four algorithms described in Section V-A. We first

consider the results obtained for the whole set of silent

donors, i.e., those potential donors who did not express

their consent (or denial) during their lifetime, so that the

decision has been left to their relatives. Then we examine

the results for the nationality subsets defined in Section

IV.

In Table IV, we show the major performance met-

rics. Linear Regression is by far the worst performer,

exhibiting figures below 70% on all four metrics. We

see a significant improvement by roughly ten percentage

points with decision trees. However, if we abandon the

intrinsic explainability of decision trees, both ensemble

techniques (AdaBoost in this case) and neural networks

TABLE IV: MODEL PERFORMANCE USING BOOT-

STRAP ON THE SILENT DATASET

Technique Accuracy F1 Score Precision Recall

Tree 0.76 0.76 0.76 0.76
LASSO 0.66 0.64 0.65 0.66
AdaBoost 0.85 0.85 0.85 0.85
Neural Net 0.82 0.82 0.82 0.82

84.3% 15.7%

34.2% 65.8%
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Fig. 4: Confusion matrices (percentages) using Bootstrap

on the silent dataset

(though in their simple feedforward configuration) allow

us to reach good performances achieving figures well

beyond 80% on all metrics. AdaBoost appears the best

overall performer.

We can take a closer look at the performance by exam-

ining the confusion matrices in Fig. 4. Linear regression

(LASSO) shows the worst imbalance in performance,

being good in recognizing Consent decisions, but failing

by misclassifying a major portion of Opposition deci-

sions (performing even worse than a random classifier).

The imbalance in performance decreases but is still

significant in decision trees (though the majority of

oppositions is now classified correctly). The per-class

performance improves significantly with AdaBoost and

neural networks. The imbalance across classes is very

small for AdaBoost and a bit larger for neural networks.

In both cases, the imbalance works against oppositions,

which are classified correctly in less than 80% of the

instances with neural networks.

Summing up, Adaboost appears as the best classi-

fier, both overall and over either class, exhibiting well-

balanced performances.

We can now examine the performances on the subsets

described in Section IV, considering European, Italian,

and non-Italian potential donors.

In Table V, we show the performance metrics for

European donors. The performance is quite similar to

what we have obtained on the overall dataset, though a

bit better. This may suggest that European donors may
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TABLE V: MODEL PERFORMANCE USING BOOTSTRAP

ON EUROPEAN DONORS

Technique Accuracy F1 Score Precision Recall

Tree 0.78 0.78 0.78 0.78
LASSO 0.67 0.66 0.66 0.67
AdaBoost 0.84 0.84 0.84 0.84
Neural Net 0.85 0.85 0.85 0.85

87.0% 13.0%

34.9% 65.1%

CONSENT OPPOSITION

CONSENT

OPPOSITION

(a) Tree

A
ct

u
a
l

Predicted

79.8% 20.2%

52.5% 47.5%

CONSENT OPPOSITION

CONSENT

OPPOSITION

(b) LASSO

A
ct

u
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l

Predicted

87.9% 12.1%

21.4% 78.6%
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(c) AdaBoost
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86.5% 13.5%

18.1% 81.9%

CONSENT OPPOSITION
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Fig. 5: Confusion matrices (percentages) using Bootstrap

on the European dataset

be predicted more reliably than non-European donors.

Similarly to what we did for the whole dataset, we

can examine the performance metrics on either class

by looking at the confusion matrices in Fig. 5. We see

again that decision trees have similar performances as

the best performing algorithms for the Consent class. It

is the performance on the Opposition class that brings

the overall accuracy down. The imbalance between the

performance for the two classes is high for the LASSO

regression. Neural networks appear as the most balanced

algorithm for this subset.

If we focus on Italian donors, which are, as expected,

the largest nationality subgroup by far, we obtain the

results shown in Table VI. We do not see significant

changes with respect to the results that we have already

shown. The pertaining confusion matrix is shown in

Fig. 6.

What removes some doubts about the reliability of

predictions for nationals is the examination of Table VII,

where the performance improves significantly. We can

TABLE VI: MODEL PERFORMANCE WITH BOOTSTRAP

ON ITALIAN DONORS

Technique Accuracy F1 Score Precision Recall

Tree 0.77 0.76 0.77 0.77
LASSO 0.69 0.67 0.68 0.69
AdaBoost 0.81 0.81 0.81 0.81
Neural Net 0.83 0.83 0.83 0.83

88.1% 11.9%

42.0% 58.0%

CONSENT OPPOSITION

CONSENT

OPPOSITION

(a) Tree

A
ct

u
a
l

Predicted

85.2% 14.8%

57.6% 42.4%

CONSENT OPPOSITION

CONSENT

OPPOSITION

(b) LASSO

A
ct

u
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Predicted

82.8% 17.2%

22.0% 78.0%

CONSENT OPPOSITION

CONSENT

OPPOSITION

(c) AdaBoost

A
ct

u
a
l

Predicted

89.0% 11.0%

26.3% 73.7%

CONSENT OPPOSITION

CONSENT

OPPOSITION

(d) Neural Network
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ct

u
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l

Predicted

Fig. 6: Confusion matrix (percentages) for Neural Net-

work using Bootstrap on the Italian dataset

TABLE VII: MODEL PERFORMANCE WITH BOOT-

STRAP ON NON-ITALIAN DONORS

Technique Accuracy F1 Score Precision Recall

Tree 0.71 0.71 0.71 0.71
LASSO 0.71 0.71 0.71 0.71
AdaBoost 0.86 0.86 0.86 0.86
Neural Net 0.85 0.85 0.85 0.85

conclude that, though AdaBoost and neural networks

provide accuracy values over 80% in any case, predic-

tions are more accurate for non-Italian potential donors

than for Italian ones. though the size of the non-Italian

subsample is not very large, it appears that the features

that we have employed give much clearer indications for

non-Italian donors.

Finally, we have examined the possibility of improv-

ing the forecasting accuracy by introducing features

related to family members. The results in Table VIII

clearly show a significant improvement for the worst per-

forming algorithms (decision trees and LASSO regres-

60.4% 39.6%

20.6% 79.4%

CONSENT OPPOSITION

CONSENT

OPPOSITION

(a) Tree
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ct

u
a
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68.8% 31.2%

27.0% 73.0%

CONSENT OPPOSITION

CONSENT
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a
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Predicted

83.3% 16.7%

12.7% 87.3%

CONSENT OPPOSITION

CONSENT
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77.1% 22.9%

9.5% 90.5%
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Fig. 7: Confusion matrices (percentages) using Bootstrap

on the non-Italian dataset

550 PROCEEDINGS OF THE FEDCSIS. KRAKÓW, POLAND, 2025



TABLE VIII: MODEL PERFORMANCE WITH BOOT-

STRAP BY ADDING INFO ON FAMILY MEMBERS

Technique Accuracy F1 Score Precision Recall

Tree 0.80 0.79 0.80 0.80
LASSO 0.79 0.79 0.79 0.79
AdaBoost 0.88 0.88 0.88 0.88
Neural Net 0.86 0.86 0.86 0.86

sion) and a small improvement for the best-performing

algorithm (AdaBoost and neural networks). For the latter

algorithms, the accuracy gets closer to 90%. The addition

of that information, though notoriously difficult to get,

is then highly recommended.

VII. CONCLUSIONS

This study has demonstrated the feasibility and

effectiveness of using machine learning techniques

to forecast consent outcomes in the organ dona-

tion process. By leveraging a comprehensive set of

socio-demographic, clinical, and contextual features,

our models—particularly AdaBoost and neural net-

works—achieved strong predictive performance, with ac-

curacies exceeding 85% and well-balanced classification

across both Consent and Opposition cases. These results

affirm the value of predictive modeling in addressing

one of the most critical and uncertain phases of organ

donation: the acquisition of consent.

The practical implications of this work are substantial.

In a process where timing is critical and resources are

constrained, early estimation of the likelihood of ob-

taining consent enables healthcare professionals to tailor

their actions. High predicted probabilities of consent

support the early initiation of cost-intensive diagnostic

and preparatory procedures, thereby minimizing delays

and reducing the risk of organ deterioration. Conversely,

low predicted probabilities can help avoid unnecessary

expenditures and optimize allocation of staff and equip-

ment. The integration of such predictive tools into clini-

cal decision support systems can therefore enhance both

operational efficiency and cost-effectiveness in transplant

logistics.

Looking ahead, several promising directions could

further extend this research on consent prediction in solid

organ transplantation. First, integrating additional qual-

itative and behavioral data—such as prior interactions

with healthcare staff or known family attitudes—may en-

hance predictive accuracy and provide deeper contextual

understanding. Second, the development of real-time,

interpretable models tailored for clinical settings would

improve usability and foster trust among healthcare

professionals, potentially leveraging more advanced and

explainable forecasting architectures [27].

Third, conducting cross-regional studies with data

from multiple transplant centers would allow for broader

validation and support the generalization of findings,

thus laying the groundwork for national or even interna-

tional implementation of consent prediction tools within

organ donation systems.

Finally, we believe that embedding the proposed

model within a comprehensive decision-support

framework—capable of optimizing various components

of the donor management process, including logistical

challenges such as organ transportation [28]–[31]—

could significantly improve the overall performance and

efficiency of the system (see, e.g., [32]).
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