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Abstract—Accurately predicting whether consent for or-
gan donation will be granted is essential for optimizing
timing and resource use in donor management. This study
develops and evaluates machine learning models to estimate
the likelihood of obtaining consent based on donor and
contextual factors. The goal is to support early clinical
decision-making by identifying cases where consent is
more or less likely. Using real-world data from a regional
transplant center operating under an opt-in system, we
conduct data preprocessing, feature selection, and model
training with various algorithms. Model performance is
assessed using standard classification metrics, and key
predictors of consent outcomes are identified. Results show
accuracy levels exceeding 80 %, highlighting the importance
of including information about the relatives responsible for
the decision. We also find that prediction accuracy varies
with donor nationality, being higher for non-Italian donors.
These findings demonstrate the value of predictive analytics
in improving organ procurement efficiency and reducing
unnecessary costs.

Index Terms—Health care, Modeling and prediction,
Machine learning, Decision support

I. INTRODUCTION

RGAN transplantation remains the most effective

and economically viable treatment for patients with
end-stage organ failure. However, despite ongoing efforts
to raise awareness and increase donor registrations, a
persistent and critical gap remains between the demand
for and supply of transplantable organs [1], [2]. Among
the key barriers contributing to this shortage is the high
rate of opposition to organ donation, particularly when
consent must be obtained post-mortem from next-of-kin.
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The acquisition of consent is a pivotal step in the organ
donation process. In systems where explicit authorization
is required—such as the opt-in framework in place in
many regions—the inability to secure timely consent
can lead to lost donation opportunities, unnecessary
delays, and avoidable costs. Even in jurisdictions with
opt-out legislation, in practice, healthcare professionals
often still seek family confirmation, making the consent
process a practical and ethical bottleneck.

In this paper, we propose a data-driven approach
to support and optimize the consent acquisition phase
through predictive modeling. Specifically, we develop
and evaluate machine learning models aimed at fore-
casting the likelihood of obtaining consent for organ
donation. By leveraging available demographic, clinical,
and contextual data, our models seek to provide early es-
timates of consent probability, offering valuable decision
support for clinicians involved in donor management.

As it is better discussed in Section III-B, this predic-
tive capability has the potential to significantly enhance
operational efficiency. For example, if a high probability
of consent is anticipated, preparatory clinical activities
can be initiated earlier, minimizing the time to transplan-
tation and reducing organ deterioration risks. Conversely,
in cases where consent is unlikely, healthcare teams
may choose to delay or forego certain cost-intensive
procedures, thus conserving resources.

Our study contributes to the field of healthcare infor-
mation systems by introducing a predictive tool for esti-
mating the likelihood of consent or opposition in organ
donation. The practical relevance of such predictions lies
in their integration into transplant logistics, where they
can support informed decision-making and improve both
clinical efficiency and cost-effectiveness.
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The main contributions of the paper are as follows.

« We develop predictive models based on established
machine learning algorithms to estimate the like-
lihood of family consent (or opposition) to organ
donation, with a focus on the Italian opt-in system.

o We present a context-specific analysis using real-
world data from the Lazio region, contributing the
first known predictive study on consent acquisition
in Europe.

e We compare various machine learning algorithms
and identify the most effective approaches for con-
sent prediction under data scarcity conditions.

« We highlight differences in predictive performance
across different nationality groups.

The remainder of the paper is organized as follows.
In Section II, we review the relevant literature. In Sec-
tion III, we describe the donor management process,
with a particular focus on the critical role of consent
acquisition. The input data used in this study, along
with the preprocessing and transformation procedures
(including feature deletion, grouping, and refinement),
are presented in Section IV. In Section V, we outline
the predictive modeling methodology, detailing the al-
gorithms, performance metrics, and selected features.
The results of the predictive analysis are reported and
discussed in Section VI. Finally, conclusions and future
research directions are presented in Section VII.

II. RELATED LITERATURE

Organ donation consent is a critical component of
the transplantation process, with direct implications for
timing, cost, and overall success rates. As highlighted
in the introduction, delays in consent acquisition can
lead to suboptimal organ preservation and increased
process costs [3]-[6]. In this section, we review the
literature across three main areas: (¢) barriers and refusal
patterns in consent acquisition, (i¢) strategies and policy
frameworks aimed at improving consent rates, and (z¢%)
the use of artificial intelligence and predictive analytics
in organ transplantation.

A number of studies have investigated the sociocul-
tural and procedural factors that hinder the acquisition
of post-mortem consent. For example, the refusal rate in
South Korea was examined in [7], where the authors
identified structural and cultural barriers to obtaining
consent. The intersection of ethics, religion, and policy
was found to influence organ donation practices in
South Asia [8]. Similarly, Lewis et al. discussed general
barriers to organ donation across different populations
[9]. In the Italian context, Grossi et al. found that
refusal rates were significantly higher among immigrant
populations compared to native citizens, highlighting the
importance of demographic and cultural variables in
consent prediction [10].
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Efforts to proactively increase donation rates and
consent have also been widely studied. In [11], hos-
pitals were benchmarked based on their consent rates,
with key influencing factors including donor age and
ethnic background. A number of studies [9], [12], [13]
have compared opt-in and opt-out systems, with opt-out
systems generally associated with higher donation rates.
However, these studies also acknowledge the complex
ethical and political considerations surrounding such
transitions. The role of family members in the final
consent decision is emphasized in [14]-[16], even in
jurisdictions with presumed consent. Additionally, many
studies have revealed that one of the most influential
issues is the expertise of the person approaching the
family to obtain consent for organ donation. For instance,
[17] highlighted the crucial influence of healthcare pro-
fessionals’ engagement and communication skills in fa-
cilitating positive consent outcomes, while [18] reviews
studies on differences in consent rates based on the
type of professional doing the asking. Expanding on
these findings, [19] presents the practices adopted by
Spanish transplant coordinators during consent requests
for Irreversible Cessation of Circulatory and Respiratory
Functions (ICOD). The study outlines the sequence of
preparatory steps coordinators follow prior to engag-
ing families in decision-making. Many of these steps
are not only rooted in a structured and empathetic
communication approach but are also recognized as
best practices in broader organ donation contexts. This
method has been associated with a notably low rate
of family refusals, reinforcing the importance of pro-
fessional training and protocol in achieving favorable
consent outcomes. Additionally, some studies explore
effective strategies for obtaining consent from families.
For example, [19] presents the practices adopted by
Spanish transplant coordinators when requesting consent
for Irreversible Cessation of Circulatory and Respiratory
Functions (ICOD). The study outlines the sequence of
steps coordinators follow before engaging the family in
decision-making. Many of these steps are recognized as
best practices in broader organ donation contexts and are
associated with a notably low rate of family refusals.

Broader applications of Al in organ donation and
transplantation have also been explored. In [20], a com-
prehensive review was conducted on the use of artificial
intelligence across various stages of the transplant pro-
cess, including organ allocation, process optimization,
and clinical decision support. However, the application
of Al specifically to predict consent outcomes remains
largely unexplored.

While the importance of timely consent acquisition in
organ donation is widely acknowledged, research em-
ploying predictive modeling in this context remains lim-
ited. Notable exceptions include the studies by Khan et



al. [2] and Tutun et al. [21], both of which apply machine
learning techniques to forecast consent outcomes. In
particular, the methodologies proposed by Khan et al. [2]
demonstrate high levels of accuracy, indicating that such
approaches are both viable and effective. Ultimately, they
have the potential to increase consent rates and thereby
save more lives among individuals on organ transplant
waiting lists.

In [2], the authors develop a predictive framework
that integrates machine learning and network science
to estimate the likelihood of family consent in organ
donation. Their model is designed not only to predict
outcomes but also to uncover the most influential factors
driving family decisions. The basic goal is to provide
Organ Procurement Organizations (OPOs) and hospital
staff with actionable insights that support more effective
communication strategies during consent discussions.
This work emphasizes the role of predictive models
as expert systems to improve consent rates and, by
extension, help mitigate the persistent mismatch between
organ supply and demand.

Similarly, Tutun et al. [21] propose a responsible Al
framework that merges network science with machine
learning to enhance consent prediction. Their study
leverages a large dataset collected from approximately
1,500 consent discussions across 92 hospitals in New
York, recorded between January 2016 and March 2018.
Results indicate that incorporating network-based fea-
tures significantly improves the performance of tradi-
tional ML algorithms. The study highlights how algorith-
mic insights can support ethical and effective approaches
to organ procurement.

Despite their relevance, both studies above differ from
our work. First, their primary objective is to reduce the
rate of family refusal, with a strong focus on optimizing
the approach strategies of healthcare professionals. In
contrast, our goal is to develop a predictive framework
that provides a probabilistic estimate of consent likeli-
hood, which can be integrated into transplant logistics
and used to inform cost-effective and timely decision-
making throughout the donor management process. Sec-
ond, the methodological approaches vary considerably.
While [2] and [21] rely on extensive sets of features
and large datasets—enabling more complex models and
improved predictive performance—our study operates on
a significantly smaller dataset collected in Italy. This
naturally constrains model complexity but provides a
novel, context-specific perspective.

This context-specific perspective builds on previous
investigations of the Italian case study [22], [23]. In
[22], a probabilistic model was developed to estimate
the time required to obtain consent, using real-world data
from successful organ donation cases in the Lazio region,
where an opt-in consent system is in effect. However,
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that study focused on modeling the timing of consent
acquisition, rather than predicting the binary outcome of
whether consent would be granted. The same case study
was further explored in [23], where the pre-transplant
process was modeled and simulated to identify time-
critical activities through critical path analysis. Building
on that work, [24] conducted a cost-benefit analysis
to evaluate management strategies aimed at balancing
time efficiency and cost-effectiveness throughout the pre-
transplant phase.

To the best of our knowledge, our study is the first
to address consent prediction using real-world data from
Italy, and more broadly, among the first of its kind in
Europe. This regional focus enables us to explore con-
sent dynamics within the specific legal and procedural
framework of an opt-in system, offering valuable insights
for local policy and process optimization.

III. OVERVIEW OF DONOR MANAGEMENT AND
CONSENT DYNAMICS

Transplant centers worldwide generally follow a hier-
archical structure, with a national coordinating authority
and regional and local healthcare facilities. This is also
the case in the center we consider here. Namely, we
focus on the Italian Transplant System, involving the
National Transplant Center (NTC), Regional Transplant
Centers (RTCs), and local hospital units. Organ trans-
plantation is a complex process involving many phases
and actors. In this paper, we are interested in the process
leading to consent acquisition. In this section, we de-
scribe the donor management process and the relevance
of the timeliness of consent acquisition for the overall
efficiency of the process.

A. The organ donor management process

The organ donor management process is a structured
set of activities that begins with the identification of a
potential donor and ends with the retrieval of organs and
their allocation to compatible recipients. Its primary aim
is to ensure the quality and availability of transplantable
organs while safeguarding recipient health.

This work focuses on the process currently imple-
mented at the RTC of the Lazio region in Italy. The
UML (Unified Modelling Language) diagram in Figure 1
represents a sketch of the donation process, which begins
when a potential donor is identified. The identification
of a donor starts with the recognition of the brain death
status of a patient, which qualifies him/her as a potential
donor. A six-hour period is required for Brain Death
Assessment (BDA). After BDA, two parallel streams of
activities are triggered:

¢ Acquisition of consent for organ donation;
o Initial clinical and diagnostic evaluations.
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Fig. 1: Compact UML diagram of the process.

The following phases involve a comprehensive as-
sessment of donor suitability, including laboratory anal-
yses, virological testing, and instrumental diagnostics.
Although there are no strict technical constraints, higher-
cost exams are generally performed only after consent is
obtained, in order to avoid unnecessary expenses when
the transplant cannot proceed due to a lack of consent.
If consent arrives in due time, it allows the medical staff
to proceed with all the medical tests needed to properly
carry out the transplant. If consent is denied, any further
medical test for transplant is cancelled. Some activities
are susceptible to be advanced, i.e., carried out even if
consent has not arrived yet, so as to reduce the overall
process time. Those activities are shown as advance-
eligible in Fig. 1. Dashed arrows indicate precedence
relations that are not mandatory. After the examina-
tions are carried out to assess the clinical suitability of
the potential donor, a risk level is defined—sometimes
following consultation with the Second Opinion team
appointed by the National Transplant Center (NTC).
If the evaluations indicate that the donor presents an
unacceptable risk to recipients, the process is imme-
diately stopped. Once the donor’s risk level has been
defined, the process moves into the Organ Allocation and
Harvesting phase. In this stage, potential recipients are
identified and matched based on clinical compatibility
and logistical considerations, through coordinated efforts
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involving the NTC, Regional Transplant Centers (RTCs),
local transplant teams, and logistics services, ensuring
timely and efficient organ retrieval and distribution.

B. Impact of Consent activity on process time and cost

If a potential donor has not expressed their wishes
regarding organ donation while alive, the responsibility
for releasing consent is transferred to their relatives. The
Consent acquisition phase becomes a critical crosspoint
in the donation process—regardless of whether consent
is ultimately granted or denied by those legally empow-
ered to decide. This phase significantly affects both the
duration and cost of the process.

To illustrate, imagine that the family or other autho-
rized individuals communicate their decision at some
unknown time point 7" after the donation process begins.
By that time, a possibly empty subset S of activities
(eligible to be initiated before the consent is given) may
already have been started or completed. Let cg denote
the cumulative cost of these activities. If consent is not
granted, then a cost cg is effectively wasted.

This would suggest a conservative strategy: delaying
costly actions until consent is confirmed to keep S,
and thus cg, minimal. However, such caution comes
at a price. Postponing action until the decision time T’
prolongs the process—especially in cases where consent
is eventually given. The more activities completed before
T, the more progress has been made by the time consent
is secured, allowing transplantation to proceed more
quickly. Since organs are perishable and their viability
deteriorates over time, any delay can compromise the
success of the transplant.

This tension calls for a cost-benefit analysis to guide
decision-making, weighing the trade-off between mini-
mizing wasted costs and maximizing time efficiency in
cases where consent is ultimately granted (see [24]).
In short, cost-efficiency favors deferring activities un-
til consent is certain, while time-sensitivity and organ
viability argue for initiating tasks early—even at the
risk of incurring unrecoverable costs if consent is later
denied, particularly when T is large. If we indicate the
process times as Tnqy and Tger > Taqv, respectively,
when activities are advanced or postponed with respect
to consent acquisition, we can summarize the time-cost
trade-offs in the matrix shown in Fig. 2, where each
bracket contains the time needed to complete the process
and the wasted cost.

In this context, a predictive tool that can estimate the
likelihood of consent with reasonable accuracy would be
highly valuable. High confidence in a positive outcome
justifies starting preparations sooner, improving both
patient outcomes and resource utilization. Conversely,
if the predicted probability of denial is high, delaying
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Fig. 2: Trade-offs in donor management process strategy

costly tasks becomes the prudent course, helping to avoid
unnecessary expenditure.

IV. DATASET

We collected and analysed a dataset concerning po-
tential donors at the Regional Transplant Center for
the Lazio region in Italy. In Italy, the opt-in regulation
applies where the potential donor may have given or
denied his/her consent to transplant when they were
alive. In the case the potential donor did not express their
decision concerning organ transplant during their life, it
is up to the family members to decide after the potential
donor’s brain death. The decision about donation as well
as the personal details of the potential donor and their
relatives are recorder. In this section, we describe the
dataset including that information.

Our data collection took place over four years, from
2021 to 2024. We can first see how the consent in-
formation is distributed over the years in Table 1. A
significant growth year-on-year can be observed, with
a CAGR (Compound Annual Growth Rate) of 6.7%.
The overall number of instances is 867 (the data for
2024 do not cover the whole year). However, the dataset
is heavily imbalanced, with the Silent group (i.e., those
not expressing their opinion during their lifetime) being
the large majority (80.2% of the total). The overall
dataset has been processed through Bootstrap and 10-
fold cross-validation to get the final dataset to be fed to
the algorithms described in Section V-A for training and
testing. Since our focus is to predict consent for potential
donors after brain death (DBD), we are not interested
in those donors expressing their consent during their
lifetime. Actually, for those potential donors, the donor
management process either starts with all the medical
tests to be carried out as soon as possible, or does not
start at all. Hence, in the following, we will focus on the
silent potential donors. After examining the dataset, we
removed those instances where most features are absent.
The overall number of silent donors has then reduced to
653, which is the reference number we will consider in
the following.

In addition, in order to examine how the nationality
of the donor may influence the decision and may be
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TABLE I: CONSENT EXPRESSION IN THE DATASET

Year  Consent Opposition  Silent  Total

2021 18 18 196 232
2022 32 14 202 248
2023 34 28 202 264
2024 23 5 95 123
Total 107 65 695 867

TABLE II: NUMBER OF SILENT DONORS BY NATION-
ALITY

Nationality =~ Numerosity
European 585
Italian 542
non-Italian 111

predicted with larger or lesser accuracy, we considered
the following subsets of potential donors:

o European donors;

o Italian donors;

« non-Italian donors.

The numerosity of the three subsets is shown in Table
II. As can be seen, Italians make up roughly 90% of the
whole set of European potential donors, as expected.

We can see in Fig. 3 how nationality influences the
decision about organ donation during lifetime. While
we see a balanced distribution for European and South
American potential donors, the distribution is heavily
imbalanced for the other continents. The culture of
donation is quite widespread in North America, where
just a small minority opts for opposing donation. On
the other end of the spectrum, we find Asia and Africa,
where oppositions largely outnumber consents.

For each potential donor, 67 features have been col-
lected. Those features may be subdivided into six groups:

1) General;

2) Personal data;

3) Information on relatives;

4) Risk level,

5) Organ information;

6) Consent.

Group 1 contains information related to the death
of the potential donor, including time and cause of
death. Group 2 includes all personal data pertaining to
the donor: name, surname, age, gender, date of birth,
place of birth, place of residence, height, and weight.
Group 3 provides data necessary to determine the de-
gree of kinship of the relatives involved in the consent
process (e.g., parents or siblings). Group 4 comprises
information regarding the donor’s risk profile, based on
second opinions obtained by the medical staff during
the organ compatibility assessment. Finally, Group 5 is
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Fig. 3: Frequency of support and opposition by continent

included only if consent has been obtained, and contains
specific details about the organ that may be considered
for transplantation.

It is to be noted that Group 6 actually includes the
target variable (whether Consent has been released), but
also information on the source of consent (the donors
themselves or their relatives).

V. METHODOLOGY

The problem of consent prediction has been modelled
as a binary classification one, where the two classes are
Consent or Opposition (Consent denial) and the potential
features are the 67 mentioned in Section IV. In this
section, we describe the classification algorithms that
we have employed, the performance metrics that we
have adopted to assess the algorithms, and the feature
selection process.

A. Algorithms and tools

We have employed the following established classifi-
cation algorithms:

o Decision Tree;

o Logistic Regression;

o AdaBoost;

o Feedforward neural network.

Each method in this selection has its own character-
istics.

Decision Trees split data into subsets using feature
thresholds, creating a tree-like structure where each node
represents a feature condition, and leaves represent class
labels. They are easy to interpret, but are prone to
overfitting, especially on small datasets like ours.
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Logistic Regression is a linear model where the
probability of a class is predicted by using a logistic
function. Regularization is achieved through LASSO
(L1 Regularization) by adding a penalty term to reduce
overfitting and performing feature selection by shrinking
some coefficients to zero. It is simple, interpretable, good
for high-dimensional data with irrelevant features. It has
been chosen since we have a relatively large number
of features (we are considering non-image data) many
of which may prove to be not relevant. It has limited
capacity for complex relationships.

AdaBoost (Adaptive Boosting) is an ensemble method
that combines multiple weak learners (often decision
stumps) by iteratively focusing on previously misclas-
sified examples. It should be more accurate than single
models like decision trees or logistic regression and
works well with less data (as in our case). However,
it is sensitive to noisy data and outliers.

Finally, feedforward Neural Networks represent a
very simple type of deep learning model where data
flows through multiple layers of interconnected nodes
(neurons) from input to output. They are powerful for
modeling complex, non-linear relationships. However,
they require large datasets, which we do not have at
present, and are less interpretable.

In the following we describe the configuration details
for each classification algorithm.

For decision trees we have employed a general (non-
binary) structure, where splitting was carried out just for
nodes with at least five instances. The maximum tree
depth was kept at 50 and pruning was employed for
nodes where the majority class includes more than 95%
of the instances.

Logistic Regression was employed with LASSO reg-
ularization with L1 norm and the classification threshold
set at 0.5 probability..

In AdaBoost 60 trees were used as base estimators,
with the learning rate set to 1.

A multilayer network with 100 neurons per hidden
layer was employed with a feedforward structure. A
logistic sigmoid function was chosen as the activation
function used, and ADAM was selected as solver, based
on the gradient descent algorithm for calculating weights
during the training phase [25]. The maximum number of
iterations (stopping condition) was set to 200.

B. Performance metrics

Our aim is to identify the cases where consent to
donation is obtained. We have then a binary classifier,
where we label as Positive the cases where consent is
actually obtained. With the usual 4-cell confusion matrix,
we have then the following possible outcomes: True and
False Positives (TP and FP, respectively) as well as True



TABLE III: MOST SIGNIFICANT FEATURES

non-Italian

v

Feature Overall ~ European  Italian

Donor’s hospital
Nationality

Birthplace region
Continent

Cause of death

Region of residence
Donor’s age

Size of birth city
Donor gender

Year of death

Donor blood type

Size of city of residence
Part of Italy (residence)
Country of birth
Country of residence
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SN N N N N N R
A N NN NN

N NN RN NN

and False Negatives (TN and FN, respectively). We adopt
the following extablished performance metrics [26]:

_ TP+TN
. ACCuraCy = W
« Precision =TW
e Recall = TP+EN

e F1 Score = 2—

_1_
Precision T Recal

C. Features

Though we have a large number of potential features
(67), most of them have proved to be of small signif-
icance for the performance. For that reason, we have
chosen a subset of significant features by employing
three metrics: the information gain, the gain ratio, and
the Gini index. The choice of features depends on
the subset of interest, so that we have selected the
most relevant features for each data subset. In Table
III, we show the selection for the full dataset and the
three subsets investigated in this paper. Some features
appear to be significant for all the sets, namely: Donor’s
hospital, Cause of death, Location of residence, Donor’s
age, Year of death, and Size of city of residence.

VI. RESULTS

We have examined our dataset by employing all
the four algorithms described in Section V-A. We first
consider the results obtained for the whole set of silent
donors, i.e., those potential donors who did not express
their consent (or denial) during their lifetime, so that the
decision has been left to their relatives. Then we examine
the results for the nationality subsets defined in Section
Iv.

In Table IV, we show the major performance met-
rics. Linear Regression is by far the worst performer,
exhibiting figures below 70% on all four metrics. We
see a significant improvement by roughly ten percentage
points with decision trees. However, if we abandon the
intrinsic explainability of decision trees, both ensemble
techniques (AdaBoost in this case) and neural networks
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TABLE IV: MODEL PERFORMANCE USING BOOT-
STRAP ON THE SILENT DATASET

Technique Accuracy  F1 Score  Precision  Recall
Tree 0.76 0.76 0.76 0.76
LASSO 0.66 0.64 0.65 0.66
AdaBoost 0.85 0.85 0.85 0.85
Neural Net 0.82 0.82 0.82 0.82
Predicted Predicted
CONSENT OPPOSITION CONSENT OPPOSITION
= CONSENT 84.3% 15.7% = CONSENT 80.5% 19.5%
= z
£ £
< OPPOSITION 342% 65.8% < OPPOSITION 54.2% 45.8%
(@) Tree (b) LASSO
Predicted Predicted
CONSENT OPPOSITION CONSENT OPPOSITION
= CONSENT 86.1% 13.9% = CONSENT 85.3% 14.7%
E E
Z g
< OPPOSITION 17.6% 82.4% < OPPOSITION 222% 77.8%

(¢) AdaBoost (d) Neural Network

Fig. 4: Confusion matrices (percentages) using Bootstrap
on the silent dataset

(though in their simple feedforward configuration) allow
us to reach good performances achieving figures well
beyond 80% on all metrics. AdaBoost appears the best
overall performer.

We can take a closer look at the performance by exam-
ining the confusion matrices in Fig. 4. Linear regression
(LASSO) shows the worst imbalance in performance,
being good in recognizing Consent decisions, but failing
by misclassifying a major portion of Opposition deci-
sions (performing even worse than a random classifier).
The imbalance in performance decreases but is still
significant in decision trees (though the majority of
oppositions is now classified correctly). The per-class
performance improves significantly with AdaBoost and
neural networks. The imbalance across classes is very
small for AdaBoost and a bit larger for neural networks.
In both cases, the imbalance works against oppositions,
which are classified correctly in less than 80% of the
instances with neural networks.

Summing up, Adaboost appears as the best classi-
fier, both overall and over either class, exhibiting well-
balanced performances.

We can now examine the performances on the subsets
described in Section IV, considering European, Italian,
and non-Italian potential donors.

In Table V, we show the performance metrics for
European donors. The performance is quite similar to
what we have obtained on the overall dataset, though a
bit better. This may suggest that European donors may
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TABLE V: MODEL PERFORMANCE USING BOOTSTRAP
ON EUROPEAN DONORS

Technique Accuracy  F1 Score  Precision  Recall
Tree 0.78 0.78 0.78 0.78
LASSO 0.67 0.66 0.66 0.67
AdaBoost 0.84 0.84 0.84 0.84
Neural Net 0.85 0.85 0.85 0.85

Predicted
CONSENT OPPOSITION

Predicted
CONSENT OPPOSITION

= CONSENT 87.0% 13.0% = CONSENT 79.8% 20.2%
=
§ g
< OPPOSITION 34.9% 65.1% < OPPOSITION 52.5% 47.5%
(a) Tree (b) LASSO

Predicted
CONSENT OPPOSITION

Predicted
CONSENT OPPOSITION

CONSENT 87.9% 12.1% CONSENT 86.5% 13.5%

Actual
Actual

OPPOSITION 21.4% 78.6% OPPOSITION 18.1% 81.9%

(c) AdaBoost (d) Neural Network

Fig. 5: Confusion matrices (percentages) using Bootstrap
on the European dataset

be predicted more reliably than non-European donors.

Similarly to what we did for the whole dataset, we
can examine the performance metrics on either class
by looking at the confusion matrices in Fig. 5. We see
again that decision trees have similar performances as
the best performing algorithms for the Consent class. It
is the performance on the Opposition class that brings
the overall accuracy down. The imbalance between the
performance for the two classes is high for the LASSO
regression. Neural networks appear as the most balanced
algorithm for this subset.

If we focus on Italian donors, which are, as expected,
the largest nationality subgroup by far, we obtain the
results shown in Table VI. We do not see significant
changes with respect to the results that we have already
shown. The pertaining confusion matrix is shown in
Fig. 6.

What removes some doubts about the reliability of
predictions for nationals is the examination of Table VII,
where the performance improves significantly. We can

TABLE VI: MODEL PERFORMANCE WITH BOOTSTRAP
ON ITALIAN DONORS

Technique Accuracy  F1 Score  Precision  Recall
Tree 0.77 0.76 0.77 0.77
LASSO 0.69 0.67 0.68 0.69
AdaBoost 0.81 0.81 0.81 0.81
Neural Net 0.83 0.83 0.83 0.83
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Predicted
CONSENT OPPOSITION

Predicted
CONSENT OPPOSITION

CONSENT 88.1% 11.9% CONSENT 85.2% 14.8%

Actual
Actual

OPPOSITION 42.0% 58.0% OPPOSITION 57.6% 42.4%

(a) Tree (b) LASSO

Predicted
CONSENT OPPOSITION

Predicted
CONSENT OPPOSITION

CONSENT 82.8% 17.2% CONSENT 89.0% 11.0%

Actual
Actual

OPPOSITION 22.0% 78.0% OPPOSITION 26.3% 73.7%

(¢) AdaBoost (d) Neural Network

Fig. 6: Confusion matrix (percentages) for Neural Net-

work using Bootstrap on the Italian dataset

TABLE VII: MODEL PERFORMANCE WITH BOOT-
STRAP ON NON-ITALIAN DONORS

Technique Accuracy  F1 Score  Precision  Recall
Tree 0.71 0.71 0.71 0.71
LASSO 0.71 0.71 0.71 0.71
AdaBoost 0.86 0.86 0.86 0.86
Neural Net 0.85 0.85 0.85 0.85

conclude that, though AdaBoost and neural networks
provide accuracy values over 80% in any case, predic-
tions are more accurate for non-Italian potential donors
than for Italian ones. though the size of the non-Italian
subsample is not very large, it appears that the features
that we have employed give much clearer indications for
non-Italian donors.

Finally, we have examined the possibility of improv-
ing the forecasting accuracy by introducing features
related to family members. The results in Table VIII
clearly show a significant improvement for the worst per-
forming algorithms (decision trees and LASSO regres-

Predicted
CONSENT OPPOSITION

Predicted
CONSENT OPPOSITION

= CONSENT 60.4% 39.6% = CONSENT 68.8% 312%
E z
g g
< OPPOSITION 20.6% 79.4% < OPPOSITION 27.0% 73.0%
(a) Tree (b) LASSO
Predicted Predicted
CONSENT OPPOSITION CONSENT OPPOSITION
= CONSENT 83.3% 16.7% = CONSENT 77.1% 22.9%
E] E]
g g
PPOSITION 12.7% 87.3% PPOSITION 9.5% .5%
< OPPOSITIO! < OPPOSITIO! 90.

(c) AdaBoost (d) Neural Network

Fig. 7: Confusion matrices (percentages) using Bootstrap
on the non-Italian dataset



TABLE VIII: MODEL PERFORMANCE WITH BOOT-
STRAP BY ADDING INFO ON FAMILY MEMBERS

Technique Accuracy  F1 Score  Precision  Recall
Tree 0.80 0.79 0.80 0.80
LASSO 0.79 0.79 0.79 0.79
AdaBoost 0.88 0.88 0.88 0.88
Neural Net 0.86 0.86 0.86 0.86

sion) and a small improvement for the best-performing
algorithm (AdaBoost and neural networks). For the latter
algorithms, the accuracy gets closer to 90%. The addition
of that information, though notoriously difficult to get,
is then highly recommended.

VII. CONCLUSIONS

This study has demonstrated the feasibility and
effectiveness of using machine learning techniques
to forecast consent outcomes in the organ dona-
tion process. By leveraging a comprehensive set of
socio-demographic, clinical, and contextual features,
our models—particularly AdaBoost and neural net-
works—achieved strong predictive performance, with ac-
curacies exceeding 85% and well-balanced classification
across both Consent and Opposition cases. These results
affirm the value of predictive modeling in addressing
one of the most critical and uncertain phases of organ
donation: the acquisition of consent.

The practical implications of this work are substantial.
In a process where timing is critical and resources are
constrained, early estimation of the likelihood of ob-
taining consent enables healthcare professionals to tailor
their actions. High predicted probabilities of consent
support the early initiation of cost-intensive diagnostic
and preparatory procedures, thereby minimizing delays
and reducing the risk of organ deterioration. Conversely,
low predicted probabilities can help avoid unnecessary
expenditures and optimize allocation of staff and equip-
ment. The integration of such predictive tools into clini-
cal decision support systems can therefore enhance both
operational efficiency and cost-effectiveness in transplant
logistics.

Looking ahead, several promising directions could
further extend this research on consent prediction in solid
organ transplantation. First, integrating additional qual-
itative and behavioral data—such as prior interactions
with healthcare staff or known family attitudes—may en-
hance predictive accuracy and provide deeper contextual
understanding. Second, the development of real-time,
interpretable models tailored for clinical settings would
improve usability and foster trust among healthcare
professionals, potentially leveraging more advanced and
explainable forecasting architectures [27].
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Third, conducting cross-regional studies with data
from multiple transplant centers would allow for broader
validation and support the generalization of findings,
thus laying the groundwork for national or even interna-
tional implementation of consent prediction tools within
organ donation systems.

Finally, we believe that embedding the proposed
model within a comprehensive decision-support
framework—capable of optimizing various components
of the donor management process, including logistical
challenges such as organ transportation [28]-[31]—
could significantly improve the overall performance and
efficiency of the system (see, e.g., [32]).
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