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Abstract—Accurately estimating the difficulty of the chess puz-
zle is important for adaptive training systems, personalized rec-
ommendations, and large-scale content curation. Unlike engine
evaluations optimized for perfect play, this task involves modeling
human-perceived solving difficulty, typically expressed by Glicko-
2 ratings. We present a multi-stage framework developed for the
FedCSIS 2025 Challenge. The method trains four rating-banded
neural regression models in different Elo ranges to capture
localized difficulty patterns and reduce bias from unbalanced
data. Their predictions are combined with statistical attributes,
including success probabilities, failure distributions, and solution
length, through a feature-based regression stage to improve
cross-range generalization. A final calibration step adjusts the
output to statistically plausible rating levels, mitigating systematic
prediction biases without adding computational complexity. An
additional mask selection procedure was explored as part of the
competition extension to identify 10% of the puzzles that are
most likely to benefit from the refined evaluation. The proposed
solution ranked 5

th on the public leaderboard and 6
th in the

final standings. These results demonstrate that a lightweight
and interpretable regression pipeline can achieve competitive
precision in modeling human-perceived chess puzzle difficulty.

Index Terms—Chess puzzle difficulty prediction, Multi-stage
framework, Regression, Calibration, Mask selection

I. INTRODUCTION

P
REDICTING the difficulty of chess puzzles is a chal-

lenging but important problem that integrates machine

learning, human cognition, and game theory. The difficulty

of the puzzle on platforms such as Lichess1 is expressed

as a Glicko-2 rating2 that dynamically updates based on

the success or failure of the players. Automating this rating

prediction accelerates puzzle curation, enables personalized

recommendations for players of varying skill levels, and pro-

vides insight into which tactical or strategic motifs challenge

human solvers the most. This is also the goal of the FedCSIS

2025 Challenge [1] organized on the KnowledgePit platform3.

A. Related Work

Research on puzzle difficulty prediction has advanced con-

siderably in recent years. Early approaches used handcrafted

features with classical machine learning: Björkqvist [2] mod-

eled puzzle “puzzlingness” via positional and tactical indi-

cators, and Rafaralahy [3] applied pairwise learning-to-rank

1https://lichess.org/
2https://en.wikipedia.org/wiki/Glicko_rating_system
3https://knowledgepit.ai/

to capture ordinal relations between puzzles. With the rise

of deep learning, sequence-based and representation-learning

methods became prominent. Ruta et al. [4] applied convo-

lutional neural networks (CNNs) to predict puzzle ratings di-

rectly from move sequences, Miłosz and Kapusta [5] proposed

Transformer-based models treating puzzles as sequences, and

Omori and Tadepalli [6] developed a CNN-LSTM model

incorporating moves and timing to jointly estimate puzzle and

player ratings.

The IEEE BigData Cup 2024 [7] demonstrated the suc-

cess of hybrid pipelines that integrate statistical features and

learned representations. Woodruff et al. [8] trained neural

models with rating-based features, while Schütt et al. [9] in-

troduced a human-problem-solving-inspired architecture com-

bining move distribution analysis and cognitive heuristics.

B. Motivation and Contributions

Despite these advances, two key challenges remain. First,

models trained across broad rating ranges often exhibit system-

atic biases, overestimating simple puzzles and underestimat-

ing long tactical sequences due to global error optimization.

Second, while models trained on different rating distributions

provide complementary perspectives, effectively integrating

them to improve generalization is non-trivial.

To address these challenges, we propose a multi-stage

framework that first trains four independent neural models on

separate rating ranges to capture localized difficulty patterns

and reduce bias caused by imbalanced data. Their predictions

are then combined with statistical attributes, including suc-

cess probabilities, failure distributions, and solution length,

in a feature-based regression stage to improve cross-range

generalization. A final calibration step adjusts the outputs

toward statistically plausible rating levels, reducing systematic

prediction biases without increasing computational complex-

ity. Additionally, the framework was extended with a mask

selection procedure to identify the 10% of puzzles most

likely to benefit from refined evaluation, as required in the

competition extension.

Our method ranked 5th on the public leaderboard and

6th in the final standings of the FedCSIS 2025 Challenge,

demonstrating that a lightweight, interpretable pipeline can

achieve competitive accuracy in modeling human-perceived

chess puzzle difficulty.
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The remainder of this paper is organized as follows. Sec-

tion II briefly describes the challenge, dataset, and evaluation

metric. Section III presents the methodology. Section IV dis-

cusses the mask selection task. Section V shows xperimental

results. Finally, Section VI concludes the paper and outlines

future directions.

II. FEDCSIS 2025 CHALLENGE

This competition continues the established task from IEEE

Big Data 2024 [7], asking participants to predict the perceived

difficulty of chess puzzles based on puzzle configurations and

human solving statistics. The objective remains to estimate

the Glicko-2 rating assigned to each puzzle, which reflects the

likelihood that players of various skill levels can solve it, using

only board position and solution moves.

A. Dataset

The official dataset consists of a large annotated training

set and a separate unlabeled test set. The training set con-

tains approximately 4.56 million puzzles, each labeled with

a human-derived difficulty rating, while the test set includes

2,235 puzzles sharing the same feature structure but without

ratings.

Each puzzle is described by multiple feature groups derived

from both game records and engine analysis:

• Core identifiers: a unique puzzle ID, board state in

Forsyth–Edwards Notation (FEN)4, and the solution se-

quence in Portable Game Notation (PGN)5.

• Human performance indicators (training only): Glicko-

2 rating, rating deviation, popularity, and the number of

attempts.

• Contextual metadata (training only): puzzle themes, as-

sociated game URLs, and opening tags.

• Engine-based success statistics: estimated success prob-

abilities for players at different Elo levels, provided

separately for rapid and blitz time controls (10 columns

each), approximating human solving likelihood across

skill tiers.

Puzzle ratings range from about 400 (trivial tactics) to over

3000 Elo (complex master-level combinations). The distribu-

tion is heavily imbalanced, with most puzzles clustered around

intermediate difficulty. No official validation set is provided;

participants typically constructed small internal validation

splits for hyperparameter tuning and model selection.

A training sample (puzzle) of the initial state of the chess-

board decoded by FEN and the rating is illustrated in Figure

1.

B. Evaluation Protocol

Predictions are evaluated using the mean squared error

(MSE) between the predicted and actual ratings:

MSE =
1

N

N
∑

i=1

(ŷi − yi)
2,

4https://en.wikipedia.org/wiki/ForsythEdwards_Notation
5https://en.wikipedia.org/wiki/Portable_Game_Notation

Figure 1. Example of the chess puzzle Rating 1902: initial state of the chess-
board decoded by FEN: "r6k/pp2r2p/4Rp1Q/3p4/8/1N1P2R1/PqP2bPP/7K b
- - 0 24".

where N is the number of puzzles in the test set. The test set

is partitioned internally, with 10% used for provisional public

leaderboard updates and the remaining 90% for final ranking.

Only the public subset is visible during the competition.

C. Optional Mask Extension

An additional post-evaluation extension allows participants

to submit a binary mask marking 10% of test puzzles predicted

to have the highest potential benefit from re-evaluation. For

these selected puzzles, predictions are replaced by ground-

truth ratings, and MSE is recalculated. While this mask-based

scoring does not affect the main leaderboard, it serves as an

auxiliary measure of a model’s ability to recognize cases where

its predictions are less reliable.

III. METHODS

Our approach employs a multi-stage pipeline that integrates

localized learning of puzzle difficulty with statistical adjust-

ment to correct systematic biases. The design philosophy stems

from two key observations. First, the relationship between puz-

zle features—such as tactical motifs, material configurations,

and success probabilities—and human-perceived difficulty is

not uniform across the rating spectrum; a single global model

tends to bias its predictions toward the overrepresented mid-

range puzzles. Second, models trained purely to minimize

global mean squared error often fail to respect structural

regularities observed in human solving behavior, particularly

for very easy or very hard puzzles. We therefore decompose

the task into specialized components: localized rating-band

models to better learn within-range patterns, a meta-learning

step to integrate complementary predictions and additional

structural attributes, a calibration step to align outputs with

statistical difficulty indicators, and a final averaging procedure

to stabilize predictions.

Figure 2 outlines this four-stage pipeline. The first stage

trains multiple models specialized for different rating bands

to disentangle the heterogeneous difficulty distribution. In the

second stage, their predictions are combined with auxiliary
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features using tree-based meta-regressors trained on a fixed

validation subset. The third stage applies a statistical calibra-

tion that shifts the predictions toward historically plausible

difficulty levels by exploiting failure distributions and their

higher-order characteristics. Finally, the calibrated regressors

are averaged to reduce variance and further improve general-

ization.

Figure 2. Overview of the proposed prediction pipeline.

A. Rating-Banded Base Models

The first stage employs a rating-banded learning strategy

to address heterogeneous solving patterns across Elo levels.

Lower-rated puzzles, often simple mate-in-one or basic forks,

exhibit solving distributions heavily concentrated in low-skill

buckets, whereas higher-rated puzzles show sparse but sharper

failure transitions at advanced skill levels. A single global

regressor tends to minimize global loss by fitting the over-

represented mid-range, which leads to biased underestimation

for high-rated puzzles. Inspired by the band-wise modeling

idea explored in prior work [8], we explicitly partition the

data into four difficulty bands and train separate regressors

for each band to focus on localized difficulty dynamics.

Let the global training set be D = {(xi, yi)}
N
i=1, where xi

is the structured feature vector and yi the true difficulty rating.

We define four disjoint subsets:

Db = {(xi, yi) ∈ D | Lb ≤ yi < Ub}, b ∈ {1, 2, 3, 4}, (1)

with rating intervals:

[Lb, Ub) ∈ {[0, 1000), [1000, 1400), [1400, 1700), [1700,∞)}.
(2)

This segmentation allocates dedicated modeling capacity to

high-rated puzzles (b = 4) while reducing mid-range domi-

nance.

Each band b is trained independently using a multi-layer

perceptron (MLP) fb(·; θb) optimized for mean squared error:

Lb(θb) =
1

|Db|

∑

(xi,yi)∈Db

(yi − fb(xi; θb))
2
. (3)

The final band-specific prediction for a puzzle i is:

ŷ
(b)
i = fb(xi; θb). (4)

The input vector xi is constructed from all numeric struc-

tural features provided in the official dataset preprocess-

ing pipeline, including engine-estimated success probabilities

(rapid and blitz modes), their aggregated statistics, failure-

related indicators, and a small set of board- and sequence-level

descriptors (e.g., material balance and move length). Non-

numeric metadata such as puzzle themes or game URLs are

excluded from the training features. All continuous features are

normalized to [0, 1], while binary indicators (e.g., checkmate

markers) are one-hot encoded.

Each fb is trained with early stopping using 10% of Db

as a validation set for hyperparameter tuning. Although every

model is specialized to its own band, during inference all four

models are applied to every puzzle:

ŷi = [ŷ
(1)
i , ŷ

(2)
i , ŷ

(3)
i , ŷ

(4)
i ], (5)

producing complementary perspectives that will be integrated

in the subsequent meta-learning stage.

B. Meta-Feature Regression

The second stage integrates the outputs of the banded base

models with additional statistical descriptors through a meta-

learning framework. Let

pi = [p
(1)
i , p

(2)
i , p

(3)
i , p

(4)
i ] (6)

denote the predictions of the four base models for puzzle

i, where each element corresponds to a specific Elo-banded

model. The statistical aggregates are expressed as:

µi =
1

4

4
∑

m=1

p
(m)
i , σ2

i =
1

4

4
∑

m=1

(p
(m)
i − µi)

2, (7)

pmax,i = max
m

(p
(m)
i ), pmin,i = min

m
(p

(m)
i ), (8)

∆mn,i = |p
(m)
i − p

(n)
i | (m ̸= n). (9)

These aggregates highlight disagreement patterns, which are

known to be strong signals for meta-regression.

Structural features are denoted as:

si = [µsucc
i , pfail

i , rinf
i , γfail

i ], (10)

where µsucc
i is the mean engine-estimated success probability

across rating buckets, pfail
i is the aggregated failure probabil-

ity, rinf
i is the rating bucket with the maximum success-rate

gradient (inflection point), and γfail
i is the skewness of the

failure probability distribution. Interaction terms combine base

predictions and puzzle-level indicators:

ϕik = p
(m)
i × cik, (11)

where cik represents puzzle-specific complexity indicators,

such as the number of moves or checks. The complete meta-

feature vector for puzzle i is:

xi = [pi, µi, σi, pmax,i, pmin,i, ∆mn,i, si, ϕik]. (12)

Three independent gradient boosting regressors are used as

meta-learners to map xi to the final meta-prediction:

ŷi = fmeta(xi; Θ), (13)
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where Θ represents the parameters of CatBoost, LightGBM,

or XGBoost. The choice of these three algorithms is moti-

vated by their complementary characteristics: CatBoost [10]

handles heterogeneous feature distributions effectively through

ordered boosting and is robust to overfitting; LightGBM [11]

is optimized for large-scale structured data, using histogram-

based leaf-wise tree growth to achieve high computational

efficiency; XGBoost [12] provides strong generalization by

combining second-order optimization with regularization, and

often captures non-linear feature interactions overlooked by

the other two. Employing these three regressors increases

model diversity, which is critical for the final averaging stage

to reduce variance and enhance generalization, which We team

had used it before in the other competition [13].

All meta-learners are trained using 5-fold cross-validation

with out-of-fold base predictions to avoid information leakage.

The training objective minimizes mean squared error:

Lmeta =
1

N

N
∑

i=1

(yi − ŷi)
2
. (14)

C. Prediction Calibration

While meta-regression substantially improves the overall

consistency of predictions, residual systematic biases persist

due to the heterogeneous nature of puzzles. Easy puzzles (e.g.,

short mate-in-one combinations) are frequently overestimated,

whereas deeper tactical sequences or complex positional mo-

tifs are often underestimated. To address this, we incorporate

a post-hoc calibration stage that aligns predictions with struc-

tural patterns inferred from aggregated human performance

statistics.

Let the engine-provided success probabilities across J rating

buckets for puzzle i be SuccessProbij . The failure probability

for bucket j is:

FailProbij = 1− SuccessProbij . (15)

A primary structural estimate of puzzle difficulty is computed

as the failure-probability-weighted average rating:

ŷstruct,i =

∑J
j=1 FailProbij ·Rj
∑J

j=1 FailProbij

, (16)

where Rj is the representative rating (Elo) of bucket j.

Intuitively, if failures are concentrated in higher buckets, the

structural estimate shifts toward a higher rating.

The raw structural estimate does not fully account for

sharp transitions in solving probability or asymmetry in its

distribution. Two higher-order indicators are introduced:

1) Inflection rating r∗i : the rating bucket with the steepest

drop in solving probability:

r∗i = argmax
j

∣

∣

∣

∣

∂pij

∂Rj

∣

∣

∣

∣

, (17)

where pij is the engine-estimated solving probability for

bucket j and Rj the corresponding representative rating.

2) Skewness of failure distribution γi: a measure of asym-

metry in the failure probability:

γi =
1
J

∑J
j=1(qij − q̄i)

3

(

1
J

∑J
j=1(qij − q̄i)2

)3/2
, q̄i =

1

J

J
∑

j=1

qij , (18)

where qij = 1− pij is the failure probability for bucket j.

The refined structural estimate integrates these two indica-

tors:

ŷrefined,i = ŷstruct,i + λ1

(

rinf
i − µR

)

+ λ2 γ
fail
i , (19)

where µR is the mean bucket rating, and λ1, λ2 are empirical

weights controlling the contribution of sharp transitions and

asymmetry.

The final calibrated prediction ỹi is a convex combination of

the meta-regressor output ŷi and the refined structural estimate:

ỹi = (1− αi) ŷi + αi ŷrefined,i. (20)

The blending weight αi depends on the estimated structural

difficulty, with easier puzzles receiving stronger correction:

αi =















0.35, ŷstruct,i < 1400,

0.28, 1400 ≤ ŷstruct,i < 1800,

0.20, ŷstruct,i ≥ 1800.

(21)

This formulation enforces stronger adjustment for trivial

puzzles—aligning their predicted ratings closer to historically

plausible ranges—while retaining the flexibility of the meta-

regressors for complex high-rated puzzles. The segmented

weighting mimics the behavior observed in residual-analysis

curves from validation, where lower-rated puzzles exhibited

significantly larger over-prediction variance.

D. Averaging of Calibrated Models

The final stage combines the calibrated outputs of the three

meta-regressors to produce a robust and stable prediction. Let

ỹ
(k)
i denote the calibrated prediction for puzzle i from the k-th

meta-regressor, where k = 1, 2, 3. The final predicted difficulty

rating is obtained by taking the simple arithmetic mean over

these calibrated outputs:

ŷfinal
i =

1

K

K
∑

k=1

ỹ
(k)
i , K = 3. (22)

The uniform weighting is chosen deliberately instead of

learned weights to reduce the risk of overfitting, as the

validation subset is relatively small. From a variance-reduction

perspective, assuming that the calibrated models exhibit only

moderate pairwise error correlations, the variance of the aver-

aged prediction can be expressed as:

Var(ŷfinal
i ) ≈

1

K2

K
∑

k=1

Var(ỹ
(k)
i ) +

2

K2

∑

m<n

Cov(ỹ
(m)
i , ỹ

(n)
i ).

(23)

Because the three calibrated regressors are trained indepen-

dently and incorporate different feature-interaction mecha-

nisms, their prediction errors are not perfectly correlated.
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This diversity directly reduces the ensemble variance and

improves stability, which validates the choice of using multiple

complementary meta-regressors in Stage 2.

IV. MASK PREDICTION

The optional mask prediction task was introduced as an

extension to evaluate a model’s ability to identify the most

problematic predictions, i.e., puzzles where replacing the pre-

dicted ratings with ground-truth values would yield the largest

reduction in the overall evaluation error. This task measures

not only prediction accuracy but also the model’s capability

for uncertainty estimation.

A. Task Definition

For each submitted solution, the organizers defined a binary

“perfect mask” indicating the 10% of test puzzles that con-

tributed the most to the prediction error. Formally, the perfect

mask for puzzle i is denoted by Mi ∈ {0, 1}, and the predicted

mask by M̂i ∈ {0, 1}.

The evaluation was based on the model’s original Mean

Squared Error (MSE) scores:

1) Perfect Score P : the lowest MSE achievable if the

10% worst-predicted puzzles were replaced with ground-truth

values;

2) New Score N : the MSE after applying the participant’s

submitted mask, where only the puzzles marked by M̂i = 1
are replaced with ground-truth values;

3) Final Ranking Criterion:

maskscore =
N

P
, (24)

with values closer to 1 indicating better mask quality. A ratio

of exactly 1 corresponds to perfectly recovering the ideal

mask.

Unlike the main difficulty-prediction task, this mask task

does not require modifying rating predictions directly; instead,

it evaluates how effectively a model can identify the most

uncertain or systematically biased cases.

B. Proposed Mask Prediction Strategy

To construct the predicted mask, we developed a structure-

and residual-guided selection strategy designed to identify

puzzles with high prediction error and high structural con-

fidence. The method proceeds in three steps:

1) Residual scoring: The absolute residual between the cali-

brated meta-regression prediction ỹi and the refined structural

estimate ŷrefined,i is used to measure disagreement:

ri = |ỹi − ŷrefined,i|. (25)

Puzzles with larger residuals are considered more likely to be

mispredicted.

2) Structure-confidence weighting: Puzzles with low struc-

tural uncertainty are given higher priority. A confidence weight

is defined as:

wi =
1

1 + σ2
p,i

, (26)

where σ2
p,i is the variance of solving probabilities across

rating buckets for puzzle i. A low variance indicates that the

structural estimate is more reliable.

3) Weighted residual ranking: A combined score is com-

puted by weighting the residual with structural confidence:

si = ri · wi. (27)

Puzzles are ranked in descending order of si, and the top 10%

are selected as mask targets:

M̂i =

{

1, if i is among the top 10% of si,

0, otherwise.
(28)

This strategy is motivated by the hypothesis that systemati-

cally biased predictions can be detected as large residuals, and

that structural features provide additional reliability signals to

avoid over-selecting uncertain cases.

Because the official mask results were not released, we

could not directly validate the method against the compe-

tition’s test set. However, the residual- and structure-guided

ranking approach provides a principled framework for identi-

fying predictions with the highest expected impact on score

improvement.

This strategy can be generalized beyond the mask task, as it

effectively combines error analysis and structural confidence

estimation, which are key components for model uncertainty

quantification in rating-prediction problems.

Our uncertainty mask ratio is equal to 1.684 which ranks

seventh among nine teams that decided to participate in this

additional task. And our final score with the mask submitted

is approximately equal to 56756 while the final score with the

perfect mask is equal to 33709 [1].

V. EXPERIMENTAL RESULTS

This section presents the quantitative evaluation of the

proposed four-stage pipeline, including the progressive im-

provements introduced at each stage and a discussion of their

relative contributions to the final performance.

A. Quantitative Summary

Table I summarizes the evolution of the public leaderboard

Mean Squared Error (MSE) through different stages of the

pipeline. The private test score, which determined the final

ranking, is also reported for the final ensemble.

Table I
PERFORMANCE PROGRESSION ACROSS PIPELINE STAGES.

Stage Public LB MSE (↓)

Best Single Base Model 89,627
Simple Average of Four Base Models 85,908
Stacking (CatBoost meta, raw output) 84,511
After Structural Calibration 67,471
Final Ensemble Averaging 66,485

Private Test MSE (Final Ensemble) 62,567

Averaging across all four banded models provided mod-

est improvement, indicating that band diversity contributes

to generalization even without meta-learning. Stacking with

LING CEN ET AL.: A MULTI-STAGE FRAMEWORK FOR CHESS PUZZLE DIFFICULTY PREDICTION 811



meta-features yielded further gains, reducing the public MSE

by 6% relative to simple averaging. The largest improvement

came from the structural calibration step, which lowered the

public MSE by 20%. Finally, averaging the three calibrated

meta-regressors slightly improved stability and achieved the

best overall score.

The final submission achieved a private test MSE of 62,567,

ranking 6th among all participating teams.

B. Discussion

Several observations can be drawn from these results:

• Effectiveness of Band-Wise Base Models: The best

single base model significantly outperformed global base-

lines, validating the hypothesis that Elo-banded training

better captures localized difficulty semantics. Lower-rated

bands provided complementary perspectives, which col-

lectively improved performance through averaging.

• Meta-Feature Integration: The 6% improvement from

stacking demonstrates that disagreement patterns among

base models and structural descriptors (e.g., success-

probability variance, inflection points) are strong predic-

tive signals. Feature importance analysis from CatBoost

indicated that structural features such as mean solving

probability and failure skewness ranked among the top

predictors.

• Impact of Structural Calibration: Post-hoc calibration

aligned predictions with statistically plausible difficulty

levels derived from aggregated failure distributions. The

segmented blending weight αi played a crucial role,

applying stronger correction to low-rated puzzles where

residual biases were largest.

• Ensemble Averaging and Robustness: The final aver-

aging reduced variance by combining three diverse meta-

regressors with moderately correlated errors. This con-

tributed to consistent private-test performance, narrowing

the public-private gap compared to earlier stages.

• Computational Efficiency and Interpretability: De-

spite competitive accuracy, the proposed pipeline remains

lightweight, interpretable, and suitable for large-scale

deployment.

VI. CONCLUSIONS

This work presented a structured four-stage framework for

predicting chess puzzle difficulty, integrating band-specific

modeling, meta-feature regression, statistical calibration, and

ensemble averaging. The major findings and contributions can

be summarized as follows:

• Localized base modeling: Training separate regressors

on Elo-banded subsets captured rating-specific solving

dynamics and provided complementary perspectives com-

pared to a single global model.

• Meta-feature integration: Stacking the base-model pre-

dictions with statistical and structural features exploited

disagreement patterns and higher-order indicators (e.g.,

variance, inflection, skewness), improving cross-band

generalization.

• Post-hoc calibration: Aligning predictions with struc-

tural difficulty estimates derived from aggregated failure

distributions systematically reduced residual biases, par-

ticularly for lower-rated puzzles.

• Variance-reduced ensembling: Averaging three inde-

pendently calibrated regressors improved stability, nar-

rowing the public-private leaderboard gap and achieving

a final private test MSE of 62,567, ranking 6th overall.

Furthermore, the framework was extended to the optional

mask selection task, where a residual- and structure-guided

ranking strategy was proposed to identify the 10% most

problematic puzzles. Although official mask results were not

released, internal analyses suggest that structural signals are

effective not only for improving rating prediction but also for

detecting highly uncertain cases, offering potential for future

work on confidence-guided puzzle recommendation systems.
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