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Abstract—Accurately estimating the difficulty of the chess puz-
zle is important for adaptive training systems, personalized rec-
ommendations, and large-scale content curation. Unlike engine
evaluations optimized for perfect play, this task involves modeling
human-perceived solving difficulty, typically expressed by Glicko-
2 ratings. We present a multi-stage framework developed for the
FedCSIS 2025 Challenge. The method trains four rating-banded
neural regression models in different Elo ranges to capture
localized difficulty patterns and reduce bias from unbalanced
data. Their predictions are combined with statistical attributes,
including success probabilities, failure distributions, and solution
length, through a feature-based regression stage to improve
cross-range generalization. A final calibration step adjusts the
output to statistically plausible rating levels, mitigating systematic
prediction biases without adding computational complexity. An
additional mask selection procedure was explored as part of the
competition extension to identify 10% of the puzzles that are
most likely to benefit from the refined evaluation. The proposed
solution ranked 5™ on the public leaderboard and 6™ in the
final standings. These results demonstrate that a lightweight
and interpretable regression pipeline can achieve competitive
precision in modeling human-perceived chess puzzle difficulty.

Index Terms—Chess puzzle difficulty prediction, Multi-stage
framework, Regression, Calibration, Mask selection

I. INTRODUCTION

REDICTING the difficulty of chess puzzles is a chal-

lenging but important problem that integrates machine
learning, human cognition, and game theory. The difficulty
of the puzzle on platforms such as Lichess' is expressed
as a Glicko-2 rating? that dynamically updates based on
the success or failure of the players. Automating this rating
prediction accelerates puzzle curation, enables personalized
recommendations for players of varying skill levels, and pro-
vides insight into which tactical or strategic motifs challenge
human solvers the most. This is also the goal of the FedCSIS
2025 Challenge [1] organized on the KnowledgePit platform?.

A. Related Work

Research on puzzle difficulty prediction has advanced con-
siderably in recent years. Early approaches used handcrafted
features with classical machine learning: Bjorkqvist [2] mod-
eled puzzle “puzzlingness” via positional and tactical indi-
cators, and Rafaralahy [3] applied pairwise learning-to-rank

Uhttps://lichess.org/

Zhttps://en.wikipedia.org/wiki/Glicko_rating_system
3https://knowledgepit.ai/
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to capture ordinal relations between puzzles. With the rise
of deep learning, sequence-based and representation-learning
methods became prominent. Ruta et al. [4] applied convo-
lutional neural networks (CNNs) to predict puzzle ratings di-
rectly from move sequences, Mitosz and Kapusta [5] proposed
Transformer-based models treating puzzles as sequences, and
Omori and Tadepalli [6] developed a CNN-LSTM model
incorporating moves and timing to jointly estimate puzzle and
player ratings.

The IEEE BigData Cup 2024 [7] demonstrated the suc-
cess of hybrid pipelines that integrate statistical features and
learned representations. Woodruff et al. [8] trained neural
models with rating-based features, while Schiitt et al. [9] in-
troduced a human-problem-solving-inspired architecture com-
bining move distribution analysis and cognitive heuristics.

B. Motivation and Contributions

Despite these advances, two key challenges remain. First,
models trained across broad rating ranges often exhibit system-
atic biases, overestimating simple puzzles and underestimat-
ing long tactical sequences due to global error optimization.
Second, while models trained on different rating distributions
provide complementary perspectives, effectively integrating
them to improve generalization is non-trivial.

To address these challenges, we propose a multi-stage
framework that first trains four independent neural models on
separate rating ranges to capture localized difficulty patterns
and reduce bias caused by imbalanced data. Their predictions
are then combined with statistical attributes, including suc-
cess probabilities, failure distributions, and solution length,
in a feature-based regression stage to improve cross-range
generalization. A final calibration step adjusts the outputs
toward statistically plausible rating levels, reducing systematic
prediction biases without increasing computational complex-
ity. Additionally, the framework was extended with a mask
selection procedure to identify the 10% of puzzles most
likely to benefit from refined evaluation, as required in the
competition extension.

Our method ranked 5" on the public leaderboard and
6 in the final standings of the FedCSIS 2025 Challenge,
demonstrating that a lightweight, interpretable pipeline can
achieve competitive accuracy in modeling human-perceived
chess puzzle difficulty.

Thematic Session: Data Mining Competition
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The remainder of this paper is organized as follows. Sec-
tion II briefly describes the challenge, dataset, and evaluation
metric. Section III presents the methodology. Section IV dis-
cusses the mask selection task. Section V shows xperimental
results. Finally, Section VI concludes the paper and outlines
future directions.

II. FEDCSIS 2025 CHALLENGE

This competition continues the established task from IEEE
Big Data 2024 [7], asking participants to predict the perceived
difficulty of chess puzzles based on puzzle configurations and
human solving statistics. The objective remains to estimate
the Glicko-2 rating assigned to each puzzle, which reflects the
likelihood that players of various skill levels can solve it, using
only board position and solution moves.

A. Dataset

The official dataset consists of a large annotated training
set and a separate unlabeled test set. The training set con-
tains approximately 4.56 million puzzles, each labeled with
a human-derived difficulty rating, while the test set includes
2,235 puzzles sharing the same feature structure but without
ratings.

Each puzzle is described by multiple feature groups derived
from both game records and engine analysis:

e Core identifiers: a unique puzzle ID, board state in
Forsyth-Edwards Notation (FEN)*, and the solution se-
quence in Portable Game Notation (PGN)°.

e Human performance indicators (training only): Glicko-
2 rating, rating deviation, popularity, and the number of
attempts.

o Contextual metadata (training only): puzzle themes, as-
sociated game URLs, and opening tags.

« Engine-based success statistics: estimated success prob-
abilities for players at different Elo levels, provided
separately for rapid and blitz time controls (10 columns
each), approximating human solving likelihood across
skill tiers.

Puzzle ratings range from about 400 (trivial tactics) to over
3000 Elo (complex master-level combinations). The distribu-
tion is heavily imbalanced, with most puzzles clustered around
intermediate difficulty. No official validation set is provided;
participants typically constructed small internal validation
splits for hyperparameter tuning and model selection.

A training sample (puzzle) of the initial state of the chess-
board decoded by FEN and the rating is illustrated in Figure
1.

B. Evaluation Protocol

Predictions are evaluated using the mean squared error
(MSE) between the predicted and actual ratings:
XN
MSE= 130,

i=1

- yi)27

“https://en.wikipedia.org/wiki/ForsythEdwards_Notation
Shttps://en.wikipedia.org/wiki/Portable_Game_Notation
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Figure 1. Example of the chess puzzle Rating 1902: initial state of the chess-
board decoded by FEN: "r6k/pp2r2p/4Rp1Q/3p4/8/1N1P2R1/PqP2bPP/7K b
--024"

where N is the number of puzzles in the test set. The test set
is partitioned internally, with 10% used for provisional public
leaderboard updates and the remaining 90% for final ranking.
Only the public subset is visible during the competition.

C. Optional Mask Extension

An additional post-evaluation extension allows participants
to submit a binary mask marking 10% of test puzzles predicted
to have the highest potential benefit from re-evaluation. For
these selected puzzles, predictions are replaced by ground-
truth ratings, and MSE is recalculated. While this mask-based
scoring does not affect the main leaderboard, it serves as an
auxiliary measure of a model’s ability to recognize cases where
its predictions are less reliable.

III. METHODS

Our approach employs a multi-stage pipeline that integrates
localized learning of puzzle difficulty with statistical adjust-
ment to correct systematic biases. The design philosophy stems
from two key observations. First, the relationship between puz-
zle features—such as tactical motifs, material configurations,
and success probabilities—and human-perceived difficulty is
not uniform across the rating spectrum; a single global model
tends to bias its predictions toward the overrepresented mid-
range puzzles. Second, models trained purely to minimize
global mean squared error often fail to respect structural
regularities observed in human solving behavior, particularly
for very easy or very hard puzzles. We therefore decompose
the task into specialized components: localized rating-band
models to better learn within-range patterns, a meta-learning
step to integrate complementary predictions and additional
structural attributes, a calibration step to align outputs with
statistical difficulty indicators, and a final averaging procedure
to stabilize predictions.

Figure 2 outlines this four-stage pipeline. The first stage
trains multiple models specialized for different rating bands
to disentangle the heterogeneous difficulty distribution. In the
second stage, their predictions are combined with auxiliary
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features using tree-based meta-regressors trained on a fixed
validation subset. The third stage applies a statistical calibra-
tion that shifts the predictions toward historically plausible
difficulty levels by exploiting failure distributions and their
higher-order characteristics. Finally, the calibrated regressors
are averaged to reduce variance and further improve general-
ization.

Elo-Banded Base
/ Modeling
Meta-Feature
Regression
Post- hoc Structural
Callbratl
v Ensemble Averaging .

Figure 2. Overview of the proposed prediction pipeline.

A. Rating-Banded Base Models

The first stage employs a rating-banded learning strategy
to address heterogeneous solving patterns across Elo levels.
Lower-rated puzzles, often simple mate-in-one or basic forks,
exhibit solving distributions heavily concentrated in low-skill
buckets, whereas higher-rated puzzles show sparse but sharper
failure transitions at advanced skill levels. A single global
regressor tends to minimize global loss by fitting the over-
represented mid-range, which leads to biased underestimation
for high-rated puzzles. Inspired by the band-wise modeling
idea explored in prior work [8], we explicitly partition the
data into four difficulty bands and train separate regressors
for each band to focus on localized difficulty dynamics.

Let the global training set be D = {(x;,v;)}\,, where ;
is the structured feature vector and y; the true difficulty rating.

We define four disjoint subsets:
Db = {(xl’y74> €D ‘ Lb S Yi < Ub}7 be {1,2a374}5 (1)

with rating intervals:

[Ly,Uy) € {[0,1000), [1000,1400), [1400,1700), [1700,c0)}.

2

This segmentation allocates dedicated modeling capacity to

high-rated puzzles (b = 4) while reducing mid-range domi-
nance.

Each band b is trained independently using a multi-layer

perceptron (MLP) fy,(+;6p) optimized for mean squared error:

1
Lo(e) = 7 Yo wi— hzst)®. O
b (zi,yi)EDs
The final band-specific prediction for a puzzle ¢ is:
3" = folwi05)- “)

The input vector x; is constructed from all numeric struc-
tural features provided in the official dataset preprocess-
ing pipeline, including engine-estimated success probabilities

(rapid and blitz modes), their aggregated statistics, failure-
related indicators, and a small set of board- and sequence-level
descriptors (e.g., material balance and move length). Non-
numeric metadata such as puzzle themes or game URLs are
excluded from the training features. All continuous features are
normalized to [0, 1], while binary indicators (e.g., checkmate
markers) are one-hot encoded.

Each f;, is trained with early stopping using 10% of D,
as a validation set for hyperparameter tuning. Although every
model is specialized to its own band, during inference all four
models are applied to every puzzle:

(1) ~(2) ~(3) A(4)}

Vi=10 07,0, (5)

producing complementary perspectives that will be integrated
in the subsequent meta-learning stage.

B. Meta-Feature Regression

The second stage integrates the outputs of the banded base
models with additional statistical descriptors through a meta-
learning framework. Let

[(1) 2 3 (4)]

Y EY Ty 2 (©)

denote the predictions of the four base models for puzzle
1, where each element corresponds to a specific Elo-banded
model. The statistical aggregates are expressed as:

b

4

m 2 _ 1 ™ — )2,
z AV ot=g @
m:l
Pmax,i = max(pzm)) Pmin,i = mln(pzm)) (®)
Ay = [P =P (m # ). ©)

These aggregates highlight disagreement patterns, which are
known to be strong signals for meta-regression.
Structural features are denoted as:

[ succ fail inf fail}
)

i s Pios Ty Vs (10)

where 1" is the mean engine-estimated success probability
across rating buckets, p! is the aggregated failure probabil-
ity, " is the rating bucket with the maximum success-rate
gradlent (inflection point), and ™! is the skewness of the
failure probability distribution. Interaction terms combine base
predictions and puzzle-level indicators:

(m)

bik = P an

where c;; represents puzzle-specific complexity indicators,
such as the number of moves or checks. The complete meta-
feature vector for puzzle i is:

X Cik,

X; = [ph Miy 04y Pmax,is Pmin,i, Amn,ia Siy (bzk] (12)

Three independent gradient boosting regressors are used as
meta-learners to map x; to the final meta-prediction:

gz = fmeta(xi§@)7 (13)
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where O represents the parameters of CatBoost, LightGBM,
or XGBoost. The choice of these three algorithms is moti-
vated by their complementary characteristics: CatBoost [10]
handles heterogeneous feature distributions effectively through
ordered boosting and is robust to overfitting; LightGBM [11]
is optimized for large-scale structured data, using histogram-
based leaf-wise tree growth to achieve high computational
efficiency; XGBoost [12] provides strong generalization by
combining second-order optimization with regularization, and
often captures non-linear feature interactions overlooked by
the other two. Employing these three regressors increases
model diversity, which is critical for the final averaging stage
to reduce variance and enhance generalization, which We team
had used it before in the other competition [13].

All meta-learners are trained using 5-fold cross-validation
with out-of-fold base predictions to avoid information leakage.
The training objective minimizes mean squared error:

mela - %Z

C. Prediction Calibration

(14)

While meta-regression substantially improves the overall
consistency of predictions, residual systematic biases persist
due to the heterogeneous nature of puzzles. Easy puzzles (e.g.,
short mate-in-one combinations) are frequently overestimated,
whereas deeper tactical sequences or complex positional mo-
tifs are often underestimated. To address this, we incorporate
a post-hoc calibration stage that aligns predictions with struc-
tural patterns inferred from aggregated human performance
statistics.

Let the engine-provided success probabilities across .J rating
buckets for puzzle i be SuccessProb;;. The failure probability
for bucket j is:

FailProb;; = 1 — SuccessProb;;. (15)

A primary structural estimate of puzzle difficulty is computed
as the failure-probability-weighted average rating:

i B E}]:1 FailProb;; - R;
struct,i — )

>°7_, FailProb;;

(16)

where R; is the representative rating (Elo) of bucket j.
Intuitively, if failures are concentrated in higher buckets, the
structural estimate shifts toward a higher rating.

The raw structural estimate does not fully account for
sharp transitions in solving probability or asymmetry in its
distribution. Two higher-order indicators are introduced:

1) Inflection rating r;: the rating bucket with the steepest
drop in solving probability:

3sz

R, a7)

= arg max

where p;; is the engine-estimated solving probability for
bucket j and R, the corresponding representative rating.
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2) Skewness of failure distribution ;: a measure of asym-
metry in the failure probability:

J _
5o ai — @)? =

3/2 J

J _ -

(% > j=1(aii — qi)2> =1
where g;; = 1 — p;; is the failure probability for bucket j.

The refined structural estimate integrates these two indica-
tors:

(18)

inf _ ,LLR) + )\2 ,}/fdll7 (19)
where 11 is the mean bucket rating, and Aq, Ay are empirical
weights controlling the contribution of sharp transitions and
asymmetry.

The final calibrated prediction y; is a convex combination of
the meta-regressor output ¢; and the refined structural estimate:

(20)

Urefined,i = Ystruct,i T A1 (

Ui = (1 — o) 9 + & Drefined,i-

The blending weight «; depends on the estimated structural
difficulty, with easier puzzles receiving stronger correction:

0'357 gstruct,i < 14007
a; = € 0.28, 1400 < Fspruer,s < 1800, (1)
0.20,  Jstruer,s > 1800.

This formulation enforces stronger adjustment for trivial
puzzles—aligning their predicted ratings closer to historically
plausible ranges—while retaining the flexibility of the meta-
regressors for complex high-rated puzzles. The segmented
weighting mimics the behavior observed in residual-analysis
curves from validation, where lower-rated puzzles exhibited
significantly larger over-prediction variance.

D. Averaging of Calibrated Models

The final stage combines the calibrated outputs of the three
meta-regressors to produce a robust and stable prediction. Let
( ) denote the calibrated prediction for puzzle ¢ from the k-th
meta-regressor, where k = 1,2, 3. The final predicted difficulty
rating is obtained by taking the simple arithmetic mean over
these calibrated outputs:

Aﬁnal

=3. 22)

Z (k)

The uniform weighting is chosen deliberately instead of
learned weights to reduce the risk of overfitting, as the
validation subset is relatively small. From a variance-reduction
perspective, assuming that the calibrated models exhibit only
moderate pairwise error correlations, the variance of the aver-

aged prediction can be expressed as:
ZVar(y(k) Z Cov ( (m),gjl(n))
m<n
(23)

Because the three calibrated regressors are trained indepen-
dently and incorporate different feature-interaction mecha-
nisms, their prediction errors are not perfectly correlated.

Var( Afmal
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This diversity directly reduces the ensemble variance and
improves stability, which validates the choice of using multiple
complementary meta-regressors in Stage 2.

IV. MASK PREDICTION

The optional mask prediction task was introduced as an
extension to evaluate a model’s ability to identify the most
problematic predictions, i.e., puzzles where replacing the pre-
dicted ratings with ground-truth values would yield the largest
reduction in the overall evaluation error. This task measures
not only prediction accuracy but also the model’s capability
for uncertainty estimation.

A. Task Definition

For each submitted solution, the organizers defined a binary
“perfect mask” indicating the 10% of test puzzles that con-
tributed the most to the prediction error. Formally, the perfect
mask for puzzle ¢ is denoted by M; € {0, 1}, and the predicted
mask by M; € {0,1}.

The evaluation was based on the model’s original Mean
Squared Error (MSE) scores:

1) Perfect Score P: the lowest MSE achievable if the
10% worst-predicted puzzles were replaced with ground-truth
values;

2) New Score N: the MSE after applying the participant’s
submitted mask, where only the puzzles marked by M; =1
are replaced with ground-truth values;

3) Final Ranking Criterion:

N
F?
with values closer to 1 indicating better mask quality. A ratio
of exactly 1 corresponds to perfectly recovering the ideal
mask.

Unlike the main difficulty-prediction task, this mask task
does not require modifying rating predictions directly; instead,
it evaluates how effectively a model can identify the most
uncertain or systematically biased cases.

(24)

maSkscore =

B. Proposed Mask Prediction Strategy

To construct the predicted mask, we developed a structure-
and residual-guided selection strategy designed to identify
puzzles with high prediction error and high structural con-
fidence. The method proceeds in three steps:

1) Residual scoring: The absolute residual between the cali-
brated meta-regression prediction g; and the refined structural
estimate Jrefined,; 15 used to measure disagreement:

T = ‘g’b - z)reﬁned,i|- (25)

Puzzles with larger residuals are considered more likely to be
mispredicted.

2) Structure-confidence weighting: Puzzles with low struc-
tural uncertainty are given higher priority. A confidence weight
is defined as:

; (26)

1 +c7]2)’1-

where 0;2;,1' is the variance of solving probabilities across
rating buckets for puzzle :. A low variance indicates that the
structural estimate is more reliable.

3) Weighted residual ranking: A combined score is com-

puted by weighting the residual with structural confidence:

27

S; =Ty - W;.

Puzzles are ranked in descending order of s;, and the top 10%
are selected as mask targets:

if 7 is among the top 10% of s;, 28)
otherwise.

This strategy is motivated by the hypothesis that systemati-
cally biased predictions can be detected as large residuals, and
that structural features provide additional reliability signals to
avoid over-selecting uncertain cases.

Because the official mask results were not released, we
could not directly validate the method against the compe-
tition’s test set. However, the residual- and structure-guided
ranking approach provides a principled framework for identi-
fying predictions with the highest expected impact on score
improvement.

This strategy can be generalized beyond the mask task, as it
effectively combines error analysis and structural confidence
estimation, which are key components for model uncertainty
quantification in rating-prediction problems.

Our uncertainty mask ratio is equal to 1.684 which ranks
seventh among nine teams that decided to participate in this
additional task. And our final score with the mask submitted
is approximately equal to 56756 while the final score with the
perfect mask is equal to 33709 [1].

V. EXPERIMENTAL RESULTS

This section presents the quantitative evaluation of the
proposed four-stage pipeline, including the progressive im-
provements introduced at each stage and a discussion of their
relative contributions to the final performance.

A. Quantitative Summary

Table I summarizes the evolution of the public leaderboard
Mean Squared Error (MSE) through different stages of the
pipeline. The private test score, which determined the final
ranking, is also reported for the final ensemble.

Table I
PERFORMANCE PROGRESSION ACROSS PIPELINE STAGES.

Stage Public LB MSE ({)
Best Single Base Model 89,627
Simple Average of Four Base Models 85,908
Stacking (CatBoost meta, raw output) 84,511
After Structural Calibration 67,471
Final Ensemble Averaging 66,485
Private Test MSE (Final Ensemble) 62,567

Averaging across all four banded models provided mod-
est improvement, indicating that band diversity contributes
to generalization even without meta-learning. Stacking with

811
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meta-features yielded further gains, reducing the public MSE
by 6% relative to simple averaging. The largest improvement
came from the structural calibration step, which lowered the
public MSE by 20%. Finally, averaging the three calibrated
meta-regressors slightly improved stability and achieved the
best overall score.

The final submission achieved a private test MSE of 62,567,
ranking 6" among all participating teams.

B. Discussion
Several observations can be drawn from these results:

« Effectiveness of Band-Wise Base Models: The best
single base model significantly outperformed global base-
lines, validating the hypothesis that Elo-banded training
better captures localized difficulty semantics. Lower-rated
bands provided complementary perspectives, which col-
lectively improved performance through averaging.

o Meta-Feature Integration: The 6% improvement from
stacking demonstrates that disagreement patterns among
base models and structural descriptors (e.g., success-
probability variance, inflection points) are strong predic-
tive signals. Feature importance analysis from CatBoost
indicated that structural features such as mean solving
probability and failure skewness ranked among the top
predictors.

o Impact of Structural Calibration: Post-hoc calibration
aligned predictions with statistically plausible difficulty
levels derived from aggregated failure distributions. The
segmented blending weight «; played a crucial role,
applying stronger correction to low-rated puzzles where
residual biases were largest.

o Ensemble Averaging and Robustness: The final aver-
aging reduced variance by combining three diverse meta-
regressors with moderately correlated errors. This con-
tributed to consistent private-test performance, narrowing
the public-private gap compared to earlier stages.

o Computational Efficiency and Interpretability: De-
spite competitive accuracy, the proposed pipeline remains
lightweight, interpretable, and suitable for large-scale
deployment.

VI. CONCLUSIONS

This work presented a structured four-stage framework for
predicting chess puzzle difficulty, integrating band-specific
modeling, meta-feature regression, statistical calibration, and
ensemble averaging. The major findings and contributions can
be summarized as follows:

o Localized base modeling: Training separate regressors
on Elo-banded subsets captured rating-specific solving
dynamics and provided complementary perspectives com-
pared to a single global model.

o Meta-feature integration: Stacking the base-model pre-
dictions with statistical and structural features exploited
disagreement patterns and higher-order indicators (e.g.,
variance, inflection, skewness), improving cross-band
generalization.
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o Post-hoc calibration: Aligning predictions with struc-
tural difficulty estimates derived from aggregated failure
distributions systematically reduced residual biases, par-
ticularly for lower-rated puzzles.

o Variance-reduced ensembling: Averaging three inde-
pendently calibrated regressors improved stability, nar-
rowing the public-private leaderboard gap and achieving
a final private test MSE of 62,567, ranking 6™ overall.

Furthermore, the framework was extended to the optional
mask selection task, where a residual- and structure-guided
ranking strategy was proposed to identify the 10% most
problematic puzzles. Although official mask results were not
released, internal analyses suggest that structural signals are
effective not only for improving rating prediction but also for
detecting highly uncertain cases, offering potential for future
work on confidence-guided puzzle recommendation systems.
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