
Segmentation and Process Assignment of

Semi-Structured Event Logs

Piotr Przymus, Krzysztof Rykaczewski, Janusz Zieliński, Łukasz Mikulski
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Email: {piotr.przymus, krzysztof.rykaczewski, janusz.zielinski, lukasz.mikulski}@mat.umk.pl

Abstract—Process mining provides valuable insights by dis-
covering process models from execution logs. However, its ef-
fectiveness depends heavily on high-quality, well-structured logs.
Many real-world systems produce low-level, semi-structured logs
lacking clear process identifiers, causing misalignment with their
intended process models.

This paper introduces a method for structuring raw event
logs by segmenting event streams and mapping them to known
processes. Using process traces from experienced users, we
develop a model that infers process assignments in unstructured
logs. Our approach is motivated by a modular enterprise system
without predefined workflows, where dynamic processes generate
low-level logs requiring interpretation.

We validate our method on a semi-synthetic business dataset
and a fully synthetic dataset from PLG2. Our results demonstrate
that trace segmentation improves process discovery, aligns logs
with meaningful structures, and significantly enhances process
mining in unstructured environments.

I. INTRODUCTION

P
ROCESS mining is a powerful methodology that uses

event logs to gain insights into business processes, en-

abling organizations to analyze, monitor, and optimize their

workflows. Traditionally, process mining relies on structured

event logs, where each event is explicitly linked to a process

instance identifier. However, in many real-world contexts,

event logs are only semi-structured, lacking process identifiers

yet containing timestamps, event types, and user identifiers.

This limitation complicates the reconstruction of process exe-

cution and hinders effective process analysis.

This research addresses that challenge by presenting an

approach to structure semi-structured event logs. Specifically,

we assign process identifiers to raw event data by leveraging

a set of ideal process traces performed by experienced users.

These labeled traces, which include known process identifiers

and types, serve as training data for a machine learning-based

system. The trained model is then applied to raw event logs

to infer process assignments and identify user activities linked

to specific processes.

We explored a practical application of this approach in a

modular enterprise management system provided to external

entities. These entities use the system to execute diverse

business processes spanning multiple modules. Because of the
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variability of clients, the heterogeneity of business processes,

and the system’s flexibility, incorporating process identifiers

into the logs is not feasible from a business perspective. There-

fore, our methodology relies exclusively on semi-structured

data.

By implementing this approach, we provide a solution

that enhances process mining capabilities in environments

where structured event logs are unavailable. This research

contributes to process mining by introducing a method for

structuring semi-structured event logs, enabling more effective

business process analysis, anomaly detection, and performance

monitoring.
a) Replication Package: To facilitate reproducibility and

further research, we provide a complete replication package

containing code, data, and experimental scripts. It is publicly

available at:

https://github.com/ncusi/Segmentation_and_Process_

Assignment_of_Semi-StructuredEvent_Logs

The remainder of this paper is organized as follows. Sec-

tion II discusses related work. Sections III and IV reviews

necessary preliminaries on event logs, process mining, and

similarity measures. Section V states the problem, and Section

VI describes our methodology for structuring semi-structured

event logs. In Section VII, we discuss our experimental design,

and Section VIII presents the results. In Section IX, we assess

threats to validity. Finally, we conclude and propose future

directions in Section X.

A. Running Example (Motivation)

Consider a customer-support system where each event is

logged as [time, user, activity, . . .]. A typical log

snippet might look like:

2025-05-10T09:12:03Z, alice, OpenComplaint, details
2025-05-10T09:14:21Z, alice, AssignAgent, agentId=42
2025-05-10T09:15:07Z, alice, ResolveComplaint, status=closed
2025-05-10T09:20:00Z, alice, OpenComplaint, details
...

Without a case identifier, it is unclear which

OpenComplaint corresponds to which conversation. This can

cause supervisors to miss abandoned requests or misattribute

resolution times. To address this, we propose to reconstruct

each case by matching segments of the event stream to known

process templates.
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II. RELATED WORK

Workflow and process mining have been extensively stud-

ied. Classical surveys such as [1], [2], [3] provide a compre-

hensive overview. A critical challenge in this field involves

deriving high-quality, structured event logs from raw, often

semi-structured data sources. Our work sits at the intersection

of several active research areas, including event-case corre-

lation, trace segmentation, similarity-based activity matching,

and process discovery under uncertainty.

A fundamental problem in process mining is event-case

correlation inferring case identifiers when they are absent or

ambiguous. This challenge has been addressed through various

heuristics and model-aware approaches. For example, Helal

and Awad [4] propose a runtime event correlation method

that uses process models and task durations to group events

into likely cases. Brzychczy et al. [5] introduce a rule-based

approach for detecting case boundaries in time series data,

leveraging domain-specific structural regularities.

The extraction of event logs from relational or unstructured

sources has also been widely explored. Andrews et al. [6]

present RDB2LOG, a quality-aware, semi-automated log ex-

traction framework. Hernandez-Resendiz et al. [7] extend this

work by introducing techniques to convert relational data into

XES-compliant event logs, facilitating downstream analysis.

The problem of reconstructing traces from flat event streams

or system logs has been tackled through temporal and contex-

tual grouping methods. In the domain of unstructured customer

service data, Kecht et al. [8] apply natural language inference

to extract structured traces from customer service conversa-

tions. Korzeniowski and Goczyca [9] propose an automated

log-template generation method (SLT) and an interaction-

extraction pipeline that discovers application-to-application

dependencies in enterprise logs, demonstrating its utility on

a large banking system. One of the earliest treatments of

the segmentation problem appears in [10], where the authors

propose an event correlation function to partition unstructured

logs into coherent subsequences.

One of the earliest treatments of the segmentation problem

appears in [10], where the authors propose an event corre-

lation function to partition unstructured logs into coherent

subsequences. Our approach similarly focuses on identifying

process instances from flat user streams, using data-driven

similarity and conformance models.

Sequence similarity measures have been applied in activity

and behavior mining. Levenshtein similarity, in particular, has

proved effective by Tax et al. in [11] for clustering and

aligning activity sequences. To the best of our knowledge,

although the Tversky similarity measure is widely used in set

and pattern matching, it has not previously been applied to

trace similarity in process mining. Our work leverages both

Levenshtein and Tversky measures to enable efficient and

flexible segmentation.

The challenge of multi-case event streams where multiple

processes or objects interact has been identified by Martin et

al. in [12] as a key limitation in traditional process mining.

Recent methods under the umbrella of object-centric process

mining [13], [14], [15] provide more expressive models, but

they require richer data and frequently involve more complex

analysis pipelines. Our work addresses a simpler setting where

each user executes one process at a time, but case boundaries

remain implicit and must be inferred.

Event log imperfections such as missing case identifiers, in-

complete traces, or overlapping activities are well-documented

threats to process analysis. Jans et al. [16] discuss the implica-

tions of log quality in auditing scenarios. Our method specif-

ically targets one imperfection: the lack of case identifiers in

user-specific event streams.

Streaming scenarios add complexity, requiring online seg-

mentation and model updating. Burattin et al. [17] propose

methods for control-flow discovery from live event streams.

While their focus is on evolving process models, their incre-

mental techniques are relevant to our goal of continuously

analyzing user activity streams.

In contrast to prior work, we assume access to a small

set of example traces per process and center our efforts on

segmenting flat, user-specific event streams with no case iden-

tifiers. We combine prefix-based segmentation with syntactic

and conformance-based similarity scoring, which allows us to

reconstruct approximate process instances even under noisy

or truncated conditions. Our results show that lightweight

similarity functions outperform full model conformance for

segmentation tasks, offering a practical balance between ac-

curacy and efficiency.

a) Theoretical and Practical Implications:

• Theory: We introduce a novel combination of syntac-

tic (Levenshtein, Tversky) and semantic (log skeleton)

similarity within a unified segmentation framework. Our

proofs of injectivity in activity encoding and the boundary

properties of our similarity measures contribute formal

insights for future process-mining research.

• Practice: The method integrates seamlessly with existing

BPM tools (e.g., PM4Py) without modifying ERP system

logs. Its lightweight shingle computations and XTructure-

based regex checks enable real-time segmentation on

production event streams.

III. PRELIMINARIES

We follow standard process mining notation, as introduced

in [18]. The goal of process mining is to derive meaningful

insights into the execution of business processes from recorded

event data. The key input for process mining is the event

log, which captures sequences of events corresponding to the

execution of individual process instances, referred to as cases.

A trace is a finite sequence of events that represents the ob-

served execution of a single case. By comparing and analyzing

these traces, we can uncover patterns, identify deviations, and

evaluate performance characteristics of the underlying process.

A process P represents the system or workflow whose

behavior we aim to analyze. In process mining, the focus is on

gaining insights into the execution of P by studying event logs,
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which contain traces that correspond to specific executions or

instances of process P .

A. Event Logs and Process Mining

We now introduce the formal elements used to represent

event data, traces, and structured event logs.

a) Events: Let AN be a finite set of attribute names,

and let Val be the set of all possible attribute values. We

introduce a special symbol ⊥ (bottom), with ⊥ ̸∈ Val, to

denote "undefined."

The universe of events is a (possibly infinite) set E. Each

event e ∈ E is described by a partial function

πe : AN ⇀ Val, (1)

where the arrow ⇀ indicates that for some attribute names

a the value πe(a) may be undefined (i.e. πe(a) = ⊥).

Concretely, for every e ∈ E and a ∈ AN, we have πe(a) ∈
Val ∪ {⊥}.

b) Conditions on Events: We impose the following two

conditions on every event e ∈ E:

(A1) πe(time) ̸= ⊥, meaning that every event has a timestamp.

(A2) There exists an attribute a ∈ AN \ {time} such that

πe(a) ̸= ⊥, meaning every event has at least one non-

time attribute with a value not equal to ⊥.

Definition III.1 (Event Stream). An event stream (or event

table) ET is a finite sequence of events:

ET = ⟨e1, e2, . . . , en⟩, ei ∈ E, (2)

such that there exists an attribute a ∈ AN \ {time} with

πa(ei) ̸= ⊥ for all i = 1, . . . , n.

c) Finite Sequences: In what follows, we adopt the stan-

dard definition of finite sequences using Kleene star notation.

This notation, common in formal language theory, is used

throughout this work to denote sequences (e.g., traces of

events).

Notation III.2 (Kleene star). Given a set X , we define X∗

to be the set of all finite sequences over X . Formally, each

element of X∗ is of the form ⟨x1, x2, . . . , xn⟩ for some n ≥ 0
and xi ∈ X . The empty sequence is allowed if n = 0.

Let Σ ⊆ Val be a finite set of activity names, known

as the activity alphabet. A trace is a finite sequence σ ∈
Σ∗ = {all finite sequences over Σ} representing the control-

flow perspective of a case.

Definition III.3 (Case Identifier and Cases). Let id ∈ AN be

a selected case identifier attribute. The set of cases in ET is

defined as:

Cases(ET, id) = {πid(e) | e ∈ ET, πid(e) ̸= ⊥}. (3)

Remark III.4. Each element c ∈ Cases(ET, id) is interpreted

as a distinct case of the process within ET . Concretely,

“case” refers to the actual value c of the attribute id . In

this way, Cases(ET, id) collects exactly those case-identifier

values that appear in the event stream ET , ensuring each

value corresponds to a unique case.

Definition III.5 (Trace of a Case). Let c ∈ Cases(ET, id).
Then the trace of case c is the unique sequence of events

πtrace(c) = ⟨e1, . . . , ek⟩ ∈ E∗ (4)

satisfying:

i) For all i, πid(ei) = c. In other words, each ei belongs

to the case identified by c.

ii) The sequence ⟨e1, . . . , ek⟩ is sorted by non-decreasing

timestamp, i.e.

πe1(time) ≤ πe2(time) ≤ · · · ≤ πek(time), (5)

recalling that e.a := πe(a).
iii) {e1, . . . , ek} = {e ∈ ET | πid(e) = c}, so we include

all events of that case (no more, no fewer).

Remark III.6. For each c ∈ Cases(ET, id), the sequence

πtrace(c) is defined as the ordered list of all events e ∈ ET

for which πid(e) = c, arranged in non-decreasing order of

time .

IV. PROCESS MODELS, EVENT LOGS, AND

CONFORMANCE CHECKING

A. Process Models

Definition IV.1 (Process Models). Let Σ be an activity alpha-

bet (i.e., a finite set of symbols). Denote byMP (Σ) the set (or

universe) of all process models that describe the behavior of a

specific process P and are defined over the activity alphabet Σ.

These models belong to a given class P (e.g., Petri nets, BPMN

models, etc.) relevant to this work. An element M ∈MP (Σ)
is called a process model if it prescribes which traces over Σ
are possible in the corresponding process.

Remark IV.2. Let P denote a particular business process

(e.g. “Order Handling"), and let Σ be its activity alphabet.

We write

MP (Σ) ⊆ P (6)

to mean “the set of all models in the model class P that

describe process P over Σ."

Here:

• P is the specific process whose behavior we wish to

capture.

• P is a class of modeling formalisms (for example, Petri

nets, BPMN diagrams, log skeletons, etc.).

• MP (Σ) is the subset of P consisting of those individual

models that generate or accept exactly the traces of P

over alphabet Σ.

Definition IV.3 (Induced Language of a Model). For each

process model M ∈MP (Σ), associate a language LP (M) ⊆
Σ∗, where Σ∗ denotes the set of all finite sequences over Σ.

Formally,

LP (M) = {w ∈ Σ∗ | w is a possible execution of M}. (7)

Thus, each w ∈ LP (M) is a finite sequence of activities

representing one possible execution of M .
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B. Finite Multisets of Traces

Definition IV.4 (Finite Multisets of Traces). Let X be a set.

A finite multiset over X is a function N : X → N such that

{x ∈ X | N(x) ̸= 0} is finite. We call N(x) the multiplicity

of x in the multiset N . We write B(X) for the set of all finite

multisets of elements of X .

Notation IV.5 (Multisets of Traces). Since Σ∗ is the set of all

finite sequences over Σ, the set of all finite multisets of traces

is denoted by B(Σ∗). An element L ∈ B(Σ∗) is a multiset of

traces, where L(σ) ∈ N indicates the number of occurrences

of the trace σ in L.

C. Structured Event Log

Assume that events are drawn from a universe E, each event

e ∈ E being described by a partial function πe : AN ⇀ Val.

Definition IV.6 (Structured Event Log). Let id ∈ AN be a

designated case identifier attribute. A structured event log is

a finite set of case-trace pairs:

L = {(ci, πtrace(ci)) | ci ∈ Cases(ET, id)} ⊆ Val×E∗, (8)

such that for each pair (c, πtrace(c)) ∈ L, the corresponding

trace

πtrace(c) = ⟨e1, . . . , ek⟩ ∈ E∗ (9)

satisfies:

(i) ∀ej ∈ πtrace(c) we have πid(ej) = c;

(ii) ∀ej ∈ πtrace(c) we have πtime(ej) ̸= ⊥;

(iii) ∀ej ∈ πtrace(c) ∃a ∈ AN\{time, id} such that πa(ej) ̸=
⊥.

Remark IV.7. Each element (c, πtrace(c)) ∈ L represents a

single case c together with its corresponding trace. Thus, a

structured event log explicitly associates each case identifier

with the complete, temporally ordered sequence of events

belonging to that case. Specifically, the log has the following

hierarchical structure:

• A finite set of case-trace pairs L;

• Each trace πtrace(c) ∈ E∗ is a sequence of events related

to a single case c;

• Every event e ∈ πtrace(c) has a timestamp, the associated

case identifier c, and at least one additional meaningful

attribute (e.g., activity, resource).

Notice that each case identifier ci appears exactly once in the

set L.

From this structured event log, one can perform further

abstraction steps, such as applying event classifiers, to derive

a simple event log L′ ∈ B(Σ∗) suitable for control-flow

analysis.

D. Process Models and Conformance Checking

When process models are available, conformance checking

can be used to compare a candidate trace to a known process

structure. This enables semantic similarity beyond syntactic

matching, especially useful in process mining when control-

flow behavior must be validated.

Let LP ⊆ Σ∗ be a set of example traces for a process P .

From this set, we can derive a process model MP (Σ) using

one of several discovery algorithms:

• Alpha Miner [19]: Constructs a Petri net by detecting

causal and concurrent relations from the event log.

• Heuristics Miner [20]: Enhances the Alpha Miner with

frequency-based dependency filtering to handle noise.

• Log Skeleton [21]: Builds a constraint-based model cap-

turing behavioral relations such as equivalence, always-

before, and always-after.

Let σ ∈ Σ∗ be a trace and MP (Σ) the process model

discovered from LP . We evaluate how well σ conforms to

MP (Σ) using one of the following conformance techniques:

• Token-Based Replay Fitness (TBR) [22]: Evaluates

trace fitness by simulating token movement

in a Petri net. We use the PM4Py function

pm4py.conformance.fitness_token_based_replay.

This is applied to models discovered via Alpha Miner

and Heuristics Miner.

• Log Skeleton Conformance: Computes trace fit-

ness by comparing the trace to a log skeleton

model using structural constraint diagnostics. We use:

pm4py.conformance_log_skeleton.

While these model-based approaches capture process se-

mantics, we also employ syntactic techniques that operate

on string representations of event sequences. These methods

allow for efficient trace comparison when no explicit model

is available or required.

Process Discovery Configuration: All discovery was done

with PM4Py v2.9.3:

• Heuristics Miner: dependency_threshold=0.99,

and_threshold=0.65, or_threshold=0.65,

min_support=0.10.

• Alpha Miner: dependency_threshold=0.50 (PM4Py

default).

These were chosen because Heuristics is noise-robust and

frequency-based, whereas Alpha provides a simple, well-

understood baseline.

E. String Representation and Similarity Measures

To support efficient and scalable process matching, we

transform sequences of events into compact string represen-

tations that preserve their sequential structure. This enables

the application of string-based similarity techniques, including

shingling and character-edit distance.

a) Activity Encoding: To enable string-based similar-

ity comparison, each activity in a trace is deterministically

mapped to a fixed-length character code. This allows the

transformation of activity sequences into strings over a finite

alphabet.

Definition IV.8 (Activity Encoding). Let Σ denote the finite

set of activity labels. Define an injective encoding function

C : Σ→ Γn, (10)
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where Γ is a finite character alphabet, and n ∈ N is a fixed

code length. The set Γn represents all possible strings of length

n formed from alphabet Γ. This encoding assigns each activity

a unique code of length n, but can be extended to C̃ : Σ∗ →
(Γn)∗ by allowing any trace σ = ⟨a1, . . . , ak⟩ ∈ Σ∗ to be

represented as a concatenated string C̃(σ) = C(a1) ·C(a2) ·
· · · · C(ak) ∈ (Γn)∗, where C̃(⟨⟩) is the empty string and ·
(dot) denotes concatenation.

Remark IV.9 (Practical Consideration:). In our implementa-

tion, we use n = 3 and define

Γ = {A,B, . . . , Z, a, b, . . . , z, 0, . . . , 9}, (11)

with |Γ| = 62. This provides a sufficiently large encoding

space for typical process alphabets, ensuring compactness and

facilitating downstream operations like shingling.

We now formalize the injectivity of the activity encoding in

the following proposition:

Proposition IV.10 (Uniqueness Preservation). Let C : Σ →
Γn be an injective encoding function as defined. Then, for any

two distinct traces σ1, σ2 ∈ Σ∗, their encoded representations

C̃(σ1) and C̃(σ2) are distinct.

Proof: We prove the claim by induction on the length k

of the sequences.

Base Case: For k = 0 (the empty sequence), C̃(⟨⟩) is the

empty string, and the claim holds trivially.

Inductive Step: Assume the statement holds for all se-

quences of length k. Let

σ1 = (a1, a2, . . . , ak, ak+1) and σ2 = (b1, b2, . . . , bk, bk+1)

be sequences in Σk+1 such that

C̃(σ1) = C̃(σ2). (12)

Writing

C̃(σ1) = C(a1) · C(a2) · · ·C(ak) · C(ak+1), (13)

and

C̃(σ2) = C(b1) · C(b2) · · ·C(bk) · C(bk+1), (14)

since each C(ai) is a fixed-length string (of length n), the con-

catenation is unambiguous. Comparing the first n characters

of both sides gives

C(a1) = C(b1). (15)

Because C is injective, it follows that

a1 = b1. (16)

Removing the first code from both concatenations, we then

have

C̃(a2, . . . , ak+1) = C̃(b2, . . . , bk+1). (17)

By the induction hypothesis,

(a2, . . . , ak+1) = (b2, . . . , bk+1). (18)

Thus,

(a1, a2, . . . , ak+1) = (b1, b2, . . . , bk+1). (19)

This completes the inductive step, and therefore C̃ is injective.

b) Shingling: To capture local sequential patterns within

the encoded string representation of traces, we apply a fixed-

length sliding window operation known as shingling.

Definition IV.11 (Shingle Set). Let x ∈ (Γn)∗ be an encoded

string representation of a trace, and let k ∈ N be a fixed

window size. The shingle set of x is defined as:

Shingle(x, k) = {x[i : i+k−1] | 1 ≤ i ≤ |x|−k+1}, (20)

where |x| is the length of the string x, and x[i : i + k − 1]
denotes the substring of length k starting at position i.

c) Similarity Measures: We employ two types of similar-

ity functions to compare string-encoded traces or their shingle

sets.

Definition IV.12 (Similarity Measures).

(1) Tversky Similarity.

Let A,B ⊆ U be finite sets (e.g., sets of shingles). Define

the similarity function:

τ(A,B) :=
|A ∩B|

|A ∩B|+ α|A \B|+ β|B \A|
, (21)

where α, β ≥ 0 are tunable parameters (commonly

α = 0, β = 1), and |X| denotes the cardinality of

set X . This asymmetric variant prioritizes recall over

precision, treating containment as more significant than a

symmetric match. Consequently, if one set is entirely con-

tained within the other, the similarity measure reaches its

maximum value, reflecting a strong inclusion relationship.

(2) Levenshtein Similarity.

Let a, b ∈ (Γn)∗ be two encoded strings, and let

d(a, b) ∈ N0 be the Levenshtein distance between them

(i.e., the minimum number of single-character insertions,

deletions, or substitutions needed to transform a into b).

A common normalization for Levenshtein similarity is:

ℓ(a, b) := 1−
d(a, b)

max{|a|, |b|}
. (22)

Here, ℓ(a, b) yields 1 if the strings are identical and 0

if d(a, b) is as large as the maximum length of the two

strings (e.g., d(a, b) = |b| if |a| = 0). This approach is

widely used due to its intuitive interpretation.

Remark IV.13 (Alternative Normalization). In some appli-

cations, one might prefer a custom normalization to give

special treatment to length differences or partial overlaps (e.g.,

subtracting
∣∣|a|−|b|

∣∣ from d(a, b)). If that approach is desired,

it must be clearly justified. For example, one might wish to

penalize purely length-based mismatches less than mismatches

in the overlapping region of the two strings. In such cases, the
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similarity function could be:

ℓ′(a, b) :=




1, if d(a, b)−

∣∣|a| − |b|
∣∣ = 0,

1

d(a,b)−
∣∣|a|−|b|

∣∣ , otherwise.

However, this version is less common and can be confusing

without a thorough explanation of the motivation behind it.

This is a well-known property of the above-mentioned

similarity measures:

Theorem IV.14 (Boundary Conditions of Similarity Func-

tions). For any two encoded strings a, b ∈ (Γn)∗:

• The Levenshtein similarity ℓ(a, b) satisfies ℓ(a, b) = 1 if

and only if a = b, and ℓ(a, b) = 0 when the number of

edits equals the length of the longer string (i.e., maximally

different).

• For the Tversky index τ(A,B) (with a typical setting of

α = 0 and β = 1), it holds that τ(A,B) = 1 if and only

if B ⊆ A.

Remark IV.15. The normalization in ℓ(a, b) subtracts the

minimum number of edits required to align the lengths of a

and b, isolating the structural mismatches. This ensures that

string pairs differing only in length are treated as more similar

than those with substantive internal edits.

V. PROBLEM STATEMENT

In many enterprise systems, users interact with the platform

through various interfaces, executing tasks that correspond

to different business processes (e.g., onboarding a customer,

handling a complaint, reviewing a case). These interactions

are recorded as user-specific event streams. However, in most

operational settings, this data is captured in a semi-structured

format: each event includes the time it occurred, the action

taken (activity name), and the user who performed it, but does

not explicitly identify which process or case it belongs to.

Let ETu = ⟨e1, e2, . . . , en⟩ denote the event stream of a

user u ∈ Val, where each event ei ∈ E satisfies:

πuser (ei) = u, πtime(ei) ̸= ⊥, πevent(ei) ∈ Σ. (23)

This stream captures a chronologically ordered sequence of

user interactions, i.e.

πe1(time) ≤ πe2(time) ≤ · · · ≤ πen(time), (24)

but without any case identifier. As such, it is considered a

semi-structured event stream.

To support process-aware analysis and monitoring, the

business needs to understand which processes a user was

involved in, when they started and ended, and what behavior

was exhibited within each instance. For example, a supervisor

may wish to assess whether an employee followed the correct

handling procedure for different types of customer requests.

To enable this, the organization provides, for each process

type Pi, i = 1, . . . , k, a set of example traces:

LPi
⊆ Σ∗, (25)

which have been collected in a controlled environment. In this

setting, expert users executed process cases one at a time,

with clear boundaries between cases. These labeled traces

serve as templates for recognizing process behavior in live,

unstructured event streams.

Definition of the Process-Specific Alphabet. We define

ΣPi
=

⋃

σ∈LPi

{activities in σ} ⊆ Σ, (26)

i.e., ΣPi
is the set of activity labels that appear in the example

traces for process Pi, i = 1, . . . , k.

Several challenges arise in this scenario:

• Overlapping Activities: Activities (event names) may

appear in multiple processes, i.e. ΣPi
∩ΣPj

̸= ∅ for some

i ̸= j, i, j = 1, . . . , k.

• Multiple Instances: The same user u may execute mul-

tiple process instances across different process types.

• Sequential, Possibly Abandoned Executions: The user

performs processes sequentially (never in true parallel)

but may abandon one and start another.

a) Objective: Given a semi-structured event stream ETu

and example trace sets LP1
, . . . ,LPk

for known processes, the

goal is to approximate the user’s activity history in terms of

which processes were executed and when.

We aim to segment the user stream into trace-like subse-

quences that are likely to correspond to process instances.

Each segment is matched to one of the known processes

based on similarity. At this stage, our goal is not to produce

a perfect segmentation, but rather a good estimation of the

user’s behavior from a process-centric perspective.

VI. PROCESSMATCHER OVERVIEW

This section introduces ProcessMatcher, a two-phase

framework for real-time detection of known business pro-

cesses in semi-structured event streams. In the offline mod-

eling phase, curated example traces are filtered for noise

and standardized; events are encoded into fixed-length tokens

and passed through XTructure to learn hierarchical prefix

regexes, alongside a k-shingle extractor that produces compact

signatures. Optionally, a light-weight conformance analysis

validates pattern quality. In the online segmentation phase,

incoming streams are partitioned into candidate segments and

matched against the learned regexes and shingle signatures us-

ing fast approximate similarity measures, yielding polynomial-

time detection.

A. Methodology

The ProcessMatcher pipeline comprises three stages:

(a) Training Data Preparation. Noisy or incomplete traces

are removed; activity labels are normalized; events are

encoded as fixed-length character codes (Definition IV.8).

(b) Pattern Learning. Normalized sequences feed XTructure

for prefix generalization, producing a regex Ri for each

process, and into the k-shingle extractor to compute each

process’s signature.

236 PROCEEDINGS OF THE FEDCSIS. KRAKÓW, POLAND, 2025



(c) Parameter Tuning. A grid search over shingle length k,

similarity threshold θ, and prefix depth p is conducted on

a held-out validation set to jointly optimize classification

accuracy and runtime.

This clear separation of phases ensures reproducibility,

modularity, and straightforward extensibility of individual

components.

B. XTructure Primer

XTructure [23] is a lightweight, polynomial-time structure

for learning and representing the syntax of semi-structured

strings (e.g., activity-encoded traces) as a DFA-equivalent

model. Unlike full regular-expression inference—which is NP-

hard—XTructure builds a concise pattern model in a single

pass over the data. Its design comprises three hierarchical

layers:

1) Symbol Layer:

• Records empirical counts of characters at each position.

• Groups symbols into character classes (e.g. digit, letter)

via a χ2 homogeneity test when possible, or else

enumerates the top-k symbols to cover a fixed fraction

of observations.

2) Token Layer:

• Splits input strings on delimiters into tokens.

• Represents each token as a sequence of symbol-layer

distributions, capturing both fixed and variable-length

substrings within that token.

3) Branch Layer:

• Accommodates multiple syntactic variants (e.g. date

formats) by maintaining up to a bounded number of

token-sequence “branches.”

• Creates a new branch when an incoming example’s fit

score exceeds a threshold for all existing branches, then

performs branch-and-merge to enforce a global branch

limit.

Once learned in a single (streaming) pass, an XTructure

instance supports:

• Serialization to a compact, human-readable regular ex-

pression (an OR of its branches).

• Sampling of synthetic examples by drawing from its

learned symbol distributions.

• Comparison to other patterns (regular expressions or

other XTructures) via Monte Carlo sampling and CLT-

based fitness estimation.

This combination of expressivity and efficiency makes

XTructure orders of magnitude faster than general regex-

inference techniques, yet sufficiently powerful to capture all

finite-language structure observed in real-world enterprise

event data.

C. ProcessMatcher Architecture

To identify instances of a process within semi-structured

event streams, we introduce the ProcessMatcher, a modular

component designed to match candidate trace segments to

a known process P using a combination of syntactic and

conformance-based techniques.

For each known process Pi, i = 1, . . . , k, a separate matcher

instance Mi is constructed using its set of example traces

LPi
⊆ Σ∗. The matcher learns a lightweight representation of

the process, which is then used to detect and score segments

within user-specific event streams.

The approach is divided into two phases: an offline pro-

cess modeling phase, and an online stream segmentation and

matching phase.

D. Parameter Specification

Default values and allowable ranges for the key parameters

of ProcessMatcher:

• Shingle length k: default k = 6, range 4 ≤ k ≤ 10.

• Similarity threshold θ: default θ = 0.8, range 0.5 ≤
θ ≤ 0.95.

• Prefix length for XTructure: default p = 18 characters

(i.e., 6 activity codes × 3 chars each), range 9 ≤ p ≤ 30.

• Tversky parameters (α, β): default (α, β) = (0, 1), both

non-negative.

The method contains_process(S) works as follows:

1) Compute the set of shinglets (character k-grams) from

the encoded string S:

A = Sh(S). (27)

2) For each reference shinglet set Sh(σj) in LPi
, i =

1, . . . , k, set

B = Sh(σj), (28)

then compute the Tversky index τ(A,B) given by Equa-

tion (21).

3) If any τ(A,B) ≥ θ, return true; otherwise return false.

E. XTructure Explanation

We construct a prefix regular expression Ri, i = 1, . . . , k,

from observed prefixes of length p using XTructure:

1) Initialize: xpref = XTructure(max_branches=2).

2) For each trace σ ∈ LPi
, i = 1, . . . , k,

extract prefix = σ[:p] and call

xpref.learn_new_word(prefix).

3) After all prefixes are learned, str(xpref) yields a regex,

e.g. (ABC|XYZ), capturing the generalized prefix patterns.

F. Phase 1: Offline Process Modeling

Given example traces LPi
of process Pi, i = 1, . . . , k, the

ProcessMatcher performs the following:

1) Process Signature Construction: A process signature

is built using shinglets, which are sets of overlapping

substrings (character n-grams) extracted from traces in

LPi
, i = 1, . . . , k. This signature enables fast approx-

imate matching using the Tversky index during online

presence checking.

2) Prefix Pattern Learning: The initial prefixes of example

traces are used to learn a regular expression Ri that char-

acterizes common process starts. This is done using the
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XTructure algorithm [23], which generalizes prefixes

into a compact, discriminative regex by merging observed

patterns. This allows rapid detection of potential case

beginnings within user streams.

3) Optional Process Model Discovery: If desired, a process

model MPi
(Σ) (e.g., Petri net, log skeleton) is discov-

ered from LPi
using PM4Py, i = 1, . . . , k. This enables

conformance-based fitness computation as an alternative

to syntactic similarity.

G. Phase 2: Online Stream Segmentation and Matching

Given a user event stream ETu = ⟨e1, e2, . . . , en⟩ with

πuser (ei) = u and no case identifier, we segment and label

the stream with likely process instances using the following

steps, executed per process matcher Mi, i = 1, . . . , k:

1) Process Presence Check: Using the shinglet-based Tver-

sky similarity, we determine whether the user stream

contains any segment sufficiently similar to LPi
, i =

1, . . . , k. This acts as a fast filter to skip irrelevant

streams.

2) Prefix Detection: We apply the learned prefix regular

expression Ri over the stream to detect potential case

start positions. Each match defines a candidate window

boundary.

3) Similarity Scoring: For each candidate segment σ ∈ Σ∗

(bounded by prefix matches), we compute its similarity

to the process using one of several methods:

• Tversky Index (default): uses shinglets and the Tver-

sky index.

• Levenshtein Distance: normalized edit distance.

• Conformance Fitness: if a process model MPi
(Σ),

i = 1, . . . , k, is available, token-based replay or log

skeleton diagnostics can be used (e.g. Conformance

checking based on Log Skeleton Conformance, Heuris-

tics Miner, and Alpha Miner).

4) Instance Counting: The number of likely process in-

stances within the stream is estimated by summing the

similarity scores of detected segments. Only segments

whose score exceeds a predefined threshold are counted.

This approach offers a flexible, efficient method for process

instance identification from flat user event streams, enabling

reconstruction of activity histories even in the absence of

explicit case identifiers.

Remark VI.1. Set M = {M1, . . . ,Mk} denotes a set of

process matchers, each of which corresponds to a different

known procedure (process) Pi = Mi.process, i = 1, . . . , k.

In other words, for each process Pi we have a separate

matcher Mi assigned.

Remark VI.2. In Algoithm 1 we use function

EncodeStreamAsActivityString which is a procedure

that transforms a user’s event stream ETu into a string where

each character (or substring) represents a specific activity. In

practice, for each event ei ∈ ETu, this function:

• Retrieves the value of the attribute corresponding to the

activity (for example, πevent(ei)).

Algorithm 1 Segmenting a User Event Stream Using Process

Matchers

Require: User event stream ETu = ⟨e1, e2, . . . , en⟩
Require: Process matchers M = {M1, . . . ,Mk}
Ensure: Set of labeled trace segments T

1: T ← ∅
2: S ← ENCODESTREAMASACTIVITYSTRING(ETu)
3: for all Mi ∈M (i = 1, . . . , k) do

4: if Mi.contains_process(S) then

5: B ←Mi.prefix_regex.find_all_matches(S)
6: for j = 1 to |B| − 1 do

7: σ ← S[B[j] : B[j + 1]]
8: s←Mi.process_similarity(σ)
9: if s ≥ θ then

10: T ← T ∪ {(σ,Mi.process)}
11: end if

12: end for

13: σ ← S[B[−1] :]
14: s←Mi.process_similarity(σ)
15: if s ≥ θ then

16: T ← T ∪ {(σ,Mi.process)}
17: end if

18: end if

19: end for

20:

21: return T

• Maps this value to a fixed character code according to

a predefined activity encoding function C : Σ → Γn.

As defined earlier in Definition IV.8, C is an injective

function that assigns each activity a ∈ Σ a unique fixed-

length code C(a) ∈ Γn, where Γ is a finite character

alphabet and n is a fixed code length.

• Concatenates these codes to construct a string S, which

represents the ordered sequence of activities in the

stream.

This string representation enables further operations, such as

prefix detection, stream segmentation, and the calculation of

similarity measures between segments of events, which are

crucial in the process matching algorithm.

Proposition VI.3. Assume that a user event stream ETu is

formed by the concatenation of process traces

ETu = σ1 · σ2 · · ·σk, (29)

where each σi ∈ LP (the set of example traces for process P ).

Suppose further that the learned prefix regular expression R
recognizes exactly the starting positions of any trace in LP .

Then, applying the ProcessMatcher segmentation algorithm

to ETu will recover the segments σ1, σ2, . . . , σk exactly.

Proof: Let S be the string representation of ETu obtained

by the encoding function C̃. By assumption, each process

instance σi corresponds to an encoded substring si = C̃(σi)
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and the overall stream is

S = s1 · s2 · · · sk. (30)

By the correctness of the learned prefix regular expression R,

for every i we have:

R(S[i]) = true ⇐⇒ i is the starting position of some sj .

Let B = {i1, i2, . . . , ik} be the set of positions where R
matches in S, with i1 = 1. The segmentation algorithm then

forms segments by taking

σj = S[ij : ij+1 − 1] for j = 1, . . . , k − 1, (31)

and σk = S[ik : |S|]. Since the stream S is exactly s1s2 · · · sk,

it follows that for each j,

σj = sj = C̃(σj). (32)

Thus, the segmentation algorithm recovers the exact bound-

aries of each process instance

Corollary VI.4. The segmentation algorithm will always find

all process instances if the assumptions about prefixes are

satisfied.

VII. EXPERIMENT DESIGN

To evaluate the proposed segmentation method, we conduct

two experiments: one semi-synthetic (based on real process

traces) and one fully synthetic (generated via process sim-

ulation). Both experiments follow a similar structure: we

assume that for each process Pi a set of example traces LPi
,

i = 1, . . . , k, is available, and we generate user event streams

by concatenating process executions. We evaluate the model’s

ability to identify the underlying process structure from these

unstructured streams.

A. Process Setup and Trace Sources

• Experiment 1 Semi-Synthetic (Real Traces): We use

two real-world processes from our business use case. For

each process, we obtain at least 5000 example traces (of

various events long). These are used both as reference

traces for training the ProcessMatcher and as source

traces for simulating user activity.

• Experiment 2 Fully Synthetic (Simulated Processes):

We generate five synthetic process models using the

PLG2 framework [24]. For each model, we generate:

– 20 ideal (noise-free) traces for LPi
, i = 1, . . . , k.

– 100 perturbed traces using PLG2’s default noise set-

tings (e.g., skipped steps, inserted noise, reordering).

B. User Event Stream Synthesis

In both experiments, we generate synthetic user event

streams by randomly sampling process traces (ideal or per-

turbed) and concatenating them. For each user event stream

ET
syn
u , we apply the following:

• Each user stream contains a random number of process

executions (between [10, 40]).
• For each selected execution:

– In the semi-synthetic setting, traces are sampled from

the set of ideal real-world traces.

– In the fully synthetic setting, traces are sampled from

the pool of perturbed traces generated via PLG2.

• In the semi-synthetic setting, sampled traces may be

further perturbed by truncating their suffix, simulating

premature termination of process instances.

• For each synthetic user event stream, we retain the ground

truth segmentation: the start and end positions of each

process instance, and the corresponding process identity.

This setup yields realistic, unstructured user streams while pre-

serving the ability to evaluate segmentation and classification

performance precisely.

C. Iteration and Distribution Variation

To evaluate robustness across different usage distributions,

we repeat each experiment over multiple iterations. In each

iteration, the probability of selecting each process is varied,

producing both balanced and skewed distributions of process

executions within streams. This simulates scenarios ranging

from uniformly active users to users focused on one or two

dominant processes.

D. Evaluation Metrics

Since the true structure of each synthetic user event stream is

known, we evaluate performance using the following metrics:

Process Classification Accuracy: Proportion of predicted

segments assigned to the correct process. Together, these

experiments allow us to evaluate both the accuracy and robust-

ness of the method under realistic variability and controlled

noise.

VIII. RESULTS AND DISCUSSION

We evaluate our method in two benchmark scenarios,

described in Section VIII-A: a semi-synthetic setting based

on real process traces, and a fully synthetic setting using

processes generated by PLG2 [24]. In both scenarios, we

assess the performance of different similarity scoring functions

within the segmentation pipeline described earlier. Table I

summarizes the accuracy and average processing time for each

similarity scoring function, evaluated across both experimental

settings.

Each experiment reports both classification accuracy how

accurately the detected segments match the correct process and

processing time per user stream (in seconds). We compare five

similarity or conformance scoring approaches:

• Levenshtein Similarity: Edit distance over string-

encoded traces.

• Tversky Similarity: Shingle-based set similarity.

• Log Skeleton Conformance [21]: Constraint-based

model alignment.

• Heuristic Miner + Token Replay [20]: Frequency-based

process model with token-based fitness scoring.

• Alpha Miner + Token Replay [19]: Basic Petri net

discovery and replay fitness.
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TABLE I
RESULTS: ACCURACY AND TIME ON ALL FUNCTIONS ON BOTH EXPERIMENTAL SETUPS

Scoring Function Fully Synthetic Semi-Synthetic

Accuracy (%) Time (s) Accuracy (%) Time (s)

Levenshtein Similarity 99.56 81.03 100.0 7.12

Tversky Similarity 91.14 94.55 99.43 14.10

Log Skeleton Conformance 79.55 11242 88.79 812

Heuristic Miner + TBR 60.8 13170 53.32 1214

Alpha Miner + TBR 65.5 5572 14.78 1273

A. Discussion

As shown in Table I, Levenshtein similarity consistently

achieves the highest segmentation and classification accuracy

across both experimental settings. It also outperforms the other

methods in terms of runtime efficiency, making it a strong

default choice.

Tversky similarity, while slightly less accurate, remains

competitive and exhibits favorable performance in both ac-

curacy and runtime. Both syntactic similarity methods clearly

outperform conformance-based approaches in this segmenta-

tion task.

Among the token-replay-based methods, the Log Skeleton

model achieves the best accuracy but still falls short of the syn-

tactic techniques. Heuristic Miner and Alpha Miner produce

lower classification accuracy and efficiency, suggesting that

these models are not well suited to trace-level segmentation

in the absence of case structure.

a) Takeaway: For user stream segmentation tasks with-

out explicit case identifiers, syntactic similarity-based scoring

functions (Levenshtein and Tversky) provide the best balance

between accuracy and computational cost.

IX. THREATS TO VALIDITY

Although the proposed approach shows promising results,

several limitations must be acknowledged. We discuss po-

tential threats to validity across four standard dimensions:

internal, external, construct, and conclusion validity.

a) Internal Validity: The segmentation algorithm relies

on synthetic or semi-synthetic user streams, where process

boundaries are derived from known trace sets and artificially

injected noise. While this setup allows for precise ground-truth

evaluation, it may not capture all forms of real-world user be-

havior, such as interleaved or overlapping process executions.

In addition, prefix learning and similarity scores are sensitive

to parameter choices (e.g., shingle length, Tversky threshold),

which may influence the outcomes.

b) External Validity: Our experiments are conducted

on two real processes and five simulated ones. Although

these span diverse scenarios, they may not fully reflect the

complexity or variability of processes in other domains (e.g.,

healthcare, manufacturing). Moreover, user behavior in pro-

duction systems can involve more irregular or non-sequential

activity patterns, which are not entirely accounted for by our

current assumptions.

c) Construct Validity: We measure segmentation accu-

racy using a ground truth built from ideal and truncated

traces. However, the assumption that a truncated trace still

represents a meaningful process instance may not always hold.

Furthermore, our evaluation treats the best-matching process

as correct, even though some traces could be ambiguous due

to shared activities across multiple processes.

d) Conclusion Validity: Our evaluation metrics focus

on classification accuracy and runtime per stream, providing

clear comparative insights but excluding statistical significance

testing. In future work, we plan to incorporate cross-validation,

error analysis, and statistical robustness measures to reinforce

confidence in the observed performance differences.

X. CONCLUSION AND FUTURE WORK

In this paper, we propose a method for segmenting semi-

structured user event streams into process instances using

a combination of syntactic similarity and model-based con-

formance checking. Our approach leverages known example

traces for each process to construct lightweight matcher com-

ponents that identify candidate segments based on learned pre-

fixes and similarity scoring. This design enables segmentation

in scenarios where case identifiers are absent and activities

may overlap across processes.

We evaluated the method in two settings: (1) a semi-

synthetic setup based on real-world processes, and (2) a fully

synthetic benchmark generated with PLG2. The results show

that syntactic similarity measures particularly Levenshtein

and Tversky offer strong accuracy while remaining computa-

tionally efficient. Although semantically richer, model-based

conformance approaches performed less effectively in this

segmentation context, likely because of their sensitivity to

partial traces and noise.

a) Future Work: Several extensions of this work are

planned. First, we intend to address the issue of overlapping

or conflicting segment assignments when multiple processes

match the same trace window. Incorporating overlap resolution

strategies such as greedy selection based on similarity scores

or probabilistic modeling could yield cleaner segmentations.

Second, we aim to evaluate the method on real, unlabeled

user data in production environments, with expert annotations

serving as ground truth. Finally, integrating sequence models

(e.g., RNNs or transformers) or embedding-based representa-

tions may further enhance trace similarity beyond symbolic

encoding.
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Our findings highlight the potential of combining simple

syntactic techniques with process mining insights to extract

structured information from unstructured logs, thereby en-

abling more interpretable and process-aware user behavior

analysis.

b) Prospects for Sequence Models: In future work, we

plan to explore sequence-model approaches (RNNs, LSTMs,

or Transformers). This would allow us to:

• Learn continuous embeddings of event sequences instead

of manual character codes.

• Capture long-range temporal dependencies and non-linear

patterns inherent in complex processes.

• Support online adaptation via incremental fine-tuning on

newly observed streams without retraining shingle sets or

XTructure models.

These extensions should improve robustness to noise and

adaptivity to evolving business logics.
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