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Abstract—Process mining provides valuable insights by dis-
covering process models from execution logs. However, its ef-
fectiveness depends heavily on high-quality, well-structured logs.
Many real-world systems produce low-level, semi-structured logs
lacking clear process identifiers, causing misalignment with their
intended process models.

This paper introduces a method for structuring raw event
logs by segmenting event streams and mapping them to known
processes. Using process traces from experienced users, we
develop a model that infers process assignments in unstructured
logs. Our approach is motivated by a modular enterprise system
without predefined workflows, where dynamic processes generate
low-level logs requiring interpretation.

We validate our method on a semi-synthetic business dataset
and a fully synthetic dataset from PLG2. Our results demonstrate
that trace segmentation improves process discovery, aligns logs
with meaningful structures, and significantly enhances process
mining in unstructured environments.

I. INTRODUCTION

ROCESS mining is a powerful methodology that uses
Pevent logs to gain insights into business processes, en-
abling organizations to analyze, monitor, and optimize their
workflows. Traditionally, process mining relies on structured
event logs, where each event is explicitly linked to a process
instance identifier. However, in many real-world contexts,
event logs are only semi-structured, lacking process identifiers
yet containing timestamps, event types, and user identifiers.
This limitation complicates the reconstruction of process exe-
cution and hinders effective process analysis.

This research addresses that challenge by presenting an
approach to structure semi-structured event logs. Specifically,
we assign process identifiers to raw event data by leveraging
a set of ideal process traces performed by experienced users.
These labeled traces, which include known process identifiers
and types, serve as training data for a machine learning-based
system. The trained model is then applied to raw event logs
to infer process assignments and identify user activities linked
to specific processes.

We explored a practical application of this approach in a
modular enterprise management system provided to external
entities. These entities use the system to execute diverse
business processes spanning multiple modules. Because of the
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variability of clients, the heterogeneity of business processes,
and the system’s flexibility, incorporating process identifiers
into the logs is not feasible from a business perspective. There-
fore, our methodology relies exclusively on semi-structured
data.

By implementing this approach, we provide a solution
that enhances process mining capabilities in environments
where structured event logs are unavailable. This research
contributes to process mining by introducing a method for
structuring semi-structured event logs, enabling more effective
business process analysis, anomaly detection, and performance
monitoring.

a) Replication Package: To facilitate reproducibility and
further research, we provide a complete replication package
containing code, data, and experimental scripts. It is publicly
available at:

https://github.com/ncusi/Segmentation_and_Process_

Assignment_of_Semi-StructuredEvent_Logs

The remainder of this paper is organized as follows. Sec-
tion II discusses related work. Sections III and IV reviews
necessary preliminaries on event logs, process mining, and
similarity measures. Section V states the problem, and Section
VI describes our methodology for structuring semi-structured
event logs. In Section VII, we discuss our experimental design,
and Section VIII presents the results. In Section IX, we assess
threats to validity. Finally, we conclude and propose future
directions in Section X.

A. Running Example (Motivation)

Consider a customer-support system where each event is
logged as [time, user, activity, ...]. A typical log
snippet might look like:
2025-05-10T09:12:03Z,
2025-05-10T09:14:21Z,

2025-05-10T09:15:07Z,
2025-05-10T09:20:00Z,

alice,
alice,
alice,
alice,

OpenComplaint, details
AssignAgent, agentId=42
ResolveComplaint, status=closed
OpenComplaint, details

Without a case identifier, it is wunclear which
OpenComplaint corresponds to which conversation. This can
cause supervisors to miss abandoned requests or misattribute
resolution times. To address this, we propose to reconstruct
each case by matching segments of the event stream to known
process templates.

Topical area: Information Technology
for Business and Society
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II. RELATED WORK

Workflow and process mining have been extensively stud-
ied. Classical surveys such as [1], [2], [3] provide a compre-
hensive overview. A critical challenge in this field involves
deriving high-quality, structured event logs from raw, often
semi-structured data sources. Our work sits at the intersection
of several active research areas, including event-case corre-
lation, trace segmentation, similarity-based activity matching,
and process discovery under uncertainty.

A fundamental problem in process mining is event-case
correlation inferring case identifiers when they are absent or
ambiguous. This challenge has been addressed through various
heuristics and model-aware approaches. For example, Helal
and Awad [4] propose a runtime event correlation method
that uses process models and task durations to group events
into likely cases. Brzychczy et al. [5] introduce a rule-based
approach for detecting case boundaries in time series data,
leveraging domain-specific structural regularities.

The extraction of event logs from relational or unstructured
sources has also been widely explored. Andrews et al. [6]
present RDB2L0OG, a quality-aware, semi-automated log ex-
traction framework. Hernandez-Resendiz et al. [7] extend this
work by introducing techniques to convert relational data into
XES-compliant event logs, facilitating downstream analysis.

The problem of reconstructing traces from flat event streams
or system logs has been tackled through temporal and contex-
tual grouping methods. In the domain of unstructured customer
service data, Kecht et al. [8] apply natural language inference
to extract structured traces from customer service conversa-
tions. Korzeniowski and Goczyca [9] propose an automated
log-template generation method (SLT) and an interaction-
extraction pipeline that discovers application-to-application
dependencies in enterprise logs, demonstrating its utility on
a large banking system. One of the earliest treatments of
the segmentation problem appears in [10], where the authors
propose an event correlation function to partition unstructured
logs into coherent subsequences.

One of the earliest treatments of the segmentation problem
appears in [10], where the authors propose an event corre-
lation function to partition unstructured logs into coherent
subsequences. Our approach similarly focuses on identifying
process instances from flat user streams, using data-driven
similarity and conformance models.

Sequence similarity measures have been applied in activity
and behavior mining. Levenshtein similarity, in particular, has
proved effective by Tax et al. in [11] for clustering and
aligning activity sequences. To the best of our knowledge,
although the Tversky similarity measure is widely used in set
and pattern matching, it has not previously been applied to
trace similarity in process mining. Our work leverages both
Levenshtein and Tversky measures to enable efficient and
flexible segmentation.

The challenge of multi-case event streams where multiple
processes or objects interact has been identified by Martin et
al. in [12] as a key limitation in traditional process mining.
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Recent methods under the umbrella of object-centric process
mining [13], [14], [15] provide more expressive models, but
they require richer data and frequently involve more complex
analysis pipelines. Our work addresses a simpler setting where
each user executes one process at a time, but case boundaries
remain implicit and must be inferred.

Event log imperfections such as missing case identifiers, in-
complete traces, or overlapping activities are well-documented
threats to process analysis. Jans et al. [16] discuss the implica-
tions of log quality in auditing scenarios. Our method specif-
ically targets one imperfection: the lack of case identifiers in
user-specific event streams.

Streaming scenarios add complexity, requiring online seg-
mentation and model updating. Burattin et al. [17] propose
methods for control-flow discovery from live event streams.
While their focus is on evolving process models, their incre-
mental techniques are relevant to our goal of continuously
analyzing user activity streams.

In contrast to prior work, we assume access to a small
set of example traces per process and center our efforts on
segmenting flat, user-specific event streams with no case iden-
tifiers. We combine prefix-based segmentation with syntactic
and conformance-based similarity scoring, which allows us to
reconstruct approximate process instances even under noisy
or truncated conditions. Our results show that lightweight
similarity functions outperform full model conformance for
segmentation tasks, offering a practical balance between ac-
curacy and efficiency.

a) Theoretical and Practical Implications:

e Theory: We introduce a novel combination of syntac-
tic (Levenshtein, Tversky) and semantic (log skeleton)
similarity within a unified segmentation framework. Our
proofs of injectivity in activity encoding and the boundary
properties of our similarity measures contribute formal
insights for future process-mining research.

e Practice: The method integrates seamlessly with existing
BPM tools (e.g., PM4Py) without modifying ERP system
logs. Its lightweight shingle computations and XTructure-
based regex checks enable real-time segmentation on
production event streams.

III. PRELIMINARIES

We follow standard process mining notation, as introduced
in [18]. The goal of process mining is to derive meaningful
insights into the execution of business processes from recorded
event data. The key input for process mining is the event
log, which captures sequences of events corresponding to the
execution of individual process instances, referred to as cases.

A trace is a finite sequence of events that represents the ob-
served execution of a single case. By comparing and analyzing
these traces, we can uncover patterns, identify deviations, and
evaluate performance characteristics of the underlying process.

A process P represents the system or workflow whose
behavior we aim to analyze. In process mining, the focus is on
gaining insights into the execution of P by studying event logs,
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which contain traces that correspond to specific executions or
instances of process P.

A. Event Logs and Process Mining

We now introduce the formal elements used to represent
event data, traces, and structured event logs.

a) Events: Let AN be a finite set of attribute names,
and let Val be the set of all possible attribute values. We
introduce a special symbol 1 (bottom), with 1 ¢ Val, to
denote "undefined."

The universe of events is a (possibly infinite) set F. Each
event e € F is described by a partial function

me: AN — Val, (D

where the arrow — indicates that for some attribute names
a the value 7.(a) may be undefined (ie. m.(a) = 1).
Concretely, for every e € E and a € AN, we have 7.(a) €
ValU {L}.

b) Conditions on Events: We impose the following two
conditions on every event e € E:

(A1) w.(time) # L, meaning that every event has a timestamp.

(A2) There exists an attribute a € AN\ {#ime} such that
me(a) # L, meaning every event has at least one non-
time attribute with a value not equal to L.

Definition III.1 (Event Stream). An event stream (or event
table) E'T is a finite sequence of events:

ET = ey, es, ... e; € E, )

such that there exists an attribute a € AN\ {time} with
mo(e;) # Lforalli=1,...,n.

s€n)

¢) Finite Sequences: In what follows, we adopt the stan-
dard definition of finite sequences using Kleene star notation.
This notation, common in formal language theory, is used
throughout this work to denote sequences (e.g., traces of
events).

Notation IIL2 (Kleene star). Given a set X, we define X*
to be the set of all finite sequences over X. Formally, each
element of X* is of the form (x1,x2,...,T,) for some n >0
and x; € X. The empty sequence is allowed if n = Q.

Let > C Val be a finite set of activity names, known
as the activity alphabet. A trace is a finite sequence o €
¥* = {all finite sequences over X} representing the control-
flow perspective of a case.

Definition IIL.3 (Case Identifier and Cases). Let id € AN be
a selected case identifier attribute. The set of cases in E'T is
defined as:

Cases(ET, id) = {mq(e) | e € ET, mig(e) # L}.  (3)

Remark IIL.4. Each element ¢ € Cases(ET), id) is interpreted
as a distinct case of the process within ET. Concretely,
“case” refers to the actual value c of the attribute id. In
this way, Cases(ET, id) collects exactly those case-identifier

values that appear in the event stream ET, ensuring each
value corresponds to a unique case.

Definition IIL5 (Trace of a Case). Let ¢ € Cases(ET,id).
Then the trace of case c is the unique sequence of events

ep) € E* “)

Ttrace (C) = <617 ey
satisfying:
i) For all i, myq(e;) = c. In other words, each e; belongs
to the case identified by c.
ii) The sequence (e1,...,ey) is sorted by non-decreasing
timestamp, i.e.

&)

Te, (time) < me, (time) < --- < m,, (time),

recalling that e.a := 7.(a).
iii) {e1,...,ex} = {e € ET | ma(e) = ¢}, so we include
all events of that case (no more, no fewer).

Remark IIL6. For each ¢ € Cases(ET),id), the sequence
Tirace(C) is defined as the ordered list of all events e € ET
for which w;4(e) = ¢, arranged in non-decreasing order of
time.

IV. PROCESS MODELS, EVENT LOGS, AND
CONFORMANCE CHECKING

A. Process Models

Definition IV.1 (Process Models). Let X be an activity alpha-
bet (i.e., a finite set of symbols). Denote by M p(X) the set (or
universe) of all process models that describe the behavior of a
specific process P and are defined over the activity alphabet 3.
These models belong to a given class P (e.g., Petri nets, BPMN
models, etc.) relevant to this work. An element M € Mp(X)
is called a process model if it prescribes which traces over %
are possible in the corresponding process.

Remark IV.2. Let P denote a particular business process
(e.g. “Order Handling"), and let X be its activity alphabet.
We write

Mp(£) C P ©)

to mean “the set of all models in the model class P that
describe process P over X."
Here:
o P is the specific process whose behavior we wish to
capture.
e P is a class of modeling formalisms (for example, Petri
nets, BPMN diagrams, log skeletons, etc.).
o Mp(X) is the subset of P consisting of those individual
models that generate or accept exactly the traces of P
over alphabet X..

Definition IV.3 (Induced Language of a Model). For each
process model M € Mp(X), associate a language Lp (M) C
X%, where ¥* denotes the set of all finite sequences over .
Formally,

Lp(M)={w e X" | w is a possible execution of M}. (7)

Thus, each w € Lp(M) is a finite sequence of activities
representing one possible execution of M.
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B. Finite Multisets of Traces

Definition IV.4 (Finite Multisets of Traces). Let X be a set.
A finite multiset over X is a function N: X — N such that
{r € X | N(z) # 0} is finite. We call N(x) the multiplicity
of x in the multiset N. We write B(X) for the set of all finite
multisets of elements of X.

Notation IV.5 (Multisets of Traces). Since ¥ is the set of all
finite sequences over %, the set of all finite multisets of traces
is denoted by B(X*). An element L € B(X*) is a multiset of
traces, where L(o) € N indicates the number of occurrences
of the trace o in L.

C. Structured Event Log

Assume that events are drawn from a universe F, each event
e € E being described by a partial function 7. : AN — Val.

Definition IV.6 (Structured Event Log). Let id € AN be a
designated case identifier attribute. A structured event log is
a finite set of case-trace pairs:

L = {(¢iy Ttrace (i) | ¢; € Cases(ET, id)} C Val x E*, (8)

such that for each pair (¢, Trace(¢)) € L, the corresponding
trace
,ex) € E” &)

Ttrace (C) = <ela s

satisfies:
(i) Ye; € Tirgce(c) we have miq(ej) = ¢;
(ii) Ye;j € Tirace(c) we have Tiime(e5) # L,
(iii) Ve; € Trace(c) Ja € AN\ {time, id} such that m,(e;) #
1.

Remark IV.7. Each element (¢, Tirqce(C)) € L represents a
single case c together with its corresponding trace. Thus, a
structured event log explicitly associates each case identifier
with the complete, temporally ordered sequence of events
belonging to that case. Specifically, the log has the following
hierarchical structure:

o A finite set of case-trace pairs L;

o Each trace Tirace(c) € E* is a sequence of events related
to a single case c;

o Every event € € Tyrqce(C) has a timestamp, the associated
case identifier ¢, and at least one additional meaningful
attribute (e.g., activity, resource).

Notice that each case identifier c; appears exactly once in the
set L.

From this structured event log, one can perform further
abstraction steps, such as applying event classifiers, to derive
a simple event log L' € B(X*) suitable for control-flow
analysis.

D. Process Models and Conformance Checking

When process models are available, conformance checking
can be used to compare a candidate trace to a known process
structure. This enables semantic similarity beyond syntactic
matching, especially useful in process mining when control-
flow behavior must be validated.
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Let Lp C 3* be a set of example traces for a process P.
From this set, we can derive a process model M p(X) using
one of several discovery algorithms:

o Alpha Miner [19]: Constructs a Petri net by detecting
causal and concurrent relations from the event log.

o Heuristics Miner [20]: Enhances the Alpha Miner with
frequency-based dependency filtering to handle noise.

o Log Skeleton [21]: Builds a constraint-based model cap-
turing behavioral relations such as equivalence, always-
before, and always-after.

Let 0 € ¥* be a trace and Mp(X) the process model
discovered from Lp. We evaluate how well o conforms to
Mp(X) using one of the following conformance techniques:

o Token-Based Replay Fitness (TBR) [22]: Evaluates
trace fitness by simulating token movement
in a Petri net. We use the PM4Py function
pmépy.conformance.fitness_token_based_replay.

This is applied to models discovered via Alpha Miner
and Heuristics Miner.

o Log Skeleton Conformance: Computes trace fit-
ness by comparing the trace to a log skeleton
model using structural constraint diagnostics. We use:
pmépy .conformance_log_skeleton.

While these model-based approaches capture process se-
mantics, we also employ syntactic techniques that operate
on string representations of event sequences. These methods
allow for efficient trace comparison when no explicit model
is available or required.

Process Discovery Configuration: All discovery was done
with PM4Py v2.9.3:

o Heuristics Miner: dependency_threshold=0.99,
and_threshold=0.65, or_threshold=0.65,
min_support=0.10.

o Alpha Miner: dependency_threshold=0.50 (PM4Py
default).

These were chosen because Heuristics is noise-robust and
frequency-based, whereas Alpha provides a simple, well-
understood baseline.

E. String Representation and Similarity Measures

To support efficient and scalable process matching, we
transform sequences of events into compact string represen-
tations that preserve their sequential structure. This enables
the application of string-based similarity techniques, including
shingling and character-edit distance.

a) Activity Encoding: To enable string-based similar-
ity comparison, each activity in a trace is deterministically
mapped to a fixed-length character code. This allows the
transformation of activity sequences into strings over a finite
alphabet.

Definition IV.8 (Activity Encoding). Let ¥ denote the finite
set of activity labels. Define an injective encoding function

C:%Y > T", (10)
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where I is a finite character alphabet, and n € N is a fixed
code length. The set I'" represents all possible strings of length
n formed from alphabet T'. This encoding assigns each activity
a unique code of length n, but can be extended to C': ¥* —
(I'™)* by allowing any trace o = (ay,...,ax) € X* to be
represented as a concatenated string C(o) = C(ay) - C(az) -

- Clax) € (I'™)*, where C(()) is the empty string and -
(dot) denotes concatenation.

Remark IV.9 (Practical Consideration:). In our implementa-
tion, we use n = 3 and define

r={A,B,....,Za,b,...,z0,...,9}, (11)

with |T'| = 62. This provides a sufficiently large encoding
space for typical process alphabets, ensuring compactness and
facilitating downstream operations like shingling.

We now formalize the injectivity of the activity encoding in
the following proposition:

Proposition IV.10 (Uniqueness Preservation). Let C': ¥ —
I'™ be an injective encoding function as defined. Then, for any
two distinct traces 01,02 € 3%, their encoded representations
C(o1) and C(o3) are distinct.

Proof: We prove the claim by induction on the length &
of the sequences. _
Base Case: For k£ = 0 (the empty sequence), C({)) is the
empty string, and the claim holds trivially.
Inductive Step: Assume the statement holds for all se-
quences of length k. Let

o1 = (a1,a9,...,a,ax+1) and o9 = (b1,ba, ..., bk, bpy1)
be sequences in ©¥1 such that
C(o1) = C(0a). (12)
Writing
C(o1) = C(ar) - C(as) -+~ Clax) - Clagtr),  (13)
and N
C(o2) =C(b1) - C(b2) - C(bg) - Clbr+1), (14

since each C(a;) is a fixed-length string (of length n), the con-
catenation is unambiguous. Comparing the first n characters
of both sides gives

C(al) = C(bl) (15)
Because C is injective, it follows that
ayp = bl. (16)

Removing the first code from both concatenations, we then
have

Clag, ... ap41) = C(bs,... brt1). a7)
By the induction hypothesis,
(az,...,apq1) = (b2, ..., bry1). (18)

Thus,

(a1,a2,...,ap41) = (b1,b2, ..., bpy1). (19)

This completes the inductive step, and therefore Cis injective.

|

b) Shingling: To capture local sequential patterns within

the encoded string representation of traces, we apply a fixed-
length sliding window operation known as shingling.

Definition IV.11 (Shingle Set). Let x € (I'")* be an encoded
string representation of a trace, and let k € N be a fixed
window size. The shingle set of x is defined as:

Shingle(z, k) = {z[i : i+ k—1] |1 <i < |z|—k+1}, (20)

where |z| is the length of the string x, and x[i : i + k — 1]
denotes the substring of length k starting at position 1.

c) Similarity Measures: We employ two types of similar-
ity functions to compare string-encoded traces or their shingle
sets.

Definition IV.12 (Similarity Measures).

(1) Tversky Similarity.
Let A, B C U be finite sets (e.g., sets of shingles). Define
the similarity function:

|AN B
A, B) = , 21
"B = B rala B+ aB A
where «,3 > 0 are tunable parameters (commonly
a =0, = 1), and |X| denotes the cardinality of

set X. This asymmetric variant prioritizes recall over
precision, treating containment as more significant than a
symmetric match. Consequently, if one set is entirely con-
tained within the other, the similarity measure reaches its
maximum value, reflecting a strong inclusion relationship.
Levenshtein Similarity.

Let a,b € (I'™)* be two encoded strings, and let
d(a,b) € Ny be the Levenshtein distance between them
(i.e., the minimum number of single-character insertions,
deletions, or substitutions needed to transform a into b).
A common normalization for Levenshtein similarity is:

d(a,b)
max{lal, [b]}’

(2)

la,b):=1— (22)
Here, ((a,b) yields 1 if the strings are identical and 0
if d(a,b) is as large as the maximum length of the two
strings (e.g., d(a,b) = |b| if |a| = 0). This approach is
widely used due to its intuitive interpretation.

Remark IV.13 (Alternative Normalization). In some appli-
cations, one might prefer a custom normalization to give
special treatment to length differences or partial overlaps (e.g.,
subtracting ||a|—|b]| from d(a,b)). If that approach is desired,
it must be clearly justified. For example, one might wish to
penalize purely length-based mismatches less than mismatches
in the overlapping region of the two strings. In such cases, the
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similarity function could be:

f’ b 17 lfd(a’vb)_ ||Cl|— ‘bH :Oa
(a,b) == — L otherwise.

d(a,b)—]al-[b]|

However, this version is less common and can be confusing
without a thorough explanation of the motivation behind it.

This is a well-known property of the above-mentioned
similarity measures:

Theorem IV.14 (Boundary Conditions of Similarity Func-
tions). For any two encoded strings a,b € (I'"™)*:

o The Levenshtein similarity (a,b) satisfies {(a,b) = 1 if
and only if a = b, and £(a,b) = 0 when the number of
edits equals the length of the longer string (i.e., maximally
different).

o For the Tversky index T(A, B) (with a typical setting of
a=0and B =1), it holds that (A, B) = 1 if and only
if BCA.

Remark IV.15. The normalization in {(a,b) subtracts the
minimum number of edits required to align the lengths of a
and b, isolating the structural mismatches. This ensures that
string pairs differing only in length are treated as more similar
than those with substantive internal edits.

V. PROBLEM STATEMENT

In many enterprise systems, users interact with the platform
through various interfaces, executing tasks that correspond
to different business processes (e.g., onboarding a customer,
handling a complaint, reviewing a case). These interactions
are recorded as user-specific event streams. However, in most
operational settings, this data is captured in a semi-structured
format: each event includes the time it occurred, the action
taken (activity name), and the user who performed it, but does
not explicitly identify which process or case it belongs to.

Let ET, = {ej,ea,...,e,) denote the event stream of a
user u € Val, where each event ¢; € F satisfies:

Ttime (ez) 7é J—v

This stream captures a chronologically ordered sequence of
user interactions, i.e.

71'user(ei) =1u, T event (61) €. (23)

Tre, (time) < me, (time) < -+ < m, (time), (24)

but without any case identifier. As such, it is considered a
semi-structured event stream.

To support process-aware analysis and monitoring, the
business needs to understand which processes a user was
involved in, when they started and ended, and what behavior
was exhibited within each instance. For example, a supervisor
may wish to assess whether an employee followed the correct
handling procedure for different types of customer requests.

To enable this, the organization provides, for each process
type P, i =1,...,k, a set of example traces:

Lp, C 37, (25)
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which have been collected in a controlled environment. In this
setting, expert users executed process cases one at a time,
with clear boundaries between cases. These labeled traces
serve as templates for recognizing process behavior in live,
unstructured event streams.
Definition of the Process-Specific Alphabet. We define

Yp, =

= |J {activities in o} C %, (26)

O'EL‘,pi

i.e., Xp, is the set of activity labels that appear in the example
traces for process P;, i =1,... k.
Several challenges arise in this scenario:

« Overlapping Activities: Activities (event names) may
appear in multiple processes, i.e. ¥p, NXp, # ) for some
i#7,4,j=1,...,k.

o Multiple Instances: The same user u may execute mul-
tiple process instances across different process types.

o Sequential, Possibly Abandoned Executions: The user
performs processes sequentially (never in true parallel)
but may abandon one and start another.

a) Objective: Given a semi-structured event stream ET,
and example trace sets Lp,, ..., Lp, for known processes, the
goal is to approximate the user’s activity history in terms of
which processes were executed and when.

We aim to segment the user stream into trace-like subse-
quences that are likely to correspond to process instances.
Each segment is matched to one of the known processes
based on similarity. At this stage, our goal is not to produce
a perfect segmentation, but rather a good estimation of the
user’s behavior from a process-centric perspective.

VI. PROCESSMATCHER OVERVIEW

This section introduces ProcessMatcher, a two-phase
framework for real-time detection of known business pro-
cesses in semi-structured event streams. In the offline mod-
eling phase, curated example traces are filtered for noise
and standardized; events are encoded into fixed-length tokens
and passed through XTructure to learn hierarchical prefix
regexes, alongside a k-shingle extractor that produces compact
signatures. Optionally, a light-weight conformance analysis
validates pattern quality. In the online segmentation phase,
incoming streams are partitioned into candidate segments and
matched against the learned regexes and shingle signatures us-
ing fast approximate similarity measures, yielding polynomial-
time detection.

A. Methodology

The ProcessMatcher pipeline comprises three stages:

(a) Training Data Preparation. Noisy or incomplete traces
are removed; activity labels are normalized; events are
encoded as fixed-length character codes (Definition IV.8).

(b) Pattern Learning. Normalized sequences feed XTructure
for prefix generalization, producing a regex R, for each
process, and into the k-shingle extractor to compute each
process’s signature.
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(c) Parameter Tuning. A grid search over shingle length k,
similarity threshold 6, and prefix depth p is conducted on
a held-out validation set to jointly optimize classification
accuracy and runtime.

This clear separation of phases ensures reproducibility,
modularity, and straightforward extensibility of individual
components.

B. XTructure Primer

XTructure [23] is a lightweight, polynomial-time structure
for learning and representing the syntax of semi-structured
strings (e.g., activity-encoded traces) as a DFA-equivalent
model. Unlike full regular-expression inference—which is NP-
hard—XTructure builds a concise pattern model in a single
pass over the data. Its design comprises three hierarchical
layers:

1) Symbol Layer:

« Records empirical counts of characters at each position.

« Groups symbols into character classes (e.g. digit, letter)
via a x? homogeneity test when possible, or else
enumerates the top-%k symbols to cover a fixed fraction
of observations.

2) Token Layer:

« Splits input strings on delimiters into tokens.

o Represents each token as a sequence of symbol-layer
distributions, capturing both fixed and variable-length
substrings within that token.

3) Branch Layer:

o Accommodates multiple syntactic variants (e.g. date
formats) by maintaining up to a bounded number of
token-sequence “branches.”

« Creates a new branch when an incoming example’s fit
score exceeds a threshold for all existing branches, then
performs branch-and-merge to enforce a global branch
limit.

Once learned in a single (streaming) pass, an XTructure
instance supports:

« Serialization to a compact, human-readable regular ex-
pression (an OR of its branches).

o Sampling of synthetic examples by drawing from its
learned symbol distributions.

« Comparison to other patterns (regular expressions or
other XTructures) via Monte Carlo sampling and CLT-
based fitness estimation.

This combination of expressivity and efficiency makes
XTructure orders of magnitude faster than general regex-
inference techniques, yet sufficiently powerful to capture all
finite-language structure observed in real-world enterprise
event data.

C. ProcessMatcher Architecture

To identify instances of a process within semi-structured
event streams, we introduce the ProcessMatcher, a modular
component designed to match candidate trace segments to

a known process P using a combination of syntactic and
conformance-based techniques.

For each known process P;, i = 1,. .., k, a separate matcher
instance M; is constructed using its set of example traces
Lp, € ¥*. The matcher learns a lightweight representation of
the process, which is then used to detect and score segments
within user-specific event streams.

The approach is divided into two phases: an offline pro-
cess modeling phase, and an online stream segmentation and
matching phase.

D. Parameter Specification

Default values and allowable ranges for the key parameters
of ProcessMatcher:

« Shingle length k: default £ = 6, range 4 < k < 10.

o Similarity threshold 0: default § = 0.8, range 0.5 <
0 < 0.95.

o Prefix length for XTructure: default p = 18 characters
(i.e., 6 activity codes x 3 chars each), range 9 < p < 30.

o Tversky parameters (o, 3): default («, 3) = (0, 1), both
non-negative.

The method contains_process(S) works as follows:

1) Compute the set of shinglets (character k-grams) from
the encoded string S:

A = Sh(S). 7)

2) For each reference shinglet set Sh(c;) in Lp,, i =
1,...,k, set

B = Sh(o;), (28)

then compute the Tversky index 7(A, B) given by Equa-
tion (21).
3) If any 7(A, B) > 0, return true; otherwise return false.

E. XTructure Explanation

We construct a prefix regular expression R;, ¢ = 1,...,k,
from observed prefixes of length p using XTructure:

1) Initialize: xpref = XTructure(max_branches=2).

2) For each trace ¢ € Lp, ¢ = 1,...,k,
extract prefix = o[:p] and call
xpref.learn_new_word(prefix).

3) After all prefixes are learned, str (xpref) yields a regex,
e.g. (ABC|XYZ), capturing the generalized prefix patterns.

F. Phase 1: Offline Process Modeling

Given example traces Lp, of process P;, i = 1,...,k, the
ProcessMatcher performs the following:

1) Process Signature Construction: A process signature
is built using shinglets, which are sets of overlapping
substrings (character n-grams) extracted from traces in
Lp, i = 1,...,k. This signature enables fast approx-
imate matching using the Tversky index during online
presence checking.

2) Prefix Pattern Learning: The initial prefixes of example
traces are used to learn a regular expression R; that char-
acterizes common process starts. This is done using the
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XTructure algorithm [23], which generalizes prefixes
into a compact, discriminative regex by merging observed
patterns. This allows rapid detection of potential case
beginnings within user streams.

3) Optional Process Model Discovery: If desired, a process
model Mp, () (e.g., Petri net, log skeleton) is discov-
ered from Lp, using PM4Py, ¢ = 1,..., k. This enables
conformance-based fitness computation as an alternative
to syntactic similarity.

G. Phase 2: Online Stream Segmentation and Matching

Given a user event stream ET, = (e, ea,...,e,) with
Tuser(€;) = w and no case identifier, we segment and label
the stream with likely process instances using the following
steps, executed per process matcher M;, i =1,...,k:

1) Process Presence Check: Using the shinglet-based Tver-
sky similarity, we determine whether the user stream
contains any segment sufficiently similar to Lp,, i =
1,...,k. This acts as a fast filter to skip irrelevant
streams.

2) Prefix Detection: We apply the learned prefix regular
expression R; over the stream to detect potential case
start positions. Each match defines a candidate window
boundary.

3) Similarity Scoring: For each candidate segment o € ¥*
(bounded by prefix matches), we compute its similarity
to the process using one of several methods:

o Tversky Index (default): uses shinglets and the Tver-
sky index.

« Levenshtein Distance: normalized edit distance.

» Conformance Fitness: if a process model Mp, (%),
i = 1,...,k, is available, token-based replay or log
skeleton diagnostics can be used (e.g. Conformance
checking based on Log Skeleton Conformance, Heuris-
tics Miner, and Alpha Miner).

4) Instance Counting: The number of likely process in-
stances within the stream is estimated by summing the
similarity scores of detected segments. Only segments
whose score exceeds a predefined threshold are counted.

This approach offers a flexible, efficient method for process

instance identification from flat user event streams, enabling
reconstruction of activity histories even in the absence of
explicit case identifiers.

Remark VL1. Set M = {Mj,..., My} denotes a set of
process matchers, each of which corresponds to a different
known procedure (process) P; = M;.process, i = 1,...,k.
In other words, for each process P; we have a separate
matcher M; assigned.

Remark VIL.2. In Algoithm 1 we use function
EncodeStreamdsActivityString which is a procedure
that transforms a user’s event stream E'T), into a string where
each character (or substring) represents a specific activity. In
practice, for each event e; € E'T,,, this function:
o Retrieves the value of the attribute corresponding to the
activity (for example, Teyent(€:)).
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Algorithm 1 Segmenting a User Event Stream Using Process
Matchers
Require: User event stream ET, = {(e1,ea,...,6en)
Require: Process matchers M = {M,..., M}
Ensure: Set of labeled trace segments 7~

T« 0

2: S < ENCODESTREAMASACTIVITYSTRING(ET,,)

3: for all M; e M (i=1,...,k)do

4:  if M;.contains_process(S) then

5: B + M;.prefix_regex.find_all_matches(S5)
6: for j=1to |B|—1 do
7.
8
9

o < S[B[j]: Blj +1]]
s < M;.process_similarity(o)

: if s > 60 then
10: T « T U{(0, M;.process)}
11: end if
12: end for
13: o+ S[B[-1] ]
14: $ < M;.process_similarity(o)
15: if s > 6 then
16: T < T U{(o, M;.process)}
17: end if
18:  end if
19: end for
20:

21: return 7

o Maps this value to a fixed character code according to
a predefined activity encoding function C: ¥ — I'™.
As defined earlier in Definition IV.8, C is an injective
function that assigns each activity a € ¥ a unique fixed-
length code C(a) € T™, where T is a finite character
alphabet and n is a fixed code length.

o Concatenates these codes to construct a string S, which
represents the ordered sequence of activities in the
stream.

This string representation enables further operations, such as
prefix detection, stream segmentation, and the calculation of
similarity measures between segments of events, which are
crucial in the process matching algorithm.

Proposition VI.3. Assume that a user event stream ET, is
formed by the concatenation of process traces

ET,=o01-02- 0y, (29)
where each o; € Lp (the set of example traces for process P).
Suppose further that the learned prefix regular expression R
recognizes exactly the starting positions of any trace in Lp.

Then, applying the ProcessMatcher segmentation algorithm
to ET,, will recover the segments o1,09,...,0 exactly.

Proof: Let S be the string representation of £T;, obtained
by the encoding function C. By assumption, each process
instance o; corresponds to an encoded substring s; = C(0;)
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and the overall stream is

S =518y 8. (30)

By the correctness of the learned prefix regular expression R,
for every ¢ we have:

R(S[i]) = true <=

Let B = {i1,42,...,ix} be the set of positions where R
matches in .S, with ¢; = 1. The segmentation algorithm then
forms segments by taking

0j =8 1 ij41—1] forj=1,...,k—1, (31)

and oy, = S[ix : |S|]. Since the stream S is exactly s152 - - - Sk,
it follows that for each j,

(32)

gj =S85 = 5(0’j).

Thus, the segmentation algorithm recovers the exact bound-
aries of each process instance |

Corollary VI1.4. The segmentation algorithm will always find
all process instances if the assumptions about prefixes are
satisfied.

VII. EXPERIMENT DESIGN

To evaluate the proposed segmentation method, we conduct
two experiments: one semi-synthetic (based on real process
traces) and one fully synthetic (generated via process sim-
ulation). Both experiments follow a similar structure: we
assume that for each process P; a set of example traces Lp,,
i=1,...,k, is available, and we generate user event streams
by concatenating process executions. We evaluate the model’s
ability to identify the underlying process structure from these
unstructured streams.

A. Process Setup and Trace Sources

« Experiment 1 Semi-Synthetic (Real Traces): We use
two real-world processes from our business use case. For
each process, we obtain at least 5000 example traces (of
various events long). These are used both as reference
traces for training the ProcessMatcher and as source
traces for simulating user activity.

« Experiment 2 Fully Synthetic (Simulated Processes):
We generate five synthetic process models using the
PLG2 framework [24]. For each model, we generate:

— 20 ideal (noise-free) traces for Lp,, 1 =1,...,k.
— 100 perturbed traces using PLG2’s default noise set-
tings (e.g., skipped steps, inserted noise, reordering).

B. User Event Stream Synthesis

In both experiments, we generate synthetic user event
streams by randomly sampling process traces (ideal or per-
turbed) and concatenating them. For each user event stream
ET;)", we apply the following:

o Each user stream contains a random number of process

executions (between [10, 40]).

« For each selected execution:

1 is the starting position of some s;.

— In the semi-synthetic setting, traces are sampled from
the set of ideal real-world traces.

— In the fully synthetic setting, traces are sampled from
the pool of perturbed traces generated via PLG2.

o In the semi-synthetic setting, sampled traces may be
further perturbed by truncating their suffix, simulating
premature termination of process instances.

« For each synthetic user event stream, we retain the ground
truth segmentation: the start and end positions of each
process instance, and the corresponding process identity.

This setup yields realistic, unstructured user streams while pre-
serving the ability to evaluate segmentation and classification
performance precisely.

C. Iteration and Distribution Variation

To evaluate robustness across different usage distributions,
we repeat each experiment over multiple iterations. In each
iteration, the probability of selecting each process is varied,
producing both balanced and skewed distributions of process
executions within streams. This simulates scenarios ranging
from uniformly active users to users focused on one or two
dominant processes.

D. Evaluation Metrics

Since the true structure of each synthetic user event stream is
known, we evaluate performance using the following metrics:
Process Classification Accuracy: Proportion of predicted
segments assigned to the correct process. Together, these
experiments allow us to evaluate both the accuracy and robust-
ness of the method under realistic variability and controlled
noise.

VIII. RESULTS AND DISCUSSION

We evaluate our method in two benchmark scenarios,
described in Section VIII-A: a semi-synthetic setting based
on real process traces, and a fully synthetic setting using
processes generated by PLG2 [24]. In both scenarios, we
assess the performance of different similarity scoring functions
within the segmentation pipeline described earlier. Table I
summarizes the accuracy and average processing time for each
similarity scoring function, evaluated across both experimental
settings.

Each experiment reports both classification accuracy how
accurately the detected segments match the correct process and
processing time per user stream (in seconds). We compare five
similarity or conformance scoring approaches:

o Levenshtein Similarity: Edit distance over string-
encoded traces.

o Tversky Similarity: Shingle-based set similarity.

o Log Skeleton Conformance [21]: Constraint-based
model alignment.

o Heuristic Miner + Token Replay [20]: Frequency-based
process model with token-based fitness scoring.

o Alpha Miner + Token Replay [19]: Basic Petri net
discovery and replay fitness.
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TABLE 1
RESULTS: ACCURACY AND TIME ON ALL FUNCTIONS ON BOTH EXPERIMENTAL SETUPS

Scoring Function Fully Synthetic Semi-Synthetic
Accuracy (%) | Time (s) | Accuracy (%) | Time (s)
Levenshtein Similarity 99.56 81.03 100.0 7.12
Tversky Similarity 91.14 94.55 99.43 14.10
Log Skeleton Conformance 79.55 11242 88.79 812
Heuristic Miner + TBR 60.8 13170 53.32 1214
Alpha Miner + TBR 65.5 5572 14.78 1273

A. Discussion

As shown in Table I, Levenshtein similarity consistently
achieves the highest segmentation and classification accuracy
across both experimental settings. It also outperforms the other
methods in terms of runtime efficiency, making it a strong
default choice.

Tversky similarity, while slightly less accurate, remains
competitive and exhibits favorable performance in both ac-
curacy and runtime. Both syntactic similarity methods clearly
outperform conformance-based approaches in this segmenta-
tion task.

Among the token-replay-based methods, the Log Skeleton
model achieves the best accuracy but still falls short of the syn-
tactic techniques. Heuristic Miner and Alpha Miner produce
lower classification accuracy and efficiency, suggesting that
these models are not well suited to trace-level segmentation
in the absence of case structure.

a) Takeaway: For user stream segmentation tasks with-
out explicit case identifiers, syntactic similarity-based scoring
functions (Levenshtein and Tversky) provide the best balance
between accuracy and computational cost.

IX. THREATS TO VALIDITY

Although the proposed approach shows promising results,
several limitations must be acknowledged. We discuss po-
tential threats to validity across four standard dimensions:
internal, external, construct, and conclusion validity.

a) Internal Validity: The segmentation algorithm relies
on synthetic or semi-synthetic user streams, where process
boundaries are derived from known trace sets and artificially
injected noise. While this setup allows for precise ground-truth
evaluation, it may not capture all forms of real-world user be-
havior, such as interleaved or overlapping process executions.
In addition, prefix learning and similarity scores are sensitive
to parameter choices (e.g., shingle length, Tversky threshold),
which may influence the outcomes.

b) External Validity: Our experiments are conducted
on two real processes and five simulated ones. Although
these span diverse scenarios, they may not fully reflect the
complexity or variability of processes in other domains (e.g.,
healthcare, manufacturing). Moreover, user behavior in pro-
duction systems can involve more irregular or non-sequential
activity patterns, which are not entirely accounted for by our
current assumptions.

c) Construct Validity: We measure segmentation accu-
racy using a ground truth built from ideal and truncated
traces. However, the assumption that a truncated trace still
represents a meaningful process instance may not always hold.
Furthermore, our evaluation treats the best-matching process
as correct, even though some traces could be ambiguous due
to shared activities across multiple processes.

d) Conclusion Validity: Our evaluation metrics focus
on classification accuracy and runtime per stream, providing
clear comparative insights but excluding statistical significance
testing. In future work, we plan to incorporate cross-validation,
error analysis, and statistical robustness measures to reinforce
confidence in the observed performance differences.

X. CONCLUSION AND FUTURE WORK

In this paper, we propose a method for segmenting semi-
structured user event streams into process instances using
a combination of syntactic similarity and model-based con-
formance checking. Our approach leverages known example
traces for each process to construct lightweight matcher com-
ponents that identify candidate segments based on learned pre-
fixes and similarity scoring. This design enables segmentation
in scenarios where case identifiers are absent and activities
may overlap across processes.

We evaluated the method in two settings: (1) a semi-
synthetic setup based on real-world processes, and (2) a fully
synthetic benchmark generated with PLG2. The results show
that syntactic similarity measures particularly Levenshtein
and Tversky offer strong accuracy while remaining computa-
tionally efficient. Although semantically richer, model-based
conformance approaches performed less effectively in this
segmentation context, likely because of their sensitivity to
partial traces and noise.

a) Future Work: Several extensions of this work are
planned. First, we intend to address the issue of overlapping
or conflicting segment assignments when multiple processes
match the same trace window. Incorporating overlap resolution
strategies such as greedy selection based on similarity scores
or probabilistic modeling could yield cleaner segmentations.
Second, we aim to evaluate the method on real, unlabeled
user data in production environments, with expert annotations
serving as ground truth. Finally, integrating sequence models
(e.g., RNNs or transformers) or embedding-based representa-
tions may further enhance trace similarity beyond symbolic
encoding.
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Our findings highlight the potential of combining simple
syntactic techniques with process mining insights to extract
structured information from unstructured logs, thereby en-
abling more interpretable and process-aware user behavior
analysis.

b) Prospects for Sequence Models: In future work, we

plan to explore sequence-model approaches (RNNs, LSTMs,
or Transformers). This would allow us to:

« Learn continuous embeddings of event sequences instead

of manual character codes.

« Capture long-range temporal dependencies and non-linear

patterns inherent in complex processes.

« Support online adaptation via incremental fine-tuning on

newly observed streams without retraining shingle sets or
XTructure models.

These extensions should improve robustness to noise and
adaptivity to evolving business logics.
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