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Abstract—This paper presents an optimization method based
on a particular polynomial lattice rule with interlaced factor two
for estimating sensitivity indices in global sensitivity analysis,
focusing on total, first-order and second-order Sobol indices. A
comparison with one of the best available methods the Modified
Sobol Sequence and component by component construction poly-
nomial lattice rule have been done. Relative errors for key output
quantities are analyzed and compared. Our results show that
the proposed optimization method consistently outperforms other
methods in accurately estimating both first-order and total-order
sensitivity indices, especially for parameters with smaller effects.
These findings highlight the strengths and limitations of each
method, providing guidance for selecting appropriate stochastic
sampling strategies in computational sensitivity analysis.

I. INTRODUCTION

S
ENSITIVITY analysis (SA) [12], [14], [17], [21] is a

fundamental technique in modeling and simulation that

investigates how variations in input parameters influence the

output of a given system. By identifying which inputs con-

tribute most to uncertainty in the model results, SA pro-

vides valuable insights into the robustness and reliability of

mathematical models. This approach is especially crucial in

complex environmental, financial, and engineering systems,

where numerous variables interact in nonlinear ways. SA not

only enhances model transparency but also supports decision-

making by highlighting the key drivers of system behavior.

Venelin Todorov was partially supported by the Centre of Excellence in
Informatics and ICT under the Grant No BG16RFPR002-1.014-0018, financed
by the Research, Innovation and Digitalization for Smart Transformation
Programme 2021-2027 and co-financed by the European Union and by BNSF
under Projects KP-06-N62/6 “Machine learning through physics-informed
neural networks”.

Quasi Monte Carlo methods (QMC) methods are powerful

technique for performing SA [14], [21].

The input data for SA has been obtained during runs of

a large-scale mathematical model for remote transport of air

pollutants - Unified Danish Eulerian Model (UNI-DEM) [11],

[16], [26]. UNI-DEM is described mathematically [23], [24],

[25]) by the following system of PDEs:
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+Es+Qs(c1, c2, . . . , cq)−(k1s+k2s)cs, s = 1, 2, . . . , q.

The number of studied pollutants by UNI-DEM determines

the number q of equations in the system. It follows the other

dimensions of the model:

cs - pollutant concentrations,

u, v, w - wind components along the coordinate axes,

Kx,Ky,Kz - diffusion coefficients,

Es - space emissions,

k1s, k2s - dry and wet deposit coefficients, respec-

tively (s = 1, . . . , q),

Qs(c1, c2, . . . , cq) - nonlinear functions describing

chemical reactions between pollutants.

It is assumed that the mathematical model can be presented

by a model function

u = f(x), where x = (x1, x2, . . . , xs) ∈ Us ≡ [0; 1]s

(1)
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is a vector of input parameters with a joint probability density

function (p.d.f.) p(x) = p(x1, . . . , xs).
The concept of Sobol approach is based on a decomposition

of an integrable model function f [20]:

f(x) = f0 +

s
∑

ν=1

∑

l1<...<lν

fl1...lν (xl1 , xl2 , . . . , xlν ), (2)

where f0 is a constant. The representation (2) is referred to

as the ANOVA-representation of the model function f(x) if

each term satisfy [20]:
∫ 1

0

fl1...lν (xl1 , xl2 , . . . , xlν )dxlk = 0, 1 ≤ k ≤ ν, ν = 1, . . . , s.

The quantities

D =

∫

Us

f2(x)dx− f2
0 , Dl1 ... lν =

∫

f2
l1 ... lν

dxl1 . . . dxlν

(3)

are the so-called total and partial variances, respectively. A

similar decomposition holds for the total variance that is

represented by the corresponding partial variances: D =
∑s

ν=1

∑

l1<...<lν
Dl1...lν . The main sensitivity measures fol-

lowing the Sobol approach are the so-called Sobol global

sensitivity indices [20], [17] defined by

Sl1 ... lν =
Dl1 ... lν

D
, ν ∈ {1, . . . , s}. (4)

and the total sensitivity index (TSI) of an input parameter

xi, i∈{1, . . . , s} defined by [20], [17]:

Stot
i = Si+

∑

l1 ̸=i

Sil1+
∑

l1,l2 ̸=i,l1<l2

Sil1l2+. . .+Sil1...ls−1
, (5)

where Si is called the main effect (first-order sensitivity index)

of xi and Sil1...lj−1
is the j-th order sensitivity index. The

higher-order terms describe the interaction effects between the

unknown input parameters xi1 , . . . , xiν , ν ∈ {2, . . . , s} on the

output variance. This implies that performing global sensitivity

analysis from a mathematical standpoint involves calculating

total sensitivity indices (see Equation 5), which—according to

the formulations in Equations 3–4—reduces to the evaluation

of multidimensional integrals.

II. THE STOCHASTIC APPROACHES

Let us consider the following task for multidimensional

integration:

S(f) := I =

∫

Us

f(x)dx.

The first algorithm that we are going to use is the modified

Sobol sequence based on procedure of shaking.

We will use a method that looks like the stratified sym-

metrized Monte Carlo [19]. For our Monte Carlo algorithm

based on modified Sobol sequence (MCA-MSS-2-S), the

original domain of integration is divided into ms disjoint

subdomains with equal volumes K
s
i , i = 1, . . . ,ms, where

m is the number of subintervals used for the partition in each

dimension. Here two pseudorandom points are generated. The

first ξi is generated uniformly distributed inside the subdomain

K
s
i and second ξ

′

i is computed to be symmetric to ξi according

to the central point si in K
s
i . The concept in two-dimensional

case for MCA-MSS-2-S is illustrated on Figure 1.

The value of the integral can be approximated [6]:

I(f) ≈
1

2ms

ms

∑

i=1

[

f(ξi) + f(ξ
′

i)
]

.

It is proved that the algorithm MCA-MSS-2-S has an optimal

rate of convergence (n− 1

2
− 2

s ) for the class of continuous

functions with continuous first derivatives and bounded second

derivatives [7]. Up to now this method gives one of the best

results for estimating sensitivity indices [6].

ξ
ii

i
ξ

s
i

’

Fig. 1. Generation of a pseudorandom point ξi(ξ
′

i
) ∈ E

2

i
.

Now we will use the so-called lattice rules. To introduce

rank-1 lattice rule we will use the following formula [22]:

xk =

{

k

N
z

}

, k = 1, . . . , N, (6)

where N is an integer, N ≥ 2, z = (z1, z2, . . . zs) is the

generating vector and {z} denotes the fractional part of z. For

the definition of the Eα
s (c) and Pα(z,N) see [22].

In 1959 Bahvalov [1] proved that there exists an optimal

choice of the generating vector z:
∣
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∣

∣
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∣

∣

≤ cu(s, α)
(logN)β(s,α)

Nα
,

(7)

for the function f ∈ Eα
s (c), α > 1 and u(s, α), β(s, α) do not

depend on N .

The first generating vector in construction of our lattice rule

is the generalized Fibonacci numbers of the corresponding

dimension and the method will be called FIBO. FIBO will

use the following generating vector [22]:

z = (1, F (s)
n (2), . . . , F (s)

n (s)), (8)
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where we use that F
(s)
n (j) := F

(s)
n+j−1 −

j−2
∑

i=0

F
(s)
n+i and F

(s)
n+l

(l = 0, . . . , j − 1, j is an integer, 2 ≤ j ≤ s) is the term of

the s-dimensional Fibonacci sequence [22].

Now we will consider a special lattice rule based on the

component by component construction method [2], [3], [18].

An optimal generating vector based on the rank-1 lattice rules

with prime number of points is obtained using the component

by component construction method. More specifically, let

us initially set z1 := 1. Then, assuming z1 remains fixed,

and z2 ∈ UN := z ∈ N : 1 ≤ z ≤ N − 1, gcd(z,N) = 1 is

chosen in such a way that a predefined error criterion [5],

[15] is minimized in two dimensions. Then, iteratively for

i = 3, . . . , s, zi is selected from UN in such a manner that it

minimizes the predefined error criterion in i dimensions. At

the first step of the algorithm s dimensional optimal generating

vector z = (z1, z2, . . . zs) is generated by the fast component

by component construction method described above. On the

second step of the algorithm we generate the points of lattice

rule by formula xk =
{

k
N
z
}

, k = 1, . . . , N. And at the third

and last step of the algorithm an approximate value IN of the

multidimensional integral is evaluated by the formula:

IN =
1

N

N
∑

k=1

f

({

k

N
z

})

.

The steps of working for the method are given on the

flowchart on Fig. 2.

Fig. 2. The flowchart of the algorithm

Now we will continue with our optimization method based

on polynomial lattice rule with special generating matrices

never used for this computational task before. Let b be prime,

let p be a polynomial and deg p = m with coefficients in

Zb, and let q1, . . . qs be polynomials and deg(q1, . . . , qs) ≤
m − 1 with coefficients in Zb. Then we will choose Cj , the

jth generating matrix.

Let for u1, u2, · · · ∈ Zb :

qj(x)

p(x)
=

u1

x
+

u2

x2
+ . . . .

Then set

Cj =













u1 u2 u3 . . . um

u2 u3 . . . . . . um+1

u3 . . . . . . . . . um+2

. . . . . . . . . . . . . . .

um um+1 um+2 . . . u2m−1













∈ Zm×m
b .

(9)

The digital net [4] with C1, . . . , Cs is named a polynomial

lattice point set (PLPS), and a QMC rule using a polynomial

lattice point set is named a polynomial lattice rule, where p

is the modulus, and (q1, . . . , qs) is the generating vector of

polynomials [13].

Let m, s, d ∈ N be defined with d > 1. Let p ∈ Zb be

defined as deg(p) = m and let q = (q1, . . . , qds) ∈ (Zb)
ds.

An interlaced polynomial lattice rule of order d is actually

a point set composed by bm points x0, . . . , x
m−1
b which are

defined as [4]

xn := Dd(zn),

the nth point zn of a PLPS Pbm,ds(q, p) is presented by

zn :=

(

vm

(

n(x)q1(x)

p(x)

)

, vm

(

n(x)q2(x)

p(x)

)

,

. . . , vm

(

n(x)qds(x)

p(x)

)

)

∈ [0, 1)ds

for 0 ≤ n < bm. For explanation of n(x) see [13]. A

QMC rule, that uses this point set is called an interlaced

polynomial lattice rule (of order d). Generating matrices used

for the construction of interlaced polynomial lattice point sets

were based on the implementation of the Sobol sequence with

interlacing factor d = 2, as described in [15].

III. CASE STUDY - UNI-DEM MODEL

The efficient MC algorithms for multidimensional numerical

integration described above have been applied to sensitivity

studies of concentration variations of air pollutants with re-

spect to emission levels and some chemical reactions rates.

More information can be found in [8], [9], [10].

A. Sensitivity Studies with Respect to Emission Levels

TABLE I
COMPARISON OF RELATIVE ERRORS FOR SENSITIVITY INDICES

ESTIMATION USING VARIOUS STOCHASTIC APPROACHES (n ≈ 65536).

EQ RV MSS-2S IPLR2 CBCCM FIBO

f0 0.048 2e-08 7e-06 8e-06 9e-06
D 0.0002 2e-06 8e-05 6e-04 3e-04
S1 9e-01 5e-04 2e-05 2e-05 4e-04
S2 2e-04 7e-02 3e-03 4e-01 2e-01
S3 1e-01 1e-02 9e-05 3e-03 3e-03
S4 4e-05 6e-01 1e-02 1e+00 5e-01

Stot

1
9e-01 1e-03 1e-05 3e-04 5e-04

Stot

2
2e-04 3e-03 2e-03 1e-01 3e-01

Stot

3
1e-01 4e-03 8e-05 9e-04 2e-03

Stot

4
5e-05 1e-01 2e-02 4e-01 5e-01

Firstly we will study the sensitivity of the model output (in

terms of mean monthly concentrations of several important

pollutants) with respect to variation of input emissions of the

anthropogenic pollutants. The anthropogenic emissions input

consist of 4 different components E = (EA,EN,ES,EC) as

follows:

E
A − ammonia (NH3);

E
S − sulphur dioxide (SO2);

E
N − nitrogen oxides (NO + NO2);

E
C − anthropogenic hydrocarbons.

VENELIN TODOROV ET AL.: A NEW OPTIMIZATION METHOD FOR EVALUATING SOBOL’ SENSITIVITY INDICES 779



The output of the model is mean monthly concentration of the

following 3 pollutants:

s1 – ozone (O3);

s2 – ammonia (NH3);

s3 – ammonium sulphate and ammonium nitrate

(NH4SO4 + NH4NO3).

In our particular case we are interested in sensitivity studies of

the mean monthly concentrations of ammonia in Milan. The

domain under consideration is the 4-dimensional hypercubic

domain [0.5, 1]4).

This table I compares the relative errors (RE) for estimating

sensitivity indices of various input parameters using four

stochastic approaches, with a sample size of approximately

65536. The Reference Values (RV) are included for context.

for the model function MSS-2S stands out with the small-

est relative error (2e-08), indicating exceptional accuracy in

estimating the mean output. IPLR2, CBCCM, and FIBO are

all orders of magnitude less precise here (errors in the range

of 7e-06 to 9e-06). This suggests MSS-2S is highly efficient

for estimating basic function averages. For the total variance

(D) MSS-2S again shows the lowest RE (2e-06), confirming

its strength in capturing overall variance. IPLR2 (8e-05) and

FIBO (3e-04) are better than CBCCM (6e-04) but lag behind

MSS-2S.

For S1 (most influential parameter), both IPLR2 and

CBCCM achieve the best RE (2e-05), outperforming MSS-

2S and FIBO. This suggests these two methods are more

precise in estimating dominant first-order effects. For S2,

IPLR2 performs best (3e-03), significantly better than MSS-

2S (7e-02), CBCCM (4e-01), and FIBO (2e-01). For S3 and

S4, IPLR2 consistently has the smallest errors (9e-05 and 1e-

02 respectively), with MSS-2S and FIBO trailing and CBCCM

performing worst. This indicates IPLR2 is very efficient at esti-

mating sensitivity for less dominant variables. For Stot
1 IPLR2

outperforms others with 1e-05 error, better than CBCCM (3e-

04), MSS-2S (1e-03), and FIBO (5e-04). For Stot
2 IPLR2 again

leads with 2e-03, while MSS-2S (3e-03) performs well but

CBCCM and FIBO lag behind (0.1 and 0.3). For Stot
3 and

Stot
4 , IPLR2 maintains the best accuracy with relative errors of

8e-05 and 2e-02, respectively, indicating strong performance

on total effect indices across less influential parameters.

To summarize, in this case, if the goal is to accurately

estimate the mean and total variance, MSS-2S is the method of

choice. For detailed sensitivity analysis—precisely estimating

both first-order and total-order indices, especially those with

smaller magnitude—IPLR2 offers superior accuracy. CBCCM

and FIBO show relatively larger errors, suggesting they may

be less suitable for high-precision sensitivity studies with this

sample size.

B. Sensitivity Studies with Respect to Chemical Reactions

Rates

In this part we will study the sensitivity of the ozone

concentration in Genova according to the rate variation of

some chemical reactions: ## 1, 3, 7, 22 (time-dependent) and

TABLE II
COMPARISON OF RELATIVE ERRORS (RE) FOR AE OF SIS ACROSS

SELECTED METHODS (n ≈ 216).

EQ RV MSS-2S D-α2-Cs-1 CBCCM FIBO

f0 0.27 5e-07 8.4e-06 1e-05 3e-04
D 0.0025 1e-04 2.8e-05 1e-04 2e-03
S1 4e-01 2e-02 2.4e-04 3e-03 4e-02
S2 3e-01 6e-02 1.2e-04 5e-03 1e-02
S3 5e-02 8e-02 2.3e-04 4e-03 5e-01
S4 3e-01 4e-03 1.2e-05 5e-04 1e-02
S5 4e-07 2e+02 5.9e-01 2e+02 3e+03
S6 2e-02 4e-02 1.0e-03 3e-02 1e+00

Stot

1
4e-01 5e-02 2.2e-04 7e-03 8e-02

Stot

2
3e-01 3e-02 2.8e-04 2e-03 3e-02

Stot

3
5e-02 4e-02 5.9e-04 2e-02 1e+00

Stot

4
3e-01 4e-02 5.8e-05 1e-03 4e-01

Stot

5
2e-04 1e+00 1.5e-02 2e-01 9e+01

Stot

6
2e-02 4e-02 1.1e-03 3e-03 2e+00

S12 6e-03 7e-01 2.8e-03 3e-01 3e+00
S14 5e-03 1e+00 6.5e-03 3e-02 8e+00
S24 3e-03 1e+00 4.5e-03 5e-02 1e+01
S45 1e-05 4e+00 3.3e-02 1e+00 4e+01

27, 28 (time independent) reactions of the condensed CBM-

IV scheme ([23]). The simplified chemical equations of these

reactions are as follows:

[#1] NO2 + hν =⇒ NO +O;
[#3] O3 +NO =⇒ NO2;
[#7] NO2 +O3 =⇒ NO3;
[#22] HO2 +NO =⇒ OH +NO2;
[#27] HO2 +HO2 =⇒ H2O2;
[#28] OH + CO =⇒ HO2.

The domain under consideration is the 6-dimensional hyper-

cubic domain [0.6, 1.4]6).

This table II compares the relative errors (RE) for estimating

sensitivity indices of various input parameters using four

stochastic approaches, with a sample size of approximately

65536.

FIBO performs poorly overall, especially in detecting

higher-order and small-effect indices. It delivers acceptable

errors only for dominant first-order indices, such as S1 and S2,

but is far less accurate for total-effect and interaction indices.

Also, it is characterized with substantial divergence in weak-

effect indices like S5, Stot
5 , and interaction terms—REs are

several orders of magnitude larger than other methods. FIBO is

inadequate for high-precision sensitivity analysis, particularly

in higher-dimensional or low-sensitivity contexts.

CBCCM offers moderately good performance, better than

FIBO but generally not better than MSS-2S or IPLR2 It excels

in select indices like Stot
1 and Stot

2 but is not the best in any

single row of the table. It tends to perform worse than IPLR2 in

detecting fine-grained or subtle effects, although it outperforms

MSS-2S and FIBO in some higher-order interactions. CBCCM

is reliable but not exceptional. It represents a solid compromise

between computational cost and accuracy.

MSS-2S delivers excellent accuracy for f0 and D, both with

errors as low as 10−7 to 10−4. It performs well for low-to-

moderate variance indices (e.g., S1, S2, S3), but poorly on

780 PROCEEDINGS OF THE FEDCSIS. KRAKÓW, POLAND, 2025



higher-order or subtle interactions like S24 and S45. It notably

fails in estimating some higher-order interactions and weak

effects (e.g., very high RE in the smallest in value S5 and

Stot
5 which are very important for the reliability of the results).

MSS-2S is accurate and efficient for dominant effects, but may

be unstable for weak sensitivities or higher-order interactions.

Among all methods, IPLR2 provides the lowest RE for the

majority of first-order and total-effect indices, including: S1,

S2, S3, S4, Stot
1 through Stot

6 and many second-order terms

like S12, S14, S24, and S45. It is exceptionally robust across

both low and high sensitivity parameters, and particularly

effective in capturing small effect sizes (e.g., S5). It is very

competitive even for interaction terms, where other methods

tend to diverge. IPLR2 stands out as the most consistently

accurate and robust method, particularly effective for precise

SI estimation across the full spectrum of effects.

IV. CONCLUSION

The computational experiments reveal that the optimization

method IPLR2 developed are amongst the most effective

stochastic strategies currently available for determining sen-

sitivity indices, particularly for the most challenging task –

assessing the least value sensitivity indices, which are crucial

for the dependability of the model’s outcomes. These findings

are of considerable significance for environmental conserva-

tion and the credibility of future predictions.

The results underscore the trade-off between method com-

plexity and accuracy: MSS-2S excels in some global measures,

while IPLR2 is more balanced for all sensitivity indices.

Among the evaluated methods for estimating sensitivity in-

dices, our optimization method IPLR2 consistently delivers the

most accurate and robust results, especially across both dom-

inant and subtle effects, including higher-order interactions.

MSS-2S performs well for main effects but lacks stability

in weak or complex interactions. CBCCM offers balanced

performance but is never the top performer. In contrast, FIBO

and RV show significant limitations in accuracy and should be

avoided in precision-critical sensitivity analyses. Overall, the

proposed optimization method is the recommended method for

comprehensive and reliable global sensitivity estimation.
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(Eds.) Proc. NAA 2012, LNCS 8236, Springer, 2013, 247–254.

[9] I. T. Dimov, R. Georgieva, Tz. Ostromsky, Z. Zlatev, Sensitivity Studies
of Pollutant Concentrations Calculated by UNI-DEM with Respect to the
Input Emissions. Central European Journal of Mathematics, Numerical
Methods for Large Scale Scientific Computing Vol. 11, No 8, 2013,
1531–1545.

[10] I.T. Dimov, R. Georgieva, Tz. Ostromsky, Z. Zlatev, Advanced Al-
gorithms for Multidimensional Sensitivity Studies of Large-scale Air
Pollution Models based on Sobol Sequences, Special issue of Computers
and Mathematics with Applications 65 (3), Efficient Numerical Methods
for Scientific Applications, Elsevier, 2013, 338 - 351.

[11] I. Dimov, Z. Zlatev, Testing the sensitivity of air pollution levels to
variations of some chemical rate constants, Notes Numer. Fluid Mech.

1997, 62, 167–175.
[12] F. Ferretti, A. Saltelli, S. Tarantola, Trends in sensitivity analysis practice

in the last decade, Journal of Science of the Total Environment 568,
(2016), 666–670.

[13] T. Goda, 2015. Good interlaced polynomial lattice rules for numerical
integration in weighted Walsh spaces. Journal of Computational and
Applied Mathematics 285, 279–294.

[14] T. Homma, A. Saltelli, Importance measures in global sensitivity analy-
sis of nonlinear models, Reliability Engineering and System Safety 52,
(1996), 1–17.

[15] S. Joe, F. Kuo, 2008. Constructing Sobol’ sequences with better two-
dimensional projections. SIAM J. Sci. Comput. 30, 2635–2654.

[16] T. Ostromsky, (2022). Performance and Scalability Experiments with a
Large-scale Air Pollution Model on the EuroHPC Petascale Supercom-
puter DISCOVERER. In FedCSIS (Communication Papers) (pp. 81-84).

[17] A. Saltelli, S. Tarantola, F. Campolongo, M. Ratto, Sensitivity Analysis
in Practice: A Guide to Assessing Scientific Models, Halsted Press, New
York, (2004).

[18] I.H. Sloan A.V. Reztsov, Component-by-component construction of good
lattice rules, Math. Comp. 2002, 71, 263–273.

[19] I. Sobol, Numerical methods Monte Carlo, Nauka, Moscow, (1973).
[20] I.M. Sobol, Sensitivity estimates for nonlinear mathematical models,

Mathematical Modeling and Computational Experiment 1(4), (1993),
407–414.

[21] I.M. Sobol, S. Tarantola, D. Gatelli, S. Kucherenko, W. Mauntz, Esti-
mating the approximation error when fixing unessential factors in global
sensitivity analysis, Reliability Engineering & System Safety 92, (2007),
957–960.

[22] Y. Wang, F.J. Hickernell, An historical overview of lattice point sets,
In Monte Carlo and Quasi-Monte Carlo Methods 2000; Fang, KT.,
Niederreiter, H., Hickernell, F.J., Eds.; Springer: Berlin/Heidelberg,
Germany, 2002, pp. 158–167.

[23] Z. Zlatev, Computer Treatment of Large Air Pollution Models,
KLUWER Academic Publishers, Dorsrecht-Boston-London, (1995).

[24] Z. Zlatev, I.T. Dimov, K. Georgiev, Three-dimensional version of the
Danish Eulerian model, Z. Angew. Math. Mech. 76(S4), (1996), 473–
476.

[25] Z. Zlatev, I.T. Dimov, Computational and Numerical Challenges in
Environmental Modelling, Elsevier, Amsterdam, (2006).

[26] The Danish Eulerian Model, Available online:
http://www2.dmu.dk/AtmosphericEnvironment/DEM/

VENELIN TODOROV ET AL.: A NEW OPTIMIZATION METHOD FOR EVALUATING SOBOL’ SENSITIVITY INDICES 781


