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Abstract—This paper presents an optimization method based
on a particular polynomial lattice rule with interlaced factor two
for estimating sensitivity indices in global sensitivity analysis,
focusing on total, first-order and second-order Sobol indices. A
comparison with one of the best available methods the Modified
Sobol Sequence and component by component construction poly-
nomial lattice rule have been done. Relative errors for key output
quantities are analyzed and compared. Our results show that
the proposed optimization method consistently outperforms other
methods in accurately estimating both first-order and total-order
sensitivity indices, especially for parameters with smaller effects.
These findings highlight the strengths and limitations of each
method, providing guidance for selecting appropriate stochastic
sampling strategies in computational sensitivity analysis.

I. INTRODUCTION

ENSITIVITY analysis (SA) [12], [14], [17], [21] is a

fundamental technique in modeling and simulation that
investigates how variations in input parameters influence the
output of a given system. By identifying which inputs con-
tribute most to uncertainty in the model results, SA pro-
vides valuable insights into the robustness and reliability of
mathematical models. This approach is especially crucial in
complex environmental, financial, and engineering systems,
where numerous variables interact in nonlinear ways. SA not
only enhances model transparency but also supports decision-
making by highlighting the key drivers of system behavior.
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Quasi Monte Carlo methods (QMC) methods are powerful
technique for performing SA [14], [21].

The input data for SA has been obtained during runs of
a large-scale mathematical model for remote transport of air
pollutants - Unified Danish Eulerian Model (UNI-DEM) [11],
[16], [26]. UNI-DEM is described mathematically [23], [24],
[25]) by the following system of PDEs:

dcs _ O(ucs)  O(ves)  O(wes) N
ot or oy 0z
0 Jdcg 0 Jdcy 0 Ocs
a_ KT a9 K1 a a_ Kz
326( "61:>+8y< J6y>+6z< 8z)+
+E5+QS(CI7C27 .. ~7cq)*(kls +k28)CS7 s = 1727 .. q.

The number of studied pollutants by UNI-DEM determines
the number ¢ of equations in the system. It follows the other
dimensions of the model:

¢s - pollutant concentrations,

u, v, w - wind components along the coordinate axes,
K., K,, K, - diffusion coefficients,

E; - space emissions,

kis,kos - dry and wet deposit coefficients, respec-
tively (s =1,...,q),

Qs(c1,¢2,...,¢4) - nonlinear functions describing
chemical reactions between pollutants.

It is assumed that the mathematical model can be presented
by a model function

u= f(x), where x=(z1,29,...,25) €U’ =]0;1]°
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is a vector of input parameters with a joint probability density
function (p.d.f.) p(x) = p(x1,...,x;s).

The concept of Sobol approach is based on a decomposition
of an integrable model function f [20]:

FO=fo+>, D> fuoa(@,wn,,. . w,), Q)

v=11<...<l,

where fj is a constant. The representation (2) is referred to
as the ANOVA-representation of the model function f(x) if
each term satisfy [20]:

1
/ foa (@, z)dey, =0, 1 <k<wvrv=1,... s
0

The quantities

D= | Px)dc—f2 Dy .1, = / 72 Lday...day,
JUs
3)

are the so-called total and partial variances, respectively. A
similar decomposition holds for the total variance that is
represented by the corresponding partial variances: D =
S, le<m<ly Dy, ..;,. The main sensitivity measures fol-
lowing the Sobol approach are the so-called Sobol global
sensitivity indices [20], [17] defined by

L
Sy, = D

and the total sensitivity index (TSI) of an input parameter
x;,1€{1,..., s} defined by [20], [17]:

SitOt = Si+z S¢11+ Z

l1#i l1,l2#4,l1<l2

where S; is called the main effect (first-order sensitivity index)
of x; and S,-ll,_,qu is the j'th order sensitivity index. The
higher-order terms describe the interaction effects between the
unknown input parameters x;,,...,Z;, ,” € {2,...,s} on the
output variance. This implies that performing global sensitivity
analysis from a mathematical standpoint involves calculating
total sensitivity indices (see Equation 5), which—according to
the formulations in Equations 3—4—reduces to the evaluation
of multidimensional integrals.

vell,... s} “4)

Sitnto+- - A Sin 0.1, )

II. THE STOCHASTIC APPROACHES

Let us consider the following task for multidimensional
integration:

S(f):=1= f(x)dx.
Us

The first algorithm that we are going to use is the modified
Sobol sequence based on procedure of shaking.

We will use a method that looks like the stratified sym-
metrized Monte Carlo [19]. For our Monte Carlo algorithm
based on modified Sobol sequence (MCA-MSS-2-S), the
original domain of integration is divided into m® disjoint
subdomains with equal volumes K?,7 = 1,...,m? where
m is the number of subintervals used for the partition in each
dimension. Here two pseudorandom points are generated. The
first &; is generated uniformly distributed inside the subdomain
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K? and second 5; is computed to be symmetric to &; according
to the central point s; in K. The concept in two-dimensional
case for MCA-MSS-2-S is illustrated on Figure 1.

The value of the integral can be approximated [6]:

s

3

1

1) 50
1

It is proved that the algoritlhrrzl MCA-MSS-2-S has an optimal
rate of convergence (n~ 2~ s) for the class of continuous
functions with continuous first derivatives and bounded second
derivatives [7]. Up to now this method gives one of the best

results for estimating sensitivity indices [6].

7€) + £(€)] -

1

Fig. 1. Generation of a pseudorandom point &;(¢]) € E2.

Now we will use the so-called lattice rules. To introduce
rank-1 lattice rule we will use the following formula [22]:

X;C—{]]ifz},k—l,...,N7 (6)

where N is an integer, N > 2, z = (21, 22,...25) is the
generating vector and {z} denotes the fractional part of z. For
the definition of the E%(c) and P,(z, N) see [22].

In 1959 Bahvalov [1] proved that there exists an optimal
choice of the generating vector z:

&éf({fv})— [ san] < cuto, o BN

[0,1)¢
(N
for the function f € E%(c), o > 1 and u(s, @), B(s, a) do not
depend on N.

The first generating vector in construction of our lattice rule
is the generalized Fibonacci numbers of the corresponding
dimension and the method will be called FIBO. FIBO will
use the following generating vector [22]:

z=(LF?2),... FGs)), 8)
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j—2

j
where we use that F\\¥(j) := F®).  —

e F') and £

n+1 n4l

(@ =0,...,7—1,7 is an integer, 2 < j l{g) is the term of
the s-dimensional Fibonacci sequence [22].

Now we will consider a special lattice rule based on the
component by component construction method [2], [3], [18].
An optimal generating vector based on the rank-1 lattice rules
with prime number of points is obtained using the component
by component construction method. More specifically, let
us initially set z; := 1. Then, assuming z; remains fixed,
and 20 e UN == 2eN:1 <2< N -1, ged(z, N) =1 is
chosen in such a way that a predefined error criterion [5],
[15] is minimized in two dimensions. Then, iteratively for
i=3,...,s, z is selected from U in such a manner that it
minimizes the predefined error criterion in ¢ dimensions. At
the first step of the algorithm s dimensional optimal generating
vector z = (21, 22, ... %s) is generated by the fast component
by component construction method described above. On the
second step of the algorithm we generate the points of lattice
rule by formula x;, = {%z} , k=1,...,N. And at the third
and last step of the algorithm an approximate value [y of the
multidimensional integral is evaluated by the formula:

1 k
ey ()
k=1
The steps of working for the method are given on the
flowchart on Fig. 2.

Fig. 2. The flowchart of the algorithm

Now we will continue with our optimization method based
on polynomial lattice rule with special generating matrices
never used for this computational task before. Let b be prime,
let p be a polynomial and deg p = m with coefficients in
Zy, and let q1,...gs be polynomials and deg(q1,...,qs) <
m — 1 with coefficients in Z;. Then we will choose Cj, the
4™ generating matrix.

Let for uy,us,--- € Zy :

gi(x)  wr  ug

m = ; + ﬁ 4+ ...,
Then set
Uy Uz us Um
U2 us Um+1
Cj = us U 42 € Zl:nXm.
Um Um+1 Um+2 U2m—1
©))

The digital net [4] with C, ..., Cs is named a polynomial
lattice point set (PLPS), and a QMC rule using a polynomial

lattice point set is named a polynomial lattice rule, where p
is the modulus, and (q1,...,qs) is the generating vector of
polynomials [13].

Let m,s,d € IN be defined with d > 1. Let p € Z;, be
defined as deg(p) = m and let ¢ = (q1,...,q4s) € (Zp)%.
An interlaced polynomial lattice rule of order d is actually
a point set composed by b, points xq, ... ,x;)”_l which are
defined as [4]

Ty = Dd(zn)a

the n point z, of a PLPS Pym 45(q, p) is presented by

%:_(“”<MZZ§@>’”"(MZZ§@>’

w%(mm%m»>emmﬁ

p()

for 0 < n < b™. For explanation of n(x) see [13]. A
QMC rule, that uses this point set is called an interlaced
polynomial lattice rule (of order d). Generating matrices used
for the construction of interlaced polynomial lattice point sets
were based on the implementation of the Sobol sequence with
interlacing factor d = 2, as described in [15].

III. CASE sTUDY - UNI-DEM MODEL

The efficient MC algorithms for multidimensional numerical
integration described above have been applied to sensitivity
studies of concentration variations of air pollutants with re-
spect to emission levels and some chemical reactions rates.
More information can be found in [8], [9], [10].

A. Sensitivity Studies with Respect to Emission Levels
TABLE I

COMPARISON OF RELATIVE ERRORS FOR SENSITIVITY INDICES
ESTIMATION USING VARIOUS STOCHASTIC APPROACHES (n = 65536).

EQ RV | MSS-2S | IPLR2 | CBCCM | FIBO
fo | 0.048 2e-08 Te-06 8e-06 9e-06
D |0.0002 | 2e-06 8e-05 6e-04 3e-04
S1 | 9e-01 Se-04 2e-05 2e-05 4e-04
So | 2e-04 | 7e-02 3e-03 4e-01 2e-01
Sz | le-01 le-02 9e-05 3e-03 3e-03
Sq | 4e-05 6e-01 1e-02 le+00 | Se-01
Stot | 9e-01 1e-03 le-05 3e-04 Se-04
Siot | 2e-04 3e-03 2e-03 le-01 3e-01
S fot le-01 4e-03 8e-05 9e-04 2e-03
S?f’t 5e-05 le-01 2e-02 4e-01 Se-01

Firstly we will study the sensitivity of the model output (in
terms of mean monthly concentrations of several important
pollutants) with respect to variation of input emissions of the
anthropogenic pollutants. The anthropogenic emissions input
consist of 4 different components E = (EA, EN, ES EC) as
follows:

EA — ammonia (N H3);

ES — sulphur dioxide (SOy);

EN — nitrogen oxides (NO + NOs);
EC — anthropogenic hydrocarbons.
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The output of the model is mean monthly concentration of the
following 3 pollutants:

sy — ozone (O3);
S$o — ammonia (N Hj);
S3 — ammonium sulphate and ammonium nitrate

(NH,SO, + NH,NO3).

In our particular case we are interested in sensitivity studies of
the mean monthly concentrations of ammonia in Milan. The
domain under consideration is the 4-dimensional hypercubic
domain [0.5,1]%).

This table I compares the relative errors (RE) for estimating
sensitivity indices of various input parameters using four
stochastic approaches, with a sample size of approximately
65536. The Reference Values (RV) are included for context.
for the model function MSS-2S stands out with the small-
est relative error (2e-08), indicating exceptional accuracy in
estimating the mean output. [IPLR2, CBCCM, and FIBO are
all orders of magnitude less precise here (errors in the range
of 7e-06 to 9e-06). This suggests MSS-2S is highly efficient
for estimating basic function averages. For the total variance
(D) MSS-2S again shows the lowest RE (2e-06), confirming
its strength in capturing overall variance. IPLR2 (8e-05) and
FIBO (3e-04) are better than CBCCM (6e-04) but lag behind
MSS-2S.

For S; (most influential parameter), both IPLR2 and
CBCCM achieve the best RE (2e-05), outperforming MSS-
2S and FIBO. This suggests these two methods are more
precise in estimating dominant first-order effects. For So,
IPLR2 performs best (3e-03), significantly better than MSS-
2S (7e-02), CBCCM (4e-01), and FIBO (2e-01). For S5 and
Sy, IPLR2 consistently has the smallest errors (9e-05 and le-
02 respectively), with MSS-2S and FIBO trailing and CBCCM
performing worst. This indicates IPLR2 is very efficient at esti-
mating sensitivity for less dominant variables. For S°t IPLR2
outperforms others with 1e-05 error, better than CBCCM (3e-
04), MSS-2S (1e-03), and FIBO (5¢-04). For Si°! IPLR2 again
leads with 2e-03, while MSS-2S (3e-03) performs well but
CBCCM and FIBO lag behind (0.1 and 0.3). For Si°* and
Siot, IPLR2 maintains the best accuracy with relative errors of
8e-05 and 2e-02, respectively, indicating strong performance
on total effect indices across less influential parameters.

To summarize, in this case, if the goal is to accurately
estimate the mean and total variance, MSS-2S is the method of
choice. For detailed sensitivity analysis—precisely estimating
both first-order and total-order indices, especially those with
smaller magnitude—IPLR?2 offers superior accuracy. CBCCM
and FIBO show relatively larger errors, suggesting they may
be less suitable for high-precision sensitivity studies with this
sample size.

B. Sensitivity Studies with Respect to Chemical Reactions
Rates

In this part we will study the sensitivity of the ozone
concentration in Genova according to the rate variation of
some chemical reactions: ## 1,3,7,22 (time-dependent) and

PROCEEDINGS OF THE FEDCSIS. KRAKOW, POLAND, 2025

TABLE II
COMPARISON OF RELATIVE ERRORS (RE) FOR AE OF SIS ACROSS
SELECTED METHODS (n = 216).

EQ | RV |MSS-2S|D-a2-Cs-1{CBCCM |FIBO
fo | 0.27 Se-07 8.4e-06 1le-05 |3e-04
D |0.0025| 1e-04 2.8e-05 le-04 | 2e-03
S1 | 4e-01 | 2e-02 2.4e-04 3e-03 |4e-02
So | 3e-01 | 6e-02 1.2e-04 5e-03 | 1e-02
S3 | 5e-02 | 8e-02 2.3e-04 4e-03 | 5e-01
Syq | 3e-01 | 4e-03 1.2¢-05 5e-04 | 1e-02
Sy | 4e-07 | 2e+02 | 5.9e-01 2e+02 |3e+03
Se | 2e-02 | 4e-02 1.0e-03 3e-02 |1e+00
SToT[ 4e-01 | 5e-02 | 2.2¢-04 7e-03 | 8e-02
Stot| 3e-01 | 3e-02 2.8e-04 2e-03 | 3e-02
S fot 5e-02 | 4e-02 5.9¢-04 2e-02 |1e+00
S’E"t 3e-01 | 4e-02 5.8e-05 1e-03 | 4e-01
Sé”t 2e-04 | 1e+00 | 1.5e-02 2e-01 [9e+01
S, 60t 2e-02 | 4e-02 1.1e-03 3e-03 |2e+00
S12 | 6e-03 | 7e-01 2.8e-03 3e-01 |3e+00
S14 | 5e-03 | 1e+00 6.5¢-03 3e-02 |8e+00
Sa4 | 3e-03 | 1e+00 | 4.5e-03 5e-02 |le+01
Sys | 1e-05 | 4e+00 3.3e-02 1e+00 |[4e+01

27,28 (time independent) reactions of the condensed CBM-
IV scheme ([23]). The simplified chemical equations of these
reactions are as follows:

[#1] NOs + hv = NO + O;

[#3] Os + NO = NOy;

[#7] NOs; 4+ O3 = NOsg;

[#22] HOy 4+ NO — OH + NOy;
[#27} HOs + HO; = H50s;
[#28] OH + CO — HOs.

The domain under consideration is the 6-dimensional hyper-
cubic domain [0.6, 1.4]°).

This table IT compares the relative errors (RE) for estimating
sensitivity indices of various input parameters using four
stochastic approaches, with a sample size of approximately
65536.

FIBO performs poorly overall, especially in detecting
higher-order and small-effect indices. It delivers acceptable
errors only for dominant first-order indices, such as S and S5,
but is far less accurate for total-effect and interaction indices.
Also, it is characterized with substantial divergence in weak-
effect indices like S5, Sg"t, and interaction terms—REs are
several orders of magnitude larger than other methods. FIBO is
inadequate for high-precision sensitivity analysis, particularly
in higher-dimensional or low-sensitivity contexts.

CBCCM offers moderately good performance, better than
FIBO but generally not better than MSS-2S or IPLR2 It excels
in select indices like St°! and S%°¢ but is not the best in any
single row of the table. It tends to perform worse than IPLR2 in
detecting fine-grained or subtle effects, although it outperforms
MSS-2S and FIBO in some higher-order interactions. CBCCM
is reliable but not exceptional. It represents a solid compromise
between computational cost and accuracy.

MSS-2S delivers excellent accuracy for fy and D, both with
errors as low as 1077 to 10~%. It performs well for low-to-
moderate variance indices (e.g., S1, Sa2, S3), but poorly on
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higher-order or subtle interactions like So4 and Sys5. It notably
fails in estimating some higher-order interactions and weak
effects (e.g., very high RE in the smallest in value S5 and
Stot which are very important for the reliability of the results).
MSS-2S is accurate and efficient for dominant effects, but may
be unstable for weak sensitivities or higher-order interactions.

Among all methods, IPLR2 provides the lowest RE for the
majority of first-order and total-effect indices, including: Sy,
Sa, S3, Sy, St through SE° and many second-order terms
like S12, S14, Sa4, and Sys. It is exceptionally robust across
both low and high sensitivity parameters, and particularly
effective in capturing small effect sizes (e.g., Ss). It is very
competitive even for interaction terms, where other methods
tend to diverge. IPLR2 stands out as the most consistently
accurate and robust method, particularly effective for precise
SI estimation across the full spectrum of effects.

IV. CONCLUSION

The computational experiments reveal that the optimization
method IPLR2 developed are amongst the most effective
stochastic strategies currently available for determining sen-
sitivity indices, particularly for the most challenging task —
assessing the least value sensitivity indices, which are crucial
for the dependability of the model’s outcomes. These findings
are of considerable significance for environmental conserva-
tion and the credibility of future predictions.

The results underscore the trade-off between method com-
plexity and accuracy: MSS-28S excels in some global measures,
while TPLR2 is more balanced for all sensitivity indices.
Among the evaluated methods for estimating sensitivity in-
dices, our optimization method IPLR2 consistently delivers the
most accurate and robust results, especially across both dom-
inant and subtle effects, including higher-order interactions.
MSS-2S performs well for main effects but lacks stability
in weak or complex interactions. CBCCM offers balanced
performance but is never the top performer. In contrast, FIBO
and RV show significant limitations in accuracy and should be
avoided in precision-critical sensitivity analyses. Overall, the
proposed optimization method is the recommended method for
comprehensive and reliable global sensitivity estimation.
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