Uaoiite

Proceedings of the 20" Conference on Computer

DOI: 10.15439/2025F4862

Science and Intelligence Systems (FedCSIS) pp. 451-460 ISSN 2300-5963 ACSIS, Vol. 43

IEEE Catalog Number: CFP2585N-ART ©2025, PTI

AraXLM: Evaluating Arabic Diacritization Tools for Cross-
Language Plagiarism Detection

Mona Alshehri
0000-0002-4193-6230
Department of Computer Science,
King Abdulaziz
University, Jeddah, Saudi Arabia
Department of Informatics,
University of Sussex, Brighton,
United Kingdom
Email: ma2250@sussex.ac.uk

Abstract—In recent years, plagiarism detection systems have
evolved from basic lexical matching and n-gram overlap meth-
ods to Deep Learning (DL) models capable of capturing seman-
tic relationships between texts. While these DL-based ap-
proaches have achieved notable success across various lan-
guages, their effectiveness in Arabic remains limited due to in-
herent linguistic ambiguities, particularly the omission of dia-
critical marks. This absence hinders accurate semantic inter-
pretation and limits the ability of models to detect paraphrased
or semantically obfuscated content in Arabic texts. This paper
presents an evaluation of Arabic Text Diacritization (ATD)
tools as the initial phase of a plagiarism detection framework
designed for Arabic—English cross-lingual model text analysis
(AraXLM). It describes the first stage of the framework, which
focuses on assessing the performance of state-of-the-art ATD
tools. An empirical analysis was conducted on six ATD models
using Word Error Rate (WER), Diacritic Error Rate (DER),
both with and without case endings (CE), and Bilingual Evalua-
tion Understudy (BLEU) metrics. The results show that tools
such as Shakkelha produced lower DER and high BLEU val-
ues, indicating high accuracy in diacritic restoration, while
Fine-Tashkeel demonstrates the lowest WER and highest
BLEU, reflecting best word-level performance. In contrast,
CAMeL Tools and Mishkal display comparatively higher error
rates across both metrics. These findings suggest that incorpo-
rating accurate diacritization models into Arabic NLP tasks,
such as Machine Translation (MT) and Plagiarism Detection
(PD), improves text normalisation and the quality of semantic
embeddings. Thus, the AraXLM framework, supported by ef-
fective diacritization pre-processing, enhances linguistically
aware detection of plagiarism involving Arabic text, where pre-
cise semantic alignment between languages is essential.

Index Terms—Deep Learning (DL), Arabic Text Diacritiza-
tion (ATD), Word Error Rate (WER), Diacritic Error Rate
(DER), Case Ending (CE), Machine Translation (MT), Plagia-
rism Detection (PD), Bilingual Evaluation Understudy (BLEU).

I. INTRODUCTION

DIACRITIC marks are a fundamental characteristic of
the Arabic language. These symbols, placed above or

451

Natalia Beloff
0000-0002-8872-7786
Department of Informatics,
University of Sussex,
Brighton, United Kingdom
Email: n.beloff@sussex.ac.uk

Martin White
0000-0001-8686-2274
Department of Informatics,
University of Sussex,
Brighton, United Kingdom
Email: m.white@sussex.ac.uk

below letters, indicate pronunciation and disambiguate
meaning [1], [2]. Each mark has a specific position, Unicode
representation, and functional role, influenced by syntactic
and phonetic context. Diacritics are essential for accurate
word interpretation, enhancing reading fluency, improving
speech recognition systems, and facilitating natural language
understanding. However, most Arabic texts omit these
marks, which introduces semantic ambiguity and creates ho-
mographic conflicts [3].

A. Problem Statement

Recently, NLP techniques have started to include diacriti-
cal marks in their approaches to enhance language process-
ing performance [4]. Most techniques used in plagiarism de-
tection for the Arabic language preprocess the source docu-
ment by removing the diacritic marks [5],[6]. The perfor-
mance of these tests has still not improved due to pre-pro-
cessing the document and not using semantic-based algo-
rithms. The absence of diacritical marks in Arabic text intro-
duces ambiguity that negatively impacts NLP tasks such as
machine translation and plagiarism detection. Despite ad-
vances in deep learning and NLP, many systems either ig-
nore diacritics or preprocess them away, limiting semantic
accuracy and cross-lingual performance [7], [8]. Therefore,
linguistic knowledge, such as vowel marks in Arabic lan-
guage, needs to be addressed and evaluated in NLP tasks for
enhancing semantic alignment across languages.

B. Research Questions

In order to address the issues that have been identified of
applying and evaluating the ATD models, we will com-
mence with these research sub-questions:

1) what is the most effective ATD tool for integrating
into our proposed framework (AraXLM).

2) What issues are identified when conducting our ex-
perimental study, particularly for Arabic language?

Thematic Session: Challenges for Natural
Language Processing

452

The main research question is: given 2 sentences in different
language, S1(English) and S2(Arabic), is S2 plagiarized
from S1?

In order to answer this broad question, we defined the
sub-questions that help to provide a complete answers to the
overall research question. Our previous proposed framework
was designed and presented for cross-language Plagiarism
Detection (PD), including ATD as a linguistic feature [9].
The aim of our research contributes to detect the similarity
between Arabic and English sentence pairs, including the di-
acritization process for Arabic sentences (see Figure 1). Dia-
critization is the process of adding diacritical marks (such as
fathah, dammah, kasrah, shaddah, tanwin, and sukiin) to un-
vowelled Arabic letters in order to indicate correct pronunci-
ation and clarify meaning. This process is essential for vari-
ous Natural Language Processing (NLP) tasks, such as MT,
as it reduces the ambiguity caused by the absence of these
marks. This paper presents the results of evaluating several
tools concerning the accuracy of ATD.

In summary, our experimental design evaluates six Arabic
diacritization tools using publicly available corpora. This
study aims to identify the most effective Arabic ATD mod-
els to integrate into our proposed framework [9]. The evalu-
ation employs three standard metrics: Word Error Rate
(WER), Diacritic Error Rate (DER), and Bilingual Evalua-
tion Understudy (BLEU). This multi-metric analysis pro-
vides a comprehensive comparison and deeper insight into
the types of errors produced by each tool, with enhancing se-
mantic accuracy in ML-based models. The results indicate
that ML-based approaches achieve lower DER and higher
BLEU scores, reflecting improved diacritic restoration and
closer alignment with reference texts. However, these mod-
els produced higher WER, highlighting challenges associat-
ed with word-level tokenisation in Arabic, despite their char-
acter-level and semantic accuracy strengths.

II. BACKGROUND

Arabic diacritization is a task in Arabic natural language
processing (ANLP). These diacritics ensure correct pronun-
ciation, disambiguation, and improved MT. However, the
complex morphology of Arabic and the high level of ambi-
guity in unvowelled text make diacritization challenging task
[10]. Over the years, researchers have developed various ap-
proaches to address this task, which can be categorized into

PROCEEDINGS OF THE FEDCSIS. KRAKOW, POLAND, 2025

three main types: rule-based, machine learning-based, and
hybrid-based methods. Each approach employs different
methodologies to overcome the challenges and develop ac-
curacy in this field.

A. Rule-Based Diacritization Tools

Rule-based approaches apply diacritic marks based on
predefined linguistic features (e.g., morphology, syntax, lex-
icon) [11]. In these tools, sequences of Arabic letters are
mapped to specific diacritic categories through encoded
rules derived from morphological analysers, syntactic
parsers, and lexicon lookup tables [12]. However, pure rule
based systems can fail with out of vocabulary (OOV) words
and ambiguous contexts where multiple diacritic patterns
may be valid. Moreover, validating the hundreds of rules and
large lexicons required for comprehensive coverage can be
time-consuming, error prone, and challenging to scale as the
language evolves [12]. In contrast, rule-based diacritization
tools achieve good result on words or structures explicitly
defined within their linguistic frameworks, by applying de-
terministic rules derived from formal Arabic grammar.

B. Machine Learning Based Diacritization Tools

ML-based approaches for Arabic diacritization leverage
neural networks (NNs) to learn and predict diacritic marks
from text patterns. These approaches require datasets for
training the model on diacritizing text pattern. ML algo-
rithms can be categories to different types of Neural Net-
works (NNs): Artificial Neural Networks (ANNs), Convolu-
tion Neural Network (CNNs), Recurrent Neural Network
(RNNs), and Transformer Neural Network (TNNs). Each
type is used to process specific data and extract features that
are relevant to the task.

FNNss are the simplest form of neural networks, consisting
of input, interconnected hidden layers, and output layers.
They process input data in a forward direction without cy-
cles or loops [13]. FNNs have been used as baseline models
for Arabic diacritization for capturing local patterns without
requiring morphological pre-processing [14]. In ANNs
types, back-propagation concept adjusts each weight in the
layers. This step is done to eliminate the error (Loss) be-
tween the predicted output and the true target [15]. Thus,
FNN is a subclass of ANN because the data flows on for-
ward propagation only. However, there is no feedback loop
in each node as outputs to inputs during inference. There-

Parallel Dataset

Ar

Pre-processing:

Drop rows with NaN

Ar-Diactrization

values in any column.

Remove HTML,

URLs, multiple

whitespaces.
Remove Kashida ,

sentences Dataset

diacritics in Arabic

WTranslation

character.

Arabic (Ar) and English (En) pair OT

m
3

Fig 1. Main Phases Structure of Our Presented Model

MONA ALSHEHRI ET AL.: ARAXLM: EVALUATING ARABIC DIACRITIZATION TOOLS FOR CROSS-LANGUAGE PLAGIARISM DETECTION

fore, their ability to capture syntactic diacritization, such as
case endings, is limited.

CNNs apply convolutional filters over embedding vectors
to detect local patterns and have been used in image and text
processing tasks [16]. In Arabic diacritization, CNNs have
been employed to recognize diacritic marks in images of
Arabic text, such as in Optical Character Recognition (OCR)
systems, rather than for direct sequence labelling of plain
text.

RNNs enable each hidden unit to receive inputs from both
the current and previous time steps, thereby allowing the
network to capture temporal dependencies within sequential
data [17]. By combining the current input with the previous
hidden state, the network updates the current hidden state,
which is then used to generate the output. This sequential
modelling allows RNNs to predict diacritics for each charac-
ter in context [18]. However, RNNs encounter difficulties
when processing long sequences due to the gradient prob-
lem. The gradient represents the scale of change used to up-
date the network during training. Over extended sequences,
gradients can either vanish (become very small) or explode
(grow very large), depending on the activation functions em-
ployed [19]. This occurrence causes the network to forget
earlier information in the sequence, thereby limiting its abil-
ity to learn long-range dependencies.

The Transformer architecture was introduced to process
data in parallel by replacing recurrence and convolution with

TABLE L.

positional encoding and self-attention mechanisms [20]. In
this architecture, the encoder generates contextualized repre-
sentations of the input sequence, which are used by attention
mechanisms in the decoder to focus on relevant parts of the
input during output generation. The transformer architecture
can consist of encoder and/or decoder layers. Recently,
TNNs have been employed in ATD models to capture both
local and global contextual information in parallel [21]. As a
result, TNNs models have transformed NLP by introducing
attention mechanisms that address key limitations of earlier
approaches [22]. TABLE I shows the main differences be-
tween neural network approaches types. For example, TNN
leverage attention mechanism for tasks requiring long se-
quence dependency, such as NLP task. The emergence of
NN types with ATD have driven the advancement of struc-
ture models.

C. Hybrid Based Diacritization Tools

Hybrid-based diacritization approaches combine rule-
based and machine learning (ML) methods to leverage both
linguistic knowledge and contextual information in text.
These tools apply ML components to handle lexical disam-
biguation and rule-based frameworks for syntactic case end-
ings, capitalizing on the strengths of both paradigms. [23].
Recent research has adopted hybrid approaches for Arabic
diacritization, combining rule-based linguistic knowledge
with ML techniques to enhance accuracy and address the

OVERVIEW OF NEURAL NETWORKS AND THEIR FEATURES

453

Com-
NN Type S Data Type Task Feature Authors
ENN Structured, tabular data Traditional ML(C!assmcatlon, One Directional (forward) Con- [13], [14]
Regression) nected Layer
ANN Structured, tabular data Traditional ML (C!assmcatlon, Fully Connected Layer [15]
Regression)
Object Detection, Image recog- Convolution Layer, Pool Layer,
CNN Spatial Data (Image, Videos) | nition, Image Processing Com- Flattening Layer and Fully Con- [16]
puter Vision nected Layer.
Sequential Data (Text, Time Weather (time series) Fore- Recurrent Lanlyers' with hidden
RNN A - - states that maintain a memory of [17],[18]
Series) casting, Speech Recognition) X
previous inputs
. . NLP, Text Summarization,
TNN Parallelized Data. (Text, im- Question Answering, Transla- Attention Mechanism [19],[20]
age, Audio) -
tion, PD
Level of Complexity

454

complexities inherent in the language [24], [25]. However,
these systems, incorporating ML components, remain under
development for requirement of large and good quality an-
notated corpora for effective training [26], [27]. Therefore,
integrating rule-based and ML models require alignment and
coordination to ensure consistency and resolve conflicts be-
tween these components when deployed together in hybrid
tools.

III. EXPERIMENTAL SETUP

In ATD, several studies have established systematic
benchmarks frameworks, based on manually curated and ex-
pertly validated datasets, as the gold-standard for evaluating
Arabic diacritization tools [28], [29]. To determine the most
effective ATD tools for Phase 1 of the proposed framework
[9], we conducted experiment on six diacritization tools.
This experiment focused on evaluating their ability to restore
diacritic marks on Arabic sentences for subsequent process-
ing. We employed a repeated measures (within-subjects) de-
sign [30], in which each sentence (experimental unit) was
processed by every diacritization tool (treatment) in the
same order. This setup was designed to test the hypothesis
that diacritization enhances the semantic clarity of Arabic
text and aligns it more closely with its English counterparts
for the next Phase.

A. Experiment Design

The dataset used in this experiment was designed by Alas-
mary in 2024 and consists of 742 sentences collected from
internet sources covering various topics such as science, art,
sport, and culture [28]. The author introduced this bench-
mark, known as the Character-based Arabic Tashkeel Trans-
former (CATT) dataset, to evaluate different ATD tools. All
sentences were manually diacritized by native Arabic speak-
ers and subsequently validated by experts to establish a gold-
standard reference.

Preparation of the Arabic dataset for assessment involved
several steps to ensure data quality. For example, text nor-
malization was performed to eliminate noise caused by for-
eign symbols (non-Arabic characters). Second, numerical
digits were converted from their digital (numeric) form into
textual form, thereby ensuring the dataset is fully normalized
and ready for use without additional pre-processing. This
conversion is used during preparation, because Arabic num-
bers are represented in different numeral systems depending
on regional preferences and historical influences [31]. TA-
BLE II shows three Arabic numeral systems may appear in
Arabic texts. These pre-processing steps ensure the dataset is
standardised and ready for direct use without extra modifica-
tion.

TABLE II.
NUMERL SYSTEMS IN ARABIC LANGUAGE [30]

System Digit
1-Arabic numerals-European 0123456789
2-Arabic-Indic TAYTIOEYY Y

3-Eastern Arabic-Indic

O TFROTYAS

PROCEEDINGS OF THE FEDCSIS. KRAKOW, POLAND, 2025

B. Evaluation Metrics

We conducted our experiment using six Arabic diacritiza-
tion tools and evaluated their performance by calculating the
WER and the DER metrics. However, Arabic grammar re-
quires different evaluation rules for diacritics on the final let-
ter of words [32] as follow:

* Full Diacritization, including case endings (CE).

» Core-Word Diacritization, excluding CE.

Therefore, WER and DER can be reported with and with-
out case endings. Each rule is used to provide distinct in-
sights into performance measurements. For example, error
rates with CE measures overall performance, including syn-
tactic case endings that influence sentence meaning. Where-
as error rates without CE measures the model’s ability to re-
store word-internal morphology.

The diacritization evaluation' Python pack-
age is used to calculate DER and WER metrics, relying on a
predefined set of Arabic characters stored in its configura-
tion files. The DER is computed by the file der.py as the
percentage of mismatched diacritics-those that differ from
the reference gold-standard text file over the total number of
diacritic comparisons (matches and mismatches), rounded to
two decimal places (see Equation 1). Similarly, the WER is
calculated by the file wer.py as the percentage of mis-
matched words-those that differ from the reference gold-s-
tandard text file over the total number of word comparisons
(matches and mismatches) (see Equation 2).

DER— Number of mismali‘ched diacritics (1)
matched + mismatched
WER — Number of mismatched words 2)

matched + mismatched

Moreover, the BLEU (Bilingual Evaluation Understudy)
metric is used to evaluate the quality of ATD models along-
side WER and DER, providing a comprehensive assessment
of diacritization performance. BLUE metric developed for
machine translation (MT) evaluation, but it can be applied to
measure the output of Arabic diacritization tools [33]. There
are two types of BLEU metrics: word-level and charac-
ter-level. In word-level BLEU, n-gram overlaps (default
n=4) between the gold-standard dataset and the output file
from the ATD models are computed, with mismatched dia-
critic marks counted as errors. Character-level BLEU, on the
other hand, treats each Unicode code-point as a separate to-
ken for comparison.

C. Tools Performance

The following diacritization tools were compared in the
experiment: CAMel Tools [34], Farasa [27], Mishkal [35],
i2Text* online tool, Fine-Tashkeel [29] and Shakkelha [36].
These tools and their associated Python packages were im-
plemented using the NVIDIA A100 GPU runtime on Google

! https://pypi.org/project/diacritization-evaluation/#files
% https://www.i2text.com/diacritize-arabic-text

MONA ALSHEHRI ET AL.: ARAXLM: EVALUATING ARABIC DIACRITIZATION TOOLS FOR CROSS-LANGUAGE PLAGIARISM DETECTION

Colab Pro. Since the experimental setup relies on multiple
packages and modules written in Python, the scripts and files
used in our tests were modified to suit our needs. The modi-
fications are detailed as follows:

e Farasa Tool: The diacritization evalua-
tion package DER and WER using a predefined
set of Arabic characters. However, the output gen-
erated by Farasa included a combined diacritic not
originally present in the package's character file. To
ensure accurate error rate calculation, we added this
new diacritic mark to the set. Notably, this mark re-
sults from the combination of Shaddah and Sukun
into a single diacritic, which is not standard in Ara-
bic but appeared during the diacritization process
by the Farasa tool.

* Mishkal tool, The output text file from the Mishkal
tool represents the Tanween vowel as a combina-
tion double vowel (e.g., Fatha+Fatha). Howev-
er, Tanween and Fatha have different Unicode rep-
resentations when processed as diacritic marks. To
handle this, we updated the diacritization _evalua-
tion pack-age to recognize Fatha + Fatha as
Tanween. During testing, Mishkal produced other
compinged marks, such as Fatha + Kasra,
Kasra + Kasra,and Sukun + Sukun, which
we similarly added to the package’s set of recog-
nized diacritic characters.

* Fine-Tashkeel, We tokenised the input file and set
the parameter max new tokens=512 when in-
voking model.generate to process texts
longer than the model’s default context window of
128 tokens. This tool took long time (e.g., 5 hours)
to diacritize the text file.

IV. RESULTS OF THE EXPERIMENT

The results obtained from applying the selected ATD
models using CATT benchmark are presented below:

A. WER and DER Evaluation

TABLE III and Figure 2 presents the evaluation results
using WER and DER, both with and without case endings
(CE). In the context of Arabic diacritization, lower WER and
DER values indicate fewer errors and therefore better tool
performance.

TABLE III.
WER AND DER IN % OF EVALUATED ATD TOOLS

Diacritization Case Ending % No Case Ending %
Tool WER DER WER DER
CAMeL Tools 75.85 71.71 56.84 69.86
Farasa 65.79 18.04 59.99 18.47
Mishkal 60.92 74.59 39.33 73.16
Fine-Tashkeel 35.70 67.73 30.24 67.28
i2text 61.04 21.14 39.30 17.39
Shakkelha 4745 13.22 37.76 12.0

The results show that Shakkelha and i2text yield the low-
est DER values, particularly when case endings are exclud-
ed, reflecting their effectiveness in diacritic restoration at the
character level. In contrast, the generation of merged and
non-standard diacritic combinations during the diacritization
process affected the performance and the output quality of
tools such as Mishkal and Farasa. These irregular patterns
introduced inconsistencies in the evaluation and interpreta-
tion of the diacritized output, which is reflected in their ele-
vated DER scores despite achieving moderate WER. This in-
dicates that while token-level segmentation can be accept-
able, the character-level precision required for reliable dia-
critic restoration remains insufficient in these tools.

o =

CAVel Tools

5

B 60 0
Erfor %ercentage (%)

Fig 2. WER and DER by Arabic Diacritization Tool (with/without
Case Endings)

Fine-Tashkeel, which leverages a fine-tuned multilingual
transformer model (ByT5) with integrated tokenisation, gen-
erates fully diacritized text by assigning a diacritic to every
character and applying multiple diacritic marks to some
characters. This approach results in a lower WER, as words
are correctly segmented. However, it leads to a higher DER,
since the model introduces unnecessary or additional diacrit-
ics, increasing character-level errors. During the rendering of
diacritic marks, several issues were introduced (see TABLE
IV), including incorrect diacritic substitutions (e.g., fathah
replaced with kasrah), and the addition of unintended punc-
tuation such as parentheses or colons. These errors highlight
the need for enhanced morphological awareness and post-
processing techniques to improve the accuracy of diacritic
restoration and ensure better alignment with gold-standard
references.

TAaBLEIV.
IDENTIFIED ISSUES IN FINE-TASHKEEL' ATD TooL

Gold-Standard Reference Fine-Tashkeel Prediction
o) 3285) 53) 32) S
Jalsll Lesia Gl sl Lexia
A 5 1,58 A 85 4,40

455

456

On the other hand, CAMeL Tools tokenises each word in-
dependently and applies diacritics using the mle.disam-
biguate function. However, it introduces additional dia-
critical marks, such as maddah and hamza, that were not
present in the original undiacritized input. TABLE V com-
pares the output of CAMeL Tools with the gold-standard di-
acritized reference. Each row shows a separate sentence
from the dataset, highlighting the performance of the tool in
restoring Arabic diacritics. It demonstrates inconsistent per-
formance when handling morphological structures and com-
plex verb forms. The model shows orthographic overcorrec-
tions, including the unnecessary insertion of the dagger alif,
duplication of shaddah, and frequent mismatches in gram-
matical case endings. As a result, both its WER and DER are
high due to the inclusion of these extraneous diacritics,
which negatively impact alignment with the reference text.

TABLE V.
IDENTIFIED ISSUES IN CAMEL TooLs' ATD

Gold-Standard Reference CAMeLTools Prediction

C“;: 502 OL“L" é\;ﬂ\ Teage s CA:'

faald jlat ERAEIA] s s . ,
& Gl g il al)

5 e B g 5

L 565 3] ot sl a5 i liad
b

Lo 55 5 dlias sl Jligay it luad
bl

clall G ¢ 3 e 333058 Ul 1

ol e 38 e 5300 o 5l £

&1 sadl St 205l call 1y

e 3550 U8 o) 338 Eadla 1y

Ll 4l) i) 5

k) 1L) T

ey el e

Leaa s el Al 2

B. BLEU-Based Evaluation

To provide a more comprehensive evaluation of diacriti-
zation quality, beside WER and DER, this study incorpo-
rates the Bilingual Evaluation Understudy (BLEU) metric.
BLEU offers a corresponding perspective by measuring the
degree of n-gram overlap between the predicted and refer-
ence outputs.

As represented in TABLE VI and Figure 3, BLEU scores
were calculated at both the word level and character level to
capture accuracy across different linguistic features. In addi-
tion, we employed camel tools.tokenizers to re-
flect token-based alignment accuracy in Arabic text. This
BLEU metrics evaluation enables a more understanding of
how effectively each tool restores diacritics in ways that are
compatible with downstream token-based NLP tasks. The
word-level BLEU scores remain low across all tools, re-
veal-ing penalties for tokenisation mismatches and sensitivi-
ty to n-gram overlap. In contrast, character-level BLEU
scores are higher, as this metric treats each Unicode charac-
ter as a token, making it more suitable for assessing diacritic
placement precision at the subword level. Shakkelha per-
forms well in character-level and tokeniser-based BLEU,
suggesting good subword precision and compatibility with
token-based Arabic NLP frameworks. In contrast, CAMeL
Tools shows the lowest scores across all BLEU metrics, con-

PROCEEDINGS OF THE FEDCSIS. KRAKOW, POLAND, 2025

sistent with its poor performance in WER/DER due to added
and misaligned diacritics within sentence structure.

TaBLE VL.
BLEU IN % OF EVALUATION ATD TooLS

Diacritized % Diacritized with
Tool Word-level Char-level camzlr;it;(;lss ok
BLEU BLEU
CAMeL. 297 66.95 2.94
Tools
Farasa 7.94 71.55 7.87
Mishkal 13.01 78.44 13.27
Fine-
Tashkeel 39.36 86.80 38.74
i2text 12.98 78.32 13.24
Shakkelha 25.07 81.72 24.69

Shakkeha

text

Fine-Tashkeel

Mishkal

Farasa

I

CaMeL Tools . Word-level BLEU
W Charlevel BLEU

B BLEU (camel tools.tokenizers)

|

20) 60 80
BLEU Score (%)

Fig 3. Comparison of BLEU Scores for Arabic Diacritization Tools

We conducted a Unicode-level analysis comparing the
predicted outputs against the gold-standard references. As il-
lustrated in TABLE VII. For instance, this is one diacritized
pair:

Original no-Diacritic Marks:

il U g 58 (g il Baliaadl Clalalll (o Leiald) i gl Sl
ol Lgnia s Bl s (L5 3 llad”

Gold-Standard Reference:
¢ i Ug) o (g g i) B3madl cilalalll & L33 3 i A s
JalSils Lot il Ba¥l s JS 8 g llad”

Predicted by Fine-Tashkeel:)
¢ U5 o (g g i) B3Liaadl chlalall & (s3] 8 (i sad) cndsi
oSl Lemie il 5 Tl s B 3 LeSllad(”

MONA ALSHEHRI ET AL.: ARAXLM: EVALUATING ARABIC DIACRITIZATION TOOLS FOR CROSS-LANGUAGE PLAGIARISM DETECTION

The results showed several differences were identified at
the character encoding level that impact the accuracy and
evaluability of the tool’s output. These irrelevant characters
are introduced during token reconstruction and text format-
ting, and they do not reflect linguistic features. Their pres-
ence negatively affects character-level and word-level met-
rics. Furthermore, the predicted output included duplicated
diacritics (e.g., double fathah, parenthesis, dot) and altered
character spacing that increased the total Unicode code point

TaBLE VII.
ExAMPLE OF UNICODE CHARACTER PROPRIETIES

Gold-Standard Reference Fine-Tashkeel Prediction
ol Leada ol (LSRGt ol
s — U+0648 — ARABIC 3 — U+0648 — ARABIC
LETTER WAW LETTER WAW
& — U+064E — ARABIC & — UH+064E — ARABIC
FATHA FATHA
J — U+0644 — ARABIC J — U+0644 — ARABIC
LETTER LAM LETTER LAM
& — U+064E — ARABIC & — UH+064E — ARABIC
FATHA FATHA
¢ — U+064A — ARABIC < — U+064A — ARABIC
LETTER YEH LETTER YEH
4 — U+0652 — ARABIC 4 — U+0652 — ARABIC
SUKUN SUKUN
o« — U+0633 — ARABIC o+ — U+H0633 — ARABIC
LETTER SEEN LETTER SEEN
& — UH+064E — ARABIC & — U+064E — ARABIC
FATHA FATHA
— U+0020 — SPACE — U+0020 — SPACE
& — U+0645 — ARABIC & — U+0645 — ARABIC
LETTER MEEM LETTER MEEM
& — U+064E — ARABIC & — U+064E — ARABIC
FATHA FATHA
& — U+H0646 — ARABIC & — U+H0646 — ARABIC
LETTER NOON LETTER NOON
& — U+0652 — ARABIC & — U+0652 — ARABIC
SUKUN SUKUN
& — U+0639 — ARABIC & — U+0639 — ARABIC
LETTER AIN LETTER AIN
& — U+064F — ARABIC & — U+064F — ARABIC
DAMMA DAMMA
» — U+0647 — ARABIC s — U+0647 — ARABIC
LETTER HEH LETTER HEH
| — U+0627 — ARABIC & — U+064E — ARABIC
LETTER ALEF FATHA
— U+0020 — SPACE | — U+0627 — ARABIC
< — U+0628 — ARABIC LETTER ALEF
LETTER BEH — U+0020 — SPACE
< — U+0650 — ARABIC < — U+0628 — ARABIC
KASRA LETTER BEH
| — U+0627 — ARABIC < — U+0650 — ARABIC
LETTER ALEF KASRA
J — U+0644 — ARABIC | —» U+0627 — ARABIC
LETTER LAM LETTER ALEF
& — U+0652 — ARABIC J — U+0644 — ARABIC
SUKUN LETTER LAM
< — U+0643 — ARABIC &4 — U+0652 — ARABIC
LETTER KAF SUKUN
| — U+0627 — ARABIC < — U+0643 — ARABIC
LETTER ALEF LETTER KAF
& — U+0645 — ARABIC & — U+064E — ARABIC
LETTER MEEM FATHA
< — U+0650 — ARABIC | — U+0627 — ARABIC
KASRA LETTER ALEF
J — U+0644 — ARABIC » — U+0645 — ARABIC
LETTER LAM LETTER MEEM
< — U+0650 — ARABIC < — U+0650 — ARABIC
KASRA KASRA
J — U+0644 — ARABIC
LETTER LAM
< — U+0650 — ARABIC
KASRA
(— U+0028 — LEFT
PARENTHESIS
Number of characters: 177 Number of characters: 192

count, which was not present in the original input or refer-
ence.

In summary, the Pearson correlation coefficient was used
to calculate the correlation for understanding the linear rela-
tionship between different error rates across Arabic diacriti-
zation tools (see Figure 4). The results indicated that WER
and DER measure different aspects of model performance
and do not strongly correlate with each other. WER is rele-
vant to downstream tasks such as MT and text-to-speech,
where word-level accuracy is critical, while DER provides
assessment of diacritization quality, making it suitable for
evaluating ATD models.These findings highlight the impor-
tance of evaluating both WER and DER separately, and
demonstrate how correlation analysis can guide the selection
or improvement of diacritization models.

-
&
& &
&

.84
13
.12
5
QJ&%
Fig 4. Pearson Correlation Matrix between WER and DER of ATD

10

CE-WER
0.8

CE-DER oo

-04

NOCE-WER

-0.2

NoCE-DER 0.0

&
Y,
£y
%,
o o
%, =
3

V. EwmprIRICAL EVALUATION OF FINE-TUNED TRANSFORMER
MODELS FOR DIACRITIZED ARABIC-ENGLISH STS

In our proposed framework, a transformer-based approach
is employed to effectively address the challenges of cross-
lingual STS, with a particular focus on Arabic-English sen-
tence pairs. The Arabic input is diacritized by Shakkelha pri-
or to training, enabling the model to better disambiguate
meanings and improve alignment with corresponding Eng-
lish texts. By incorporating fine-tuning into our approach,
the transformer encoder is adapted to the specific semantic
and linguistic characteristics of the dataset. In order to select
the appropriate XLM-R variant for our model, we conducted
a comparative evaluation of three XLMR-based transformer
encoders by empirical experimentation. The chosen models
were tested on an Arabic-English STS dataset, STS-Bench-
mark has 250 pairs and introduced in 2017, with Arabic
sentences diacritized before and after training the models.
This STS benchmark contains a variety of semantic similari-
ty levels showing moderate similarity label balance. Then,
the score in this dataset was normalized from [0 — 5] to [0 —
1] for fine-tuning. Normalizing STS scores to the [0 — 1]
range is standard preparation in sentence embedding models
with STS task and is fundamental for correct training and

458

evaluation. The dataset was randomly divided using the
train_test_split function from scikit-learn, with 80% of the
sentence pairs used for training and the remaining 20% re-
served for development (dev) validation. This split was ap-
plied to the pre-processed and normalized STS-labelled CSV
data to ensure a clear separation between training and evalu-
ation samples. The results are summarised in TABLE VIII,
which presents the Pearson correlation coefficients comput-
ed on the development (dev) set before and after fine-tuning.
It shows the effect of fine-tuning five different multilingual
sentence encoders on a SemEval Semantic Textual Similari-
ty task using Arabic text that has diacritization by ATD tool.
The metric used to evaluate the effectiveness of fine-tuning
is the Pearson correlation coefficient (r) between the predict-
ed similarity scores and the gold standard labels, along with
p-values to test statistical significance. Pearson correlation
measures the degree of linear association between the simi-
larity scores produced by the model and the human-annotat-
ed gold-standard similarity scores. Evaluation on the dev set,
rather than the training set, ensures an unbiased estimation
of the model’s generalization performance on unseen data
and avoid the risk of overfitting or performance inflation due
to exposure to training data. In addition to the correlation co-
efficients, corresponding p-values are reported to assess the
statistical significance of the observed correlations. A low p-
value (significant if p < 0.05) indicates that the correlation is
unlikely to have arisen by random chance under the null hy-
pothesis of no association, thereby supporting the reliability
and validity of the model's semantic alignment with human
judgments. Based on these results, model 1 & 2 are statisti-
cally significant because the null hypothesis (Fine-tuning the
encoder on diacritized Arabic text does not affect perfor-
mance on the STS benchmark) is rejected. Therefore, the
paraphrase-xIm-r-multilingual-vl model that achieved the
highest Pearson correlation scores both before and after fine-
tuning was selected for use in AraXLM. Fine-tuning this en-
coder model on diacritized Arabic text enhances semantic
similarity detection, particularly when applied to paraphrase
pretrained multilingual encoder variant.

TABLE VIII.
EXPERIMENTAL RESULTS OF PEARSON CORRELATION PRE- AND
PosT-FINE-TUNING ON DEV ATD SET

Pearson
Correlation
(After)

Pearson
Correlation
(Before)

Model P-Value P-Value

1 | sentence-transformers/paraphrase-
xlm-r-multilingual-v1

2 | sentence-transformers/xim-r-
distilroberta-base-paraphrase-v1

3 | sentence-transformers/stsb-xim-r-
multilingual

4 | xim-roberta-base

32.32% 0.0220 37.36% 0.0070

32.32% 0.0220 37.03% 0.0081

14.66% 0.310 18.96% 0.187

-1.71% 0.90

0.088

9.16%
5.94%

0.53
0.68

5 | xIm-roberta-large -24.32%

VI. COMPARISON WITH OTHER APPROACHES IN STS TRACK2

The SemEval-2017 STS Cross-lingual Arabic-English
task provided benchmark reference systems against which
new approaches can be evaluated [37]. The ECNU [38] and

PROCEEDINGS OF THE FEDCSIS. KRAKOW, POLAND, 2025

BIT [39] systems reported Pearson correlation scores of 0.74
and 0.69 , respectively, on the official test set®. In compari-
son, the fine-tuned variant incorporating diacritized Arabic
text demonstrated competitive performance. The evaluated
textual inputs included:

» The original English sentence from STS (En)

» The original Arabic sentence from STS (Ar)

* The Arabic-to-English translation of Ar (Ar-TrE)

* The diacritized Arabic sentence (ArATD)

* The translation of ArATD into English (ArATD-TrE)

ArATD TrE CosineSimilarity and FAISS IP (Inner Prod-
uct) achieved the highest Pearson correlation scores of 0.78
and 0.77, respectively, outperformed both ECNU and BIT
baselines (see TABLE IX). Additionally, Ar TrE CosSim
exhibited strong performance (Spearman: 0.80, Pearson:
0.77), closely aligning with the top-performing metrics.
These results confirm that leveraging translated and dia-
critized Arabic variants significantly enhances cross-lingual
semantic similarity detection.

TABLE IX.
COMPARATIVE EVALUATION BASED ON STS DATASET

Metric Spearm_an Pearsqn
Correlation Correlation

ECNU NA 0.74
BIT NA 0.69
IP_Score_FAISS 0.81 0.77
ArabicSentence_CosSim 0.75 0.72
Ar_TrE_CosSim 0.8 0.77
ArATD_CosSim 0.35 0.33
ArATD_TrE_CosSim 0.81 0.78

VII. DiIscuUSSION OF THE RESULTS AND CONCLUSION

This study aimed to evaluate the performance of six ATD

tools for Arabic using established metrics, WER, DER, and
BLEU. In response to research sub-question 1: What is the
most effective ATD tool for integration into our proposed
framework (AraXLM)?
Our experiments demonstrated that Shakkelha, a deep learn-
ing-based tool designed for Modern Standard Arabic, out-
performed other models across key evaluation metrics. It
achieved high character-level BLEU scores and low DER
when case endings were excluded, making it the most effec-
tive candidate for integration into the AraXLM framework.

In response to research sub-question 2: What issues are
identified when conducting our experimental study, particu-
larly for Arabic?

Several challenges were noted, including:

* A significant increase in WER (up to 16 percentage
points) when syntactic case endings (CE) were re-
stored.

* https://docs.google.com/spreadsheets/d/1a5ZNg5IqgKnBLaNKHMyVv
mAn2_xc79FqwbXLL5z4ABAk/edit?gid=0#gid=0

MONA ALSHEHRI ET AL.: ARAXLM: EVALUATING ARABIC DIACRITIZATION TOOLS FOR CROSS-LANGUAGE PLAGIARISM DETECTION

» Difficulties in tokenising diacritized Arabic, due to
non-standard outputs (e.g., merged diacritics like
shaddah with sukun, or irregular representations of
tanwin).

e Variability in how tools apply full diacritization,
sometimes leading to redundant or incorrect diacrit-
ic marks.

These issues highlight both linguistic and technical limita-
tions in current ATD models when applied to Arabic mor-
phology and syntax.

The results highlight that fully diacritizing every character
is not always good and may introduce noise or errors, there-
by skewing evaluation metrics and negatively impacting
downstream NLP applications. The merging of diacritics
(e.g., shaddah with sukun) and inconsistent representations
(e.g., tanwin as repeated fatha) complicate tokenization and
evaluation.

These findings emphasize the requirement of standardised
evaluation methodologies and tokenization practices that are
sensitive to Arabic’s unique linguistic structure. The imple-
mentation of robust ATD models is vital not only for accu-
rate diacritization but also as a foundational layer in ad-
vanced NLP tasks such as semantic search and plagiarism
detection across languages. The study also supports the inte-
gration of linguistic knowledge with deep learning models,
showing the way for adaptable and accurate trans-
former-based systems in low-resource languages, such as
Arabic.

Despite the insights gained from the results, it was limited
by the lack of gold-standard diacritized datasets and the nar-
row range of tools, many of which were trained on specific
text domains. Additionally, integrating these tools into
Python required adjustments due to the complexity of Arabic
script and morphology.

In conclusion, this study highlights the importance of ac-
curate ATD for improving ANLP,and supports the integra-
tion of Shakkelha as the most effective tool within the pro-
posed AraXLM framework. The results demonstrate its con-
sistent performance across key evaluation metrics, while ex-
posing limitations in current tokenisation and evaluation
methods. These findings underscore the need for linguisti-
cally informed, standardised pre and post-processing ap-
proaches tailored to the structural complexity of the Arabic
language.

In future work, the next phase investigate how diacritiza-
tion affects cross-lingual semantic similarity in AraXLM.
We plan to integrate ATD outputs within our proposed
AraXLM framework to enhance performance in cross-lin-
gual semantic similarity tasks with FAISS vector-based.
This integration aims to improve accuracy, contextual adapt-
ability, and the robustness of transfer learning systems in
Arabic-English applications.

REFERENCES

[1] M. Elyaakoubi and A. Lazrek, “Justify just or just justify,” Journal of
Electronic Publishing,vol. 13, no. 1, 2010. doi:
10.3998/3336451.0013.105.

(2]
B3]
(4]

(3]

(6]

(7]

(8]

]

[10]

(1]

[12]

[13]

[14]

[15]

[16]

[17]

(18]

[19]

[20]

[21]

[22]

[23]

[24]

459

R. Rjeily, Cultural Connectives: Bridging the Latin and Arabic Alpha-
bets, vol. 1. Brooklyn, NY: Mark Batty Publisher, 2021.

M. Hssini and A. Lazrek, “Design of Arabic Diacritical Marks,” Inter-
national Journal of Computer Science, vol. 8, no. 3, May 2011.

M. Maamouri, A. Bies, and S. Kulick, 'Diacritization: A Challenge to
Arabic Treebank Annotation and Parsing’, the International Confer-
ence on the Challenge of Arabic for NLP/MT , pp. 35-47, 2006.

S. Alzahrani, “Arabic plagiarism detection using word correlation in
N-Grams with K-overlapping approach,” Taif, 2015. https://ceur-
ws.org/Vol-1587/T5-2.pdf

E. M. B. Nagoudi et al., “2L-APD: A two-level plagiarism detection
system for Arabic documents,” Cybernetics and Information Tech-
nologies, vol. 18, no. 1, pp. 124-138, 2018. doi: 10.2478/cait-2018-
0011.

B. Akanksha et al., “A survey on plagiarism detection,” International
Journal of Computer Applications, vol. 10, no. 8, pp. 2359-2365,
2017. http://www.ripublication.com

M. F. Akan et al., “An analysis of Arabic-English translation: Prob-
lems and prospects,” Advances in Language and Literary Studies, vol.
10, no. 1, p. 58, Feb. 2019. doi: 10.7575/aiac.alls.v.10n.1p.58.

M. Alshehri, N. Beloff, and M. White, “AraXLM: New XLM-
RoBERTa based method for plagiarism detection in Arabic text,” in
Intelligent Computing, K. Arai, Ed., Cham: Springer, 2024, pp. 81-96.
doi: 10.1007/978-3-031-62277-9 6

M. M. Elmallah et al., “Arabic diacritization using morphologically
informed character-level model,” in Proc. LREC-COLING 2024, Tori-
no, Italy: ELRA and ICCL, May 2024, pp. 1446—1454. https://aclan-
thology.org/2024.Irec-main.128/

K. Shaalan and Khaled, “Rule-based approach in Arabic natural lan-
guage processing,” International Journal on Information and Commu-
nication Technologies, vol. 3, p. 11, May 2010.

A. Chennoufi and A. Mazroui, “Morphological, syntactic and diacrit-
ics rules for automatic diacritization of Arabic sentences,” Journal of
King Saud University - Computer and Information Sciences, vol. 29,
no. 2, pp. 156-163, 2017. doi: 10.1016/j.jksuci.2016.06.004.

M. Mézard and J.-P. Nadal, “Learning in feedforward layered net-
works: the tiling algorithm,” Journal of Physics A, vol. 22, pp. 2191—
2203, 1989. https://api.semanticscholar.org/CorpusID:44826720

W. Almanaseer et al., “A deep belief network classification approach
for automatic diacritization of Arabic text,” Applied Sciences, vol. 11,
no. 11, 2021. doi: 10.3390/app11115228.

N. Srivastava et al., “Dropout: A simple way to prevent neural net-
works from overfitting,” Journal of Machine Learning Research, vol.
15, no. 1, pp. 1929-1958, Jan. 2014.

Y. Alalawi et al., “A CNN-based Arabic diacritic symbol recognition
system using domain adaptation,” in Proc. 8th Int. Conf. Sustainable
Information Engineering and Technology (SIET), New York, USA:
ACM, 2023, pp. 23-32. doi: 10.1145/3626641.3627212.

H. Hewamalage et al., “Recurrent neural networks for time series
forecasting: Current status and future directions,” International Jour-
nal of Forecasting, vol. 37, no. 1, pp. 388-427, 2021. doi: 10.1016/j.i-
jforecast.2020.06.008.

Y. Belinkov and J. Glass, “Arabic diacritization with recurrent neural
networks,” in Proc. EMNLP 2015, Lisbon, Portugal: ACL, Sep. 2015,
pp. 2281-2285. doi: 10.18653/v1/D15-1274.

A. Vaswani et al., “Attention is all you need,” in Proc. NeurlPS 2017,
2017. http://arxiv.org/abs/1706.03762

A. Assad et al., “Transformer-based automatic Arabic text diacritiza-
tion,” Sustainable Engineering and Innovation, vol. 6, no. 2, pp. 285—
296, Nov. 2024. doi: 10.37868/sei.v6i2.id305.

Y. Bengio et al., “Learning long-term dependencies with gradient de-
scent is difficult,” IEEE Transactions on Neural Networks, vol. 5, no.
2, pp. 157-166, Mar. 1994. doi: 10.1109/72.279181.

A. Gillioz, J. Casas, E. Mugellini and O. Abou Khaled, “Overview of
the Transformer-based Models for NLP Tasks,” Proceedings of the
Federated Conference on Computer Science and Information Systems,
vol. 21, pp. 179-183, 2020, doi: 10.15439/2020F20.

R. Al-Sabri and J. Gao, “LAMAD: A linguistic attentional model for
Arabic text diacritization,” in Findings of the Association for Compu-
tational Linguistics: EMNLP 2021, Punta Cana, Dominican Republic:
ACL, Nov. 2021, pp. 3757-3764. doi: 10.18653/v1/2021.find-
ings-emnlp.317.

M. Al-Badrashiny et al., “A layered language model based hybrid ap-
proach to automatic full diacritization of Arabic,” in Proc. 3rd Arabic

460

[25]

[26]

[27]

(28]

[29]

[30]

311

[32]

[33]

NLP Workshop, Valencia, Spain: ACL, Apr. 2017, pp. 177-184. doi:
10.18653/v1/W17-1321.

H. Alagel and K. El Hindi, “Improving diacritical Arabic speech
recognition: Transformer-based models with transfer learning and hy-
brid data augmentation,” Information, vol. 16, no. 3, 2025. doi:
10.3390/info16030161.

O. Obeid et al., “CAMeL Tools: An open source Python toolkit for
Arabic NLP,” 2020. http://qatsdemo.cloudapp.net/farasa/

A. Abdelali et al., “Farasa: A fast and furious segmenter for Arabic,”
in Proc. NAACL Demonstrations, San Diego, CA: ACL, Jun. 2016,
pp. 11-16. doi: 10.18653/v1/N16-3003.

F. Alasmary et al., “CATT: Character-based Arabic Tashkeel Trans-
former,” arXiv preprint, vol. abs/2407.03236, 2024. https://api.seman-
ticscholar.org/CorpusID:270924323

B. Al-Rfooh et al., “Fine-Tashkeel: Fine-tuning byte-level models for
accurate Arabic text diacritization,” in Proc. IEEE JEEIT 2023, pp.
199-204, 2023. https://api.semanticscholar.org/CorpusID:257767345
B. M. King, “Analysis of variance,” in International Encyclopedia of
Education, 3rd ed., Jan. 2009, pp. 32-36. doi: 10.1016/B978-0-08-
044894-7.01306-3.

A. Lazrek, “Arabic mathematical notation,” National Institute of Stan-
dards and Technology, USA, 2006. https://www.w3.org/TR/2006/
NOTE-arabic-math-20060131/

K. Darwish et al., “Arabic diacritization: Stats, rules, and hacks,” in
Proc. 3rd Arabic NLP Workshop, Valencia, Spain: ACL, Apr. 2017,
pp. 9-17. doi: 10.18653/v1/W17-1302.

A. Fadel et al., “Neural Arabic text diacritization: State of the art re-
sults and a novel approach for Arabic NLP downstream tasks,” 4CM

[34]

[35]

[36]

[37]

[38]

[39]

PROCEEDINGS OF THE FEDCSIS. KRAKOW, POLAND, 2025

Transactions on Asian and Low-Resource Language Information Pro-
cessing, vol. 21, no. 1, Jan. 2022. doi: 10.1145/3470849.

0. Obeid et al., “CAMeL Tools: An open source Python toolkit for
Arabic NLP,” in Proc. LREC 2020, Marseille, France: ELRA, May
2020, pp. 7022—7032. https://aclanthology.org/2020.1rec-1.868/

T. Zerrouki, “Towards an open platform for Arabic language process-
ing,” 2020. doi: 10.13140/RG.2.2.29882.82881.

A. Fadel et al., “Neural Arabic text diacritization: State of the art re-
sults and a novel approach for machine translation,” in Proc. 6th
Workshop on Asian Translation, Hong Kong, China: ACL, Nov. 2019,
pp. 215-225. doi: 10.18653/v1/D19-5229.

D. Cer, M. Diab, E. Agirre, 1. Lopez-Gazpio, and L. Specia, “Se-
mEval-2017 Task 1: Semantic Textual Similarity — Multilingual and
Cross-lingual Focused Evaluation,” in Proceedings of the 11th Inter-
national Workshop on Semantic Evaluation (SemEval-2017), Vancou-
ver, Canada, Aug. 2017, pp. 1-14.

Y. Tian, Y. Song, H. Xia, Y. Li, and Q. Zhang, “ECNU at
SemEval-2017 Task 1: Leverage Kernel-Based Traditional NLP Fea-
tures and Distributed Word Representations for Semantic Textual
Similarity Estimation,” in Proc. 11th Int. Workshop on Semantic Eval-
uation (SemEval-2017), Vancouver, Canada, Aug. 2017, pp. 125-131.
https://aclanthology.org/S17-2015

H. Wu, H. Huang, P. Jian, Y. Guo, and C. Su, “BIT at SemEval-2017
Task 1: Using Semantic Information Space to Evaluate Semantic Tex-
tual Similarity,” in Proc. 11th Int. Workshop on Semantic Evaluation
(SemEval-2017), Vancouver, Canada, Aug. 2017, pp. 77-84.
https://aclanthology.org/S17-2007

