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Abstract—In this study, we present a data-driven method for
preserving the length of cubic Bézier curves under external
deformations, specifically in the context of hair strand simulation.
By sampling millions of original and displaced control point con-
figurations within a 2D bounded grid space, we construct a large
dataset of Bézier curve pairs and compute the corresponding
tfinal parameters required to preserve arc length. A lightweight
artificial neural network (ANN) architecture is trained on this
dataset to predict tfinal given 16 features representing the coor-
dinates of initial and displaced control points. The model achieves
a low mean absolute error (MAE) of 0.00091992 on the test set,
ensuring high predictive accuracy. Performance evaluations show
that the ANN can predict tfinal values for up to 200k hair strands
in approximately 8 seconds on a standard laptop, aligning with
the average number of strands on a human scalp. This approach
replaces computationally expensive numerical length-matching
operations with a fast, inference-based framework, allowing for
efficient simulation of realistic, deformable hair motion while
maintaining individual strand lengths.

Index Terms—Hair simulation, hair modelling, Bézier curve,
artificial neural network

I. INTRODUCTION

A SINGLE human hair strand, though microscopically

thin, represents a significant computational unit in com-

puter graphics due to its complex physical properties. A

realistic digital human typically involves simulating tens of

thousands of strands—up to 100,000 on average—making

hair one of the most resource-intensive components in real-

time rendering [1]. In modern video games, virtual reality,

and interactive applications, simulating lifelike hair movement

under dynamic motion and external forces such as wind is

essential but remains a non-trivial challenge. A fundamental

and often under-addressed issue in this context is preserving

the physical length of each strand, especially during rapid

motion or deformation.

Hair simulation traditionally relies on strand-based mod-

els, which represent each hair as a discrete chain of mass

points connected by springs. These models offer fine-grained

control over local deformation such as bending, twisting,

and inter-strand collision handling [2,3]. Mass-spring systems,

for example, have been widely used due to their simplicity

and real-time compatibility. However, ensuring inextensibil-

ity—the preservation of strand length—becomes problematic,

especially under dynamic motion, where stiff springs introduce

instability [3,4]. To improve numerical robustness, implicit

integration schemes have been introduced [4,5], but their

computational overhead makes them impractical for real-

time environments. More recent advancements, such as the

Augmented Mass-Spring (AMS) model, introduce ghost rest-

shapes and biphasic coupling to improve simulation stability

and strand length preservation during movement and collisions

[6]. Additionally, Müller et al. proposed the Dynamic Follow-

The-Leader (DFTL) method, which enforces inextensibility

through a geometric update rule and achieves real-time perfor-

mance with a single iteration per frame [7]. Another common

artifact in strand-based systems is initial sagging caused by

gravitational forces at the start of the simulation. To overcome

this, Hsu et al. developed a sag-free initialization framework,

which establishes a static equilibrium and neutral torque

configuration prior to dynamic simulation. This significantly

reduces unwanted deformation and helps preserve the intended

hairstyle [8]. Furthermore, Position-Based Dynamics (PBD)

has become a foundational strand-based method by directly

enforcing positional constraints such as segment length. PBD

is widely used in interactive simulations due to its robustness

and control [9].

In contrast, volume-based methods treat hair as a continuous

medium, modeling global movement and shape using tools

such as fluid dynamics, volumetric mass models, or free-form

deformations [10,11]. These approaches offer better scalability

for large hair volumes and can efficiently capture overall flow

and motion. However, they often sacrifice individual strand

resolution, which is critical for detailed hairstyles and physical

realism. For example, continuum models [10] and lattice-based

structures [11] can simulate general hair behavior but lack

fidelity in capturing high-frequency deformations or enforcing

per-strand constraints like inextensibility. As a result, while

volume-based methods are advantageous for broad dynamics,

they are less suited for applications requiring high detail, such

as cinematic effects or close-up character interactions.

Given the respective limitations of strand- and volume-

based approaches, researchers have increasingly turned to

hybrid simulation methods. These techniques are designed

to leverage the physical fidelity of strand-level models while
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incorporating the computational efficiency and stability offered

by volume-based or constraint-based frameworks. One such

approach is Position-Based Dynamics (PBD), which elimi-

nates the need for solving complex differential equations and

enforces constraints directly on particle positions [12]. Shape

matching methods [9] and meshless deformation frameworks

have also been explored to stabilize motion while avoiding

stiffness artifacts common in traditional systems. Another line

of hybrid research adopts rigid body inspired models using

serial chains, enabling accurate modeling of both local strand

behavior and global transformations [13,14]. These techniques

integrate strand-level articulation within a larger kinematic

or physics-based framework to improve simulation realism

without sacrificing computational efficiency.

Recent years saw, the emergence of data-driven tech-

niques has opened new possibilities in hair simulation. Neural

network-based methods aim to approximate complex physical

behaviors without relying on explicit solvers, making them

especially suitable for real-time environments. One such ap-

proach, Quaffure [15], introduces a quasi-static neural model

trained with a self-supervised loss function to predict plausible

strand deformations across a variety of poses and hairstyles.

By eliminating the need for simulated training data, Quaffure

achieves high temporal stability and runs efficiently on con-

sumer hardware, bridging the gap between physical accuracy

and performance.

Complementing this trend, Dr.Hair [16] addresses the chal-

lenge of strand-level reconstruction from visual input. Lever-

aging a differentiable rendering framework, the method recon-

structs scalp-connected hair strands directly from multi-view

images without pretraining, accurately preserving both strand

length and directional flow. These techniques exemplify how

learning-based methods can supplement or replace traditional

solvers for specific simulation tasks.

Alongside advances in simulation, efficient rendering meth-

ods have also evolved to meet the demands of real-time

graphics. Hair mesh systems, such as the one introduced

by Yuksel et al. [17], generate strand geometry procedu-

rally on the GPU at render time. This drastically reduces

memory usage while maintaining geometric fidelity, allowing

for the real-time rendering of hundreds of uniquely styled

characters. Together, these learning- and rendering-focused

approaches highlight a growing trend toward hybrid solutions

that integrate physical modeling, data-driven inference, and

hardware-aware rendering strategies to advance the realism

and scalability of hair simulation systems.

Building on the potential of curve-based modeling and

hybrid techniques, recent studies have explored combining

Bézier representations with physically inspired solvers and

mathematical optimization techniques—such as the use of

Budan–Fourier analysis for root bounding in curve behavior

prediction [18] and contour tracing algorithms for shape recon-

struction in structured objects [19]. A notable example is the

work which integrated Bézier curves with the Articulated Body

Method (ABM) to simulate dynamic hair strand behavior with

real-time performance [20]. Their model treats each strand

as a Bézier curve and applies ABM to resolve motion and

constraint forces efficiently. These approaches reinforce the

growing viability of combining geometric curve modeling with

physically inspired or learning-based systems—an idea central

to our study, which uses Bézier curves in conjunction with

artificial neural networks to predict strand deformation under

motion and external forces.

This study specifically focuses on the problem of strand

length preservation during hair motion and external interac-

tions, such as wind. We critically analyze existing approaches

from the perspective of both physical accuracy and real-

time performance, highlighting their respective advantages and

limitations. Based on this analysis, we propose directions for

enhancing simulation fidelity while maintaining computational

feasibility. A shallow artificial neural networks (ANN) can

accurately and efficiently predict the target final curve param-

eter for achieving length-preserving transformations of hair

strands represented by Bezier curves. Due to their parametric

structure, differentiability, and compact representation, Bezier

curves inherently support scalable and generalized deformation

modeling. This makes them particularly advantageous for

learning-based strand manipulation, even under varying strand

complexities. This study was initiated with this hypothesis

in mind, aiming to validate the effectiveness of lightweight

ANN architectures in performing accurate and efficient strand

deformations through Bezier-based geometric encoding.

II. MATERIALS AND METHODS

In this study, we propose a data-driven approach based on

ANN to maintain the length of cubic Bezier curves under

external deformations, specifically aimed at simulating individ-

ual hair strands affected by physical forces while preserving

their natural length. This section details the process of data

generation, Bezier curve modeling, and ANN-based prediction

methodology.

A. Bézier Curve and Hair Modelling

A cubic Bézier curve is defined by four control points:

A,B,C, and D, and is expressed parametrically as in equation

(1):

P (t) = (1− t)3A+ 3(1− t)2tB + 3(1− t)t2C + t3D (1)

Where t ∈ [0, 1]. As the parameter t varies from 0 to 1, the

curve smoothly transitions from A to D, influenced in shape

by intermediate control points B and C. This property makes

Bézier curves particularly well-suited for modeling flexible

and natural curves such as hair strands. For example, let

us consider a hair strand modeled by a Bézier curve with

the control points at locations (x, y) : A = (0, 0), B =
(0.25, 1.0), C = (0.75,−1.0) and D = (1, 0). This config-

uration produces a slightly wavy shape representative of a

natural hair strand. Figure 1 illustrates this cubic Bézier curve

constructed from the defined control points.

An important advantage of using Bézier curves in hair

simulation is that each point on the curve can be independently
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Fig. 1. Bézier Curve for a Wavy Hair Strand

computed by evaluating the Bézier formula at any value

of t. For instance, stepping through the interval [0, 1] in

increments of 0.1 allows for the generation of discrete, evenly

spaced points along the hair strand. This makes the approach

inherently parallelizable and computationally efficient for sim-

ulating thousands of strands simultaneously.

B. Bézier Curve Representation and Length Estimation for

Data Generation

We consider a cubic Bézier curve defined by four control

points: A,B,C, and D. Points A and D are fixed at coordinates

(0, 0) and (1, 0), respectively, defining the endpoints of a hair

strand. Control points B and C are allowed to locate within a

region [0, 1] × [−1, 1] (point space region shown in Figure 1

with 1 unit width and 2 unit height) with a spatial resolution

of 0.1. This resolution results in a discrete point cloud of 231

(11x21) possible positions for each of B and C. Although 231

grid points are defined, combining different configurations of

initial and moved control points can yield tens of millions

of curve pairs. This vast combinatorial space ensures that

the dataset captures a wide range of plausible deformations

necessary for training a reliable predictive model. However,

since many initial and subsequent curves (moved curves)

would be undesirably close to each other at a resolution of

0.1, two distinct region location maps were constructed. The

first one is a point space with 0.2 resolution at even position

values (e.g., 0, 0.2, 0.4), and the second one is a point space

with 0.2 resolution at odd position values (e.g., 0.1, 0.3, 0.5).

Using each position space separately, initial and subsequent

curve locations were determined, and some unsuitable curve

pairs were filtered out. Then, to ensure an acceptable data

loading time and avoid memory issues, a dataset consisting of

7.5 million samples was constructed through random selection.

Each sample consists of 16 input features: the x and y

coordinates of the original and moved control points (8 control

points with sixteen x and y components), and one output value:

the corresponding tfinal that preserves the curve length. Figure

2 illustrates a unit square point cloud at 0.1 resolution, with

an example of original and subsequent cubic Bézier curves

generated using a specific configuration of the control points.

For each data sample, the corresponding tfinal values were

computed to ensure that the curve length at the subsequent

position is equal to that at the initial position.

To simulate external influences, new displaced positions B′

and C ′ are sampled independently from the same discrete

space. For each A−B−C−D configuration and its subsequent

curve counterpart A − B′ − C ′ −D, the curve length of the

original and deformed curve is computed. The first curve is

parameterized over the interval t ∈ [0, 1], and the moved

curve length is evaluated using numerical integration (e.g.,

Simpson’s rule). Then, the moved curve A − B′ − C ′ − D
is sampled over t ∈ [0, tfinal] such that its arc length is

numerically equal to the original curve.

Fig. 2. Example of original and moved Bézier curves

C. Scaling Bézier Curves to Any Rectangular Domains

Although the dataset is generated within a [0, 1] × [−1, 1]
region, Bézier curves can be reliably applied to arbitrarily

positioned rectangular regions. This is achieved through a

combination of translation and axis-wise scaling that aligns

the rectangular configuration with the ANN’s reference point

space domain. Let a rectangular region be defined by hori-

zontal bounds [xmin, xmax] and vertical bounds [ymin, ymax].
To align this region with the reference point space, we first

translation and then scaling operations as in (2), (3) and (4):

Translation: Shift the lower-left corner of the rectangle to

the origin by subtracting (xmin, ymin) from all control points.

Scaling: Normalize the width and height of the rectangle

using the scale factors:

sx = xmax − xmin (2)

sy =
ymax − ymin

2
(3)
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Each control point P = (x, y) is then transformed to

reference region coordinates by:

Punit =

(

x− xmin

sx
,
y − ymin

sy

)

(4)

This transformation allows both original and displaced

control points to be converted into a form compatible with

the ANN trained on reference region samples. Once the ANN

predicts the tfinal value, the Bézier curve can be redrawn

directly in the rectangular domain using the actual (moved)

control points A,B′, C ′, and D. This method preserves the

accuracy of the curve length while adapting the model to

diverse geometric contexts.

D. Neural Network Model

To approximate the mapping from control point displace-

ment to the required value, a feed-forward artificial neural

network (ANN) was constructed. The ANN model receives a

16-dimensional feature vector as input—comprising the x and

y coordinates of original and displaced control points (total of

8 points) —and outputs a single scalar. The network architec-

ture consists of four fully connected layers implemented using

the Keras Sequential API:

model = Sequential([

Dense(128, activation=’relu’,input_shape=(16,)),

Dense(64, activation=’relu’),

Dense(32, activation=’relu’),

Dense(1, activation=’sigmoid’)

])

This shallow and lightweight model architecture is inten-

tionally selected to enable extremely fast predictions, which

is essential when simulating thousands of hair strands in real-

time applications. Although the model depth is limited, its

predictive power is effectively enhanced by using a very large

and diverse training set of more than 7 million Bézier curve

configurations.

To train the network, the dataset was split into 80% training

and 20% test sets. The target values were normalized using a

MinMaxScaler. The model was trained with a batch size

of 1000 for up to 350 epochs using the Adam optimizer.

Early stopping and model checkpointing strategies were used

to prevent overfitting and retain the best-performing model.

After training, the best model achieved low error on unseen

data, with the mean absolute error and sum of absolute errors

computed during evaluation. The overall strategy demonstrates

that by combining a simple ANN structure with a large and

carefully prepared dataset, highly accurate and computation-

ally efficient predictions can be achieved.

This ANN framework enables the rapid estimation of values

for potentially thousands of hair strands affected by external

factors, allowing for efficient regeneration of hair geometry

while maintaining individual strand lengths. The proposed

solution thus replaces computationally expensive numerical

searches with a lightweight inference mechanism. The network

is trained using the mean absolute error (MAE) as the loss

function. MAE is a commonly used regression metric that

quantifies the average magnitude of the errors between pre-

dicted values and the actual ground truth values. It is defined

by equation (5).

MAE =
1

n

n
∑

i=1

|tfinal gt − tfinal pr| (5)

Where n, tfinal gt and tfinal pr are number of samples, the

ground truth and predicted time values, respectively. MAE is

expressed in the same units as the target variable and provides

an intuitive measure of model accuracy. It is especially useful

when all errors are equally weighted.

III. RESULTS AND DISCUSSION

All experiments were conducted on a laptop running Win-

dows 10 Pro, equipped with a 12th Gen Intel® Core™ i7-

12700H processor (2.30 GHz, 14 cores, 20 threads), 32 GB

of RAM and NVIDIA GeForce RTX 3060 Laptop GPU. The

training and testing of the proposed ANN model were imple-

mented using the Keras library (Python 3.9) with TensorFlow.

Hair strand movements under external forces were simulated

using MATLAB R2021a.

Table 1 gives the training, testing and prediction details of

the study. This study used a training dataset of 6 million sam-

ples (80% of the full dataset), and 1.5 million samples were

reserved for testing. The model achieved a test set MAE of

0.00091992, indicating high predictive accuracy in estimating

the parameter for length-preserving curve transformations. In

this context, the MAE corresponds to the average deviation in

the predicted tfinal value per hair strand. It does not directly

represent a geometric length error but rather a deviation in

the Bézier time parameter that determines where the curve

should be truncated to preserve length. For example, a MAE of

0.00091992 implies that, on average, the predicted truncation

point deviates from the true value by less than one-thousandth

of the normalized parameter range [0, 1]. Assuming that a

single hair strand may undergo deformation multiple times,

such a deviation would only accumulate to a 1% error after ap-

proximately 5.48 independent displacements for 0.5 of tfinal
true value (5.48×0.00091992/0.5 ≈ 0.01). This indicates that

even under sustained movement, the predicted tfinal remains

sufficiently accurate to maintain a nearly constant hair length.

This also suggests that increasing the amount of training

data and using more powerful computational hardware could

further reduce the MAE, improving the model’s suitability

for long-duration hair simulations under dynamic conditions.

Table 1 also presents prediction runtime for varying batch

sizes. The model predicted values for 1, 1k, 10k, 100k, and

200k samples (batch size) in approximately 0.0579, 0.0994,

0.5296, 4.09, and 8.11 seconds, respectively. The inclusion of

200k samples simulates a full-head hair scenario, as this figure

closely matches the average number of hair strands on a human

scalp. While the current implementation achieves prediction

times of approximately 8 seconds for 200k samples, this du-

ration may be considered borderline for real-time applications.

However, this benchmark was obtained on a standard laptop
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without GPU acceleration. Since the prediction task involves

a shallow ANN with only a few dense layers, it is likely that

the inference time could be significantly reduced on optimized

hardware or with additional engineering effort. Employing

GPU-accelerated inference and incorporating preprocessing

strategies such as dimensionality reduction or data batching

may potentially improve performance and make the model

more suitable for time-sensitive applications. The results in

Table 1 pertain to the prediction of tfinal values rather than

complete physical simulation, and thus no direct baseline

comparison is available in the literature.

TABLE I
TRAINING, TESTING AND PREDICTION DETAILS OF THE STUDY

Number of train data (0.8 split ratio) 6 milion

Number of test data (0.2 split ratio) 1.5 million

MEA test error 0.00091992

Prediction time (second)
[mean (std) for 5 trials]

1 sample 0.05795540 (0.002448)
1k samples 0.09941540 (0.013011)
10k samples 0.52964460 (0.039699)
100k samples 4.08589480 (0.188377)
200k samples 8.10715880 (0.45811)

Figure 3 illustrates an initial hair strand (blue curve) and

its multiple deformed configurations (red curves) resulting

from external influences applied to its control points. Despite

visual variations in trajectory, all red curves are generated

by adjusting the tfinal parameter through the trained ANN

model such that their arc lengths are preserved relative to the

initial curve. This figure demonstrates the model’s effective-

ness in maintaining strand length consistency under dynamic

conditions, validating the proposed method for realistic hair

motion simulation. Based on the curve analysis illustrated in

the figure, the original strand represented by the blue curve has

a computed length of 4.803 units. However, the final (sixth)

red strand—generated with a cumulative tfinal deviation of

0.00091992 per step—exhibits a length of 4.876 units. This

results in an absolute error of 0.073 units, corresponding

to a relative error of approximately 1.52% compared to the

original. These findings demonstrate that even minor per-step

deviations in tfinal can accumulate and lead to noticeable

differences in physical attributes such as strand length. Con-

sequently, preserving the original length with high fidelity

becomes essential, especially in applications requiring physical

realism, such as animation and real-time hair simulation.

IV. CONCLUSION

This work proposes a neural network-based approach to

estimate the parameter tfinal for cubic Bézier curves subjected

to external deformation, with the goal of preserving hair strand

length in dynamic 2D simulations. By generating a dataset of

7.5 million curve configurations and training a shallow ANN

with high generalization capability, the study demonstrates

that accurate tfinal predictions can be achieved rapidly. The

resulting MAE, although referring to the time domain rather

than direct spatial error, accumulates to only 1% deviation

after approximately 5 sequential displacements—suggesting

that strand length is effectively preserved over long-term

Fig. 3. An initial strand (blue) and its six subsequent movements (red). The
cumulative spatial error resulting from an average MAE of 0.00091992 in
the predicted tfinal values is illustrated. Blue circles mark the true terminal
positions, while red crosses indicate the erroneous positions due to cumulative
prediction error.

movement. The ANN’s prediction times for up to 200k

strands—comparable to the number of hairs on a typical

human scalp—are under 10 seconds, and can be further

reduced with more powerful hardware or model optimization.

These findings support the viability of ANN-based inference

for realistic and computationally efficient hair simulations.

In future work, this framework will be extended to simulate

the dynamic motion of entire hair assemblies composed of

Bézier strands under various external forces, where each

strand’s length is regulated via ANN-predicted tfinal values.

Additionally, further training on a larger dataset is planned

to reduce prediction error even more, ensuring higher fidelity

in long-duration and high-frequency deformation scenarios.

Although this study is currently limited to 2D simulations,

the architecture of the dataset generation and ANN model are

fully generalizable to 3D Bezier strand representations. Future

work will explore 3D vector space adaptation for each control

point coordinate.
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