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Abstract—In this study, we present a data-driven method for
preserving the length of cubic Bézier curves under external
deformations, specifically in the context of hair strand simulation.
By sampling millions of original and displaced control point con-
figurations within a 2D bounded grid space, we construct a large
dataset of Bézier curve pairs and compute the corresponding
trinai parameters required to preserve arc length. A lightweight
artificial neural network (ANN) architecture is trained on this
dataset to predict ¢, given 16 features representing the coor-
dinates of initial and displaced control points. The model achieves
a low mean absolute error (MAE) of 0.00091992 on the test set,
ensuring high predictive accuracy. Performance evaluations show
that the ANN can predict ¢ 7;,,,; values for up to 200k hair strands
in approximately 8 seconds on a standard laptop, aligning with
the average number of strands on a human scalp. This approach
replaces computationally expensive numerical length-matching
operations with a fast, inference-based framework, allowing for
efficient simulation of realistic, deformable hair motion while
maintaining individual strand lengths.

Index Terms—Hair simulation, hair modelling, Bézier curve,
artificial neural network

I. INTRODUCTION

SINGLE human hair strand, though microscopically
A thin, represents a significant computational unit in com-
puter graphics due to its complex physical properties. A
realistic digital human typically involves simulating tens of
thousands of strands—up to 100,000 on average—making
hair one of the most resource-intensive components in real-
time rendering [1]. In modern video games, virtual reality,
and interactive applications, simulating lifelike hair movement
under dynamic motion and external forces such as wind is
essential but remains a non-trivial challenge. A fundamental
and often under-addressed issue in this context is preserving
the physical length of each strand, especially during rapid
motion or deformation.

Hair simulation traditionally relies on strand-based mod-
els, which represent each hair as a discrete chain of mass
points connected by springs. These models offer fine-grained
control over local deformation such as bending, twisting,
and inter-strand collision handling [2,3]. Mass-spring systems,
for example, have been widely used due to their simplicity
and real-time compatibility. However, ensuring inextensibil-
ity—the preservation of strand length—becomes problematic,
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especially under dynamic motion, where stiff springs introduce
instability [3,4]. To improve numerical robustness, implicit
integration schemes have been introduced [4,5], but their
computational overhead makes them impractical for real-
time environments. More recent advancements, such as the
Augmented Mass-Spring (AMS) model, introduce ghost rest-
shapes and biphasic coupling to improve simulation stability
and strand length preservation during movement and collisions
[6]. Additionally, Miiller et al. proposed the Dynamic Follow-
The-Leader (DFTL) method, which enforces inextensibility
through a geometric update rule and achieves real-time perfor-
mance with a single iteration per frame [7]. Another common
artifact in strand-based systems is initial sagging caused by
gravitational forces at the start of the simulation. To overcome
this, Hsu et al. developed a sag-free initialization framework,
which establishes a static equilibrium and neutral torque
configuration prior to dynamic simulation. This significantly
reduces unwanted deformation and helps preserve the intended
hairstyle [8]. Furthermore, Position-Based Dynamics (PBD)
has become a foundational strand-based method by directly
enforcing positional constraints such as segment length. PBD
is widely used in interactive simulations due to its robustness
and control [9].

In contrast, volume-based methods treat hair as a continuous
medium, modeling global movement and shape using tools
such as fluid dynamics, volumetric mass models, or free-form
deformations [10,11]. These approaches offer better scalability
for large hair volumes and can efficiently capture overall flow
and motion. However, they often sacrifice individual strand
resolution, which is critical for detailed hairstyles and physical
realism. For example, continuum models [10] and lattice-based
structures [11] can simulate general hair behavior but lack
fidelity in capturing high-frequency deformations or enforcing
per-strand constraints like inextensibility. As a result, while
volume-based methods are advantageous for broad dynamics,
they are less suited for applications requiring high detail, such
as cinematic effects or close-up character interactions.

Given the respective limitations of strand- and volume-
based approaches, researchers have increasingly turned to
hybrid simulation methods. These techniques are designed
to leverage the physical fidelity of strand-level models while
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incorporating the computational efficiency and stability offered
by volume-based or constraint-based frameworks. One such
approach is Position-Based Dynamics (PBD), which elimi-
nates the need for solving complex differential equations and
enforces constraints directly on particle positions [12]. Shape
matching methods [9] and meshless deformation frameworks
have also been explored to stabilize motion while avoiding
stiffness artifacts common in traditional systems. Another line
of hybrid research adopts rigid body inspired models using
serial chains, enabling accurate modeling of both local strand
behavior and global transformations [13,14]. These techniques
integrate strand-level articulation within a larger kinematic
or physics-based framework to improve simulation realism
without sacrificing computational efficiency.

Recent years saw, the emergence of data-driven tech-
niques has opened new possibilities in hair simulation. Neural
network-based methods aim to approximate complex physical
behaviors without relying on explicit solvers, making them
especially suitable for real-time environments. One such ap-
proach, Quaffure [15], introduces a quasi-static neural model
trained with a self-supervised loss function to predict plausible
strand deformations across a variety of poses and hairstyles.
By eliminating the need for simulated training data, Quaffure
achieves high temporal stability and runs efficiently on con-
sumer hardware, bridging the gap between physical accuracy
and performance.

Complementing this trend, Dr.Hair [16] addresses the chal-
lenge of strand-level reconstruction from visual input. Lever-
aging a differentiable rendering framework, the method recon-
structs scalp-connected hair strands directly from multi-view
images without pretraining, accurately preserving both strand
length and directional flow. These techniques exemplify how
learning-based methods can supplement or replace traditional
solvers for specific simulation tasks.

Alongside advances in simulation, efficient rendering meth-
ods have also evolved to meet the demands of real-time
graphics. Hair mesh systems, such as the one introduced
by Yuksel et al. [17], generate strand geometry procedu-
rally on the GPU at render time. This drastically reduces
memory usage while maintaining geometric fidelity, allowing
for the real-time rendering of hundreds of uniquely styled
characters. Together, these learning- and rendering-focused
approaches highlight a growing trend toward hybrid solutions
that integrate physical modeling, data-driven inference, and
hardware-aware rendering strategies to advance the realism
and scalability of hair simulation systems.

Building on the potential of curve-based modeling and
hybrid techniques, recent studies have explored combining
Bézier representations with physically inspired solvers and
mathematical optimization techniques—such as the use of
Budan—Fourier analysis for root bounding in curve behavior
prediction [18] and contour tracing algorithms for shape recon-
struction in structured objects [19]. A notable example is the
work which integrated Bézier curves with the Articulated Body
Method (ABM) to simulate dynamic hair strand behavior with
real-time performance [20]. Their model treats each strand
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as a Bézier curve and applies ABM to resolve motion and
constraint forces efficiently. These approaches reinforce the
growing viability of combining geometric curve modeling with
physically inspired or learning-based systems—an idea central
to our study, which uses Bézier curves in conjunction with
artificial neural networks to predict strand deformation under
motion and external forces.

This study specifically focuses on the problem of strand
length preservation during hair motion and external interac-
tions, such as wind. We critically analyze existing approaches
from the perspective of both physical accuracy and real-
time performance, highlighting their respective advantages and
limitations. Based on this analysis, we propose directions for
enhancing simulation fidelity while maintaining computational
feasibility. A shallow artificial neural networks (ANN) can
accurately and efficiently predict the target final curve param-
eter for achieving length-preserving transformations of hair
strands represented by Bezier curves. Due to their parametric
structure, differentiability, and compact representation, Bezier
curves inherently support scalable and generalized deformation
modeling. This makes them particularly advantageous for
learning-based strand manipulation, even under varying strand
complexities. This study was initiated with this hypothesis
in mind, aiming to validate the effectiveness of lightweight
ANN architectures in performing accurate and efficient strand
deformations through Bezier-based geometric encoding.

II. MATERIALS AND METHODS

In this study, we propose a data-driven approach based on
ANN to maintain the length of cubic Bezier curves under
external deformations, specifically aimed at simulating individ-
ual hair strands affected by physical forces while preserving
their natural length. This section details the process of data
generation, Bezier curve modeling, and ANN-based prediction
methodology.

A. Bézier Curve and Hair Modelling

A cubic Bézier curve is defined by four control points:
A, B,C, and D, and is expressed parametrically as in equation

(@:

Pt)=(1—-t)*A+3(1-t)*tB+3(1 - t)t?*C +t*D (1)

Where ¢ € [0, 1]. As the parameter ¢ varies from 0 to 1, the
curve smoothly transitions from A to D, influenced in shape
by intermediate control points B and C. This property makes
Bézier curves particularly well-suited for modeling flexible
and natural curves such as hair strands. For example, let
us consider a hair strand modeled by a Bézier curve with
the control points at locations (z,y) : A = (0,0),B =
(0.25,1.0),C = (0.75,—1.0) and D = (1,0). This config-
uration produces a slightly wavy shape representative of a
natural hair strand. Figure 1 illustrates this cubic Bézier curve
constructed from the defined control points.

An important advantage of using Bézier curves in hair
simulation is that each point on the curve can be independently
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Fig. 1. Bézier Curve for a Wavy Hair Strand

computed by evaluating the Bézier formula at any value
of t. For instance, stepping through the interval [0,1] in
increments of 0.1 allows for the generation of discrete, evenly
spaced points along the hair strand. This makes the approach
inherently parallelizable and computationally efficient for sim-
ulating thousands of strands simultaneously.

B. Bézier Curve Representation and Length Estimation for
Data Generation

We consider a cubic Bézier curve defined by four control
points: A,B,C, and D. Points A and D are fixed at coordinates
(0, 0) and (1, 0), respectively, defining the endpoints of a hair
strand. Control points B and C are allowed to locate within a
region [0,1] x [—1,1] (point space region shown in Figure 1
with 1 unit width and 2 unit height) with a spatial resolution
of 0.1. This resolution results in a discrete point cloud of 231
(11x21) possible positions for each of B and C. Although 231
grid points are defined, combining different configurations of
initial and moved control points can yield tens of millions
of curve pairs. This vast combinatorial space ensures that
the dataset captures a wide range of plausible deformations
necessary for training a reliable predictive model. However,
since many initial and subsequent curves (moved curves)
would be undesirably close to each other at a resolution of
0.1, two distinct region location maps were constructed. The
first one is a point space with 0.2 resolution at even position
values (e.g., 0, 0.2, 0.4), and the second one is a point space
with 0.2 resolution at odd position values (e.g., 0.1, 0.3, 0.5).
Using each position space separately, initial and subsequent
curve locations were determined, and some unsuitable curve
pairs were filtered out. Then, to ensure an acceptable data
loading time and avoid memory issues, a dataset consisting of
7.5 million samples was constructed through random selection.
Each sample consists of 16 input features: the x and y
coordinates of the original and moved control points (8 control
points with sixteen x and y components), and one output value:
the corresponding t ;5,4 that preserves the curve length. Figure
2 illustrates a unit square point cloud at 0.1 resolution, with
an example of original and subsequent cubic Bézier curves

generated using a specific configuration of the control points.
For each data sample, the corresponding ¢¢;n, values were
computed to ensure that the curve length at the subsequent
position is equal to that at the initial position.

To simulate external influences, new displaced positions B’
and C’ are sampled independently from the same discrete
space. For each A— B—C'— D configuration and its subsequent
curve counterpart A — B’ — C’ — D, the curve length of the
original and deformed curve is computed. The first curve is
parameterized over the interval ¢ € [0,1], and the moved
curve length is evaluated using numerical integration (e.g.,
Simpson’s rule). Then, the moved curve A — B’ — C' — D
is sampled over ¢ € [0,%finq] such that its arc length is
numerically equal to the original curve.

10— Original Bezier (A-B-C-D)
——- Moved Bezier (A-B'-C'-D), thnar <1
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Fig. 2. Example of original and moved Bézier curves

C. Scaling Bézier Curves to Any Rectangular Domains

Although the dataset is generated within a [0, 1] x [—1,1]
region, Bézier curves can be reliably applied to arbitrarily
positioned rectangular regions. This is achieved through a
combination of translation and axis-wise scaling that aligns
the rectangular configuration with the ANN’s reference point
space domain. Let a rectangular region be defined by hori-
zontal bounds [Zin, Tmaz] and vertical bounds [Yrmin, Ymaz)-
To align this region with the reference point space, we first
translation and then scaling operations as in (2), (3) and (4):

Translation: Shift the lower-left corner of the rectangle to
the origin by subtracting (Z.in, Ymin) from all control points.

Scaling: Normalize the width and height of the rectangle
using the scale factors:

Sz = Tmax — Lmin (2)

5y = w 3)
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Each control point P = (x,y) is then transformed to
reference region coordinates by:

Punit _ <$ - xmin’ Yy— ymm) (4)

Sy Sy

This transformation allows both original and displaced
control points to be converted into a form compatible with
the ANN trained on reference region samples. Once the ANN
predicts the ty;,q; value, the Bézier curve can be redrawn
directly in the rectangular domain using the actual (moved)
control points A, B’,C’, and D. This method preserves the
accuracy of the curve length while adapting the model to
diverse geometric contexts.

D. Neural Network Model

To approximate the mapping from control point displace-
ment to the required value, a feed-forward artificial neural
network (ANN) was constructed. The ANN model receives a
16-dimensional feature vector as input—comprising the x and
y coordinates of original and displaced control points (total of
8 points) —and outputs a single scalar. The network architec-
ture consists of four fully connected layers implemented using
the Keras Sequential API:

model = Sequential ([
Dense (128, activation=’relu’,input_shape=(16,)),
Dense (64, activation=’'relu’),

(
Dense (32, activation=’'relu’),
Dense (1, activation=’sigmoid’)

1)

This shallow and lightweight model architecture is inten-
tionally selected to enable extremely fast predictions, which
is essential when simulating thousands of hair strands in real-
time applications. Although the model depth is limited, its
predictive power is effectively enhanced by using a very large
and diverse training set of more than 7 million Bézier curve
configurations.

To train the network, the dataset was split into 80% training
and 20% test sets. The target values were normalized using a
MinMazScaler. The model was trained with a batch size
of 1000 for up to 350 epochs using the Adam optimizer.
Early stopping and model checkpointing strategies were used
to prevent overfitting and retain the best-performing model.
After training, the best model achieved low error on unseen
data, with the mean absolute error and sum of absolute errors
computed during evaluation. The overall strategy demonstrates
that by combining a simple ANN structure with a large and
carefully prepared dataset, highly accurate and computation-
ally efficient predictions can be achieved.

This ANN framework enables the rapid estimation of values
for potentially thousands of hair strands affected by external
factors, allowing for efficient regeneration of hair geometry
while maintaining individual strand lengths. The proposed
solution thus replaces computationally expensive numerical
searches with a lightweight inference mechanism. The network
is trained using the mean absolute error (MAE) as the loss
function. MAE is a commonly used regression metric that
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quantifies the average magnitude of the errors between pre-
dicted values and the actual ground truth values. It is defined
by equation (5).

n
MAFE = % Z |tﬁnal_gt - tﬁnal_pr' (5)

i=1
Where 1, tfinai_gt and € finqi_pr are number of samples, the
ground truth and predicted time values, respectively. MAE is
expressed in the same units as the target variable and provides
an intuitive measure of model accuracy. It is especially useful

when all errors are equally weighted.

III. RESULTS AND DISCUSSION

All experiments were conducted on a laptop running Win-
dows 10 Pro, equipped with a 12th Gen Intel® Core™ i7-
12700H processor (2.30 GHz, 14 cores, 20 threads), 32 GB
of RAM and NVIDIA GeForce RTX 3060 Laptop GPU. The
training and testing of the proposed ANN model were imple-
mented using the Keras library (Python 3.9) with TensorFlow.
Hair strand movements under external forces were simulated
using MATLAB R2021a.

Table 1 gives the training, testing and prediction details of
the study. This study used a training dataset of 6 million sam-
ples (80% of the full dataset), and 1.5 million samples were
reserved for testing. The model achieved a test set MAE of
0.00091992, indicating high predictive accuracy in estimating
the parameter for length-preserving curve transformations. In
this context, the MAE corresponds to the average deviation in
the predicted ¢ f;,,q; value per hair strand. It does not directly
represent a geometric length error but rather a deviation in
the Bézier time parameter that determines where the curve
should be truncated to preserve length. For example, a MAE of
0.00091992 implies that, on average, the predicted truncation
point deviates from the true value by less than one-thousandth
of the normalized parameter range [0,1]. Assuming that a
single hair strand may undergo deformation multiple times,
such a deviation would only accumulate to a 1% error after ap-
proximately 5.48 independent displacements for 0.5 of ¢ ;a1
true value (5.48x0.00091992/0.5 2 0.01). This indicates that
even under sustained movement, the predicted ¢y, remains
sufficiently accurate to maintain a nearly constant hair length.
This also suggests that increasing the amount of training
data and using more powerful computational hardware could
further reduce the MAE, improving the model’s suitability
for long-duration hair simulations under dynamic conditions.
Table 1 also presents prediction runtime for varying batch
sizes. The model predicted values for 1, 1k, 10k, 100k, and
200k samples (batch size) in approximately 0.0579, 0.0994,
0.5296, 4.09, and 8.11 seconds, respectively. The inclusion of
200k samples simulates a full-head hair scenario, as this figure
closely matches the average number of hair strands on a human
scalp. While the current implementation achieves prediction
times of approximately 8 seconds for 200k samples, this du-
ration may be considered borderline for real-time applications.
However, this benchmark was obtained on a standard laptop
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without GPU acceleration. Since the prediction task involves
a shallow ANN with only a few dense layers, it is likely that
the inference time could be significantly reduced on optimized
hardware or with additional engineering effort. Employing
GPU-accelerated inference and incorporating preprocessing
strategies such as dimensionality reduction or data batching
may potentially improve performance and make the model
more suitable for time-sensitive applications. The results in
Table 1 pertain to the prediction of ty;,q; values rather than
complete physical simulation, and thus no direct baseline
comparison is available in the literature.

TABLE I
TRAINING, TESTING AND PREDICTION DETAILS OF THE STUDY

Number of train data (0.8 split ratio) 6 milion

Number of test data (0.2 split ratio) 1.5 million

MEA test error 0.00091992
1 sample 0.05795540 (0.002448)
1k samples 0.09941540 (0.01301T)

Prediction time (second)
[mean (std) for 5 trials]

10k samples
100k samples
200k samples

0.52964460 (0.039699)
4.08589480 (0.188377)
8.10715880 (0.45811)

Figure 3 illustrates an initial hair strand (blue curve) and
its multiple deformed configurations (red curves) resulting
from external influences applied to its control points. Despite
visual variations in trajectory, all red curves are generated
by adjusting the ¢7;,, parameter through the trained ANN
model such that their arc lengths are preserved relative to the
initial curve. This figure demonstrates the model’s effective-
ness in maintaining strand length consistency under dynamic
conditions, validating the proposed method for realistic hair
motion simulation. Based on the curve analysis illustrated in
the figure, the original strand represented by the blue curve has
a computed length of 4.803 units. However, the final (sixth)
red strand—generated with a cumulative ty;,,; deviation of
0.00091992 per step—exhibits a length of 4.876 units. This
results in an absolute error of 0.073 units, corresponding
to a relative error of approximately 1.52% compared to the
original. These findings demonstrate that even minor per-step
deviations in %f;,, can accumulate and lead to noticeable
differences in physical attributes such as strand length. Con-
sequently, preserving the original length with high fidelity
becomes essential, especially in applications requiring physical
realism, such as animation and real-time hair simulation.

IV. CONCLUSION

This work proposes a neural network-based approach to
estimate the parameter ¢ ¢;,,,; for cubic Bézier curves subjected
to external deformation, with the goal of preserving hair strand
length in dynamic 2D simulations. By generating a dataset of
7.5 million curve configurations and training a shallow ANN
with high generalization capability, the study demonstrates
that accurate ;4 predictions can be achieved rapidly. The
resulting MAE, although referring to the time domain rather
than direct spatial error, accumulates to only 1% deviation
after approximately 5 sequential displacements—suggesting
that strand length is effectively preserved over long-term
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Fig. 3. An initial strand (blue) and its six subsequent movements (red). The
cumulative spatial error resulting from an average MAE of 0.00091992 in
the predicted ¢ f;y,4; values is illustrated. Blue circles mark the true terminal
positions, while red crosses indicate the erroneous positions due to cumulative
prediction error.

movement. The ANN’s prediction times for up to 200k
strands—comparable to the number of hairs on a typical
human scalp—are under 10 seconds, and can be further
reduced with more powerful hardware or model optimization.
These findings support the viability of ANN-based inference
for realistic and computationally efficient hair simulations.

In future work, this framework will be extended to simulate
the dynamic motion of entire hair assemblies composed of
Bézier strands under various external forces, where each
strand’s length is regulated via ANN-predicted ¢ ;,q; values.
Additionally, further training on a larger dataset is planned
to reduce prediction error even more, ensuring higher fidelity
in long-duration and high-frequency deformation scenarios.
Although this study is currently limited to 2D simulations,
the architecture of the dataset generation and ANN model are
fully generalizable to 3D Bezier strand representations. Future
work will explore 3D vector space adaptation for each control
point coordinate.

REFERENCES

[1] R. E. Rosenblum, W. E. Carlson, and E. Tripp, “Simulating the structure
and dynamics of human hair,” J. Vis. Comput. Anim., vol. 2, no. 4, pp.
141-148, 1991.

[2] A. Selle, M. Lentine, and R. Fedkiw, “A mass spring model for hair
simulation,” in ACM SIGGRAPH 2008 Papers, 2008, pp. 64:1-64:11.

[3] B. Choe, M. G. Choi, and H.-S. Ko, “Simulating complex hair with
robust collision handling,” in Proc. Symp. Comput. Anim., 2005, pp.
153-160.

[4] R. Bridson, R. Fedkiw, and J. Anderson, “Robust treatment of collisions,
contact and friction for cloth animation,” in ACM SIGGRAPH, 2002, pp.
594-603.

313



(3]
(6]
(71
(8l
(]

(10]

(11]

(12]

[13]

D. Baraff and A. Witkin, “Large steps in cloth simulation,” in ACM
SIGGRAPH, 1998, pp. 43-54.

J. A. Amador Herrera et al., “Augmented mass-spring model for real-
time dense hair simulation,” arXiv preprint arXiv:2412.17144v2, 2024.
M. Miiller, T.-Y. Kim, and N. Chentanez, “Fast simulation of inexten-
sible hair and fur,” in Proc. VRIPHYS, 2012.

J. Hsu et al., “Sag-free initialization for strand-based hybrid hair
simulation,” ACM Trans. Graph., vol. 42, no. 4, 2023.

M. Miiller, B. Heidelberger, M. Hennix, and J. Ratcliff, “Position based
dynamics,” J. Vis. Commun. Image Represent., vol. 18, no. 2, pp.
109-118, 2007.

S. Hadap and N. Magnenat-Thalmann, “Modeling dynamic hair as a
continuum,” Comput. Graph. Forum, vol. 20, no. 3, pp. 329-338, 2001.
P. Volino and N. Magnenat-Thalmann, “Animating complex hairstyles
in real-time,” in Proc. ACM Symp. Virtual Reality Software Technol.
(VRST), 2004, pp. 41-48.

M. Miiller, B. Heidelberger, M. Teschner, and M. Gross, “Meshless
deformations based on shape matching,” in ACM SIGGRAPH, 2005,
pp. 471-478.

D.-W. Lee and H.-S. Ko, “Natural hairstyle modeling and animation,”

[14]
[15s

[16]

[17]

[18]

[19]

[20]

PROCEEDINGS OF THE FEDCSIS. KRAKOW, POLAND, 2025

Graph. Models, vol. 63, no. 2, pp. 67-85, 2001.

R. Featherstone, Rigid Body Dynamics Algorithms. Springer, 2007.

T. Stuyck et al., “Quaffure: Real-time quasi-static neural hair simula-
tion,” arXiv preprint arXiv:2412.10061v1, 2024.

Y. Takimoto, H. Takehara, H. Sato, Z. Zhu, and B. Zheng,
“Dr.Hair: Reconstructing scalp-connected hair strands without pre-
training via differentiable rendering of line segments,” arXiv preprint
arXiv:2403.17496v2, 2024.

G. Bhokare, E. Montalvo, E. Diaz, and C. Yuksel, “Real-time hair
rendering with hair meshes,” in SIGGRAPH Conf. Papers, 2024.

Q. Zhang, S. Thomas, R. Ramamoorthi, and K. Zhou, “Exploiting
Budan-Fourier and Bernstein theorems for real-time collision culling
of Bézier curves,” in ACM SIGGRAPH / Eurographics High Perform.
Graph. (HPG), 2017.

N. Arslan and K. Gurkahraman, “A novel contour tracing algo-
rithm for object shape reconstruction using parametric curves,” Com-
put. Mater. Continua, vol. 75, no. 1, pp. 331-350, 2023. doi:
10.32604/cmc.2023.035087

K. Lee and S. Lee, “Hair simulation using articulated body method and
Bézier curve,” in SIGGRAPH Asia Tech. Commun., 2024.



