
An algorithm for Direct Construction of all Pareto

Optimal Biobjective Minimum Spanning Trees

Lasko M. Laskov

0000-0003-1833-818

Informatics Department

New Bulgarian University

21 Montevideo Str., 1618 Sofia, Bulgaria

Email: llaskov@nbu.bg

Marin L. Marinov

0009-0003-9544-819X

Informatics Department

New Bulgarian University

21 Montevideo Str., 1618 Sofia, Bulgaria

Email: mlmarinov@nbu.bg

Abstract—In this paper we describe an exact algorithm that
constructs all Pareto optimal solutions of the biobjective mini-
mum risk minimum length spanning trees problem. The method
constructs directly the Pareto optimal spanning trees without
constructing the entire classes of optimal spanning trees with
respect to the length and with respect to the risk criterion.

We formulate the theorems that prove the correctness and
computational complexity of the proposed algorithms. Also, we
illustrate the method using a comprehensive numerical example.
The computational complexity of the algorithm that constructs
the complete Pareto front of the problem is O(s(m + n lg n)),
where s is a constant that depends on the number of all Pareto
optimal solutions and a predefined constant that can be used to
limit the number of constructed solutions.

I. INTRODUCTION

T
HE minimum spanning tree (MST) problem is the prob-

lem to construct a single spanning tree in an undirected

weighted graph that has minimum total weight. A spanning

tree is an acyclic subset of the edges of the graph that connects

all its vertices. In the standard single-objective case the weight

of the spanning tree is defined as the sum of the weights of

all edges that are contained in it (see for example [1]).

While in practice even the basic binary heap implementation

gives a good performance of the Prim’s algorithm [2], the

advanced data structure Fibonacci heap [3] can result in even

more significant speedup. In the general case, the Prim’s algo-

rithm implemented with Fibonacci heap runs in O(m+n lg n)
computational complexity, where n is the number of vertices

and m is the number of edges in the graph. In the case of

sparse graphs for which m = Ω(n lg n), the computational

complexity is improved to O(m).
On the other hand, by introducing of additional objective

function to the MST problem, in specialized literature is

reported that it results into a NP-hard problem [4], [5], [6],

[7]. Also, in the case of multiple objective functions, we are

no longer looking for a single optimal solution, but a whole

set of non-dominated optimal spanning trees that are called

Pareto optimal (see for example [8]).

Even though the NP-hardness of the biobjective MSTs

problem suggests that exact methods are inefficient to apply,

and heuristic or metaheuristic methods, like for example ant

colony optimization [9], are more appropriate, our research

shows that for particular objective functions the problem turns

to be weak NP-hard. The latter means that an exact pseudo-

polynomial or even polynomial algorithms can be formulated.

In this paper we describe an exact algorithm that constructs

the complete Pareto front of the biobjective minimum risk

minimum length spanning trees problem. The algorithm does

not construct the entire classes of optimal spanning trees

with respect to the length and with respect to the risk cri-

terion and directly finds the Pareto optimal solutions of the

problem with computational complexity O(s(m + n lg n)),
s = min{M, |P |}, where M is a predefined constant that

can be used to limit the number of constructed solutions, and

P is the complete Pareto optimal set.

The paper is organized as follows. In the next section we

provide definitions and problem formulation. Section III-A

describes our algorithm that constructs the complete set of

MSTs for the standard single-objective version of the problem.

Section III-B describes our polynomial complexity algorithm

that finds the minimum complete Pareto front. The algorithm

that solves the main problem in this paper is given in section

IV, and section V contains our conclusions.

II. PROBLEM DEFINITION

We denote with G = (V,E) a connected undirected graph

with n = |V | number of vertices and m = |E| number of

edges. The vertices of G are labeled with the first n natural

numbers and V = {1, 2, . . . , n}. The edges of the G are

symmetric and we will denote each edge (u, v) ≡ (v, u) as a

pair of its endpoint vertices u, v ∈ V . We define two weight

functions on the set of the graph edges: f : E → R+ and

g : E → R+. The function f maps to each edge (u, v) ∈ E
the positive number f(u, v) which we will call the length of

(u, v). The function g maps to each edge (u, v) ∈ E the

positive number g(u, v) which we will call the risk of (u, v).
The graph G together with the two weight function defines

the network N = (V,E, f, g) which is represented by the

adjacency lists N.Adj which is a vector of n elements, where

each element N.Adj[u] is a list of the adjacent vertices to the

vertex u and corresponding edges weights:

⟨(vu1
, f(u, vu1

), g(u, vu1
)), (vu2

, f(u, vu2
), g(u, vu2

)), . . .⟩

Proceedings of the 20th Conference on Computer
Science and Intelligence Systems (FedCSIS) pp. 721–726

DOI: 10.15439/2025F5317
ISSN 2300-5963 ACSIS, Vol. 43

IEEE Catalog Number: CFP2585N-ART ©2025, PTI 721 Thematic Session: Computational Optimization

1

2

3 4

5

6

(5, 11)

(7, 6)

(9, 4)
(15, 8)

(4, 4)

(15, 4)

(3, 10)
(9, 6)

(7, 6)

(7, 8)

(9, 4)

(9, 10)

(9, 6)

(10, 18)

(15, 4)

Fig. 1. Example complete network N1

TABLE I
ADJACENCY LISTS OF EXAMPLE COMPLETE NETWORK N1 GIVEN FOR

EACH VERTEX u ∈ V

u Adjacency list

1 ⟨(2, 5, 11), (3, 7, 6), (4, 9, 4), (5, 15, 8), (6, 4, 4)⟩
2 ⟨(1, 5, 11), (3, 15, 4), (4, 3, 10), (5, 9, 6), (6, 7, 6)⟩
3 ⟨(1, 7, 6), (2, 15, 4), (4, 7, 8), (5, 9, 4), (6, 9, 10)⟩
4 ⟨(1, 9, 4), (2, 3, 10), (3, 7, 8), (5, 9, 6), (6, 10, 18)⟩
5 ⟨(1, 15, 8), (2, 9, 6), (3, 9, 4), (4, 9, 6), (6, 15, 4)⟩
6 ⟨(1, 4, 4), (2, 7, 6), (3, 9, 10), (4, 10, 18), (5, 15, 4)⟩

This representation is illustrated with the adjacency lists

given in Table I of the example complete network N1 (see

Fig. 1).

For each subset of edges A ⊆ E we define the length of A:

x(A) =

|A|∑

i=1

f(ui, vi), (1)

and the risk of A with:

y(A) = max{g(u, v) : (u, v) ∈ A}. (2)

We denote with W the set of all spanning trees in the

network N . The set of all spanning trees with minimum length

is Wf , where:

Wf = {T ′ ∈W : x(T ′) ≤ x(T), ∀T ∈W}, (3)

and the set of all spanning trees with minimum risk is Wg ,

where:

Wg = {T ′ ∈W : y(T ′) ≤ y(T), ∀T ∈W}. (4)

Definition 1. We call the tree T ′ ∈ W Pareto optimal

spanning tree (POST) when there does not exist another tree

T ∈ W , for which any of the following two conditions is

fulfilled:

• x(T) < x(T ′) and y(T) ≤ y(T ′);
• x(T) ≤ x(T ′) and y(T) < y(T ′).

We denote with P the set of all POSTs in the network N .

P is the Pareto optimal set and is represented in the form:

P =
K⋃

i=1

Pi, (5)

where the subsets Pi satisfy the following two conditions.

1) All trees in Pi, i = 1, 2, . . . ,K, are equivalent.

2) For each i = 1, 2, . . . ,K − 1 the following inequalities

hold:

li < li+1 and ri > ri+1, (6)

where li is the length, ri is the risk of each tree in Pi.

The set P has an unique representation (5). We will call

each subset Pi class of equivalent POSTs, and we will call

the set P complete Pareto front (CPF).

Definition 2. We will call each set Pmin = {t1, t2, . . . , tK},
where ti ∈ Pi, i = 1, 2, . . . ,K a minimum complete Pareto

front (MCPF).

Let e1 = (u1, v1) and e2 = (u2, v2) are arbitrary edges in

the network N . We will use the following edge relations.

• The edges e1 and e2 are equivalent, denoted e1 ∼ e2,

when f(e1) = f(e2) and g(e1) = g(e2).
• The edge e2 is dominated by e1 with respect the length,

denoted e2 ≺f e1 when: (i) f(e1) < f(e2) or (ii) f(e1) =
f(e2) and g(e1) < g(e2).

• The edge e2 is dominated by e1 with respect the risk,

denoted e2 ≺g e1 when: (i) g(e1) < g(e2) or (ii) g(e1) =
g(e2) and f(e1) < f(e2).

When e2 ∼ e1 or e2 ≺f e1 is fulfilled, we will denote it by

e2 ≾f e1, and when e2 ∼ e1 or e2 ≺g e1 is fulfilled, we will

denote it by e2 ≾g e1.

The aim of this paper is the solution of the problem given

in Problem 1.

Problem 1. (Main Problem) Let N be a connected network

and let M be a natural number. Find a set of POSTs such

that:

1) if M ≤ K, then |P ′| = M and P ′[i] ∈ Pi, for i =
1, 2, . . . ,M − 1, and P ′[M] ∈ PK;

2) if K < M ≤ |P |, then |P ′| = M and P ′ contains at

least one MCPF;

3) if |P | < M , then P ′ = P .

The solution of Problem 1 that we propose in this paper is

given in Sec. IV. The proposed algorithm finds the list P ′ and

determines which of the three cases of the problem is fulfilled.

It also determines whether P ′ contains at least one MCPF. If

P ′ contains a MCPF, the algorithm reports whether the CPF

is found, and if it is not found, which classes of equivalent

POSTs, given in equation (5), may contain elements that are

not included in P ′.

III. HELPER ALGORITHMS

A. Complete list of all minimum spanning trees

In this section we will solve the helper Problem 2.

Problem 2. Let N be a connected network and let M be a

natural number. Construct the list W ′
f of MSTs in N that has

the following properties:

1) if M ≥ |Wf |, then W ′
f = Wf ;

2) if M < |Wf |, then |W ′
f | = M .

722 PROCEEDINGS OF THE FEDCSIS. KRAKÓW, POLAND, 2025

Algorithm 1 Function MSTLIST(N, r,M)

Input: network N , root vertex r, natural number M
Output: list of MSTs L, Boolean flag all

1: let S be an empty stack, L be an empty list

2: push into S the initial subproblem

3: while S ̸= ∅ and |L| ̸= M do

4: X ← POP(S), (t, S)← SUBPROBLEMS(S,N,X)
5: if t /∈ L then

6: PUSHBACK(L, t)
7: end if

8: end while

9: if S ̸= ∅ then

10: all← false
11: else

12: all← true
13: end if

14: return L, all

The solution of Problem 2 is given by the function

MSTLIST in Algorithm 1. The input of the algorithm are the

network N , a root vertex of the constructed trees r and a

natural number M . The output are the list of lists of parents

of the constructed trees L that contains the set W ′
f , and a

Boolean value all. The set W ′
f forms the solution of Problem

2. When all = true, it shows that W ′
f = Wf , and when

all = false, then |W ′
f | = M < |Wf |.

The helper function SUBPROBLEMS is described in details

in our work [10]. The computational complexity of MSTLIST

is evaluated to O(s(m+ n lg n)), where s = min{|Wf |,M}.

B. Minimum complete Pareto front

In this section we describe Algorithm 3 that solves the

helper Problem 3.

Problem 3. Let M be an arbitrary natural number. Find

a subset P ′ of the set of POSTs P that has the following

properties:

1) |P ′| = min{M,K}, where K is the number of classes

of equivalent POSTs;

2) |P ′ ∩ Pi| = 1, for i = 1, 2, . . . , |P ′|.

Algorithm 3 uses the following two modifications of the

Prim’s algorithm.

1) Function MINTREERISK that finds a POST that has

minimum risk. The pseudocode of the function is given

in Algorithm 2.

2) Function MINTREELENGTH that finds a POST that has

minimum length. In this case the algorithm is analogous

to Algorithm 2, but the relation ≺f is applied.

Both functions MINTREERISK and MINTREELENGTH ex-

tend the greedy principle of the Prim’s algorithm using the

relations ≺g and ≺f respectively.

Theorem 1. Let A is a tree that corresponds to the prede-

cessor list tbar calculated with MINTREERISK. Then A is a

POST that has minimum risk among all POSTs.

Algorithm 2 Function MINTREERISK(N, r)

Input: network N , root vertex r
Output: POST that has minimum risk tbar

1: a← [flase, false, . . . , false]
2: d← [∞,∞, . . . ,∞], d[r]← (0, 0), t← [0, 0, . . . , 0]
3: insert each u ∈ V into Q with key d[u]
4: while Q ̸= ∅ do

5: u← EXTRACTMIN(Q,≺g)
6: a[u]← true
7: for all (v, f(u, v), g(u, v)) ∈ N.Adj[u] do

8: if a[v] = false and d[v] ≺g (u, v) then

9: t[v]← u, d[v]← (f(u, v), g(u, v))
10: DECREASEKEY(Q, v, (f(u, v), g(u, v)))
11: end if

12: end for

13: end while

14: E′ ← ∅

15: for all e ∈ E do

16: if g(e) ≤ y(t) then

17: E′ ← E′ ∪ e
18: end if

19: end for

20: E ← E′, tbar ←MSTList(N, r, 1)
21: return tbar

Algorithm 3 Function MINCPF(N, r,M)

Input: network N , root vertex r, natural number M
Output: POSTs list L, barrier tree tbar, integers cdif and M ′

1: let L be an empty list

2: M ′ ←M , tbar ← MINTREERISK(N, r)
3: cbar ← y(tbar), cdif ← 1
4: while M ′ > 0 and cdif > 0 do

5: t← MINTREELENGTH(N, r)
6: PUSHBACK(L, t)
7: c← y(t)
8: E′ ← ∅

9: for all e ∈ E do

10: if g(e) < c then

11: E′ ← E′ ∪ e
12: end if

13: end for

14: E ← E′

15: M ′ ←M ′ − 1, cdif ← c− cbar
16: end while

17: return L, tbar, cdif , M ′

If A is a tree with a predecessor list calculated with

MINTREELENGTH, then A is a POST that has a minimum

length among all POSTs.

Theorem 2. The computational complexity of both functions

MINTREERISK and MINTREELENGTH is O(m+ n lgn).

Algorithm 3 applies as a step also the restriction operation

(lines 8-13) which separates a subnetwork N ′ of the input

LASKO LASKOV, MARIN MARINOV: AN ALGORITHM FOR DIRECT CONSTRUCTION OF ALL PARETO OPTIMAL BIOBJECTIVE MINIMUM SPANNING 723

network N . The resulting subnetwork N ′ has the same set of

vertices, however it contains only these edges of the original

network, which have a risk strictly less than the fixed risk

value c.

Let the list L is a result of the calculations of Algorithm 3.

We define the set of trees P ′ such that:

1) the number of elements of P ′ is equal to the length of

the list, |P ′| = |L|;
2) P ′[i] is the tree that has the predecessor list L[i], for

i = 1, 2, . . . , |L|.

Then the following Theorem 3 holds.

Theorem 3. The set P ′ is a solution of Problem 3.

The proof of Theorem 3 directly follows from Theorem 1.

Corollary 1. For the above defined set P ′, barrier tree

tbar, integers cdif and M ′ that result from Algorithm 3, the

following four statements hold.

1) The tree Tbar with predecessor list tbar is a POST and

Tbar ∈ PK .

2) P ′[i] ∈ Pi, for i = 1, 2, . . . , |L|.
3) If cdif = 0, then the set P ′ is a MCPF. In this case, if

Tbar ̸= P ′[K], then besides the MCPF P ′, Algorithm 3

have constricted a second tree in the class PK .

4) If cdif > 0 and M ′ = 0, then M < K. Then for each

j ∈ {M + 1, . . . ,K} the inequalities x(P ′[M]) < lj ≤
x(Tbar) and y(Tbar) ≤ rj < y(P ′[M]) hold. In this

case M + 1 number of POSTs are constructed from

the same MCPF. An additional verification is needed

in order to determine whether the set P ′ ∪ {Tbar} is a

MCPF.

From Theorem 2 it follows that the running time of Al-

gorithm 3 can be evaluated O(α(m + n lg n)), where α =
min{M,K}. Because K cannot exceed the number of edges

of the network m, we say that Algorithm 3 has polynomial

complexity.

IV. COMPLETE PARETO FRONT

The helper algorithms, given in section III, are used in

the definition of our algorithm for direct construction of all

Pareto optimal biobjective minimum spanning trees, which is

described in this section.

Let the CPF P of the network N is given by the equality (5).

The solution of the main Problem 1 is given by the function

DIRECTCPF, described in Algorithm 4. The algorithm stores

the predecessor lists of the discovered POSTs in the list of

lists C. Each list of lists in C corresponds to one class

of equivalent POSTs. The algorithm itself implements the

following inductive procedure:

1) Base case. Store in the list C the first MCPF. Comple-

ment C with the remaining POSTs from the class P1.

2) Inductive step. Suppose that in C are stored all POSTs

from the class Pj . The procedure complements C with

the remaining POSTs from the class Pj+1.

Algorithm 4 Function DIRECTCPF(N, r,M)

Input: network N , root vertex r, natural number M
Output: list of lists of POSTs C and seven indicators

1: let C be an empty list of lists of POSTs

2: M ′ ←M
3: (L, cdif , tbar,M

′)← MINCPF(N, r,M ′)
4: k ← |L|, tlast ← L[k], j ← 0, all← false
5: if cdif = 0 then

6: while j < k and M ′ > 0 do

7: M ′ ←M ′ + 1, E′ ← ∅

8: for all e ∈ E do

9: if g(e) ≤ y(L[j + 1]) then

10: E′ ← E′ ∪ e
11: end if

12: end for

13: E ← E′

14: (L′, all)← MSTLIST(N, r,M ′)
15: M ′ ←M ′ − |L′|
16: PUSHBACK(C,L′)
17: j ← j + 1
18: end while

19: while j < k do

20: PUSHBACK(C, ⟨L[j + 1]⟩)
21: j ← j + 1
22: end while

23: else

24: for all t ∈ L do

25: PUSHBACK(C, ⟨t⟩)
26: end for

27: end if

28: return C, cdif , tlast, tbar, M ′, j, k, all

3) The inductive procedure continues until all POSTs are

constructed or until in C are stored M number of

POSTs.

The function DIRECTCPF takes as parameters the input

network N , a root vertex r and a natural number M that

defines the maximum number of POSTs. As a result of its

calculations, the function returns the list of lists of POSTs C
and the following indicators:

• cdif shows whether a MCPF is constructed by the func-

tion MINCPF;

• tlast is the last POST contained in the list of the MCPF

L;

• tbar is the barrier tree that belongs to the class PK

constructed by MINCPF;

• M ′ shows if the number of discovered POSTs is M and

if not, how many POSTs are required;

• j shows which is the last class of equivalent POSTs that

is stored in C
• k shows whether in C is stored at least one MCPF;

• all is a Boolean flag that shows whether the last call of

MSTLIST found all MSTs in the restricted network.

Theorem 4, given below, follows from Theorem 1, Theorem

724 PROCEEDINGS OF THE FEDCSIS. KRAKÓW, POLAND, 2025

3 and the correctness of algorithms in section III.

Theorem 4. Algorithm 4 solves correctly Problem 1.

Besides that, the following six properties hold.

Property 1. Each element of C is a list of the predecessors

lists of the same class of equivalent POSTs. For example, C[1]
is is a list of the predecessors lists of the class P1.

Property 2. If M ′ = 0, then in C are stored exactly M
number of POSTs. If M ′ > 0, then exactly M ′ number of

POSTs are still required.

Property 3. The indicator k can take exactly two values. It

is equal to 0, when C does not store any MCPF. It is equal

to the number of classes of equivalent POSTs K, when in C
is stored at least one MCPF.

Property 4. The indicator j ∈ {0, 1, . . . ,K}. If j = 0 then

C stores at most one element of each class of equivalent

POSTs. If j ∈ {1, 2, . . . ,K}, then the calculations of the

algorithm terminated at the stage in which in C were included

the predecessors lists of the POSTs of the class Pj . When

j ∈ {2, 3, . . . ,K}, then C[i] stores the complete classes Pi,

for i = 1, 2, . . . , j − 1.

Property 5. If M ′ = 0 and k = 0, then M number of POSTs

has been discovered before a MCPF was completed. The trees

tbar and tlast define the rectangular area in which are located

the POSTs of the MCPF that are not stored in C.

Property 6. When j ̸= 0 and all = false, then Pj may

contain elements that are not stored in C. If j ̸= 0 and all =
true, then all elements of Pj are stored in C.

From Theorem 2 it follows that the computational com-

plexity of Algorithm 4 is O(s(m + n lg n)), where s =
min{M, |P |}.

The calculations of Algorithm 4 are illustrated in Example

1. Because of the small size of the network used in the

example, the above six properties can be directly verified.

Example 1. Consider the example network N1 given in Fig.

1 with adjacency lists in Table I. We select the vertex r = 1
for the root vertex of the POSTs that will be constructed. We

will track the calculations of Algorithm 4 in the following four

cases: (a) M = 2; (b) M = 5; (c) M = 18 and (d) M = 25.

Solution. Before we solve the example, in order to illustrate

graphically the results of the calculations, first we find all the

spanning trees in the network N1 using function MSTLIST

given in Algorithm 1. The number of all spanning trees of N1

which has number of vertices n = 6 is nn−2 = 1256. For

each spanning tree t we store the pairs (x(t), y(t)), and we

store only those pairs that does not coincide. For N1 there are

116 such pairs, which means that the set of all spanning trees

in N1 is divided in 116 classes of equivalent trees. In Fig. 2

and 3 we illustrate all classes of equivalent trees with a black

dot with the corresponding Cartesian coordinates.

(a) We solve Problem 1 with Algorithm 4 for M = 2. The

O

y

x

A
B

Ω
G4

6

11
18

523028

Fig. 2. Partial MCPF and the rectangle area Ω for the example network N1.
The POST that represent the class P1 is denoted with A, and the POST that
represent the class P2 is denoted with B. The barrier tree is denoted with G

O

y

x

Ω

A
B

C
D

F4

68

10

11
18

5236343028

Fig. 3. MCPF for the example network N1. The POSTs that represent the
classes P1 to P5 are denoted with A, B, C, D and F respectively

resulting list is:

C = ⟨⟨[0, 1, 1, 2, 3, 1]⟩, ⟨[0, 6, 1, 2, 3, 1]⟩⟩.

From the correctness of Algorithm 4 it follows that the two

trees stored in C are POSTs and both of them are from

a different class of equivalent POSTs. Since k = 0, from

Property 5 it follows that the entire MCPF is not yet con-

structed. If we denote with T1 the POST with predecessor list

[0, 1, 1, 2, 3, 1] and with T2 the POST with with predecessor

list [0, 6, 1, 2, 3, 1], then T1 ∈ P1 and T2 ∈ P2. In this case

llast = 30 and clast = 10 are respectively the length and the

risk of the last tree T2.

In Fig. 2 we denote the trees T1 with the point A and T2

with the point B. Also, the algorithm calculates the barrier

tree Tbar with predecessor list tbar. We denote with G the

point with coordinates (x(Tbar), y(Tbar)) = (52, 4). From the

correctness of Algorithm 3 it follows that POSTs that does not

belong to P1 or P2 are contained into the rectangular area Ω
with diagonal BG and sides parallel to the coordinate axes.

From Corollary 1 we know that the barrier tree Tbar (illustrated

by the point G in Fig. 2) is a POST from the last class of

equivalent POSTs.

(b) We solve Problem 1 with Algorithm 4 for M = 5. After

LASKO LASKOV, MARIN MARINOV: AN ALGORITHM FOR DIRECT CONSTRUCTION OF ALL PARETO OPTIMAL BIOBJECTIVE MINIMUM SPANNING 725

the termination of the algorithm M ′ = 0 and therefore exactly

M = 5 POSTs are found. In this case the resulting list is:

C = ⟨⟨[0, 1, 1, 2, 3, 1]⟩, ⟨[0, 6, 1, 2, 3, 1]⟩, ⟨[0, 1, 1, 2, 3, 1]⟩,

⟨[0, 6, 1, 2, 3, 1]⟩, ⟨[0, 1, 1, 2, 3, 1]⟩⟩.

Since now k = 5 ̸= 0, from Property 3 it follows that C
contains a MCPF and it is composed from exactly 5 POSTs.

Besides that, j = 0 and from Property 4 it follows that for each

class of equivalent POSTs a single element is included in the

list C. Besides the trees T1 and T2 that were also calculated

in the case (a), the list contains the trees T3, T4 and T5 with

predecessors lists respectively [0, 6, 1, 3, 3, 1], [0, 6, 1, 1, 3, 1]
and [0, 3, 5, 1, 6, 1]. The corresponding weights of these POSTs

are (34, 8), (36, 6) and (52, 4). In Fig. 3 the POSTs T3, T4 and

T5 are denoted with the corresponding points in the Cartesian

plane C(34, 8), D(36, 6) F (52, 4).
Also, in this case all = false that gives us information

that it is not clear whether in P1 there is no more than one

element. Besides that, it is directly verified that T5 = Tbar and

in the class P5 there is no second element that is discovered.

(c) We solve Problem 1 with Algorithm 4 for M = 18.

After the termination of the algorithm, we get that M ′ = 0,

and from Property 2 it follows that in the list C there are

exactly 18 POSTs. It can be directly verified that in C[1] there

are 6 elements, in C[2] there are 9 elements, and C[3], C[4]
and C[5] contain single element each.

Since k = 5, from Property 3 it follows that C contains at

least one MCPF. Besides that, j = 2 and from Property 4 we

get that the classes P1 and P2 are visited more than once by

the algorithm and all elements of P1 are stored in C[1]. Since

all = true, from Property 6 it follows that all elements of P2

are stored in C[2]. The POSTs stored in C[3], C[4] and C[5]
are the same as in the case (b).

(d) We solve Problem 1 with Algorithm 4 for M = 25. The

algorithm returns M ′ > 0 and k = 5 ̸= 0, and therefore the

CPF is stored in C. The last class of equivalent POST that

has been visited by the algorithm is defined by j = 5 and

it is the class P5. The classes P1, P2, P3 and P4 are stored

respectively in C[1], C[2], C[3] and C[4]. Since all = true,

the entire class P5 is stored in C[5].
It can be directly verified that |C[1]| = 6, |C[2]| = 9,

|C[3]| = 3, |C[4]| = 5, and |C[5]| = 1, and the CPF has

totally 24 POSTs.

V. CONCLUSION

In the general case, the biobjective MSTs problem is widely

considered an NP-hard problem, which means that an exact

method will lead to exponential computational complexity.

In our research we have shown that for particular objective

functions, the problem is weakly NP-hard, and efficient exact

algorithms can be found.

In this paper we have examined in details a version of

biobjective MSTs problem in which the first objective function

is linear (length), and the second objective function is non-

linear bottleneck (risk). Our algorithm that finds the minimum

complete Pareto front of the problem has polynomial com-

plexity. The proposed algorithm in this paper that constructs

the complete Pareto front has pseudo-polynomial complexity.

We have implemented and tested the described algorithms

in this paper on complete random networks. The conducted

experiments illustrate the effectiveness of Algorithm 4 that

constructs the complete Pareto front. For example, for a

complete random network with n = 100 number of vertices,

the running time of the program written in Wolfram language

is not more than 11 minutes on a standard computer con-

figuration. In the particular case, the number of all spanning

trees in the network are 10098, the number of Pareto optimal

spanning trees in the complete Pareto front are 4739, and it

is distributed in 3986 number of classes of equivalent Pareto

optimal spanning trees.

The results of the prototype program written in Wolfram

language show that with a more optimized implementation

(for example in C++ or Julia programming languages), we

will be able to run the described algorithms with even bigger

examples for much less running time. For example our Julia

implementation of Algorithm 3 competes in 66.28 seconds

on a complete random network with n = 1000 number of

vertices.

REFERENCES

[1] T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein, Introduction

to algorithms, 4th ed. Cambridge, Massachusetts: MIT Press, 2022,
ch. 21, pp. 585–603. ISBN 0-262-04630-X

[2] R. C. Prim, “Shortest connection networks and some generalizations,”
The Bell System Technical Journal, vol. 36, no. 6, pp. 1389–1401, 1957.
doi: 10.1002/j.1538-7305.1957.tb01515.x

[3] M. L. Fredman and R. E. Tarjan, “Fibonacci heaps and their uses
in improved network optimization algorithms,” Journal of the ACM,
vol. 34, no. 3, pp. 596–615, July 1987. doi: 10.1145/28869.28874

[4] R. M. Ramos, S. Alonso, J. Sicilia, and C. González, “The problem of
the optimal biobjective spanning tree,” European Journal of Operational

Research, vol. 111, no. 3, pp. 617–628, 1998. doi: 10.1016/S0022-
0000(05)80064-9

[5] D. Rocha, E. Goldbarg, and M. Goldbarg, “A memetic algorithm
for the biobjective minimum spanning tree problem,” in Evolutionary

Computation in Combinatorial Optimization, J. Gottlieb and G. R.
Raidl, Eds. Berlin, Heidelberg: Springer Berlin Heidelberg, 2006. doi:
10.1007/11730095_19. ISBN 978-3-540-33179-7 pp. 222–233.

[6] S. Steiner and T. Radzik, “Computing all efficient solutions of the biob-
jective minimum spanning tree problem,” Computers & Operations Re-

search, vol. 35, no. 1, pp. 198–211, 2008. doi: 10.1016/j.cor.2006.02.023
[7] A. C. Santos, D. R. Lima, and D. J. Aloise, “Modeling and solving the

bi-objective minimum diameter-cost spanning tree problem,” Journal of

Global Optimization, vol. 60, pp. 195–216, 2014. doi: 10.1007/s10898-
013-0124-4

[8] H. W. Corley, “Efficient spanning trees,” Journal of Optimization Theory

and Applications, vol. 45, pp. 481–485, 1985. doi: 10.1007/BF00938448
[9] S. Fidanova and M. Ganzha, “Ant colony optimization for workforce

planning with hybridization,” in Proceedings of the 18th Conference

on Computer Science and Intelligence Systems, ser. Annals of
Computer Science and Information Systems, M. Ganzha, L. Maciaszek,
M. Paprzycki, and D. Ślęzak, Eds., vol. 35. IEEE, 2023.
doi: 10.15439/2023F9586 p. 955–959. [Online]. Available: http:
//dx.doi.org/10.15439/2023F9586

[10] L. M. Laskov and M. L. Marinov, “Pareto optimal solutions of the
biobjective minimum length minimum risk spanning trees problem,”
in Proceedings of the of the 19th Conference on Computer Science

and Intelligence Systems, ser. ACSIS, M. Bolanowski, M. Ganzha,
L. Maciaszek, M. Paprzycki, and D. Ślęzak, Eds., vol. 39. IEEE, 2024.
doi: https://doi.org/10.15439/2024F2913. ISSN 300-5963 pp. 405–416.

726 PROCEEDINGS OF THE FEDCSIS. KRAKÓW, POLAND, 2025

