&l

Proceedings of the 20" Conference on Computer

DOI: 10.15439/2025F5317

Science and Intelligence Systems (FedCSIS) pp. 721-726 ISSN 2300-5963 ACSIS, Vol. 43

An algorithm for Direct Construction of all Pareto
Optimal Biobjective Minimum Spanning Trees

Lasko M. Laskov
0000-0003-1833-818
Informatics Department
New Bulgarian University
21 Montevideo Str., 1618 Sofia, Bulgaria
Email: llaskov@nbu.bg

Abstract—In this paper we describe an exact algorithm that
constructs all Pareto optimal solutions of the biobjective mini-
mum risk minimum length spanning trees problem. The method
constructs directly the Pareto optimal spanning trees without
constructing the entire classes of optimal spanning trees with
respect to the length and with respect to the risk criterion.

We formulate the theorems that prove the correctness and
computational complexity of the proposed algorithms. Also, we
illustrate the method using a comprehensive numerical example.
The computational complexity of the algorithm that constructs
the complete Pareto front of the problem is O(s(m + nlgn)),
where s is a constant that depends on the number of all Pareto
optimal solutions and a predefined constant that can be used to
limit the number of constructed solutions.

I. INTRODUCTION

HE minimum spanning tree (MST) problem is the prob-

lem to construct a single spanning tree in an undirected
weighted graph that has minimum total weight. A spanning
tree is an acyclic subset of the edges of the graph that connects
all its vertices. In the standard single-objective case the weight
of the spanning tree is defined as the sum of the weights of
all edges that are contained in it (see for example [1]).

While in practice even the basic binary heap implementation
gives a good performance of the Prim’s algorithm [2], the
advanced data structure Fibonacci heap [3] can result in even
more significant speedup. In the general case, the Prim’s algo-
rithm implemented with Fibonacci heap runs in O(m+nlgn)
computational complexity, where n is the number of vertices
and m is the number of edges in the graph. In the case of
sparse graphs for which m = Q(nlgn), the computational
complexity is improved to O(m).

On the other hand, by introducing of additional objective
function to the MST problem, in specialized literature is
reported that it results into a NP-hard problem [4], [5], [6],
[7]. Also, in the case of multiple objective functions, we are
no longer looking for a single optimal solution, but a whole
set of non-dominated optimal spanning trees that are called
Pareto optimal (see for example [8]).

Even though the NP-hardness of the biobjective MSTs
problem suggests that exact methods are inefficient to apply,
and heuristic or metaheuristic methods, like for example ant
colony optimization [9], are more appropriate, our research

IEEE Catalog Number: CFP2585N-ART ©2025, PTI

721

Marin L. Marinov
0009-0003-9544-819X
Informatics Department

New Bulgarian University
21 Montevideo Str., 1618 Sofia, Bulgaria
Email: mlmarinov@nbu.bg

shows that for particular objective functions the problem turns
to be weak NP-hard. The latter means that an exact pseudo-
polynomial or even polynomial algorithms can be formulated.

In this paper we describe an exact algorithm that constructs
the complete Pareto front of the biobjective minimum risk
minimum length spanning trees problem. The algorithm does
not construct the entire classes of optimal spanning trees
with respect to the length and with respect to the risk cri-
terion and directly finds the Pareto optimal solutions of the
problem with computational complexity O(s(m + nlgn)),
s = min{M, |P|}, where M is a predefined constant that
can be used to limit the number of constructed solutions, and
P is the complete Pareto optimal set.

The paper is organized as follows. In the next section we
provide definitions and problem formulation. Section III-A
describes our algorithm that constructs the complete set of
MSTs for the standard single-objective version of the problem.
Section III-B describes our polynomial complexity algorithm
that finds the minimum complete Pareto front. The algorithm
that solves the main problem in this paper is given in section
1V, and section V contains our conclusions.

II. PROBLEM DEFINITION

We denote with G = (V, E) a connected undirected graph
with n = |V| number of vertices and m = |E| number of
edges. The vertices of GG are labeled with the first n natural
numbers and V' = {1,2,...,n}. The edges of the G are
symmetric and we will denote each edge (u,v) = (v,u) as a
pair of its endpoint vertices u,v € V. We define two weight
functions on the set of the graph edges: f : £ — R, and
g : E — R,. The function f maps to each edge (u,v) € E
the positive number f(u,v) which we will call the length of
(u,v). The function g maps to each edge (u,v) € E the
positive number g(u,v) which we will call the risk of (u,v).

The graph G together with the two weight function defines
the network N = (V, E, f,g) which is represented by the
adjacency lists N.Adj which is a vector of n elements, where
each element N.Adj[u] is a list of the adjacent vertices to the
vertex v and corresponding edges weights:

((uys [00,), 9(1 001))s (Vugs [0 00,), 9(0,00,)); -)

Thematic Session: Computational Optimization

722

3 7, 8) 4

Fig. 1. Example complete network N1
TABLE I
ADJACENCY LISTS OF EXAMPLE COMPLETE NETWORK N1 GIVEN FOR
EACH VERTEX u € V'

Adjacency list

O U x| W N = 2

(
(
(
(
(
(

This representation is illustrated with the adjacency lists
given in Table I of the example complete network N; (see

Fig. 1).
For each subset of edges A C E we define the length of A:
|Al
2(A) = flui,v),)
i=1
and the risk of A with:
y(A) = max{g(u,v) : (u,v) € A}.)

We denote with T the set of all spanning trees in the
network V. The set of all spanning trees with minimum length
is Wy, where:

Wr={T'eW: 2(T") <a(T),VT € W}, @)

and the set of all spanning trees with minimum risk is W,
where:

Wy = {T' e W: y(T') <y(T),¥T e W} (&)

Definition 1. We call the tree T € W Pareto optimal
spanning tree (POST) when there does not exist another tree
T € W, for which any of the following two conditions is
Sulfilled:

o 2(T) < z(T") and y(T) < y(T");

o 2(T) < z(T") and y(T) < y(T").

We denote with P the set of all POSTs in the network N.
P is the Pareto optimal set and is represented in the form:

K
P= U P, 5)
=1

PROCEEDINGS OF THE FEDCSIS. KRAKOW, POLAND, 2025

where the subsets P; satisfy the following two conditions.
1) All trees in P;, i = 1,2,..., K, are equivalent.
2) For each ¢ =1,2,..., K — 1 the following inequalities
hold:
(6)

where [; is the length, r; is the risk of each tree in P;.

l; < li+1 and r; > riq1,

The set P has an unique representation (5). We will call
each subset P; class of equivalent POSTs, and we will call
the set P complete Pareto front (CPF).

Definition 2. We will call each set P = {t1,t2,...,tx},
where t; € P;, i = 1,2,..., K a minimum complete Pareto
front (MCPF).

Let e; = (u1,v1) and ey = (ug,vs) are arbitrary edges in
the network IN. We will use the following edge relations.

o The edges e; and es are equivalent, denoted e; ~ eo,
when f(e1) = f(e2) and g(e1) = g(e2).

o The edge es is dominated by eq with respect the length,
denoted ez < eq when: (i) f(e1) < f(ez) or (ii) f(e1) =
f(e2) and g(e1) < g(e2).

o The edge ey is dominated by e; with respect the risk,
denoted ey <4 e; when: (i) g(e1) < g(e2) or (ii) g(e1) =
g(e2) and f(e1) < f(e2).

When ey ~ e1 or ex <y e is fulfilled, we will denote it by
ez Z7 e1, and when ey ~ eq or eg <, e; is fulfilled, we will
denote it by es 3 €.

The aim of this paper is the solution of the problem given

in Problem 1.

Problem 1. (Main Problem) Let N be a connected network
and let M be a natural number. Find a set of POSTs such
that:
1) if M < K, then |P'| = M and P'[i| € P, for i =
1,2,...,M — 1, and P'[M] € Pg;
2) if K < M < |P|, then |P'| = M and P’ contains at
least one MCPF;
3) if |P| < M, then P' = P.

The solution of Problem 1 that we propose in this paper is
given in Sec. IV. The proposed algorithm finds the list P’ and
determines which of the three cases of the problem is fulfilled.
It also determines whether P’ contains at least one MCPF. If
P’ contains a MCPF, the algorithm reports whether the CPF
is found, and if it is not found, which classes of equivalent
POSTs, given in equation (5), may contain elements that are
not included in P’.

ITI. HELPER ALGORITHMS
A. Complete list of all minimum spanning trees
In this section we will solve the helper Problem 2.
Problem 2. Let N be a connected network and let M be a

natural number. Construct the list W/i of MSTs in N that has
the following properties:

D) if M > Wy, then W} = Wy
2) if M < |Wy|, then |W}| = M.

LASKO LASKOV, MARIN MARINOV: AN ALGORITHM FOR DIRECT CONSTRUCTION OF ALL PARETO OPTIMAL BIOBJECTIVE MINIMUM SPANNING

Algorithm 1 Function MSTLIST(N, 7, M)

Algorithm 2 Function MINTREERISK(N, r)

Input: network N, root vertex r, natural number M
Output: list of MSTs L, Boolean flag all
1: let S be an empty stack, L be an empty list
2: push into S the initial subproblem
3. while S # @ and |L| # M do
4 X < Pop(9), (¢t,S5) < SUBPROBLEMS(S, N, X)
5. ift ¢ L then
6 PUSHBACK(L, t)
7: end if
8: end while
9: if S # & then
10 all < false
11: else
12: all < true
13: end if
14: return L, all

The solution of Problem 2 is given by the function
MSTLIST in Algorithm 1. The input of the algorithm are the
network N, a root vertex of the constructed trees r and a
natural number M. The output are the list of lists of parents
of the constructed trees L that contains the set WJQ and a
Boolean value all. The set W} forms the solution of Problem
2. When all = true, it shows that WJQ = Wy, and when
all = false, then |[Wi| = M < [Wy].

The helper function SUBPROBLEMS is described in details
in our work [10]. The computational complexity of MSTLIST
is evaluated to O(s(m + nlgn)), where s = min{|W|, M}.

B. Minimum complete Pareto front

In this section we describe Algorithm 3 that solves the
helper Problem 3.

Problem 3. Let M be an arbitrary natural number. Find
a subset P' of the set of POSTs P that has the following
properties:
1) |P'| = min{M, K}, where K is the number of classes
of equivalent POSTs;

2) |PPNPR|=1, fori=1,2,...,|P|

Algorithm 3 uses the following two modifications of the
Prim’s algorithm.

1) Function MINTREERISK that finds a POST that has
minimum risk. The pseudocode of the function is given
in Algorithm 2.

2) Function MINTREELENGTH that finds a POST that has
minimum length. In this case the algorithm is analogous
to Algorithm 2, but the relation <y is applied.

Both functions MINTREERISK and MINTREELENGTH ex-

tend the greedy principle of the Prim’s algorithm using the
relations <, and < respectively.

Theorem 1. Let A is a tree that corresponds to the prede-
cessor list ty,, calculated with MINTREERISK. Then A is a
POST that has minimum risk among all POSTs.

Input: network N, root vertex r
Output: POST that has minimum risk %y,

1. a < [flase, false, ..., false]

2: d ¢ [00,00,...,00], d[r] < (0,0), t < [0,0,...,0]
3: insert each v € V into Q with key d[u]

4: while Q # @ do

5 u< EXTRACTMIN(Q, <)

6: alu] < true

7. for all (v, f(u,v),g(u,v)) € N.Adj[u] do
8: if a[v] = false and d[v] <4 (u,v) then
9: t[v] + u, d[v] « (f(u,v), g(u,v))

10: DECREASEKEY(Q, v, (f(u,v), g(u,v)))
11: end if

12 end for

13: end while

14 E' +— @

15: for all e € E do

16: if g(e) < y(t) then

17: E' < E' Ue

18: end if

19: end for

20: E + E', tye, < MSTList(N,r,1)

21: return tp,,

Algorithm 3 Function MINCPF(N, r, M)

Input: network N, root vertex r, natural number M

Output: POSTs list L, barrier tree ¢y, integers cq;y and M’
1: let L be an empty list

22 M' + M, tpar + MINTREERISK(NV, 1)
3: Char < y(tbar)’ Cdif < 1

4: while M’ > 0 and cg4;y > 0 do
5.t < MINTREELENGTH(N,r)
6: PUSHBACK(L,t)

7. e+ y(t)

88 FE + o

9: forall e € F do

10: if g(e) < c then

11: E' +— FE'Ue

12: end if

13: end for

14 E<+ F

15: M'« M' -1, c4iy < ¢ — Cpar
16: end while
17: return L, tpor, Caif, M’

If A is a tree with a predecessor list calculated with
MINTREELENGTH, then A is a POST that has a minimum
length among all POSTs.

Theorem 2. The computational complexity of both functions
MINTREERISK and MINTREELENGTH is O(m + nlgn).

Algorithm 3 applies as a step also the restriction operation
(lines 8-13) which separates a subnetwork N’ of the input

723

724

network N. The resulting subnetwork N’ has the same set of
vertices, however it contains only these edges of the original
network, which have a risk strictly less than the fixed risk
value c.

Let the list L is a result of the calculations of Algorithm 3.
We define the set of trees P’ such that:

1) the number of elements of P’ is equal to the length of

the list, |P’'| = |L];
2) P'[i] is the tree that has the predecessor list L[i], for
i=1,2,...,|L|

Then the following Theorem 3 holds.
Theorem 3. The set P’ is a solution of Problem 3.
The proof of Theorem 3 directly follows from Theorem 1.

Corollary 1. For the above defined set P’, barrier tree
toar, integers cqiy and M' that result from Algorithm 3, the
following four statements hold.

1) The tree Typq, with predecessor list tyq, is a POST and
Thar € Pk.

2) P'lile P, fori=1,2,...,|L|

3) If caiy = O, then the set P’ is a MCPF. In this case, if
Tyar # P'[K), then besides the MCPF P’, Algorithm 3
have constricted a second tree in the class Pk.

4) If cgiy > 0 and M' =0, then M < K. Then for each
jEe{M +1,... K} the inequalities z(P'[M]) < [; <
2(Toar) and y(Toer) < r; < y(P'[M]) hold. In this
case M + 1 number of POSTs are constructed from
the same MCPF. An additional verification is needed
in order to determine whether the set P' U {Tpa,} is a
MCPEF.

From Theorem 2 it follows that the running time of Al-
gorithm 3 can be evaluated O(a(m + nlgn)), where a =
min{M, K}. Because K cannot exceed the number of edges
of the network m, we say that Algorithm 3 has polynomial
complexity.

IV. COMPLETE PARETO FRONT

The helper algorithms, given in section III, are used in
the definition of our algorithm for direct construction of all
Pareto optimal biobjective minimum spanning trees, which is
described in this section.

Let the CPF P of the network N is given by the equality (5).
The solution of the main Problem 1 is given by the function
DIRECTCPEF, described in Algorithm 4. The algorithm stores
the predecessor lists of the discovered POSTs in the list of
lists C. Each list of lists in C' corresponds to one class
of equivalent POSTs. The algorithm itself implements the
following inductive procedure:

1) Base case. Store in the list C' the first MCPF. Comple-
ment C' with the remaining POSTs from the class Pj.

2) Inductive step. Suppose that in C' are stored all POSTs
from the class P;. The procedure complements C' with
the remaining POSTs from the class Pj .

PROCEEDINGS OF THE FEDCSIS. KRAKOW, POLAND, 2025

Algorithm 4 Function DIRECTCPF(N, r, M)

Input: network N, root vertex r, natural number M

Output: list of lists of POSTs C' and seven indicators
1: let C be an empty list of lists of POSTs

2 M+~ M

3: (L, Cdif s toar,]\/f’) —]\/IINCPF(]V7 T,]Vf/)
4 k < |L|, tigst < L[k], j < 0, all + false
5: if cq;y = 0 then

6: while j < k and M’ > 0 do

7: M —M+1,F @

8: for all e € E do

9: if g(e) < y(L[j + 1]) then

10: E'+ FE'Ue

11: end if

12: end for

13: E+ F

14: (L', all) + MSTLIST(N,r, M")

15: M+ M’ —|L'|

16: PUSHBACK(C, L)

17: j—i+1

18: end while
19: while j < k do

20: PUSHBACK(C, (L[j + 1]))
21: j—i+1

22: end while

23: else

24: for allt € L do

25: PUSHBACK(C, (t))

26: end for

27: end if

28: return C, Cdif» tiasts thars M, 7» k, all

3) The inductive procedure continues until all POSTs are
constructed or until in C' are stored M number of
POSTs.

The function DIRECTCPF takes as parameters the input
network N, a root vertex r and a natural number M that
defines the maximum number of POSTs. As a result of its
calculations, the function returns the list of lists of POSTs C
and the following indicators:

e cq;r shows whether a MCPF is constructed by the func-
tion MINCPF;

o t14s¢ 18 the last POST contained in the list of the MCPF
L;

o lpqr 1s the barrier tree that belongs to the class Pk
constructed by MINCPF;

e M’ shows if the number of discovered POSTs is M and
if not, how many POSTs are required;

« j shows which is the last class of equivalent POSTSs that
is stored in C

e k shows whether in C is stored at least one MCPF;

o all is a Boolean flag that shows whether the last call of
MSTLIST found all MSTs in the restricted network.

Theorem 4, given below, follows from Theorem 1, Theorem

LASKO LASKOV, MARIN MARINOV: AN ALGORITHM FOR DIRECT CONSTRUCTION OF ALL PARETO OPTIMAL BIOBJECTIVE MINIMUM SPANNING

3 and the correctness of algorithms in section III.
Theorem 4. Algorithm 4 solves correctly Problem 1.
Besides that, the following six properties hold.

Property 1. Each element of C is a list of the predecessors
lists of the same class of equivalent POSTs. For example, C'[1]
is is a list of the predecessors lists of the class P.

Property 2. If M' = 0, then in C are stored exactly M
number of POSTs. If M' > 0, then exactly M' number of
POSTs are still required.

Property 3. The indicator k can take exactly two values. It
is equal to 0, when C does not store any MCPFE. It is equal
to the number of classes of equivalent POSTs K, when in C
is stored at least one MCPF.

Property 4. The indicator j € {0,1,...,K}. If j = 0 then
C stores at most one element of each class of equivalent
POSTs. If j € {1,2,...,K}, then the calculations of the
algorithm terminated at the stage in which in C were included
the predecessors lists of the POSTs of the class P;. When
Jj €12,3,...,K}, then C[i] stores the complete classes P;,
fori=1,2...,57—1

Property 5. If M’ = 0 and k = 0, then M number of POSTs
has been discovered before a MCPF was completed. The trees
toar and t1q s define the rectangular area in which are located
the POSTs of the MCPF that are not stored in C.

Property 6. When j # 0 and all = false, then P; may
contain elements that are not stored in C. If j # 0 and all =
true, then all elements of P; are stored in C.

From Theorem 2 it follows that the computational com-
plexity of Algorithm 4 is O(s(m + nlgn)), where s =
min{M, |P|}.

The calculations of Algorithm 4 are illustrated in Example
1. Because of the small size of the network used in the
example, the above six properties can be directly verified.

Example 1. Consider the example network Ny given in Fig.
1 with adjacency lists in Table 1. We select the vertex r = 1
for the root vertex of the POSTs that will be constructed. We
will track the calculations of Algorithm 4 in the following four
cases: (a) M =2; (b) M =5; (c) M = 18 and (d) M = 25.

Solution. Before we solve the example, in order to illustrate
graphically the results of the calculations, first we find all the
spanning trees in the network N; using function MSTLIST
given in Algorithm 1. The number of all spanning trees of N}
which has number of vertices n = 6 is n"~2 = 1256. For
each spanning tree ¢ we store the pairs (z(t),y(t)), and we
store only those pairs that does not coincide. For N; there are
116 such pairs, which means that the set of all spanning trees
in N; is divided in 116 classes of equivalent trees. In Fig. 2
and 3 we illustrate all classes of equivalent trees with a black
dot with the corresponding Cartesian coordinates.

(a) We solve Problem 1 with Algorithm 4 for M = 2. The

YA

18fF----- ee0cccccccccce cocee o o oo

Mfr-=-=--- A— B e o o LY

6 : ® o cccce oo s00se o o

af oot 6

O Al . X
2830 52 -

Fig. 2. Partial MCPF and the rectangle area €2 for the example network N7.
The POST that represent the class P; is denoted with A, and the POST that
represent the class P> is denoted with B. The barrier tree is denoted with G

YA

18fF - ---- e00cccccccccce cocoe o o o

4] S Ab: Lt

10 ------- :--eol ® 00eee cc0ccccccie o o o o o

gf------ :---D'o...c. oo eeeie o o

4f------ 7 R F

o I : X
28303436 52 o

Fig. 3. MCPF for the example network Ni. The POSTs that represent the
classes P to Ps are denoted with A, B, C, D and F' respectively

resulting list is:
C =({[0,1,1,2,3,1]),([0,6,1,2,3,1])).

From the correctness of Algorithm 4 it follows that the two
trees stored in C' are POSTs and both of them are from
a different class of equivalent POSTs. Since £ = 0, from
Property 5 it follows that the entire MCPF is not yet con-
structed. If we denote with 7} the POST with predecessor list
[0,1,1,2,3,1] and with 75 the POST with with predecessor
list [0,6,1,2,3,1], then 77 € P, and Ty € P». In this case
liast = 30 and ¢;45¢ = 10 are respectively the length and the
risk of the last tree 7.

In Fig. 2 we denote the trees 77 with the point A and Tb
with the point B. Also, the algorithm calculates the barrier
tree Tpq, with predecessor list 4. We denote with G the
point with coordinates (x(Tpar), y(Trar)) = (52,4). From the
correctness of Algorithm 3 it follows that POSTs that does not
belong to P; or P, are contained into the rectangular area (2
with diagonal BG and sides parallel to the coordinate axes.
From Corollary 1 we know that the barrier tree 75, (illustrated
by the point G in Fig. 2) is a POST from the last class of
equivalent POSTs.

(b) We solve Problem 1 with Algorithm 4 for M = 5. After

725

726

the termination of the algorithm M’ = 0 and therefore exactly
M = 5 POSTs are found. In this case the resulting list is:

C={{0,1,1,2,3,1]),([0,6,1,2,3,1]),([0,1, 1,2, 3,1]),
([0,6,1,2,3,1]),([0,1,1,2,3,1])).

Since now k = 5 # 0, from Property 3 it follows that C'
contains a MCPF and it is composed from exactly 5 POSTs.
Besides that, 7 = 0 and from Property 4 it follows that for each
class of equivalent POSTs a single element is included in the
list C. Besides the trees T and T5 that were also calculated
in the case (a), the list contains the trees T3, 1, and Ty with
predecessors lists respectively [0,6,1,3,3,1], [0,6,1,1,3,1]
and [0, 3,5, 1, 6, 1]. The corresponding weights of these POSTs
are (34, 8), (36,6) and (52,4). In Fig. 3 the POSTs T3, T4 and
T are denoted with the corresponding points in the Cartesian
plane C(34,8), D(36,6) F(52,4).

Also, in this case all = false that gives us information
that it is not clear whether in P; there is no more than one
element. Besides that, it is directly verified that 75 = T, and
in the class P; there is no second element that is discovered.

(c) We solve Problem 1 with Algorithm 4 for M = 18.
After the termination of the algorithm, we get that M’ = 0,
and from Property 2 it follows that in the list C there are
exactly 18 POSTSs. It can be directly verified that in C[1] there
are 6 elements, in C[2] there are 9 elements, and C[3], C[4]
and C'[5] contain single element each.

Since k = 5, from Property 3 it follows that C' contains at
least one MCPFE. Besides that, j = 2 and from Property 4 we
get that the classes P, and P, are visited more than once by
the algorithm and all elements of P; are stored in C[1]. Since
all = true, from Property 6 it follows that all elements of Ps
are stored in C[2]. The POSTs stored in C[3], C[4] and C[5]
are the same as in the case (b).

(d) We solve Problem 1 with Algorithm 4 for M = 25. The
algorithm returns M’ > 0 and k = 5 # 0, and therefore the
CPF is stored in C. The last class of equivalent POST that
has been visited by the algorithm is defined by ;7 = 5 and
it is the class Ps. The classes P;, P>, P3 and P, are stored
respectively in C[1], C[2], C[3] and C[4]. Since all = true,
the entire class Ps is stored in C[5].

It can be directly verified that |C[1]] = 6, |C[2]] = 9,
|C[3]] = 3, |C[4]| = 5, and |C[5]| = 1, and the CPF has
totally 24 POSTs.

V. CONCLUSION

In the general case, the biobjective MSTs problem is widely
considered an NP-hard problem, which means that an exact
method will lead to exponential computational complexity.
In our research we have shown that for particular objective
functions, the problem is weakly NP-hard, and efficient exact
algorithms can be found.

In this paper we have examined in details a version of
biobjective MSTs problem in which the first objective function
is linear (length), and the second objective function is non-
linear bottleneck (risk). Our algorithm that finds the minimum

PROCEEDINGS OF THE FEDCSIS. KRAKOW, POLAND, 2025

complete Pareto front of the problem has polynomial com-
plexity. The proposed algorithm in this paper that constructs
the complete Pareto front has pseudo-polynomial complexity.

We have implemented and tested the described algorithms
in this paper on complete random networks. The conducted
experiments illustrate the effectiveness of Algorithm 4 that
constructs the complete Pareto front. For example, for a
complete random network with n = 100 number of vertices,
the running time of the program written in Wolfram language
is not more than 11 minutes on a standard computer con-
figuration. In the particular case, the number of all spanning
trees in the network are 1008, the number of Pareto optimal
spanning trees in the complete Pareto front are 4739, and it
is distributed in 3986 number of classes of equivalent Pareto
optimal spanning trees.

The results of the prototype program written in Wolfram
language show that with a more optimized implementation
(for example in C++ or Julia programming languages), we
will be able to run the described algorithms with even bigger
examples for much less running time. For example our Julia
implementation of Algorithm 3 competes in 66.28 seconds
on a complete random network with n = 1000 number of
vertices.

REFERENCES

[1] T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein, Introduction
to algorithms, 4th ed. Cambridge, Massachusetts: MIT Press, 2022,
ch. 21, pp. 585-603. ISBN 0-262-04630-X

[2] R. C. Prim, “Shortest connection networks and some generalizations,”
The Bell System Technical Journal, vol. 36, no. 6, pp. 1389-1401, 1957.
doi: 10.1002/j.1538-7305.1957.tb01515.x

[3] M. L. Fredman and R. E. Tarjan, “Fibonacci heaps and their uses
in improved network optimization algorithms,” Journal of the ACM,
vol. 34, no. 3, pp. 596-615, July 1987. doi: 10.1145/28869.28874

[4] R. M. Ramos, S. Alonso, J. Sicilia, and C. Gonzalez, “The problem of
the optimal biobjective spanning tree,” European Journal of Operational
Research, vol. 111, no. 3, pp. 617-628, 1998. doi: 10.1016/S0022-
0000(05)80064-9

[5S] D. Rocha, E. Goldbarg, and M. Goldbarg, “A memetic algorithm

for the biobjective minimum spanning tree problem,” in Evolutionary

Computation in Combinatorial Optimization, J. Gottlieb and G. R.

Raidl, Eds. Berlin, Heidelberg: Springer Berlin Heidelberg, 2006. doi:

10.1007/11730095_19. ISBN 978-3-540-33179-7 pp. 222-233.

S. Steiner and T. Radzik, “Computing all efficient solutions of the biob-

jective minimum spanning tree problem,” Computers & Operations Re-

search, vol. 35, no. 1, pp. 198-211, 2008. doi: 10.1016/j.cor.2006.02.023

[71 A. C. Santos, D. R. Lima, and D. J. Aloise, “Modeling and solving the
bi-objective minimum diameter-cost spanning tree problem,” Journal of
Global Optimization, vol. 60, pp. 195-216, 2014. doi: 10.1007/s10898-
013-0124-4

[8] H. W. Corley, “Efficient spanning trees,” Journal of Optimization Theory
and Applications, vol. 45, pp. 481-485, 1985. doi: 10.1007/BF00938448

[9] S. Fidanova and M. Ganzha, “Ant colony optimization for workforce

planning with hybridization,” in Proceedings of the 18th Conference

on Computer Science and Intelligence Systems, ser. Annals of

Computer Science and Information Systems, M. Ganzha, L. Maciaszek,

M. Paprzycki, and D. Slezak, Eds., vol. 35. 1IEEE, 2023.

doi: 10.15439/2023F9586 p. 955-959. [Online]. Available: http:

//dx.doi.org/10.15439/2023F9586

L. M. Laskov and M. L. Marinov, “Pareto optimal solutions of the

biobjective minimum length minimum risk spanning trees problem,”

in Proceedings of the of the 19th Conference on Computer Science
and Intelligence Systems, ser. ACSIS, M. Bolanowski, M. Ganzha,

L. Maciaszek, M. Paprzycki, and D. Slezak, Eds., vol. 39. IEEE, 2024.

doi: https://doi.org/10.15439/2024F2913. ISSN 300-5963 pp. 405-416.

[6

[10]

