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Abstract—Black-box explainability tools like LIME and SHAP
are widely used to interpret machine learning models. How-
ever, their post-hoc, local nature often results in inconsistent
and semantically opaque explanations. This paper presents a
model-driven explainability approach using grammatical evolu-
tion (GE), enabling the discovery of symbolic, human-readable
models. We compare black-box explanations to symbolic GE-
generated models on two benchmark tasks: a quadratic equation
classification problem and the Iris dataset. GE produces in-
terpretable, consistent, and semantically meaningful expressions
consistent with domain knowledge, offering a more trustworthy
foundation for explainable AI. The use of Meaningful Inter-
mediate Variables (MIVs) further improves the clarity and
expressiveness of the symbolic models.

Keywords—Explainable Artificial Intelligence (XAI); Gram-
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I. INTRODUCTION

T
HE INCREASING deployment of machine learning

(ML) systems in critical domains has renewed attention to

the need for transparency, interpretability, and trust in artificial

intelligence (AI) models. In practical applications, such as

biomedical diagnostics and regulatory environments, it is not

sufficient for a model to produce a correct prediction; it must

also be able to explain how and why it provided a decision in

a way understandable to human users [1], [2].

Explainable Artificial Intelligence (XAI) aims to make AI

systems more interpretable and trustworthy [1], [3]. XAI meth-

ods include inherently transparent models (e.g. decision trees)

and post hoc techniques such as LIME [4] and SHAP [5],

which approximate black-box models locally. However, post-

hoc explanations are often inconsistent, sensitive to sampling,

and lack semantic grounding in the domain [6], [7].

These challenges have led to a growing interest in Model-

Driven approaches to XAI, which construct interpretable mod-

els directly from data using symbolic techniques [8], [9].

Among them, Grammatical Evolution (GE) is a promising

evolutionary algorithm that evolves human-readable expres-

sions guided by context-free grammars [10]. GE has shown

effectiveness in symbolic regression, functional modeling, and

equation discovery - especially when domain knowledge is

embedded through grammar design or Meaningful Intermedi-

ate Variables1 (MIV) [11], [13].

This paper presents a comparative exploration of symbolic

model-driven explanations using GE and black-box post-hoc

tools. We argue that symbolic models offer greater semantic

clarity, stability, and alignment with human reasoning. Using

two benchmarks, a synthetic quadratic classification task and

the Iris dataset, we show how GE produces simple, meaningful

models that either recover known functional relationships (e.g.

d = b2 − 4ac) or leverage interpretable MIVs (e.g. petal area)

to achieve high accuracy with full transparency.

Our main contributions are as follows:

• We contrast symbolic and black-box explanations on

two classification tasks, highlighting the strengths and

weaknesses of each approach.

• We show that GE provides clear, interpretable models

aligned with domain knowledge, unlike the often unstable

outputs of LIME and SHAP.

• We demonstrate the use of MIVs to enhance interpretabil-

ity and simplify the model structure.

• We propose a methodology for integrating GE into a

transparent MD-XAI pipeline.

The remainder of the paper is organized as follows. Sec-

tion 2 outlines the background and methods. Section 3 presents

experiments. Section 4 discusses the results and implications,

and Section 5 concludes with insights and future work.

II. RELATED WORK AND METHODS

This section outlines the two primary paradigms of explain-

ability considered in this study: post-hoc explanation methods

for black-box models, and model-driven symbolic approaches

based on Grammatical Evolution. We discuss their principles,

strengths, and known limitations, focusing on their impact

on semantic clarity, model transparency, and alignment with

domain knowledge.

1A Meaningful Intermediate Variable (MIV) has clear semantics, is derived
from simple functions, and depends on data or other MIVs.
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A. Black-Box Explanation Techniques

Post-hoc explainability interprets black-box models (e.g.

ensembles, neural networks) by analyzing the output without

accessing internal structure. Two widely used methods are

LIME [4] and SHAP [5]:

• LIME fits a local linear surrogate model by perturbing

input data to explain predictions.

• SHAP uses game theory to calculate feature contributions

by calculating Shapley values.

Although popular for their visual intuitiveness, LIME and

SHAP face intrinsic key limitations [7], [3], [6]:

• Instability: Results vary with random seeds or sampling.

• Locality: Explanations are instance-specific and are not

generalizable.

• Poor semantics: Attributions lack domain or causal

grounding.

• Explainer opacity: The logic behind them is often diffi-

cult to validate.

These weaknesses have motivated the development of

model-driven alternatives that prioritize transparency and in-

terpretability by discovering and designing structures [15], [7],

[8].

B. Symbolic Regression with Grammatical Evolution

Symbolic regression seeks interpretable mathematical ex-

pressions that fit the data accurately. Unlike classical regres-

sion with fixed structures (e.g. linear, polynomial), it explores

a broad space of formulas composed of variables, constants,

and operators, producing models that are directly interpretable

and verifiable by humans.

Model-driven explainability seeks to construct models that

are inherently interpretable. Among symbolic machine learn-

ing techniques, GE provides a flexible and powerful approach

to discovering human-readable models [10].

GE is a genetic programming technique that uses context-

free grammars to define valid symbolic expressions. Solutions

are encoded as genomes that are decoded into mathematical

formulas or rules based on the grammar.

• Expressive Power: GE supports arithmetic, logic, and

domain-specific operations via customizable grammars.

• Interpretability: The output models are human-readable

symbolic expressions.

• Incorporation of Domain Knowledge: Grammar rules

or MIVs embed prior knowledge into the search space.

This approach has been successfully applied in various do-

mains, including bioinformatics [9], symbolic regression [10],

[12], and model-driven XAI [11], [8], [13]. GE discovers

interpretable functions that reflect the data structure while

allowing integration of constraints and semantic guidance.

Using user-defined grammars, GE can enforce domain-

specific constraints or promote particular structural patterns.

For instance, intermediate variables or known transformations

can be explicitly included in the grammar, guiding the search

process toward semantically valid and explainable models.

This makes GE especially suitable for applications that require

compliance with expert knowledge or regulatory compliance.

Our prior work [13] showed that GE can rediscover sym-

bolic relationships (e.g. the quadratic discriminant) and gen-

erate compact and transparent classifiers. For example, using

the hand-made variable PLmPW = petal.length ·petal.width,

GE accurately classified the Iris species with high accuracy

and full transparency.

Recent research explores hybrid methods that combine GE

with neural networks or extract symbolic rules from black-box

models [14].

C. Comparison Criteria

In this work, we evaluate post-hoc and symbolic explanation

methods based on the following key dimensions:

• Fidelity: Accuracy of the explanation relative to the

model or the true function.

• Simplicity: Complexity of the resulting explanation (e.g.

expression length, tree depth).

• Semantic Alignment: Degree to which the explanation

uses meaningful or domain-relevant variables.

• Stability: Consistency of the explanation across multiple

runs or perturbed inputs.

D. Incorporating GE into XAI Pipelines

To formalize the use of GE as an alternative to post-hoc

explainers, we propose a transparent pipeline for integrating it

into explainability workflows. This replaces black-box inter-

pretation with directly evolved, interpretable models:

1) Feature Preprocessing: Prepare input data; optionally

derive MIVs.

2) Grammar Specification: Define a context-free gram-

mar with domain semantics.

3) GE Model Training: Apply GE to evolve models

mapping features/MIVs to outputs.

4) Symbolic Rule Extraction: Select models according to

fitness, simplicity, and semantic alignment.

5) Validation and Interpretation: Assess accuracy and

interpret model structure.

Figure 1 illustrates the structure of this methodology.

Input Data (incl. MIVs)

Grammar

GE Engine

Symbolic Rules

Evaluation

Fig. 1. Pipeline for symbolic model construction using GE
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III. EXPERIMENTAL COMPARISON

To compare black-box explanation methods with symbolic

GE models, we performed experiments on two tasks: a syn-

thetic quadratic discriminant classification and the Iris dataset,

a standard benchmark for interpretability studies.

A. Quadratic Classification Task

This task involves a simple symbolic function: the discrim-

inant of a quadratic equation d = b2 − 4ac to classify input

into two (d > 0), one (d = 0) or no real solutions (d < 0).

The dataset contains synthetic (a, b, c) tuples labeled with

the corresponding value of d.

In the initial phase of the experiment, we trained models

to classify the number of real roots using only (a, b, c),
without providing d = b2 − 4ac. This tested whether stan-

dard methods, linear regression, decision trees, and random

forest (RF), could learn the decision boundary from data

alone. The performance of the model was assessed using

two metrics: RMSE (Root Mean Squared Error), defined as

RMSE(y, ŷ) =
√

1

n

∑n

i=1
(yi − ŷi)2, and its normalized form,

NRMSE, NRMSE = RMSE

ȳ
.

The prediction accuracy is presented in Table I. Although

random forest had the lowest test error, none of the models

produced interpretable rules or captured the underlying struc-

ture. Their generalization, especially near d = 0, was unstable.

TABLE I
RMSE AND NRMSE OF SELECTED MACHINE LEARNING MODELS

TRAINED ON (a, b, c) WITHOUT ACCESS TO THE DISCRIMINANT

Model RMSE (train) NRMSE (train) RMSE (test) NRMSE (test)

Linear Regression 0.8267 0.8026 0.8239 0.8368

Decision Tree 0.5431 0.5273 0.8142 0.8224

Random Forest 0.2284 0.2218 0.5883 0.5942

This motivated the introduction of a domain-informed vari-

able representing the discriminant to evaluate the benefits of

symbolic modeling and explainability.

a) LIME and SHAP Results: We applied both explana-

tion tools to the RF classifier and observed notable inconsis-

tencies in predictions:

• LIME frequently attributed great importance to the vari-

able b, with fewer or inconsistent roles for a and c.

• SHAP produced attributions in which c often appeared

dominant, sometimes contradicting LIME.

Neither method revealed the discriminant formula or suggested

that a quadratic combination of a, b, and c was relevant.

As shown in Fig. 2, LIME and SHAP sometimes disagreed

on both the importance and direction of the feature. Similar

instability was observed in [13], where shallow explanations

lacked semantic consistency.

b) GE Results: In contrast, the GE model directly redis-

covered the symbolic form of the discriminant: d = b2 − 4ac
GE then generated an interpretable rule-based classifier:

ifelse(d > 0, "two",ifelse(d == 0, "one", "zero"))

Fig. 2. (A) LIME and (B) SHAP explanations for a given prediction

This compact and interpretable structure is exactly consistent

with the known semantics of the problem. Figure 3 illustrates

the classification process: calculate the discriminant d, then

assign the class based on its value.

Fig. 3. GE-evolved symbolic rule with intermediate variable d representing
the discriminant. The rule exactly matches the theoretical solution structure.

The symbolic rule for d was discovered by evolutionary
search on a grammar encoding arithmetic operations and
constants relevant to the discriminant:

<expr> ::= <var> | <op>(<n>, <var>)

| <op>(<var>, <n>) | <op>(<expr>, <expr>)

<op> ::= "-" | "*" | "^"

<var> ::= a | b | c

<n> ::= 1 | 2 | 3 | 4

The grammar for the final classification, which assigns the
number of solutions of a quadratic equation, is listed below:

<result> ::= ifelse(<expr>, "one", "other")

<expr> ::= (<expr> & <sub_expr>)

| (<expr> | <sub_expr>) | <sub_expr>

<sub_expr> ::= <comparison>(<var>, <func_var>)

<comparison> ::= > | < | ==

<func_var> ::= <num> | <var> | <func>(<var>)

<func> ::= mean | max | min | sd

<var> ::= a | b | c | d

<num> ::= 0 | 1

The GE model achieved 100% accuracy on the training

and test sets due to perfect alignment with the true decision

boundary. In contrast, the random forest misclassified 4–5%

near d = 0 and failed to generalize. This case demonstrates

that GE provides strong performance and formal transparency,

providing stable, reproducible, and verifiable expressions, un-

like post-hoc black-box explainers. This experiment highlights

the value of MIVs, like d, which capture complex feature

relationships. MIVs reflect domain knowledge and decompose

learning into interpretable parts. As shown in [13], they help

GE efficiently discover accurate and human-readable rules,

which post-hoc tools such as LIME or SHAP cannot achieve

due to their lack of structural abstraction.
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B. Iris Dataset

The Iris dataset includes 150 samples labeled: Setosa, Versi-

color, or Virginica, each with four features: sepal length/width

and petal length/width. It is commonly used to assess the

interpretability of the model.

a) LIME and SHAP Results: RF trained on the Iris

dataset was explained with LIME and SHAP. Compared to

the quadratic task, the results were more consistent. Both

tools often highlighted Petal.Length and Petal.Width, though

discrepancies remained. As shown in Fig. 4, LIME negatively

emphasized all features, while SHAP prioritized petal features

over sepal ones.

Fig. 4. (A) LIME and (B) SHAP explanations for the same Iris sample

Despite improved consistency compared to the delta ex-

periment, neither method offered a compact or semantically

meaningful rule that could generalize throughout the dataset.

b) GE Results: GE was applied to the full feature set to

minimize misclassifications, running for 1000 iterations with

default settings and the grammar shown below:

<expr> ::= (<expr> & <sub_expr>)

| <expr> | <sub_expr>) | <sub_expr>

<sub_expr> ::= <comparison>(<var>, <func_var>)

<comparison> ::= > | < | == | >= | <=

<func_var> ::= <num> | <var> | <func>(<var>)

<func> ::= mean | max | min | sd

<var> ::= Sepal.Length | Sepal.Width

| Petal.Length | Petal.Width

<num> ::= 1 | 1.5 | 2 | 2.5 | 3 | 4 | 5

Representative symbolic models and their corresponding
plots are shown below, highlighting the effective separation
of the setosa and versicolor classes.

ifelse(Petal.Length <= Sepal.Width, "setosa",

"other")

ifelse((Petal.Width <= 1.5)&(Petal.Length >= 2.5),

"versicolor", "other")

Although the model identified all setosa samples, its clas-

sification of versicolor at 94.66% accuracy indicates potential

for further improvement.

To improve the classification, we extended the feature

set by introducing a Meaningful Intermediate Variable that

approximates the petal area:

PLmPW = petal.length ∗ petal.width (1)

Fig. 5. Setosa classification with sepal width and petal length

Fig. 6. Versicolor classification with petal width and petal length

Using this MIV, GE developed a simple and accurate rule-

based model:

• If PLmPW ≤ 2: Setosa.

• If 2 < PLmPW ≤ 8: Versicolor.

• If PLmPW > 8: Virginica.

This rule achieved approximately 95% precision, with a de-

cision structure that is semantically meaningful and easy to

understand.

Figure 7 presents the functional model obtained by combin-

ing the individual rules.

Fig. 7. Functional model for Iris species classification with MIV

The results of the classification process performed with the

functional model provided are depicted in Figure 8.

We also introduced additional MIVs including the sepal

area:

SLmSW = sepal.length ∗ sepal.width, (2)

petal and sepal perimeters, and various length-to-width ratios

to improve model accuracy.

MIVs used in the model may be derived not only from

the original input features but also from other previously

defined MIVs. One such example is the petal-to-sepal area

ratio, proposed using the MIVs defined in Equations 1 and 2:
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Fig. 8. Iris species classification with MIV = petal.length ∗ petal.width

PdS =
PLmPW

SLmSW
(3)

Using the GE approach, the following classification rules
were generated on the basis of the derived PdS value:

ifelse(PdS <= 0.2, "setosa", "other")

ifelse((PdS <= 0.43) & (PdS >= 0.22),

"versicolor", "other")

ifelse(PdS >= 0.43, "virginica", "other")

These rules define a functional model, presented in Figure 9.

Fig. 9. Functional model for Iris classification with multiple MIVs

The classification results obtained using the functional

model based on multiple MIVs are presented in Figure 10.

Fig. 10. Iris species classification with multiple MIVs

The model demonstrates an improvement over the previous

one, achieving an accuracy of 96%.

IV. ANALYSIS AND DISCUSSION

The experimental results highlight differences between

post-hoc explainability techniques and model-driven symbolic

methods. Our comparative analysis focuses on four critical

dimensions: stability, interpretability, semantic alignment, and

predictive performance.

A. Stability and Reproducibility

An intrinsic limitation of post-hoc methods is the instability.

Attribution values vary across runs or small input changes,

especially in the quadratic task. For example, LIME overem-

phasized b, while SHAP inconsistently prioritized c, reducing

reliability in high-stake settings.

In contrast, GE consistently produced models with stable

structure and clear semantics across runs, offering strong

support for reproducibility, system auditing, and model un-

derstanding.

B. Interpretability and Semantic Coherence

GE produces symbolic models based on mathematical or

logical rules that are directly interpretable. In the quadratic

task, it rediscovered d = b2 − 4ac. In the Iris dataset, MIV-

based rules (e.g. petal area, petal-sepal ratios) reflect domain

structure and improved transparency.

LIME and SHAP offer intuitive local insights but lack

structural integration. Their explanations are not reusable and

generalizable, limiting their value for model critique and

design.

C. Role and Value of Intermediate Variables

MIVs significantly enhanced interpretability and perfor-

mance. In the Iris task, handcrafted variables like PLmPW

and PdS helped GE derive simple domain-aligned rules by

embedding biological knowledge into the search process. We

also showed that MIVs can be composed hierarchically—for

example, PdS combines two others, supporting scalable sym-

bolic modeling in complex domains with important but im-

plicit constructs.

D. Prediction Accuracy

Although symbolic modeling prioritizes interpretability, GE

models also achieved high precision. In the quadratic task,

GE accurately captured the decision boundary. For the Iris

dataset, MIV-based models reached 96% accuracy—matching

black-box classifiers, but with much greater transparency. In

particular, some gains came from structured variables, empha-

sizing the value of hybrid approaches that combine domain

knowledge with symbolic learning.

E. Limitations and Practical Considerations

Despite its advantages, GE has practical constraints. Gram-

mar design requires domain expertise, and poor design either

limits the search space excessively or fails to guide the model

toward meaningful solutions. As a stochastic method, GE may

require multiple runs or tuning. However, in domains with

expert input or bounded problems, GE offers a controllable

and verifiable alternative to opaque black-box explanations.

The comparative evaluation described in Section II-C es-

tablished four key criteria: reproducibility, interpretability,

semantic consistency, and structural clarity. These dimensions

provided a principled framework for analyzing the strengths

and limitations of each method. The experimental findings

validate the relevance of this framework: post-hoc methods
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like LIME and SHAP showed weaknesses in reproducibil-

ity and semantic alignment, often generating inconsistent

or context-insensitive attributions. In contrast, the symbolic

models developed through GE satisfied all four criteria. They

were reproducible across runs, structurally coherent, inter-

pretable by domain experts, and semantically aligned with

known functional relationships. The use of this criteria-driven

perspective was essential in highlighting that precision alone is

insufficient when evaluating explainable models, and structural

and semantic properties must also be considered.

To consolidate the results and observations discussed in the

experimental sections, Table II provides a qualitative com-

parison of the three approaches evaluated. LIME, SHAP, and

Grammatical Evolution. The comparison is organized around

the four criteria defined in Section II-C: fidelity, simplicity,

semantic alignment, and stability.

TABLE II
QUALITATIVE COMPARISON OF EXPLANATION METHODS

Criterion LIME SHAP GE

Fidelity Low–Medium Low-Medium High (in known domains)

Simplicity Medium Medium High (compact rules)

Semantic
Alignment Low Low High (uses MIVs)

Stability Medium Medium High

As shown in the table, LIME and SHAP provide partial

fidelity and limited semantic coherence, particularly in tasks

where the decision boundary depends on specific functional

structures. Their attributions are also sensitive to sampling

variability and lack cross-instance consistency. GE, by con-

trast, produces symbolic models that offer high fidelity when

the target rule is recoverable, and do so using semantically

meaningful constructs such as intermediate variables. These

symbolic rules are compact and structurally transparent, pro-

viding an interpretable basis for classification decisions. This

distinction is particularly evident in the quadratic task, where

GE recovered the exact mathematical discriminant, while

LIME and SHAP failed to detect the underlying structure.

V. CONCLUSION

This study presents a comparative evaluation of black-

box post-hoc explanation methods (LIME and SHAP) and

symbolic, model-driven approaches using Grammatical Evolu-

tion. In two classification tasks, GE consistently demonstrated

superior semantic clarity, interpretability, and reproducibility.

The core findings are as follows:

• Interpretability and Semantic Alignment: GE-

generated symbolic models are inherently interpretable,

expressed as explicit formulas aligned with domain

semantics (e.g., discriminants or feature ratios). In

contrast, LIME and SHAP offer fragmented, instance-

specific attributions that are often semantically opaque

and inconsistent across similar inputs.

• Structured Abstraction through MIVs: GE incorpo-

rates structured domain knowledge via Meaningful In-

termediate Variables, such as petal area or petal-to-sepal

ratios. These enhance model clarity, simplify decision

boundaries, and support composability by enabling hi-

erarchical MIVs built from previously defined variables.

• Accuracy and Trustworthiness: While GE emphasizes

interpretability, it also achieves competitive accuracy—up

to 96% on the Iris dataset, generating compact and

transparent rules. This combination improves trust and

auditability in high-stakes or regulated applications.

These results suggest that symbolic regression techniques,

and particularly GE, provide a viable alternative to post-

hoc explainers in contexts where explanation fidelity and

transparency are critical.

Future work will focus on intelligent and automated gram-

mar generation, discovering intermediate variables, and im-

proving convergence strategies for grammar-guided evolution.
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