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Abstract—Black-box explainability tools like LIME and SHAP
are widely used to interpret machine learning models. How-
ever, their post-hoc, local nature often results in inconsistent
and semantically opaque explanations. This paper presents a
model-driven explainability approach using grammatical evolu-
tion (GE), enabling the discovery of symbolic, human-readable
models. We compare black-box explanations to symbolic GE-
generated models on two benchmark tasks: a quadratic equation
classification problem and the Iris dataset. GE produces in-
terpretable, consistent, and semantically meaningful expressions
consistent with domain knowledge, offering a more trustworthy
foundation for explainable AI. The use of Meaningful Inter-
mediate Variables (MIVs) further improves the clarity and
expressiveness of the symbolic models.
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I. INTRODUCTION

HE INCREASING deployment of machine learning

(ML) systems in critical domains has renewed attention to
the need for transparency, interpretability, and trust in artificial
intelligence (AI) models. In practical applications, such as
biomedical diagnostics and regulatory environments, it is not
sufficient for a model to produce a correct prediction; it must
also be able to explain how and why it provided a decision in
a way understandable to human users [1], [2].

Explainable Artificial Intelligence (XAI) aims to make Al
systems more interpretable and trustworthy [1], [3]. XAI meth-
ods include inherently transparent models (e.g. decision trees)
and post hoc techniques such as LIME [4] and SHAP [5],
which approximate black-box models locally. However, post-
hoc explanations are often inconsistent, sensitive to sampling,
and lack semantic grounding in the domain [6], [7].

These challenges have led to a growing interest in Model-
Driven approaches to XAI, which construct interpretable mod-
els directly from data using symbolic techniques [8], [9].
Among them, Grammatical Evolution (GE) is a promising
evolutionary algorithm that evolves human-readable expres-
sions guided by context-free grammars [10]. GE has shown
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effectiveness in symbolic regression, functional modeling, and
equation discovery - especially when domain knowledge is
embedded through grammar design or Meaningful Intermedi-
ate Variables' (MIV) [11], [13].

This paper presents a comparative exploration of symbolic
model-driven explanations using GE and black-box post-hoc
tools. We argue that symbolic models offer greater semantic
clarity, stability, and alignment with human reasoning. Using
two benchmarks, a synthetic quadratic classification task and
the Iris dataset, we show how GE produces simple, meaningful
models that either recover known functional relationships (e.g.
d = b? — 4ac) or leverage interpretable MIVs (e.g. petal area)
to achieve high accuracy with full transparency.

Our main contributions are as follows:

o« We contrast symbolic and black-box explanations on
two classification tasks, highlighting the strengths and
weaknesses of each approach.

« We show that GE provides clear, interpretable models
aligned with domain knowledge, unlike the often unstable
outputs of LIME and SHAP.

« We demonstrate the use of MIVs to enhance interpretabil-
ity and simplify the model structure.

o« We propose a methodology for integrating GE into a
transparent MD-XALI pipeline.

The remainder of the paper is organized as follows. Sec-
tion 2 outlines the background and methods. Section 3 presents
experiments. Section 4 discusses the results and implications,
and Section 5 concludes with insights and future work.

II. RELATED WORK AND METHODS

This section outlines the two primary paradigms of explain-
ability considered in this study: post-hoc explanation methods
for black-box models, and model-driven symbolic approaches
based on Grammatical Evolution. We discuss their principles,
strengths, and known limitations, focusing on their impact
on semantic clarity, model transparency, and alignment with
domain knowledge.

A Meaningful Intermediate Variable (MIV) has clear semantics, is derived
from simple functions, and depends on data or other MIVs.

Topical area: Advanced Artificial
Intelligence in Applications
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A. Black-Box Explanation Techniques

Post-hoc explainability interprets black-box models (e.g.
ensembles, neural networks) by analyzing the output without
accessing internal structure. Two widely used methods are
LIME [4] and SHAP [5]:

o LIME fits a local linear surrogate model by perturbing
input data to explain predictions.

o SHAP uses game theory to calculate feature contributions
by calculating Shapley values.

Although popular for their visual intuitiveness, LIME and
SHAP face intrinsic key limitations [7], [3], [6]:

e Instability: Results vary with random seeds or sampling.
e Locality: Explanations are instance-specific and are not
generalizable.

e Poor semantics:

grounding.
o Explainer opacity: The logic behind them is often diffi-
cult to validate.

Attributions lack domain or causal

These weaknesses have motivated the development of
model-driven alternatives that prioritize transparency and in-
terpretability by discovering and designing structures [15], [7],
[8].

B. Symbolic Regression with Grammatical Evolution

Symbolic regression seeks interpretable mathematical ex-
pressions that fit the data accurately. Unlike classical regres-
sion with fixed structures (e.g. linear, polynomial), it explores
a broad space of formulas composed of variables, constants,
and operators, producing models that are directly interpretable
and verifiable by humans.

Model-driven explainability seeks to construct models that
are inherently interpretable. Among symbolic machine learn-
ing techniques, GE provides a flexible and powerful approach
to discovering human-readable models [10].

GE is a genetic programming technique that uses context-
free grammars to define valid symbolic expressions. Solutions
are encoded as genomes that are decoded into mathematical
formulas or rules based on the grammar.

o Expressive Power: GE supports arithmetic, logic, and
domain-specific operations via customizable grammars.

o Interpretability: The output models are human-readable
symbolic expressions.

o Incorporation of Domain Knowledge: Grammar rules
or MIVs embed prior knowledge into the search space.

This approach has been successfully applied in various do-
mains, including bioinformatics [9], symbolic regression [10],
[12], and model-driven XAI [11], [8], [13]. GE discovers
interpretable functions that reflect the data structure while
allowing integration of constraints and semantic guidance.

Using user-defined grammars, GE can enforce domain-
specific constraints or promote particular structural patterns.
For instance, intermediate variables or known transformations
can be explicitly included in the grammar, guiding the search
process toward semantically valid and explainable models.
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This makes GE especially suitable for applications that require
compliance with expert knowledge or regulatory compliance.

Our prior work [13] showed that GE can rediscover sym-
bolic relationships (e.g. the quadratic discriminant) and gen-
erate compact and transparent classifiers. For example, using
the hand-made variable PLmPW = petal.length - petal.width,
GE accurately classified the Iris species with high accuracy
and full transparency.

Recent research explores hybrid methods that combine GE
with neural networks or extract symbolic rules from black-box
models [14].

C. Comparison Criteria

In this work, we evaluate post-hoc and symbolic explanation
methods based on the following key dimensions:

o Fidelity: Accuracy of the explanation relative to the
model or the true function.

o Simplicity: Complexity of the resulting explanation (e.g.
expression length, tree depth).

o Semantic Alignment: Degree to which the explanation
uses meaningful or domain-relevant variables.

« Stability: Consistency of the explanation across multiple
runs or perturbed inputs.

D. Incorporating GE into XAl Pipelines

To formalize the use of GE as an alternative to post-hoc
explainers, we propose a transparent pipeline for integrating it
into explainability workflows. This replaces black-box inter-
pretation with directly evolved, interpretable models:

1) Feature Preprocessing: Prepare input data; optionally

derive MIVs.

2) Grammar Specification: Define a context-free gram-

mar with domain semantics.

3) GE Model Training: Apply GE to evolve models

mapping features/MIVs to outputs.

4) Symbolic Rule Extraction: Select models according to

fitness, simplicity, and semantic alignment.

5) Validation and Interpretation: Assess accuracy and

interpret model structure.

Figure 1 illustrates the structure of this methodology.

Input Data (incl. MIVs)

3

Grammar
I

GE Engine
I

Symbolic Rules

N

Evaluation

Fig. 1. Pipeline for symbolic model construction using GE
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ITI. EXPERIMENTAL COMPARISON

To compare black-box explanation methods with symbolic
GE models, we performed experiments on two tasks: a syn-
thetic quadratic discriminant classification and the Iris dataset,
a standard benchmark for interpretability studies.

A. Quadratic Classification Task

This task involves a simple symbolic function: the discrim-
inant of a quadratic equation d = b? — 4ac to classify input
into two (d > 0), one (d = 0) or no real solutions (d < 0).

The dataset contains synthetic (a, b, c) tuples labeled with
the corresponding value of d.

In the initial phase of the experiment, we trained models
to classify the number of real roots using only (a,b,c),
without providing d = b®> — 4ac. This tested whether stan-
dard methods, linear regression, decision trees, and random
forest (RF), could learn the decision boundary from data
alone. The performance of the model was assessed using
two metrics: RMSE (Root Mean Squared Error), defined as

RMSE(y, §) = \/l 1 (y; — 9:)2, and its normalized form,

n 3
NRMSE, NRMSE = fMSE,

The prediction accuracy is presented in Table 1. Although
random forest had the lowest test error, none of the models
produced interpretable rules or captured the underlying struc-
ture. Their generalization, especially near d = 0, was unstable.

TABLE I
RMSE AND NRMSE OF SELECTED MACHINE LEARNING MODELS
TRAINED ON (a, b, ¢) WITHOUT ACCESS TO THE DISCRIMINANT

Model RMSE (train) | NRMSE (train) | RMSE (test) | NRMSE (test)
Linear Regression 0.8267 0.8026 0.8239 0.8368
Decision Tree 0.5431 0.5273 0.8142 0.8224
Random Forest 0.2284 0.2218 0.5883 0.5942

This motivated the introduction of a domain-informed vari-
able representing the discriminant to evaluate the benefits of
symbolic modeling and explainability.

a) LIME and SHAP Results: We applied both explana-
tion tools to the RF classifier and observed notable inconsis-
tencies in predictions:

« LIME frequently attributed great importance to the vari-
able b, with fewer or inconsistent roles for a and c.

o SHAP produced attributions in which ¢ often appeared
dominant, sometimes contradicting LIME.

Neither method revealed the discriminant formula or suggested
that a quadratic combination of a, b, and ¢ was relevant.

As shown in Fig. 2, LIME and SHAP sometimes disagreed
on both the importance and direction of the feature. Similar
instability was observed in [13], where shallow explanations
lacked semantic consistency.

b) GE Results: In contrast, the GE model directly redis-
covered the symbolic form of the discriminant: d = b? — 4ac
GE then generated an interpretable rule-based classifier:

ifelse(d > 0,"two", ifelse(d == 0, "one", "zero"))

Case: 11
Prediction: 0.72783332
Explanation Fit: 0.048

b<=-525

1.00 < a <= 5.00

Feature

4<c

o
=

00.050.100.15 0.20
Weight

W Fosiive . Negative

-0.50 -0.25 0.00

contribution

0.25

Fig. 2. (A) LIME and (B) SHAP explanations for a given prediction

This compact and interpretable structure is exactly consistent
with the known semantics of the problem. Figure 3 illustrates
the classification process: calculate the discriminant d, then
assign the class based on its value.

a— >0
b—p o T
c——» s 2

Fig. 3. GE-evolved symbolic rule with intermediate variable d representing
the discriminant. The rule exactly matches the theoretical solution structure.

The symbolic rule for d was discovered by evolutionary
search on a grammar encoding arithmetic operations and
constants relevant to the discriminant:

<expr> ::= <var> | <op>(<n>, <var>)

| <op>(<var>, <n>) | <op> (<expr>, <expr>)
<Op> e o= NW_mM ‘ nwyn ‘ nAmn
<var> ::=a | b | ¢
<n> c:=1 | 2 3 | 4

The grammar for the final classification, which assigns the
number of solutions of a quadratic equation, is listed below:

<result>
<expr>

= ifelse (<expr>, "one",
S (<expr> & <sub_expr>)
| (<expr> |

"other")

<sub_expr>) | <sub_expr>
<sub_expr> ::= <comparison> (<var>, <func_var>)
<comparison> ::= > | < | ==
<func_var> ::= <num> | <var> | <func> (<var>)
<func> ::= mean | max | min | sd
<var> t:=a | b | c | d
<num> =0 | 1

The GE model achieved 100% accuracy on the training
and test sets due to perfect alignment with the true decision
boundary. In contrast, the random forest misclassified 4-5%
near d = 0 and failed to generalize. This case demonstrates
that GE provides strong performance and formal transparency,
providing stable, reproducible, and verifiable expressions, un-
like post-hoc black-box explainers. This experiment highlights
the value of MIVs, like d, which capture complex feature
relationships. MIVs reflect domain knowledge and decompose
learning into interpretable parts. As shown in [13], they help
GE efficiently discover accurate and human-readable rules,
which post-hoc tools such as LIME or SHAP cannot achieve
due to their lack of structural abstraction.
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B. Iris Dataset

The Iris dataset includes 150 samples labeled: Setosa, Versi-
color, or Virginica, each with four features: sepal length/width
and petal length/width. It is commonly used to assess the
interpretability of the model.

a) LIME and SHAP Results: RF trained on the Iris
dataset was explained with LIME and SHAP. Compared to
the quadratic task, the results were more consistent. Both
tools often highlighted Petal Length and Petal Width, though
discrepancies remained. As shown in Fig. 4, LIME negatively
emphasized all features, while SHAP prioritized petal features
over sepal ones.

A B

Case: 45
Label: setosa
Probability: 1
Explanation Fi

RF.setosa
Petal.Width = 0.4 .
Petal.Length = 1.9 L]
Sepal Width = 3.8 '
Sepal.Length = 5.1

1.6 <PetalLength <= 4.4 - RF.versicolor

[ Sepal.Length <= 5.1 - Petal Width = 0.4 sl
2 Petal.Length = 1.9 sl

® 0.3 <Petal.Width <= 1.4 l Sepal.Width = 3.8 -
Sepal.Length = 5.1 ’

3.4 < Sepal.Width | o

RF.virginica

-0.030.020.010.00 PetalWidth = 0.4 -l
. Petal.Length = 1.9  weill

Weight Sepal Width = 3.8 4

Sepal.Length = 5.1 .

Supports . Contradicts 02 00 02

contribution
Fig. 4. (A) LIME and (B) SHAP explanations for the same Iris sample

Despite improved consistency compared to the delta ex-
periment, neither method offered a compact or semantically
meaningful rule that could generalize throughout the dataset.

b) GE Results: GE was applied to the full feature set to
minimize misclassifications, running for 1000 iterations with
default settings and the grammar shown below:

<expr> 1= (<expr> & <sub_expr>)

| <expr> | <sub_expr>) | <sub_expr>
<sub_expr> ::= <comparison> (<var>, <func_var>)
<comparison> ::= > | < | == | >= | <=
<func_var> = <num> | <var> | <func>(<var>)
<func> ::= mean | max | min | sd
<var> ::= Sepal.Length | Sepal.Width

| Petal.Length | Petal.Width

<num> c:=1 | 1.5 |1 2 | 2.5 31 4|5

Representative symbolic models and their corresponding
plots are shown below, highlighting the effective separation
of the setosa and versicolor classes.

ifelse (Petal.Length <= Sepal.Width,
"other")

"setosa",
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Fig. 5. Setosa classification with sepal width and petal length

Species
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8->

versicolor

4
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Fig. 6. Versicolor classification with petal width and petal length

Using this MIV, GE developed a simple and accurate rule-
based model:

o If PLmPW < 2: Setosa.
o If 2 < PLmPW < 8: Versicolor.
o If PLmPW > 8: Virginica.

This rule achieved approximately 95% precision, with a de-
cision structure that is semantically meaningful and easy to
understand.

Figure 7 presents the functional model obtained by combin-
ing the individual rules.

—» sctosa

. PLmMPW
: > _,—'_ —® versicolor

——® virginica

Petal. Length——»
Petal Width——»|

Fig. 7. Functional model for Iris species classification with MIV

The results of the classification process performed with the
functional model provided are depicted in Figure 8.

ifelse((Petal.Width <= 1.5)& (Petal.Length >= 2.5), We also introduced additional MIVs including the sepal

"versicolor", "other")

Although the model identified all sefosa samples, its clas-
sification of versicolor at 94.66% accuracy indicates potential
for further improvement.

To improve the classification, we extended the feature
set by introducing a Meaningful Intermediate Variable that
approximates the petal area:

PLmPW = petal.length * petal.width 1

area:
SLmSW = sepal.length * sepal width, 2)

petal and sepal perimeters, and various length-to-width ratios
to improve model accuracy.

MIVs used in the model may be derived not only from
the original input features but also from other previously
defined MIVs. One such example is the petal-to-sepal area
ratio, proposed using the MIVs defined in Equations 1 and 2:
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PredictedClass

Species

0 E 10 15
PLMPW

Fig. 8. Iris species classification with M IV = petal.length x petal . width

PdS =" 3)

Using the GE approach, the following classification rules
were generated on the basis of the derived PdS value:

ifelse(PdS <= 0.2, "setosa",
ifelse ((PdS <= 0.43) &
"versicolor", "other")
ifelse(PdS >= 0.43, "virginica",

"other")
(PdS >= 0.22),

"other™")

These rules define a functional model, presented in Figure 9.

Petal Length——»|
Petal Width——»|

PLmMPW

> sefosa

PdS
 — _,—'_ [—» versicolor

[——® virginica

SLmsw [/

Sepal Length——3»
Sepal Width—»

Fig. 9. Functional model for Iris classification with multiple MIVs

The classification results obtained using the functional
model based on multiple MIVs are presented in Figure 10.

PredictedClass

A A A mainis

Species

e
Fig. 10. Iris species classification with multiple MIVs

The model demonstrates an improvement over the previous
one, achieving an accuracy of 96%.

IV. ANALYSIS AND DISCUSSION

The experimental results highlight differences between
post-hoc explainability techniques and model-driven symbolic
methods. Our comparative analysis focuses on four critical
dimensions: stability, interpretability, semantic alignment, and
predictive performance.

A. Stability and Reproducibility

An intrinsic limitation of post-hoc methods is the instability.
Attribution values vary across runs or small input changes,
especially in the quadratic task. For example, LIME overem-
phasized b, while SHAP inconsistently prioritized ¢, reducing
reliability in high-stake settings.

In contrast, GE consistently produced models with stable
structure and clear semantics across runs, offering strong
support for reproducibility, system auditing, and model un-
derstanding.

B. Interpretability and Semantic Coherence

GE produces symbolic models based on mathematical or
logical rules that are directly interpretable. In the quadratic
task, it rediscovered d = b® — 4ac. In the Iris dataset, MIV-
based rules (e.g. petal area, petal-sepal ratios) reflect domain
structure and improved transparency.

LIME and SHAP offer intuitive local insights but lack
structural integration. Their explanations are not reusable and
generalizable, limiting their value for model critique and
design.

C. Role and Value of Intermediate Variables

MIVs significantly enhanced interpretability and perfor-
mance. In the Iris task, handcrafted variables like PLmPW
and PdS helped GE derive simple domain-aligned rules by
embedding biological knowledge into the search process. We
also showed that MIVs can be composed hierarchically—for
example, PdS combines two others, supporting scalable sym-
bolic modeling in complex domains with important but im-
plicit constructs.

D. Prediction Accuracy

Although symbolic modeling prioritizes interpretability, GE
models also achieved high precision. In the quadratic task,
GE accurately captured the decision boundary. For the Iris
dataset, MIV-based models reached 96% accuracy—matching
black-box classifiers, but with much greater transparency. In
particular, some gains came from structured variables, empha-
sizing the value of hybrid approaches that combine domain
knowledge with symbolic learning.

E. Limitations and Practical Considerations

Despite its advantages, GE has practical constraints. Gram-
mar design requires domain expertise, and poor design either
limits the search space excessively or fails to guide the model
toward meaningful solutions. As a stochastic method, GE may
require multiple runs or tuning. However, in domains with
expert input or bounded problems, GE offers a controllable
and verifiable alternative to opaque black-box explanations.

The comparative evaluation described in Section II-C es-
tablished four key criteria: reproducibility, interpretability,
semantic consistency, and structural clarity. These dimensions
provided a principled framework for analyzing the strengths
and limitations of each method. The experimental findings
validate the relevance of this framework: post-hoc methods
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like LIME and SHAP showed weaknesses in reproducibil-
ity and semantic alignment, often generating inconsistent
or context-insensitive attributions. In contrast, the symbolic
models developed through GE satisfied all four criteria. They
were reproducible across runs, structurally coherent, inter-
pretable by domain experts, and semantically aligned with
known functional relationships. The use of this criteria-driven
perspective was essential in highlighting that precision alone is
insufficient when evaluating explainable models, and structural
and semantic properties must also be considered.

To consolidate the results and observations discussed in the
experimental sections, Table II provides a qualitative com-
parison of the three approaches evaluated. LIME, SHAP, and
Grammatical Evolution. The comparison is organized around
the four criteria defined in Section II-C: fidelity, simplicity,
semantic alignment, and stability.

TABLE II
QUALITATIVE COMPARISON OF EXPLANATION METHODS

Criterion LIME SHAP GE

Fidelity Low—Medium | Low-Medium | High (in known domains)
Simplicity Medium Medium High (compact rules)
Semantic

Alignment Low Low High (uses MIVs)
Stability Medium Medium High

As shown in the table, LIME and SHAP provide partial
fidelity and limited semantic coherence, particularly in tasks
where the decision boundary depends on specific functional
structures. Their attributions are also sensitive to sampling
variability and lack cross-instance consistency. GE, by con-
trast, produces symbolic models that offer high fidelity when
the target rule is recoverable, and do so using semantically
meaningful constructs such as intermediate variables. These
symbolic rules are compact and structurally transparent, pro-
viding an interpretable basis for classification decisions. This
distinction is particularly evident in the quadratic task, where
GE recovered the exact mathematical discriminant, while
LIME and SHAP failed to detect the underlying structure.

V. CONCLUSION

This study presents a comparative evaluation of black-
box post-hoc explanation methods (LIME and SHAP) and
symbolic, model-driven approaches using Grammatical Evolu-
tion. In two classification tasks, GE consistently demonstrated
superior semantic clarity, interpretability, and reproducibility.

The core findings are as follows:

o Interpretability and Semantic Alignment: GE-
generated symbolic models are inherently interpretable,
expressed as explicit formulas aligned with domain
semantics (e.g., discriminants or feature ratios). In
contrast, LIME and SHAP offer fragmented, instance-
specific attributions that are often semantically opaque
and inconsistent across similar inputs.

o Structured Abstraction through MIVs: GE incorpo-
rates structured domain knowledge via Meaningful In-
termediate Variables, such as petal area or petal-to-sepal
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ratios. These enhance model clarity, simplify decision
boundaries, and support composability by enabling hi-
erarchical MIVs built from previously defined variables.
o Accuracy and Trustworthiness: While GE emphasizes
interpretability, it also achieves competitive accuracy—up
to 96% on the Iris dataset, generating compact and
transparent rules. This combination improves trust and
auditability in high-stakes or regulated applications.

These results suggest that symbolic regression techniques,
and particularly GE, provide a viable alternative to post-
hoc explainers in contexts where explanation fidelity and
transparency are critical.

Future work will focus on intelligent and automated gram-
mar generation, discovering intermediate variables, and im-
proving convergence strategies for grammar-guided evolution.
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