
Toward Conversational Decision Support Systems:

Integrating LLMs in the Operations Research

Methodology

Mariusz Kaleta

0000-0002-2225-8956

Warsaw University of Technology

ul. Nowowiejska 15/19, 00-665 Warsaw, Poland

Email: mariusz.kaleta@pw.edu.pl

Abstract—This paper introduces the concept of Conversa-
tional Decision Support Systems (C-DSS)—a novel, agent-based
framework that leverages Large Language Models (LLMs) to
enhance the Operations Research (OR) methodology. We focus
on the modeling and coding stages of decision support systems,
where language-based interaction is crucial. The paper evaluates
the effectiveness of LLMs in generating mathematical models
and AMPL code for a curated set of 20 LP/MILP artifacts.
Four architectural setups are analyzed: a monolithic LLM agent
(M/C), its enhancement with a code verifier (M/C+V), agent-
based decomposition with RAG-enhanced coding (M+CR+V),
and full specialization with RAG-enhanced modeling and coding
(MR+CR+V). Experimental results on two benchmark problems
reveal that the targeted retrieval-augmented generation technique
(RAG) significantly improves performance for complex modeling
patterns such as piecewise functions, indicator constraints, and
nested logic. We also propose a broader vision of C-DSS as a
multi-agent ecosystem—including agents for visualization, expla-
nation, verification, and orchestration—suggesting a path toward
more explainable, adaptable, and intelligent decision support
systems.

I. INTRODUCTION

A. Backgrounds

O
PERATIONS Research (OR) is grounded in analyti-

cal methods applied to improve decision-making. OR

projects are often characterized by high complexity and a

substantial risk of failure. Similar to software projects, they

require the development and deployment of software; however,

they also introduce a number of additional challenges. These

include the need for a deeper understanding of the problem

domain, a thorough comprehension of the decision-makers’

goals and intentions, the construction of mathematical models,

the selection or development of computational algorithms, and

uncertainty regarding the quality of the resulting solutions. To

address these challenges, OR methodology typically relies on

a structured and systematic approach [1]. The individual steps

of this methodology are illustrated in Figure 1.

The methodology begins with the real-world system that

is the object of the decision-making process. The first step

is to identify the decision problem. Next, the scope of the

implementation is defined—this does not necessarily have to

fully cover the previously identified area. The subsequent steps

Real system

Deriving a solution
methodology

Identifying a decision
problem

Setting the model's
scope

Constructing the
mathematical model

Establishing control
over the solution

Implementing the
solution

Testing the model with
real data

Operations
Research

lan
guag

e

of m
ath

em
ati

cs

natural language

talking to domain expertsvis
ual 

lan
guag

e, 
GUI

human
-co

mp. in
ter

ac
tio

n

natural language, statistics

results discussion

programming
lang.

Fig. 1. Operations research methodology enhanced with communication and
potential languages used at various stages of the methodology

involve constructing a mathematical model and developing a

solution method. The resulting solution is then tested using

real data. If these tests are successful, the optimization results

can be incorporated into actual decision-making processes,

leading to full implementation and real-world impact—thus

completing the methodology cycle. In practice, however, this

process is rarely linear or strictly cyclical; backtracking or

skipping steps may occur at various stages.

Effective communication is critical to the success of an OR

project, and both its form and language vary across different

phases of the methodology. Figure 1 enriches the classical

OR methodology with examples of the communication modes

used at each stage. In the early phases, interactions among

domain experts dominate—for example, requirement elicita-

tion and project scoping are typically conducted through ex-

pert meetings. During the modeling and method development

Proceedings of the 20th Conference on Computer
Science and Intelligence Systems (FedCSIS) pp. 165–174

DOI: 10.15439/2025F5420
ISSN 2300-5963 ACSIS, Vol. 43

IEEE Catalog Number: CFP2585N-ART ©2025, PTI 165 Topical area: Advanced Artificial
Intelligence in Applications



phases, mathematical and algorithmic languages are primarily

used. Implementation requires programming languages, while

solution validation often involves further expert consultations,

sometimes supported by statistical language. Finally, the re-

sults must be communicated to end users via a human-machine

interface, such as a dedicated GUI.

Large Language Models (LLMs) have emerged as trans-

formative tools for effective communication across a wide

range of domains. By leveraging vast amounts of linguistic

data and advanced machine learning techniques, LLMs are

capable of understanding context, generating coherent text, and

engaging in meaningful dialogue. These capabilities enable

them to assist with tasks such as summarizing information,

translating languages, drafting content, and facilitating real-

time interaction between users. Their ability to perform logical

reasoning and apply mathematics to solve logical problems

is rapidly advancing. In the domain of programming, they

have become significant tools for automating source code

generation and testing.

These capabilities make LLMs promising candidates for

supporting the OR methodology at various stages. Their po-

tential can be utilized in system discovery and requirement

elicitation. They are naturally suited to support modeling

and coding. Moreover, areas such as test automation, results

explanation and visualization, or GUI generation are also

promising fields where LLMs may play a significant role.

Recognizing these possibilities leads to the concept of

Conversational Decision Support Systems (C-DSS)—a system

in which an LLM serves as a proxy across multiple stages of

Decision Support System (DSS) development and operation.

The C-DSS concept touches on various aspects of building

and operating decision support systems and opens up broad

opportunities for future research.

In this paper, we introduce the C-DSS concept. How-

ever, due to the subject’s complexity and scope, we focus

specifically on the modeling and programming stages, and

investigate how the effectiveness of language models can be

enhanced at these steps. This work is a contribution to a

broader vision—one that may significantly advance the field

of decision support systems.

B. State of the art

Efforts to automate the process of solving optimization

problems began gaining traction in 2022. One of the earli-

est contributions came from Ramamonjison et al. [2], who

proposed a system that automatically formulates mathematical

models from natural language descriptions. To evaluate their

approach, they introduced the Linear Programming Word

Problems (LPWP) dataset.

Building on this work, the same authors organized the

NL4Opt Competition [3], which aimed to identify the

most effective techniques for automated mathematical model

formulation. The competition was based on the LPWP

dataset—hereafter referred to as NL4OPT. In their conclu-

sions, the organizers noted that solutions utilizing Large Lan-

guage Models (LLMs) outperformed all other approaches.

Chen et al. introduced a tool named OptiChat that employs

LLMs in conjunction with multiple agents, solvers (e.g.,

Gurobi, Mosek), and the algebraic modeling language Pyomo

to support mathematical modeling [4]. Its core functionality

includes detecting issues in model formulation and offering

corrective suggestions to the user. At around the same time,

Yang et al. proposed OPRO [5], a solution that bypasses tra-

ditional solvers by leveraging LLMs directly for optimization

tasks. OPRO iteratively refines its solutions based on previous

outputs and newly generated meta-feedback. However, this

approach has so far only been tested on relatively simple prob-

lems like the traveling salesman problem and linear regression,

leaving its applicability to more complex scenarios an open

question.

Li et al. extended the research to Mixed-Integer Linear

Programming (MILP) problems [6]. Their work expands the

NL4OPT dataset and focuses on training LLMs to produce

correct mathematical formulations, including not just quanti-

tative constraints (e.g., resources, demand), but also logical

constraints, which were largely neglected in earlier research.

The issue of the simplicity of problems in data sets has been

also addressed by Ziyang et al. [7]. The authors proposed the

ComplexOR dataset, which features more challenging opti-

mization tasks. Alongside the dataset, the authors introduced a

multi-agent system implementing the idea of Chain-of-Experts

framework. Although, they report performance improvement,

there is no analysis on which problem aspects are hard and

most problematic for LLMs.

Beyond the simplicity of tasks, the lack of real-world

relevance was another concern. This gap was addressed by

the creators of CoPilot [8], who focused on practical business

scenarios. Their system guides users through understanding the

problem, formulating the model, and solving the optimization

task—once again, leveraging LLMs as the core engine.

One of the first comprehensive solutions attempting to

address the entire modeling pipeline is OptiMUS [9]. This

system not only formulates the optimization model but also

generates executable solver code to find and return optimal

solutions. Alongside the system, the authors introduced a new

dataset—NLP4LP—containing both LP and MILP tasks to

support their experiments. However, the limitation of Opti-

MUS was the need for users to prepare problem descriptions

in a specific format. This issue has been addressed in a

follow-up study [10], where the authors enhanced OptiMUS to

automatically convert natural language inputs into the required

structured format.

A significant challenge across all of the above efforts is

the variability in both solver performance and LLM behavior.

This issue is the focus of LM4OPT [11], a project that

seeks to standardize evaluation procedures for such systems.

Additionally, the researchers investigate the benefits of fine-

tuning LLMs, including compact models like Llama-7B, to

improve efficiency.

166 PROCEEDINGS OF THE FEDCSIS. KRAKÓW, POLAND, 2025



C. Identified gaps and our contribution

As the literature review indicates, this research area is

relatively new, and current studies focus primarily on the use of

LLMs for modeling and coding optimization problems, often

overlooking the broader perspective of the OR methodology.

Even within this narrow scope, there is currently no established

knowledge regarding optimal architectures or methods for

integrating LLMs into the OR process. With the exception

of the limited work by Li et al. [6], there is a lack of

analysis and identification which modeling artifacts pose the

greatest challenges for language models. Such insights could

help address specific issues and improve the effectiveness of

automated modeling and coding efforts. Additionally, exist-

ing work mostly centers around the use of general-purpose

programming languages, which rely on libraries for solving

optimization problems. In particular, there is a notable absence

of research evaluating the effectiveness of modeling using ded-

icated declarative languages, such as AMPL (A Mathematical

Programming Language) [12]. Most of the research focuses

on imperative languages, mainly Python, while optimization

problems are natively defined in a declarative way.

Our contribution can be summarized as follows:

• We provide a broader context for mathematical modeling

and coding by introducing the concept of Conversational

Decision Support Systems (C-DSS) and taking a more

comprehensive view of the OR methodology.

• We define a catalog of common artifacts in LP and

MILP problems, along with associated sets of textual

optimization problem descriptions.

• For the identified artifacts, we analyze the performance

of LLMs within various agent-based architectures.

• Unlike previous studies, we employ LLMs to encode

problems using the AMPL mathematical modeling lan-

guage.

• We briefly demonstrate that LLM capabilities are also

relevant at other stages of the OR methodology, opening

opportunities for further research within the OR commu-

nity.

II. METHODS

A. Modeling artifacts

Based on practices in mathematical modeling, we have

identified 20 typical modeling artifacts, summarized in Table

I. The first five pertain to linear programming (LP) models

and include: a simple LP model (artifact 1), minimization of

the maximum value (artifact 2), a weighted sum of absolute

values with weights a and b depending on the sign of the

argument (absolute value in the objective, artifact 3), the

absolute value in a constraint (artifact 4), and a piecewise

linear approximation of a convex function fi(x) (artifact 5).

By the basic LP model (artifact 1), we mean a situation where

all variables directly represent the problem described in natural

language, i.e., there is no need for intermediate variables.

The second group of artifacts concerns mixed-integer linear

programming (MILP) problems and includes standard logi-

cal constraints typical for binary variables. These constraints

TABLE I
MODELING ARTIFACTS

L
P

1 simple LP no implicit variables
2 min max minx

3 absolute value in objective min(ax+ + bx−)
4 absolute value in constraint min(ax+), x− ≤ X−

5 easy linearization minx, x ≥ fi(x)

M
IL

P
(l

o
g
ic

co
n
st

r.
)

6 at most N of x, y, z,... x+ y + z + · · · ≤ N
7 at least N of x, y, z,... x+ y + z + · · · ≥ N
8 exactly N of x, y, z,... x+ y + z + · · · = N
9 if x then y x ≥ y
10 if x then not y x+ y ≤ 1
11 if x then y and z y ≥ x, z ≥ x
12 if y or z then x x ≥ y, x ≥ z

13 if y and z then x x ≥ y+z

2

14 if M or more from x, y, z then v v ≥ x+y+...M+1

N−M+1

M
IL

P

15 min min minmin fi(x)
16 disjunction x ∈ ⟨a; b⟩ ∪ ⟨b; d⟩
17 min. activity level x = 0 or x ∈ ⟨a, b⟩
18 indicator constraint x → C, x ∈ {0, 1}
19 concave linearization min f(x), f(x) concave
20 non-monotonic linearization min f(x), f(x) non-mon.

typically involve the selection of at most/at least/exactly N el-

ements (artifacts 6–8) and a range of conditional relationships

(artifacts 9–14), in which binary variables may or must take

certain values if other binary variables satisfy a given Boolean

condition.

The third group of artifacts involves more complex

MILP models, which usually include non-convexities or

discontinuities. This group comprises minimization of

the minimum value (artifact 15), disjoint variable do-

mains (artifact 16), minimum activity level (artifact 17),

indicator constraint (activation of a linear constraint

C based on a binary variable x, artifact 18), lin-

earization of a concave function (artifact 19), and lin-

earization of a general non-monotonic function (arti-

fact 20).

B. Datasets

To evaluate which artifacts a large language model handles

better or worse, we prepared two base problems: problem #64

from the NL4Opt dataset (the pharmaceutical paste problem,

with minor linguistic adjustments) and our own original prob-

lem (the sewage discharging problem), which has never been

published online. Each of the base problems represents artifact

1 — a simple LP problem. Subsequently, the content of each

base problem was modified to sequentially introduce artifacts

2 through 20.

Although the dataset may seem small, it is important to

note that we currently lack both the capability to automati-

cally generate problem statements in a way that ensures the

inclusion of specific artifacts, and methods for automatically

verifying the correctness of models proposed by LLMs for

given problem descriptions. Modifying problem statements

to explicitly induce a given artifact is non-trivial and was

carried out manually. Similarly, each solution in the form of a

mathematical model obtained during the study was manually

verified by an expert in operations research. Given the 20

MARIUSZ KALETA: TOWARD CONVERSATIONAL DECISION SUPPORT SYSTEMS 167



artifacts, four agent configurations discussed later in the paper,

and five runs for each problem and configuration, this results

in 800 models whose correctness had to be manually verified.

The content of both problems is presented in Appendix A.

C. Environment settings

The conducted experiments cover four distinct language-

agent environments, differing in the number of agents involved

and their assigned roles. Each experimental setup processes a

set of 40 test tasks, composed of two base problems, each

instantiated in 20 variants corresponding to the predefined

artifacts. The goal of each environment is to generate a

mathematical model in textual form as well as a corresponding

AMPL model.

The mathematical model (in text form) includes the defini-

tion and description of sets, parameters, and variables, along

with the objective function and constraints, formulated in the

style typical for LP/MILP problems. For the AMPL model,

the system is allowed to produce either a single combined file

containing both the model and data, or separate files—‘.mod‘

for the model and ‘.dat‘ for the problem data.

Since the experimental output consists of two distinct

results—a textual mathematical model and AMPL source

code—errors may occur independently in each. Therefore, we

report separate success rates for modeling and coding.

Modeling success is defined as the correct formulation of

the optimization problem in textual form, manually verified

by an operations research (OR) expert. Any identified flaw in

the model leads to its classification as incorrect. The ratio of

correct mathematical models is reported in the result tables

under the column labeled "Model."

Coding success is defined as the correct encoding of the

previously generated mathematical model into AMPL syntax.

Correctness was verified both manually by an OR expert and

by executing the model in the AMPL environment. A model is

considered correctly implemented if it runs without errors and

matches the expected logic, regardless of whether the original

formulation was valid. Hence, a syntactically correct AMPL

implementation of an incorrect model still counts as a success

in the coding phase. The ratio of correct AMPL models is

reported in the column labeled "Code."

Overall success requires both a valid mathematical model

and its correct AMPL implementation, i.e., success in both

the modeling and coding stages. The ratio of fully correct

and functional solutions is reported in the column labeled

"Success."

All experiments were conducted using the GPT-4o model.

For each combination of base problem, artifact, and agent con-

figuration, the generation and evaluation process was repeated

five times.

III. RESULTS

A. Monolith architecture (M/C)

In the monolith architecture, we use an LLM as both

modeler and coder (M/C) in a single call. The architecture

is illustrated in Figure 2. The LLM acts as a single agent

word problem

LP/MIP
model

LLM
(Modeler & Coder

Agent)

prompt

AMPL file

Fig. 2. Monolith architecture (M/C)

responsible for both modeling and coding. As input, it receives

a word problem inserted into the following zero-shot prompt

with Chain-of-Thought (CoT) reasoning enabled by default in

GPT-4o:

Formulate a linear programming model for the following

problem.

. . .
Provide the model as an AMPL file.

Results are presented in Table II. Simple LP prob-

lems—artifacts 1 to 3—show a high success rate, reach-

ing nearly 100% (only one coding failure occurred). These

problems are considered easy for language models in both

modeling and coding. The presence of an absolute value in

a constraint (artifact 4) reduces the modeling success rate to

60%, though the coding success rate remains relatively high

(80%). Artifact 5, which requires a linearization of a piecewise

convex function, posed a significant challenge to the LLM and

resulted in a very low modeling success rate (10%).

In the second group of artifacts, we observe high mod-

eling success rates for most logical constraints, alongside

surprisingly low coding success rates. Interestingly, artifact

13 was particularly challenging; the LLM often interpreted

it as artifact 12. We believe this may be due to a linguistic

ambiguity, as many people tend to confuse "and" with "or"

in everyday language. Artifact 14 also resulted in a relatively

low modeling success rate.

In the third group of artifacts, only the minimum activity

level (artifact 17) yielded a high success rate. Other artifacts

significantly reduced the LLM’s ability to model correctly,

with three artifacts never resulting in a valid model. However,

this group showed a comparatively higher coding success rate

than the second group.

Since the obtained results were not satisfactory, we con-

sidered several possible directions that may lead to improve-

ments:

1) Fine tuning

2) Special prompting technique, including:

• Tree-of-thoughts, Graph-of-thoughts

• Generated knowledge – first get more knowledge

about the problem, then model

168 PROCEEDINGS OF THE FEDCSIS. KRAKÓW, POLAND, 2025



TABLE II
RESULTS FOR M/C ARCHITECTURE

Variant Model Code Success

L
P

1 simple LP 100% 100% 100%
2 min max 100% 100% 100%
3 abs. val. in obj. 100% 90% 90%
4 abs. val. in constr. 60% 80% 40%
5 piece-wise fun. 10% 70% 10%

M
IL

P
(l

o
g
ic

)

6 at most N 100% 50% 50%
7 at least N 100% 50% 50%
8 exactly N 80% 40% 40%
9 x =⇒ y 90% 40% 40%
10 x =⇒ ¬y 100% 60% 60%
11 x =⇒ y ∧ z 100% 40% 40%
12 y ∨ z =⇒ x 100% 50% 50%
13 y ∧ z =⇒ x 20% 40% 10%
14 if ≥ M from y =⇒ y, z, . . . 50% 40% 30%

M
IL

P

15 minmin 0% 100% 0%
16 disjun. 50% 90% 50%
17 min. activ. level 100% 90% 90%
18 indic. constr. 20% 80% 20%
19 concave linear. 0% 50% 0%
20 non-monoton. linear. 0% 50% 0%

• Cognitive verifier

• Few-shot – providing examples

• Persona/audiance pattern

• Reflection

• Chain-of-Experts

• ...

3) Agent-based decomposition (mixture-of-experts)

4) Retrieval Augmented Generation (RAG)

For further research, we exclude fine-tuning, as it requires

additional examples that are difficult to generate in this do-

main and may be computationally expensive. We also do not

include any special prompting techniques, as it remains unclear

which approaches could reliably improve modeling and coding

quality. Our observations suggest that for different artifacts,

either modeling or coding may be the more challenging task.

Following this insight, we believe that decomposition into spe-

cialized agents—potentially equipped with additional context

and expert knowledge and implemented as RAG—is the most

promising solution. The next three environment settings follow

this concept.

B. Enhancing M/C with Code Verifier agent

In this setting, we build on the observation that the coding

success rate is relatively low, particularly for the second

group of artifacts, and that most failures are due to simple

syntax issues. We introduced a new component—the verifier

agent—responsible for validating the AMPL source file by

executing it in the AMPL environment and reporting any

errors encountered. The resulting architecture is illustrated in

Figure 3.

If an error occurs, the verifier sends the following prompt,

including the error message, back to the Modeler/Coder (M/C)

agent:

word problem

LP/MIP
model

LLM
(Modeler & Coder

Agent)

prompt

AMPL file

Fig. 3. M/C architecture enhanced with verifier agent (M/C+V)

TABLE III
RESULTS FOR M/C+V ARCHITECTURE

Variant Model Code Success

L
P

1 simple LP 100% 100% 100%
2 min max 100% 100% 100%
3 abs. val. in obj. 100% 100% 100%

4 abs. val. in constr. 60% 90% 50%

5 piece-wise fun. 10% 80% 10%
M

IL
P

(l
o
g
ic

)
6 at most N 100% 60% 60%

7 at least N 100% 50% 50%

8 exactly N 80% 70% 50%
9 x =⇒ y 90% 50% 50%
10 x =⇒ ¬y 100% 60% 60%
11 x =⇒ y ∧ z 100% 50% 50%

12 y ∨ z =⇒ x 100% 60% 60%

13 y ∧ z =⇒ x 20% 50% 10%
14 if ≥ M from y =⇒ y, z, . . . 50% 60% 40%

M
IL

P

15 minmin 0% 100% 0%
16 disjun. 50% 100% 50%
17 min. activ. level 100% 100% 100%
18 indic. constr. 20% 90% 20%
19 concave linear. 0% 90% 0%
20 non-monoton. linear. 0% 50% 0%

AMPL reported the following issues:
. . .
test.mod, line 2 (offset 54):

A is not defined

context: set CONTAINERS := A >>> B <<< C D;

No variables declared.

. . .
Fix all errors.

The M/C agent may respond by correcting the identified

issues and regenerating the AMPL source code, which is then

returned to the verifier. We allow only a single round of

back-propagation. Although further iterations are technically

possible, we observed that they do not improve success rates

and may lead to repetitive error loops.

Results for the M/C+V architecture are presented in Ta-

ble III. Changes compared to the M/C architecture (Table II)

are shown in bold. We observe improvements in the coding

success rate for nearly all artifacts where it was previously

below 100%. The typical improvement is around 10 percentage

points, but it reaches as much as 40 percentage points for

artifact 19.

MARIUSZ KALETA: TOWARD CONVERSATIONAL DECISION SUPPORT SYSTEMS 169



TABLE IV
RESULTS FOR M+CR+V ARCHITECTURE

Variant Coder Coder + RAG

L
P

1 simple LP 100% 100%
2 min max 100% 100%
3 abs. val. in obj. 100% 100%
4 abs. val. in constr. 80% 80%
5 piece-wise fun. 60% 60%

M
IL

P
(l

o
g
ic

)

6 at most N 60% 60%
7 at least N 20% 60%
8 exactly N 80% 80%
9 x =⇒ y 40% 80%

10 x =⇒ ¬y 40% 60%

11 x =⇒ y ∧ z 0% 20%

12 y ∨ z =⇒ x 20% 60%
13 y ∧ z =⇒ x 0% 40%
14 if ≥ M from y =⇒ y, z, . . . 20% 60%

M
IL

P

15 minmin 100% 100%
16 disjun. 100% 100%
17 min. activ. level 100% 100%
18 indic. constr. 100% 100%
19 concave linear. 80% 80%
20 non-monoton. linear. 80% 100%

C. Separation of Modeler and Coder (M+CR+V)

To further improve coding quality, we decomposed the

monolithic M/C architecture into separate modeling and cod-

ing agents. This allowed us to augment the coder with

Retrieval-Augmented Generation (RAG). Initially, we used

chapters 1–9 from the original AMPL book [12], with each

chapter provided as a separate PDF file. However, we observed

no significant improvement.

Subsequently, we created a concise custom RAG resource

focused on recurring coding issues. The RAG content is

included in Appendix B. This short but targeted resource

significantly improved outcomes—particularly for the second

problem, which had previously suffered from poor coding

quality. Table IV presents coding success rates for the second

problem under the monolithic architecture (column "Coder")

and the M+CR+V architecture (column "Coder + RAG").

Changes are marked in bold.

As shown, coding was particularly weak in the second group

of artifacts. The addition of a compact RAG significantly

improved the coding success rate—in some cases, tripling it

(e.g., artifacts 7 and 14).

Table V presents the distribution of error types reported

by the AMPL environment. Several types of errors occur

frequently. In the M/C architecture, more than half of the errors

relate to syntax issues in set definitions. Nine percent concern

the use of two-sided constraints, while similar proportions

pertain to multiple constraints under a single ’subject to’

statement, double definitions, and multiple objective functions.

The remaining errors are categorized as general syntax is-

sues.

When RAG is introduced, the distribution shifts. The fre-

quency of specific known errors drops—sometimes to zero.

As a result, the share of general syntax errors increases.

However, the total number of errors decreases, indicating that

the targeted RAG resource is effective. It successfully reduces

TABLE V
SHARE OF CODING ERRORS IN M/C AND M+CR+V ARCHITECTURES

CODER CODER + RAG

set definition syntax 54.6% 38.1%
many objectives 4.6% 0.0%
two-side constr. 9.0% 2.4%
multiply constr. in one "s.t." 4.6% 4.8%
double definitions 4.6% 0.0%
syntax 22.7% 54.8%

TABLE VI
IMPROVEMENTS FOR MR+CR+V ARCHITECTURE VERSUS M/C

ARCHITECTURE

Variant Model M/C Model RAG

L
P 5 piece-wise fun. 10% 100%

M
IL

P

13 y ∧ z =⇒ x 20% 40%

H
ar

d
M

IL
P

s 15 minmin 0% 50%

18 indic. constr. 20% 80%

19 concave linear. 0% 70%

20 non-monoton. linear. 0% 80%

both the frequency and proportion of the common, previously

observed issues.

D. Enhancing Modeler agent with RAG: MR+CR+V

Encouraged by the positive impact of a relatively small RAG

set for the Coder, we identified common modeling issues and

developed a dedicated RAG for the Modeler agent as well.

The resulting RAG is a two-page document that provides

guidelines for addressing the most frequent challenges faced

by the Modeler agent. Appendix C presents its contents,

divided into three sections: piecewise linear function modeling,

the minimum of minima problem, and indicator constraints.

Table VI shows the improvements achieved over the mono-

lithic M/C model for a selection of the most challenging

artifacts covered by the new RAG. The observed gains are

significant, and the effectiveness of the targeted RAG should

be considered high.

Table VII presents the complete results for the MR+CR+V

architecture, which includes decomposition into specialized

agents, each enhanced with its own RAG. Although the results

are significantly improved compared to the original monolithic

M/C architecture, some limitations remain. Notably, coding

artifacts from the second group still show signs of weakness.

Additionally, modeling performance remains suboptimal for

artifacts 13–16. Among the simpler problems, artifact 4—fea-

turing absolute values in constraints—underperforms relative

to others in this group.

IV. THE CONCEPT OF C-DSS

Our experience with decomposing the architecture into

specialized agents leads us to propose a general framework

for Conversational Decision Support Systems (C-DSS), as

illustrated in Figure 4. The agents marked in bold represent

the components studied in this work: the Modeler, Coder,

170 PROCEEDINGS OF THE FEDCSIS. KRAKÓW, POLAND, 2025



TABLE VII
RESULTS FOR MR+CR+V ARCHITECTURE

Variant Model Code Success

L
P

1 simple LP 100% 100% 100%
2 min max 100% 100% 100%
3 abs. val. in obj. 100% 100% 100%
4 abs. val. in constr. 60% 90% 60%
5 piece-wise fun. 100% 80% 80%

M
IL

P
(l

o
g
ic

)

6 at most N 100% 60% 60%
7 at least N 100% 50% 50%
8 exactly N 80% 70% 50%
9 x =⇒ y 90% 50% 50%
10 x =⇒ ¬y 100% 60% 60%
11 x =⇒ y ∧ z 100% 50% 50%
12 y ∨ z =⇒ x 100% 60% 60%
13 y ∧ z =⇒ x 40% 50% 40%
14 if ≥ M from y =⇒ y, z, . . . 50% 60% 40%

M
IL

P

15 minmin 50% 100% 50%
16 disjun. 50% 100% 50%
17 min. activ. level 100% 100% 100%
18 indic. constr. 80% 90% 80%
19 concave linear. 70% 90% 60%
20 non-monoton. linear. 80% 50% 80%

MODELER
AGENT

CODER
AGENT

CODE
VERIFIER
AGENT

DOMAIN
EXPERT
AGENT

VISUALIZER
AGENT

MODEL
VERIFIER

AGENT

ORCHESTRATOR AGENT

EXPLAINER
AGENT

Generated
Knowledge

Errors in
the model

Errors in
the code

TESTER
AGENT

Tests
report

Fig. 4. The concept of Conversational Decision Support Systems

and Code Verifier. However, other elements of a classical

Decision Support System (DSS) also involve communication

and can be implemented within a language-agent-based archi-

tecture.

One example is the DSS user interface, whose role can be

taken over by a Visualizer agent, dynamically responding to

user requests for result visualization. Figure 5 shows a sample

response from the Visualizer agent for base problem one, given

the following prompt:

Visualize the results for the Management Board

Fig. 5. Visualization of results proposed by the Visualizer agent (overlapping
text left as it was generated by the agent)

Fig. 6. Exemplary session 1 with Explainer agent

The agent proposed a visualization of the feasible solution

set, which may not be suitable for a Management Board. It also

presented the solution using a simple bar chart. Interestingly,

the agent suggested performing an efficiency analysis with

respect to water availability, thereby independently initiating

a non-trivial sensitivity analysis.

Although the resulting output is not perfect and contains

some visual flaws (e.g., overlapping text), it is important to

note that the agent used was neither trained nor equipped with

RAG, and the conversation was brief and based on a simple

prompt. In this context, the results are promising and illustrate

the potential for further development of such interfaces.

Another example is the Explainer agent, specialized in

interpreting and explaining the obtained results to the user. In

particular, it can conduct sensitivity or what-if analyses, and

thus collaborates closely with the Modeler and Coder agents.

Figures 6 and 7 present two short sessions with the Ex-

plainer agent for base problem one. In the first session, the user

seeks reassurance that the solution proposed by the C-DSS is

valid and asks about the impact of reducing the number of

small containers produced. The agent responds with a detailed

explanation; Figure 6 shows only the opening sentence and

final conclusion.

In the second session, the user wants to understand why

increasing the production of small containers is not feasible.

As before, the agent provides a longer explanation, and

Figure 7 shows the first and final statements. In both cases, the

Explainer agent offers a fairly detailed and accurate analysis

of the user’s proposed changes.

Assuming the Modeler is a general-purpose agent, it is

reasonable to enable communication with a domain-specific

agent that provides expert knowledge in a given field. While

MARIUSZ KALETA: TOWARD CONVERSATIONAL DECISION SUPPORT SYSTEMS 171



Fig. 7. Exemplary session 2 with Explainer agent

the implementation details remain open, introducing a Critic

agent—responsible for verifying and validating the developed

mathematical model (i.e., a Model Verifier)—appears well

justified. This agent could replace or support the function

of a human expert, which proved to be a bottleneck in our

experiments.

In the area of code development, the current Code Verifier

only checks for syntactic correctness by testing whether the

code runs in a given environment. However, a dedicated Tester

agent should also be envisioned—capable of validating the

encoded model using predefined unit tests or scenario checks.

Finally, the entire agent ecosystem requires workflow man-

agement, a task that would fall to an Orchestrator agent. This

agent would be responsible for dynamically arranging tasks,

coordinating agent communication, and preventing loops or

deadlocks in the system.

V. SUMMARY

This paper introduces the concept of Conversational Deci-

sion Support Systems (C-DSS), which leverage Large Lan-

guage Models (LLMs) to enhance Operations Research (OR)

methodology, particularly during the modeling and coding

stages. We propose a novel framework in which LLMs serve

as proxies across various phases of decision support system

development, with a focus on mathematical modeling and

AMPL code generation.

By identifying 20 typical modeling artifacts for Linear

Programming (LP) and Mixed-Integer Linear Programming

(MILP), we evaluate LLM performance across four agent-

based architectures: Monolith (M/C), M/C with Verifier

(M/C+V), Modeler and Coder with Retrieval-Augmented Gen-

eration (M+CR+V), and both Modeler and Coder enhanced

with RAG (MR+CR+V). Using two base problems—one from

the NL4Opt dataset and a custom-designed sewage discharging

problem—we observe that simpler LP artifacts yield near-

perfect success rates. In contrast, complex MILP artifacts

involving logical constraints or non-convex functions remain

significantly more challenging.

Our experiments reveal patterns in LLM behavior, sug-

gesting that targeted solutions to specific artifacts offer great

potential for improvement. We demonstrate that even a very

short RAG for the Coder agent and a slightly longer, yet

focused, RAG for the Modeler agent can significantly improve

Real system

Deriving a solution
methodology

Identifying a decision
problem

Setting the model's
scope

Constructing the
mathematical model

Establishing control
over the solution

Implementing the
solution

Testing the model with
real data

Operations
Research

LLM as coder

LLM as modeler

LLM for problem
understanding

LLM as tester

LLM as proxy in H-C
interaction

Fig. 8. Potential role of LLM in OR methodology

performance—particularly for piecewise functions, minimum-

of-minima formulations, and indicator constraints.

We also envision a more comprehensive C-DSS architecture,

incorporating agents such as the Modeler, Coder, Verifier, Vi-

sualizer, Explainer, and Orchestrator. This multi-agent design

offers a unified approach to integrating LLMs into OR and

opens new avenues for research in automating decision support

systems. A Decision Support System is a product developed

within the broader framework of the OR methodology, as

referenced in Figure 1. As shown, the various steps in the

methodology rely on different forms of language to facili-

tate communication among stakeholders—making it inherently

well-suited for enhancement through LLMs. Therefore, we

propose considering a revised OR methodology in which

language models serve as core tools at each stage. Figure 8

illustrates this vision.

Despite rapid advances in large language models, there

are still significant limitations. Our results show that for

some quite typical cases, LLMs are not a reliable tool for

modelling and coding. Since the real problems are typically

more complex and may include more sophisticated aspects,

such as complex nonlinearity, dynamics, or uncertainty, it must

be admitted that the C-DSS concept is in its early stages of

development. It requires a significant improvement for real

applications. However, we believe that our proposed C-DSS

concept not only advances the design of automated decision

systems but also lays the foundation for further research into

LLM-enhanced OR methodologies.

172 PROCEEDINGS OF THE FEDCSIS. KRAKÓW, POLAND, 2025



APPENDIX

A. Word problems used in the research

Base problem 1 (#64 from NL4Opt data set)

There are two specialized containers, a small and large

one, that are used to make a pharmaceutical paste. The

small container requires 10 units of water and 15 units of

the powdered pill to make 20 units of the paste. The large

container requires 20 units of water and 20 units of the

powdered pill to make 30 units of the paste. The pharmacy

has 500 units of water and 700 units of powdered pills

available. How many of each container should be used to

maximize the amount of paste that can be made?

Base problem 2 (the sewage discharging problem)

The two cities discharge sewage into two treatment plants

with a capacity of 5,000 tons and 3,000 tons per day,

respectively. The purified water is pumped further into

the river. Each city can divide sewage in any proportion

between both treatment plants. The daily operating cost

of treatment plant 1 is USD 3.5/ton. The daily operating

cost of treatment plant 2 is USD 6/ton. The operating cost

of the clean water pumping station at treatment plant 1

is USD 2.5/ton, and at treatment plant 2 - USD 2.2/ton.

Assuming that cities must discharge at least 4,000 and

3,500 tons of sewage per day, plan the system’s operation

to minimize the daily cost of its operation.

B. Content of Coder’s RAG

This GPT acts as an expert in linear programming and

AMPL (A Mathematical Programming Language). It as-

sists users in creating AMPL files for given linear pro-

gramming problems by understanding their requirements

and translating them into correct and optimized AMPL

code. It ensures the AMPL files are syntactically accurate

and efficient, adhering to best practices in linear program-

ming and AMPL usage. It will guide users through the

process of defining sets, parameters, variables, objective

functions, and constraints in their linear programming

models.

Whenever you are asked to create an AMPL file, follow

these rules:

1) Start with the declarations of sets followed by dec-

larations of parameters and variables.

2) When declaring a set of parameters, do not assign

any value. Add the section "data;" at the end of the

AMPL file and put all assignments there.

3) Do not use sharp inequalities. Always apply "lower

than or equal" or "greater than or equal".

4) Do not use double inequality constraints. Break the

double inequalities into two separate constraints.

5) There can be only one objective in the AMPL file.

6) ’var’ definitions should not include assignment from

other variables directly.

7) Under the keyword “subject to”, only one constraint

can be defined. If more constraints are needed, each

constraint definition should start with “subject to”.

C. Content of Modeler’s RAG

Piecewise functions

Remember that when dealing with easy piecewise func-

tion cases, there is NO NEED to use auxiliary binary

variables. It is enough to add constraints for each segment

of the piecewise function. For instance, if the problem

is minimizing the convex piecewise function, we can

add auxiliary continuous variable x and a constraint

x ≥ fi(x), where fi(x) is an i-th segment of the piecewise

function. However, if you add binary variables indicating

the segment of the function, these variables must be

constrained by the original variable. If the i-th linear

segment is denoted by fi(x) and it is valid in the range

from xi−1 to xi, then we need to set auxiliary variable

vi to 1 whenever x is in the range from xi−1 to xi. We

can model that as follows:

x ≤ xivi +M(1− vi)

x ≥ xi−1vi −M(1− vi)

For instance, let’s consider the function consisting of two

piecewise segments, f1(x) and f2(x). For x from 5 to

10, there is function f1(x), and for x in a range from

10 to 18, there is function f2(x). We introduce auxiliary

variables v1 and v2 such that

v1 + v2 = 1

To constraint variable x by variables v1 and v2, we define

inequalities as follows

x ≤ 10v1 +M(1− v1)

x ≥ 5v1˘M(1− v1)

x ≤ 18v2 +M(1− v2)

x ≥ 10v2˘M(1− v2)

To calculate the value of the piecewise function, we

introduce the auxiliary continuous variable z, and we

define the following constraints:

z ≥ f1(x)˘M(1− v1)

z ≤ f1(x) +M(1− v1)

z ≥ f2(x)˘M(1− v2)

z ≤ f2(x) +M(1− v2)

In the final version of the model, f1(x) and f2(x) must

be substituted with linear formulas.

MARIUSZ KALETA: TOWARD CONVERSATIONAL DECISION SUPPORT SYSTEMS 173



Min of min problem (minimization of the minimal

value)

If the problem is to minimize the minimum of some val-

ues, we need to add auxiliary binary variables that indicate

which value is the lowest. Let us consider variables x and

y and the problem of minimizing the minimal value out

of variables x and y. Then, we must introduce a binary

variable v that is 0 if x is lower or equal to y, and v is

1 if y is lower than or equal to x. In the case of x = y,

the value of v can be any. To model that, we need to add

the following constraints:

x ≤ y +Mv

y ≤ x+M(1− v)

Having variable v that indicates whether x or y is the

minimal value we must introduce auxiliary continuous

variable z that will be equal x if v is 0 or to y if v
is 1. It is an indicator constraint that can be modeled as

follows:

z <= x+Mv

z >= x˘Mv

z <= y +M(1− v)

z >= y −M(1− v)

Remember that z must be constrained from above and

below. Since z is the minimal value of x and y, it can be

directly minimized in the objective:

min z

WARNING! Remember, YOU CAN NOT SIMPLY con-

straint z in this way:

z ≤ x

z ≤ y

and minimize z. This is MISTAKE! Variable z will

always be 0. You must use an auxiliary binary variable.

Watch out for this case!

Indicator constraints

An indicator constraint is a constraint that is controlled by

a binary variable. If the constraint is "lower than", and the

auxiliary variable that controls this constraint is z, then

we can add Mz to the right-hand side of the constraint,

where M is a big number. If the original constraint is as

follows: ∑

i

aixi ≤ c

then it can be controlled with a binary variable y in the

following way:
∑

i

aixi ≤ c+Mz

Indicator constraint can be used to model conditional

constraint in which one variable depends on the value

of another variable. For instance, if x must be greater or

equal to A when y is greater or equal to B, we can add

the indicator constraint for variable y as follows

y ≥ B −M(1− z)

where z is an auxiliary binary variable. So if z gets 1

then the constraint becomes active. Then z must be set

to 1 if x is greater or equal A, which can be modeled as

follows:

z ≥ (x−A)/M

Remember that in the general case of conditional con-

straint, we need to use the concept of the indicator

constraint, so an auxiliary variable is needed.

REFERENCES

[1] F. S. Hillier, Introduction to operations research, 9th ed. Boston [etc.]:
McGraw-Hill, 2010. ISBN 9780071267670

[2] R. Ramamonjison, H. Li, T. Yu, S. He, V. Rengan, A. Banitalebi-
dehkordi, Z. Zhou, and Y. Zhang, “Augmenting operations research with
auto-formulation of optimization models from problem descriptions,” in
Proceedings of the 2022 Conference on Empirical Methods in Natural

Language Processing: Industry Track, Y. Li and A. Lazaridou, Eds. Abu
Dhabi, UAE: Association for Computational Linguistics, Dec. 2022. doi:
10.18653/v1/2022.emnlp-industry.4 pp. 29–62.

[3] R. Ramamonjison, T. Yu, R. Li, H. Li, G. Carenini, B. Ghaddar,
S. He, M. Mostajabdaveh, A. Banitalebi-Dehkordi, Z. Zhou, and
Y. Zhang, “Nl4opt competition: Formulating optimization problems
based on their natural language descriptions,” in Proceedings

of the NeurIPS 2022 Competitions Track, ser. Proceedings of
Machine Learning Research, M. Ciccone, G. Stolovitzky, and
J. Albrecht, Eds., vol. 220. PMLR, 28 Nov–09 Dec 2022.
doi: 10.48550/arXiv.2303.08233 pp. 189–203. [Online]. Available:
https://proceedings.mlr.press/v220/ramamonjison23a.html

[4] H. Chen, G. E. Constante-Flores, and C. Li, “Diagnosing infeasible
optimization problems using large language models,” 2023.

[5] C. Yang, X. Wang, Y. Lu, H. Liu, Q. V. Le, D. Zhou, and X. Chen,
“Large language models as optimizers,” 2024.

[6] Q. Li, L. Zhang, and V. Mak-Hau, “Synthesizing mixed-integer linear
programming models from natural language descriptions,” 2023.

[7] Z. Xiao, D. Zhang, Y. Wu, L. Xu, Y. J. Wang, X. Han, X. Fu,
T. Zhong, J. Zeng, M. Song, and G. Chen, “Chain-of-experts: When
LLMs meet complex operations research problems,” in The Twelfth

International Conference on Learning Representations, 2024. [Online].
Available: https://openreview.net/forum?id=HobyL1B9CZ

[8] S. Wasserkrug, L. Boussioux, D. den Hertog, F. Mirzazadeh, I. Birbil,
J. Kurtz, and D. Maragno, “From large language models and optimiza-
tion to decision optimization copilot: A research manifesto,” 2024.

[9] A. AhmadiTeshnizi, W. Gao, and M. Udell, “Optimus: Optimization
modeling using mip solvers and large language models,” 2023.

[10] ——, “Optimus: Scalable optimization modeling with (mi)lp solvers and
large language models,” 2024.

[11] T. Ahmed and S. Choudhury, “Lm4opt: Unveiling the potential of large
language models in formulating mathematical optimization problems,”
INFOR: Information Systems and Operational Research, vol. 62, no. 4,
pp. 559–572, 2024. doi: 10.1080/03155986.2024.2388452. [Online].
Available: https://doi.org/10.1080/03155986.2024.2388452

[12] R. Fourer, D. Gay, and B. Kernighan, AMPL: A Modeling

Language for Mathematical Programming, ser. Scientific Press
series. Thomson/Brooks/Cole, 2003. ISBN 9780534388096. [Online].
Available: https://books.google.com.hk/books?id=Ij8ZAQAAIAAJ

174 PROCEEDINGS OF THE FEDCSIS. KRAKÓW, POLAND, 2025


