Proceedings of the 20" Conference on Computer DOI: 10.15439/2025F5420
Science and Intelligence Systems (FedCSIS) pp. 165-174 ISSN 2300-5963 ACSIS, Vol. 43

Uaoiite

Toward Conversational Decision Support Systems:
Integrating LLLMs in the Operations Research
Methodology

Mariusz Kaleta
0000-0002-2225-8956
Warsaw University of Technology
ul. Nowowiejska 15/19, 00-665 Warsaw, Poland
Email: mariusz.kaleta@pw.edu.pl

Abstract—This paper introduces the concept of Conversa-
tional Decision Support Systems (C-DSS)—a novel, agent-based
framework that leverages Large Language Models (LLMs) to
enhance the Operations Research (OR) methodology. We focus
on the modeling and coding stages of decision support systems,
where language-based interaction is crucial. The paper evaluates
the effectiveness of LLMs in generating mathematical models
and AMPL code for a curated set of 20 LP/MILP artifacts.
Four architectural setups are analyzed: a monolithic LLM agent
(M/C), its enhancement with a code verifier (M/C+V), agent-
based decomposition with RAG-enhanced coding (M+CT+V),
and full specialization with RAG-enhanced modeling and coding
(MR+CR+V). Experimental results on two benchmark problems
reveal that the targeted retrieval-augmented generation technique
(RAG) significantly improves performance for complex modeling
patterns such as piecewise functions, indicator constraints, and
nested logic. We also propose a broader vision of C-DSS as a
multi-agent ecosystem—including agents for visualization, expla-
nation, verification, and orchestration—suggesting a path toward
more explainable, adaptable, and intelligent decision support
systems.

I. INTRODUCTION
A. Backgrounds

PERATIONS Research (OR) is grounded in analyti-
()cal methods applied to improve decision-making. OR
projects are often characterized by high complexity and a
substantial risk of failure. Similar to software projects, they
require the development and deployment of software; however,
they also introduce a number of additional challenges. These
include the need for a deeper understanding of the problem
domain, a thorough comprehension of the decision-makers’
goals and intentions, the construction of mathematical models,
the selection or development of computational algorithms, and
uncertainty regarding the quality of the resulting solutions. To
address these challenges, OR methodology typically relies on
a structured and systematic approach [1]. The individual steps
of this methodology are illustrated in Figure 1.

The methodology begins with the real-world system that
is the object of the decision-making process. The first step
is to identify the decision problem. Next, the scope of the
implementation is defined—this does not necessarily have to
fully cover the previously identified area. The subsequent steps

IEEE Catalog Number: CFP2585N-ART ©2025, PTI

165

Real system

Implementing the
solution

Establishing control
over the solution

&
Testing the model with
real data

Operations
Research

Constructing the
mathematical model

lang.
Deriving a solution
methodology

Fig. 1. Operations research methodology enhanced with communication and
potential languages used at various stages of the methodology

involve constructing a mathematical model and developing a
solution method. The resulting solution is then tested using
real data. If these tests are successful, the optimization results
can be incorporated into actual decision-making processes,
leading to full implementation and real-world impact—thus
completing the methodology cycle. In practice, however, this
process is rarely linear or strictly cyclical; backtracking or
skipping steps may occur at various stages.

Effective communication is critical to the success of an OR
project, and both its form and language vary across different
phases of the methodology. Figure 1 enriches the classical
OR methodology with examples of the communication modes
used at each stage. In the early phases, interactions among
domain experts dominate—for example, requirement elicita-
tion and project scoping are typically conducted through ex-
pert meetings. During the modeling and method development

Topical area: Advanced Artificial
Intelligence in Applications

166

phases, mathematical and algorithmic languages are primarily
used. Implementation requires programming languages, while
solution validation often involves further expert consultations,
sometimes supported by statistical language. Finally, the re-
sults must be communicated to end users via a human-machine
interface, such as a dedicated GUI.

Large Language Models (LLMs) have emerged as trans-
formative tools for effective communication across a wide
range of domains. By leveraging vast amounts of linguistic
data and advanced machine learning techniques, LLMs are
capable of understanding context, generating coherent text, and
engaging in meaningful dialogue. These capabilities enable
them to assist with tasks such as summarizing information,
translating languages, drafting content, and facilitating real-
time interaction between users. Their ability to perform logical
reasoning and apply mathematics to solve logical problems
is rapidly advancing. In the domain of programming, they
have become significant tools for automating source code
generation and testing.

These capabilities make LLMs promising candidates for
supporting the OR methodology at various stages. Their po-
tential can be utilized in system discovery and requirement
elicitation. They are naturally suited to support modeling
and coding. Moreover, areas such as test automation, results
explanation and visualization, or GUI generation are also
promising fields where LLMs may play a significant role.

Recognizing these possibilities leads to the concept of
Conversational Decision Support Systems (C-DSS)—a system
in which an LLM serves as a proxy across multiple stages of
Decision Support System (DSS) development and operation.
The C-DSS concept touches on various aspects of building
and operating decision support systems and opens up broad
opportunities for future research.

In this paper, we introduce the C-DSS concept. How-
ever, due to the subject’s complexity and scope, we focus
specifically on the modeling and programming stages, and
investigate how the effectiveness of language models can be
enhanced at these steps. This work is a contribution to a
broader vision—one that may significantly advance the field
of decision support systems.

B. State of the art

Efforts to automate the process of solving optimization
problems began gaining traction in 2022. One of the earli-
est contributions came from Ramamonjison et al. [2], who
proposed a system that automatically formulates mathematical
models from natural language descriptions. To evaluate their
approach, they introduced the Linear Programming Word
Problems (LPWP) dataset.

Building on this work, the same authors organized the
NL4Opt Competition [3], which aimed to identify the
most effective techniques for automated mathematical model
formulation. The competition was based on the LPWP
dataset—hereafter referred to as NL4OPT. In their conclu-
sions, the organizers noted that solutions utilizing Large Lan-
guage Models (LLMs) outperformed all other approaches.

PROCEEDINGS OF THE FEDCSIS. KRAKOW, POLAND, 2025

Chen et al. introduced a tool named OptiChat that employs
LLMs in conjunction with multiple agents, solvers (e.g.,
Gurobi, Mosek), and the algebraic modeling language Pyomo
to support mathematical modeling [4]. Its core functionality
includes detecting issues in model formulation and offering
corrective suggestions to the user. At around the same time,
Yang et al. proposed OPRO [5], a solution that bypasses tra-
ditional solvers by leveraging LL.Ms directly for optimization
tasks. OPRO iteratively refines its solutions based on previous
outputs and newly generated meta-feedback. However, this
approach has so far only been tested on relatively simple prob-
lems like the traveling salesman problem and linear regression,
leaving its applicability to more complex scenarios an open
question.

Li et al. extended the research to Mixed-Integer Linear
Programming (MILP) problems [6]. Their work expands the
NL4OPT dataset and focuses on training LLMs to produce
correct mathematical formulations, including not just quanti-
tative constraints (e.g., resources, demand), but also logical
constraints, which were largely neglected in earlier research.
The issue of the simplicity of problems in data sets has been
also addressed by Ziyang et al. [7]. The authors proposed the
ComplexOR dataset, which features more challenging opti-
mization tasks. Alongside the dataset, the authors introduced a
multi-agent system implementing the idea of Chain-of-Experts
framework. Although, they report performance improvement,
there is no analysis on which problem aspects are hard and
most problematic for LLMs.

Beyond the simplicity of tasks, the lack of real-world
relevance was another concern. This gap was addressed by
the creators of CoPilot [8], who focused on practical business
scenarios. Their system guides users through understanding the
problem, formulating the model, and solving the optimization
task—once again, leveraging LLLMs as the core engine.

One of the first comprehensive solutions attempting to
address the entire modeling pipeline is OptiMUS [9]. This
system not only formulates the optimization model but also
generates executable solver code to find and return optimal
solutions. Alongside the system, the authors introduced a new
dataset—NLP4LP—containing both LP and MILP tasks to
support their experiments. However, the limitation of Opti-
MUS was the need for users to prepare problem descriptions
in a specific format. This issue has been addressed in a
follow-up study [10], where the authors enhanced OptiMUS to
automatically convert natural language inputs into the required
structured format.

A significant challenge across all of the above efforts is
the variability in both solver performance and LLM behavior.
This issue is the focus of LM4OPT [11], a project that
seeks to standardize evaluation procedures for such systems.
Additionally, the researchers investigate the benefits of fine-
tuning LLMs, including compact models like Llama-7B, to
improve efficiency.

MARIUSZ KALETA: TOWARD CONVERSATIONAL DECISION SUPPORT SYSTEMS

C. Identified gaps and our contribution

As the literature review indicates, this research area is
relatively new, and current studies focus primarily on the use of
LLMs for modeling and coding optimization problems, often
overlooking the broader perspective of the OR methodology.
Even within this narrow scope, there is currently no established
knowledge regarding optimal architectures or methods for
integrating LLMs into the OR process. With the exception
of the limited work by Li et al. [6], there is a lack of
analysis and identification which modeling artifacts pose the
greatest challenges for language models. Such insights could
help address specific issues and improve the effectiveness of
automated modeling and coding efforts. Additionally, exist-
ing work mostly centers around the use of general-purpose
programming languages, which rely on libraries for solving
optimization problems. In particular, there is a notable absence
of research evaluating the effectiveness of modeling using ded-
icated declarative languages, such as AMPL (A Mathematical
Programming Language) [12]. Most of the research focuses
on imperative languages, mainly Python, while optimization
problems are natively defined in a declarative way.

Our contribution can be summarized as follows:

e We provide a broader context for mathematical modeling
and coding by introducing the concept of Conversational
Decision Support Systems (C-DSS) and taking a more
comprehensive view of the OR methodology.

o We define a catalog of common artifacts in LP and
MILP problems, along with associated sets of textual
optimization problem descriptions.

o For the identified artifacts, we analyze the performance
of LLMs within various agent-based architectures.

o Unlike previous studies, we employ LLMs to encode
problems using the AMPL mathematical modeling lan-
guage.

o We briefly demonstrate that LLM capabilities are also
relevant at other stages of the OR methodology, opening
opportunities for further research within the OR commu-
nity.

II. METHODS
A. Modeling artifacts

Based on practices in mathematical modeling, we have
identified 20 typical modeling artifacts, summarized in Table
I. The first five pertain to linear programming (LP) models
and include: a simple LP model (artifact 1), minimization of
the maximum value (artifact 2), a weighted sum of absolute
values with weights a and b depending on the sign of the
argument (absolute value in the objective, artifact 3), the
absolute value in a constraint (artifact 4), and a piecewise
linear approximation of a convex function f;(x) (artifact 5).
By the basic LP model (artifact 1), we mean a situation where
all variables directly represent the problem described in natural
language, i.e., there is no need for intermediate variables.

The second group of artifacts concerns mixed-integer linear
programming (MILP) problems and includes standard logi-
cal constraints typical for binary variables. These constraints

TABLE I
MODELING ARTIFACTS

1 simple LP no implicit variables
2 min max min x
& 3 absolute value in objective min(azt + bx ™)
4 absolute value in constraint min(azt),z” < X~
5 easy linearization minz,z > f;(z)
6 at most N of x, y, z,... r+y+z+--- <N
5 7 atleastNofx,y, z,... r4+y+z+--->N
& 8 exactly N of x, y, z,... r4+y+z+---=N
8 9 ifx then y T>y
-8, 10 if x then not y z+y<1
S 11 if x then y and z Yy>x,2>T
a, 12 if y or z then x Tr>y,T >z
g 13 if y and z then x xz%
14 if M or more from x, y, zthenv v > %ﬁfl
15 min min min min f;(x)
16 disjunction x € (a;b) U (b; d)
& 17 min. activity level z=0orz€ (a,b)
S 18 indicator constraint z— C,z € {0,1}

19 concave linearization
20 non-monotonic linearization

min f(z), f(z) concave
min f(z), f(z) non-mon.

typically involve the selection of at most/at least/exactly IV el-
ements (artifacts 6-8) and a range of conditional relationships
(artifacts 9-14), in which binary variables may or must take
certain values if other binary variables satisfy a given Boolean
condition.

The third group of artifacts involves more complex
MILP models, which usually include non-convexities or
discontinuities. This group comprises minimization of
the minimum value (artifact 15), disjoint variable do-
mains (artifact 16), minimum activity level (artifact 17),
indicator constraint (activation of a linear constraint
C based on a binary variable z, artifact 18), lin-
earization of a concave function (artifact 19), and lin-
earization of a general non-monotonic function (arti-
fact 20).

B. Datasets

To evaluate which artifacts a large language model handles
better or worse, we prepared two base problems: problem #64
from the NL4Opt dataset (the pharmaceutical paste problem,
with minor linguistic adjustments) and our own original prob-
lem (the sewage discharging problem), which has never been
published online. Each of the base problems represents artifact
1 — a simple LP problem. Subsequently, the content of each
base problem was modified to sequentially introduce artifacts
2 through 20.

Although the dataset may seem small, it is important to
note that we currently lack both the capability to automati-
cally generate problem statements in a way that ensures the
inclusion of specific artifacts, and methods for automatically
verifying the correctness of models proposed by LLMs for
given problem descriptions. Modifying problem statements
to explicitly induce a given artifact is non-trivial and was
carried out manually. Similarly, each solution in the form of a
mathematical model obtained during the study was manually
verified by an expert in operations research. Given the 20

167

168

artifacts, four agent configurations discussed later in the paper,
and five runs for each problem and configuration, this results
in 800 models whose correctness had to be manually verified.

The content of both problems is presented in Appendix A.

C. Environment settings

The conducted experiments cover four distinct language-
agent environments, differing in the number of agents involved
and their assigned roles. Each experimental setup processes a
set of 40 test tasks, composed of two base problems, each
instantiated in 20 variants corresponding to the predefined
artifacts. The goal of each environment is to generate a
mathematical model in textual form as well as a corresponding
AMPL model.

The mathematical model (in text form) includes the defini-
tion and description of sets, parameters, and variables, along
with the objective function and constraints, formulated in the
style typical for LP/MILP problems. For the AMPL model,
the system is allowed to produce either a single combined file
containing both the model and data, or separate files—*.mod*
for the model and ‘.dat‘ for the problem data.

Since the experimental output consists of two distinct
results—a textual mathematical model and AMPL source
code—errors may occur independently in each. Therefore, we
report separate success rates for modeling and coding.

Modeling success is defined as the correct formulation of
the optimization problem in textual form, manually verified
by an operations research (OR) expert. Any identified flaw in
the model leads to its classification as incorrect. The ratio of
correct mathematical models is reported in the result tables
under the column labeled "Model."

Coding success is defined as the correct encoding of the
previously generated mathematical model into AMPL syntax.
Correctness was verified both manually by an OR expert and
by executing the model in the AMPL environment. A model is
considered correctly implemented if it runs without errors and
matches the expected logic, regardless of whether the original
formulation was valid. Hence, a syntactically correct AMPL
implementation of an incorrect model still counts as a success
in the coding phase. The ratio of correct AMPL models is
reported in the column labeled "Code."

Overall success requires both a valid mathematical model
and its correct AMPL implementation, i.e., success in both
the modeling and coding stages. The ratio of fully correct
and functional solutions is reported in the column labeled
"Success."

All experiments were conducted using the GPT-40 model.
For each combination of base problem, artifact, and agent con-
figuration, the generation and evaluation process was repeated
five times.

III. RESULTS
A. Monolith architecture (M/C)

In the monolith architecture, we use an LLM as both
modeler and coder (M/C) in a single call. The architecture
is illustrated in Figure 2. The LLM acts as a single agent

PROCEEDINGS OF THE FEDCSIS. KRAKOW, POLAND, 2025

N

prompt

AN

LP/MIP
model

LLM

(Modeler & Coder
Agent)

D

word problem

BN

AMPL file

Fig. 2. Monolith architecture (M/C)

responsible for both modeling and coding. As input, it receives
a word problem inserted into the following zero-shot prompt
with Chain-of-Thought (CoT) reasoning enabled by default in
GPT-4o:

Formulate a linear programming model for the following
problem.

Provide the model as an AMPL file.

Results are presented in Table II. Simple LP prob-
lems—artifacts 1 to 3—show a high success rate, reach-
ing nearly 100% (only one coding failure occurred). These
problems are considered easy for language models in both
modeling and coding. The presence of an absolute value in
a constraint (artifact 4) reduces the modeling success rate to
60%, though the coding success rate remains relatively high
(80%). Artifact 5, which requires a linearization of a piecewise
convex function, posed a significant challenge to the LLM and
resulted in a very low modeling success rate (10%).

In the second group of artifacts, we observe high mod-
eling success rates for most logical constraints, alongside
surprisingly low coding success rates. Interestingly, artifact
13 was particularly challenging; the LLM often interpreted
it as artifact 12. We believe this may be due to a linguistic
ambiguity, as many people tend to confuse "and" with "or"
in everyday language. Artifact 14 also resulted in a relatively
low modeling success rate.

In the third group of artifacts, only the minimum activity
level (artifact 17) yielded a high success rate. Other artifacts
significantly reduced the LLM’s ability to model correctly,
with three artifacts never resulting in a valid model. However,
this group showed a comparatively higher coding success rate
than the second group.

Since the obtained results were not satisfactory, we con-
sidered several possible directions that may lead to improve-
ments:

1) Fine tuning

2) Special prompting technique, including:

o Tree-of-thoughts, Graph-of-thoughts
o Generated knowledge — first get more knowledge
about the problem, then model

MARIUSZ KALETA: TOWARD CONVERSATIONAL DECISION SUPPORT SYSTEMS

TABLE II
RESULTS FOR M/C ARCHITECTURE
Variant Model | Code | Success
1 simple LP 100% 100% 100%
2 min max 100% 100% 100%
5 |3 abs. val. in obj. 100% | 90% 90%
4 abs. val. in constr. 60% 80% 40%
5 piece-wise fun. 10% 70% 10%
6 at most N 100% 50% 50%
7 at least N 100% 50% 50%
o) 8 exactly N 80% 40% 40%
&g |9 r=y 90% 40% 40%
; 10 = "y 100% 60% 60%
= 11 T=yANz 100% 40% 40%
= 12 yVz=zx 100% 50% 50%
13 YyANz=zx 20% 40% 10%
14 | if > M fromy =y, z,... 50% 40% 30%
15 min min 0% 100% 0%
N 16 disjun. 50% 90% 50%
= 17 min. activ. level 100% 90% 90%
S |18 indic. constr. 20% | 80% 20%
19 concave linear. 0% 50% 0%
20 non-monoton. linear. 0% 50% 0%

AN

LP/MIP
model

N

prompt

LLM

(Modeler & Coder
Agent)

BN

AMPL file

D

word problem

Fig. 3. M/C architecture enhanced with verifier agent (M/C+V)

Cognitive verifier

o Few-shot — providing examples
o Persona/audiance pattern

« Reflection

 Chain-of-Experts

3) Agent-based decomposition (mixture-of-experts)
4) Retrieval Augmented Generation (RAG)

For further research, we exclude fine-tuning, as it requires
additional examples that are difficult to generate in this do-
main and may be computationally expensive. We also do not
include any special prompting techniques, as it remains unclear
which approaches could reliably improve modeling and coding
quality. Our observations suggest that for different artifacts,
either modeling or coding may be the more challenging task.
Following this insight, we believe that decomposition into spe-
cialized agents—potentially equipped with additional context
and expert knowledge and implemented as RAG—is the most
promising solution. The next three environment settings follow
this concept.

B. Enhancing M/C with Code Verifier agent

In this setting, we build on the observation that the coding
success rate is relatively low, particularly for the second
group of artifacts, and that most failures are due to simple
syntax issues. We introduced a new component—the verifier
agent—responsible for validating the AMPL source file by
executing it in the AMPL environment and reporting any
errors encountered. The resulting architecture is illustrated in
Figure 3.

If an error occurs, the verifier sends the following prompt,
including the error message, back to the Modeler/Coder (M/C)
agent:

169

TABLE III
RESULTS FOR M/C+V ARCHITECTURE
Variant Model | Code | Success
1 simple LP 100% 100% 100%
2 min max 100% 100% 100%
= 3 abs. val. in obj. 100% 100 % 100%
4 abs. val. in constr. 60% 90% 50%
5 piece-wise fun. 10% 80% 10%
6 at most N 100% 60% 60%
7 at least N 100% 50% 50%
o) 8 exactly N 80% 70% 50%
& |9 T=y 90% | 50% 50%
: 10 = "y 100% 60% 60%
= 11 r=yAz 100% 50% 50%
= 12 yVz=—zx 100% 60 % 60%
13 YNz =z 20% 50% 10%
14 | if > M fromy =y, z,... 50% 60% 40%
15 min min 0% 100% 0%
N 16 disjun. 50% 100 % 50%
= 17 min. activ. level 100% 100% 100%
S | 18 indic. constr. 20% | 90% 20%
19 concave linear. 0% 90% 0%
20 non-monoton. linear. 0% 50% 0%

AMPL reported the following issues:
test.mod, line 2 (offset 54):
A is not defined

context: set CONTAINERS :=
No variables declared.

A >>> B <<< C D;

Fix all errors.

The M/C agent may respond by correcting the identified
issues and regenerating the AMPL source code, which is then
returned to the verifier. We allow only a single round of
back-propagation. Although further iterations are technically
possible, we observed that they do not improve success rates
and may lead to repetitive error loops.

Results for the M/C+V architecture are presented in Ta-
ble III. Changes compared to the M/C architecture (Table II)
are shown in bold. We observe improvements in the coding
success rate for nearly all artifacts where it was previously
below 100%. The typical improvement is around 10 percentage
points, but it reaches as much as 40 percentage points for
artifact 19.

170

TABLE IV
RESULTS FOR M+CR+V ARCHITECTURE
Variant Coder | Coder + RAG
1 simple LP 100% 100%
2 min max 100% 100%
5 |3 abs. val. in obj. 100% 100%
4 abs. val. in constr. 80% 80%
5 piece-wise fun. 60% 60%
6 at most N 60% 60%
7 at least N 20% 60%
o) 8 exactly N 80% 80%
& |9 =y 40% 80%
; 10 = -y 40% 60 %
= 11 r=yAz 0% 20%
= 12 yVz=zx 20% 60%
13 YNz=—=2 0% 40%
14 | if > M fromy =y, z,... 20% 60%
15 min min 100% 100%
N 16 disjun. 100% 100%
= 17 min. activ. level 100% 100%
S |18 indic. consir. 100% 100%
19 concave linear. 80% 80%
20 non-monoton. linear. 80% 100%

C. Separation of Modeler and Coder (M+C"+V)

To further improve coding quality, we decomposed the
monolithic M/C architecture into separate modeling and cod-
ing agents. This allowed us to augment the coder with
Retrieval-Augmented Generation (RAG). Initially, we used
chapters 1-9 from the original AMPL book [12], with each
chapter provided as a separate PDF file. However, we observed
no significant improvement.

Subsequently, we created a concise custom RAG resource
focused on recurring coding issues. The RAG content is
included in Appendix B. This short but targeted resource
significantly improved outcomes—particularly for the second
problem, which had previously suffered from poor coding
quality. Table IV presents coding success rates for the second
problem under the monolithic architecture (column "Coder")
and the M+CP+V architecture (column "Coder + RAG").
Changes are marked in bold.

As shown, coding was particularly weak in the second group
of artifacts. The addition of a compact RAG significantly
improved the coding success rate—in some cases, tripling it
(e.g., artifacts 7 and 14).

Table V presents the distribution of error types reported
by the AMPL environment. Several types of errors occur
frequently. In the M/C architecture, more than half of the errors
relate to syntax issues in set definitions. Nine percent concern
the use of two-sided constraints, while similar proportions
pertain to multiple constraints under a single ’subject to’
statement, double definitions, and multiple objective functions.
The remaining errors are categorized as general syntax is-
sues.

When RAG is introduced, the distribution shifts. The fre-
quency of specific known errors drops—sometimes to zero.
As a result, the share of general syntax errors increases.
However, the total number of errors decreases, indicating that
the targeted RAG resource is effective. It successfully reduces

PROCEEDINGS OF THE FEDCSIS. KRAKOW, POLAND, 2025

TABLE V
SHARE OF CODING ERRORS IN M/C AND M+CR+V ARCHITECTURES
CODER | CODER + RAG
set definition syntax 54.6% 38.1%
many objectives 4.6% 0.0%
two-side constr. 9.0% 2.4%
multiply constr. in one "s.t." 4.6% 4.8%
double definitions 4.6% 0.0%
syntax 22.7% 54.8%
TABLE VI

IMPROVEMENTS FOR M +CR 4V ARCHITECTURE VERSUS M/C
ARCHITECTURE

Variant Model M/C | Model RAG

5 5 piece-wise fun. 10% 100 %
=

§ 13 YAz =>zx 20% 40%
& 15 min min 0% 50%
|

E 18 indic. constr. 20% 80%
g 19 concave linear. 0% 70%
T 20 | non-monoton. linear. 0% 80%

both the frequency and proportion of the common, previously
observed issues.

D. Enhancing Modeler agent with RAG: M+Cl+V

Encouraged by the positive impact of a relatively small RAG
set for the Coder, we identified common modeling issues and
developed a dedicated RAG for the Modeler agent as well.
The resulting RAG is a two-page document that provides
guidelines for addressing the most frequent challenges faced
by the Modeler agent. Appendix C presents its contents,
divided into three sections: piecewise linear function modeling,
the minimum of minima problem, and indicator constraints.

Table VI shows the improvements achieved over the mono-
lithic M/C model for a selection of the most challenging
artifacts covered by the new RAG. The observed gains are
significant, and the effectiveness of the targeted RAG should
be considered high.

Table VII presents the complete results for the ME+CE4+V
architecture, which includes decomposition into specialized
agents, each enhanced with its own RAG. Although the results
are significantly improved compared to the original monolithic
M/C architecture, some limitations remain. Notably, coding
artifacts from the second group still show signs of weakness.
Additionally, modeling performance remains suboptimal for
artifacts 13—16. Among the simpler problems, artifact 4—fea-
turing absolute values in constraints—underperforms relative
to others in this group.

IV. THE CONCEPT OF C-DSS

Our experience with decomposing the architecture into
specialized agents leads us to propose a general framework
for Conversational Decision Support Systems (C-DSS), as
illustrated in Figure 4. The agents marked in bold represent
the components studied in this work: the Modeler, Coder,

MARIUSZ KALETA: TOWARD CONVERSATIONAL DECISION SUPPORT SYSTEMS

TABLE VII
RESULTS FOR M +CH+V ARCHITECTURE
Variant Model | Code | Success

1 simple LP 100% 100% 100%
2 min max 100% 100% 100%
5 13 abs. val. in obj. 100% | 100% | 100%
4 abs. val. in constr. 60% 90% 60%
5 piece-wise fun. 100% 80% 80%
6 at most N 100% 60% 60%
7 at least N 100% 50% 50%
9 8 exactly N 80% 70% 50%
& |9 =y 90% | 50% 50%
: 10 r = "y 100% 60% 60%
= 11 T=yAz 100% 50% 50%
= 12 yVz=—=zx 100% 60% 60%
13 YNz =—x 40% 50% 40%
14 | if>Mfromy=>y,2... | 50% | 60% 40%
15 min min 50% 100% 50%
16 disjun. 50% 100% 50%
5 17 min. activ. level 100% 100% 100%
S |18 indic. constr. 80% | 90% 80%
19 concave linear. 70% 90% 60%
20 non-monoton. linear. 80% 50% 80%

VN VN 7 T TN

! pomain ! ! mopeL ! CODE !

I EXPERT | | VERIFIER | VERIFIER -IAEGSET'\IJE.ﬁ I

| AGENT | | AGENT | AGENT |

\ /N _ 7 _

Generated Errors in Errors in
Knowledge the model the code report
MODELER VISUALIZER
AGENT AGENT
K [y
EXPLAINER
AGENT
Y E
ORCHESTRATOR AGENT

Fig. 4. The concept of Conversational Decision Support Systems

and Code Verifier. However, other elements of a classical
Decision Support System (DSS) also involve communication
and can be implemented within a language-agent-based archi-
tecture.

One example is the DSS user interface, whose role can be
taken over by a Visualizer agent, dynamically responding to
user requests for result visualization. Figure 5 shows a sample
response from the Visualizer agent for base problem one, given
the following prompt:

Visualize the results for the Management Board

FeaB%billty Region and Optimal SoluticDptimal Number of Containers UsedCost Efficiency vs. Water Availability

— 10x + 20y = 500 40 2.60
— 15x+ 20y = 700

o Optimal Solution (40, 5)

3 &

S

Number of Large Containers (y)
Number of Containers
Cost Efficiency (s/unit)

5
4

2.50

0 Small Containers _Large Containers 400 450 500 550 600
Available Water Units

10 20
Number of Small Containers (x)

30 40 50 60

Fig. 5. Visualization of results proposed by the Visualizer agent (overlapping
text left as it was generated by the agent)

What will be the result if we produce only 30 small containers?

If we produce only 30 small containers (z — 30), we need to determine how many large containers (

) can be used while respecting the constraints on water and powdered pills.

So, if we produce only 30 small containers and use 10 large containers, the maximum amount of

paste that can be made is 900 units.

Fig. 6. Exemplary session 1 with Explainer agent

The agent proposed a visualization of the feasible solution
set, which may not be suitable for a Management Board. It also
presented the solution using a simple bar chart. Interestingly,
the agent suggested performing an efficiency analysis with
respect to water availability, thereby independently initiating
a non-trivial sensitivity analysis.

Although the resulting output is not perfect and contains
some visual flaws (e.g., overlapping text), it is important to
note that the agent used was neither trained nor equipped with
RAG, and the conversation was brief and based on a simple
prompt. In this context, the results are promising and illustrate
the potential for further development of such interfaces.

Another example is the Explainer agent, specialized in
interpreting and explaining the obtained results to the user. In
particular, it can conduct sensitivity or what-if analyses, and
thus collaborates closely with the Modeler and Coder agents.

Figures 6 and 7 present two short sessions with the Ex-
plainer agent for base problem one. In the first session, the user
seeks reassurance that the solution proposed by the C-DSS is
valid and asks about the impact of reducing the number of
small containers produced. The agent responds with a detailed
explanation; Figure 6 shows only the opening sentence and
final conclusion.

In the second session, the user wants to understand why
increasing the production of small containers is not feasible.
As before, the agent provides a longer explanation, and
Figure 7 shows the first and final statements. In both cases, the
Explainer agent offers a fairly detailed and accurate analysis
of the user’s proposed changes.

Assuming the Modeler is a general-purpose agent, it is
reasonable to enable communication with a domain-specific
agent that provides expert knowledge in a given field. While

171

172

Why can't we produce 50 small containers?

Let's check if producing 50 small containers (x — 50) is feasible given the constraints on water and
powdered pills.
For & = 50, the constraints require y < 0 and y < —2.5. Since y cannot be negative (as it

represents the number of large containers), it is impossible to produce 50 small containers while

satisfying the resource constraints.

Therefore, producing 50 small containers is not feasible due to the limitations on the available water

and powdered pills.

Fig. 7. Exemplary session 2 with Explainer agent

the implementation details remain open, introducing a Critic
agent—responsible for verifying and validating the developed
mathematical model (i.e., a Model Verifier)—appears well
justified. This agent could replace or support the function
of a human expert, which proved to be a bottleneck in our
experiments.

In the area of code development, the current Code Verifier
only checks for syntactic correctness by testing whether the
code runs in a given environment. However, a dedicated Tester
agent should also be envisioned—capable of validating the
encoded model using predefined unit tests or scenario checks.

Finally, the entire agent ecosystem requires workflow man-
agement, a task that would fall to an Orchestrator agent. This
agent would be responsible for dynamically arranging tasks,
coordinating agent communication, and preventing loops or
deadlocks in the system.

V. SUMMARY

This paper introduces the concept of Conversational Deci-
sion Support Systems (C-DSS), which leverage Large Lan-
guage Models (LLMs) to enhance Operations Research (OR)
methodology, particularly during the modeling and coding
stages. We propose a novel framework in which LLMs serve
as proxies across various phases of decision support system
development, with a focus on mathematical modeling and
AMPL code generation.

By identifying 20 typical modeling artifacts for Linear
Programming (LP) and Mixed-Integer Linear Programming
(MILP), we evaluate LLM performance across four agent-
based architectures: Monolith (M/C), M/C with Verifier
(M/C+V), Modeler and Coder with Retrieval-Augmented Gen-
eration (M+CP+V), and both Modeler and Coder enhanced
with RAG (ME+CE+V). Using two base problems—one from
the NL4Opt dataset and a custom-designed sewage discharging
problem—we observe that simpler LP artifacts yield near-
perfect success rates. In contrast, complex MILP artifacts
involving logical constraints or non-convex functions remain
significantly more challenging.

Our experiments reveal patterns in LLM behavior, sug-
gesting that targeted solutions to specific artifacts offer great
potential for improvement. We demonstrate that even a very
short RAG for the Coder agent and a slightly longer, yet
focused, RAG for the Modeler agent can significantly improve

PROCEEDINGS OF THE FEDCSIS. KRAKOW, POLAND, 2025

Identifying a decision
problem

Real system
Implementing the
solution

LLM as proxy in H-C

interaction
Establishing control
over the solution
LLM as tester

Testing the model with
| dat:
real data LLM as coder
Deriving a solution
methodology

Fig. 8. Potential role of LLM in OR methodology

LLM for problem
understanding

Operations
Research

Setting the model's
scope

LLM as modeler

Constructing the
mathematical model

performance—particularly for piecewise functions, minimum-
of-minima formulations, and indicator constraints.

We also envision a more comprehensive C-DSS architecture,
incorporating agents such as the Modeler, Coder, Verifier, Vi-
sualizer, Explainer, and Orchestrator. This multi-agent design
offers a unified approach to integrating LLMs into OR and
opens new avenues for research in automating decision support
systems. A Decision Support System is a product developed
within the broader framework of the OR methodology, as
referenced in Figure 1. As shown, the various steps in the
methodology rely on different forms of language to facili-
tate communication among stakeholders—making it inherently
well-suited for enhancement through LLMs. Therefore, we
propose considering a revised OR methodology in which
language models serve as core tools at each stage. Figure 8
illustrates this vision.

Despite rapid advances in large language models, there
are still significant limitations. Our results show that for
some quite typical cases, LLMs are not a reliable tool for
modelling and coding. Since the real problems are typically
more complex and may include more sophisticated aspects,
such as complex nonlinearity, dynamics, or uncertainty, it must
be admitted that the C-DSS concept is in its early stages of
development. It requires a significant improvement for real
applications. However, we believe that our proposed C-DSS
concept not only advances the design of automated decision
systems but also lays the foundation for further research into
LLM-enhanced OR methodologies.

MARIUSZ KALETA: TOWARD CONVERSATIONAL DECISION SUPPORT SYSTEMS

APPENDIX
A. Word problems used in the research
Base problem 1 (#64 from NL4Opt data set)

There are two specialized containers, a small and large
one, that are used to make a pharmaceutical paste. The
small container requires 10 units of water and 15 units of
the powdered pill to make 20 units of the paste. The large
container requires 20 units of water and 20 units of the
powdered pill to make 30 units of the paste. The pharmacy
has 500 units of water and 700 units of powdered pills
available. How many of each container should be used to
maximize the amount of paste that can be made?

Base problem 2 (the sewage discharging problem)

The two cities discharge sewage into two treatment plants
with a capacity of 5,000 tons and 3,000 tons per day,
respectively. The purified water is pumped further into
the river. Each city can divide sewage in any proportion
between both treatment plants. The daily operating cost
of treatment plant 1 is USD 3.5/ton. The daily operating
cost of treatment plant 2 is USD 6/ton. The operating cost
of the clean water pumping station at treatment plant 1
is USD 2.5/ton, and at treatment plant 2 - USD 2.2/ton.
Assuming that cities must discharge at least 4,000 and
3,500 tons of sewage per day, plan the system’s operation
to minimize the daily cost of its operation.

B. Content of Coder’s RAG

This GPT acts as an expert in linear programming and
AMPL (A Mathematical Programming Language). It as-
sists users in creating AMPL files for given linear pro-
gramming problems by understanding their requirements
and translating them into correct and optimized AMPL
code. It ensures the AMPL files are syntactically accurate
and efficient, adhering to best practices in linear program-
ming and AMPL usage. It will guide users through the
process of defining sets, parameters, variables, objective
functions, and constraints in their linear programming
models.

Whenever you are asked to create an AMPL file, follow
these rules:

1) Start with the declarations of sets followed by dec-
larations of parameters and variables.

2) When declaring a set of parameters, do not assign
any value. Add the section "data;" at the end of the
AMPL file and put all assignments there.

3) Do not use sharp inequalities. Always apply "lower
than or equal" or "greater than or equal".

4) Do not use double inequality constraints. Break the
double inequalities into two separate constraints.

5) There can be only one objective in the AMPL file.

6) ’var’ definitions should not include assignment from
other variables directly.

7) Under the keyword “subject to”, only one constraint
can be defined. If more constraints are needed, each
constraint definition should start with “subject to”.

C. Content of Modeler’s RAG

Piecewise functions

Remember that when dealing with easy piecewise func-
tion cases, there is NO NEED to use auxiliary binary
variables. It is enough to add constraints for each segment
of the piecewise function. For instance, if the problem
is minimizing the convex piecewise function, we can
add auxiliary continuous variable x and a constraint
x > fi(x), where f;(z) is an i-th segment of the piecewise
function. However, if you add binary variables indicating
the segment of the function, these variables must be
constrained by the original variable. If the i-th linear
segment is denoted by f;(x) and it is valid in the range
from z;_; to x;, then we need to set auxiliary variable
v; to 1 whenever z is in the range from x;_; to x;. We
can model that as follows:

x < xv; + M1 —v;)
X 2 Ti—1U; — M(l —’Ui)

For instance, let’s consider the function consisting of two
piecewise segments, f1(z) and fo(x). For x from 5 to
10, there is function fi(x), and for z in a range from
10 to 18, there is function fy(x). We introduce auxiliary
variables v; and vs such that

v +vg =1

To constraint variable = by variables v; and vy, we define
inequalities as follows

x < 10v; + M (1 —vq)
x> 5v; " M(1—wv)
x < 18vs + M (1 — v9)
x> 10vy " M(1 — vo)

To calculate the value of the piecewise function, we
introduce the auxiliary continuous variable z, and we
define the following constraints:

z> fi(x)"M(1 —vl)
z < fi(z) + M(1—ol)
z > fo(x)"M(1 —v2)
z < fo(x) + M(1 — v2)

In the final version of the model, fi(x) and f(z) must
be substituted with linear formulas.

173

174

Min of min problem (minimization of the minimal
value)

If the problem is to minimize the minimum of some val-
ues, we need to add auxiliary binary variables that indicate
which value is the lowest. Let us consider variables 2 and
y and the problem of minimizing the minimal value out
of variables x and y. Then, we must introduce a binary
variable v that is O if z is lower or equal to y, and v is
1 if y is lower than or equal to x. In the case of x = y,
the value of v can be any. To model that, we need to add
the following constraints:

z <y+ Mv
y<z+M(1-v)

Having variable v that indicates whether = or y is the
minimal value we must introduce auxiliary continuous
variable z that will be equal = if v is O or to y if v
is 1. It is an indicator constraint that can be modeled as
follows:

z<=z+ Mv

z>=1xz" Mv
z<=y+ M1 -v)
z>=y—M(1—0v)
Remember that z must be constrained from above and
below. Since z is the minimal value of = and y, it can be
directly minimized in the objective:
min 2
WARNING! Remember, YOU CAN NOT SIMPLY con-
straint z in this way:
z<z
z<y
and minimize z. This is MISTAKE! Variable z will

always be 0. You must use an auxiliary binary variable.
Watch out for this case!

Indicator constraints

An indicator constraint is a constraint that is controlled by
a binary variable. If the constraint is "lower than", and the
auxiliary variable that controls this constraint is z, then
we can add Mz to the right-hand side of the constraint,
where M is a big number. If the original constraint is as

follows:
Z a;x; < c
i
then it can be controlled with a binary variable y in the
following way:

Zaixi <c+ Mz

%

PROCEEDINGS OF THE FEDCSIS. KRAKOW, POLAND, 2025

Indicator constraint can be used to model conditional
constraint in which one variable depends on the value
of another variable. For instance, if must be greater or
equal to A when y is greater or equal to B, we can add
the indicator constraint for variable y as follows

y>B—M(1-2z)

where z is an auxiliary binary variable. So if z gets 1
then the constraint becomes active. Then z must be set
to 1 if x is greater or equal A, which can be modeled as

follows:

2> (x—A)/M

Remember that in the general case of conditional con-
straint, we need to use the concept of the indicator
constraint, so an auxiliary variable is needed.

(1]
[2]

[3]

[4]
[3]
[6]
[7]

[8]

[9]
[10]

[11]

[12]

REFERENCES

E. S. Hillier, Introduction to operations research, 9th ed. Boston [etc.]:
McGraw-Hill, 2010. ISBN 9780071267670

R. Ramamonjison, H. Li, T. Yu, S. He, V. Rengan, A. Banitalebi-
dehkordi, Z. Zhou, and Y. Zhang, “Augmenting operations research with
auto-formulation of optimization models from problem descriptions,” in
Proceedings of the 2022 Conference on Empirical Methods in Natural
Language Processing: Industry Track, Y. Li and A. Lazaridou, Eds. Abu
Dhabi, UAE: Association for Computational Linguistics, Dec. 2022. doi:
10.18653/v1/2022.emnlp-industry.4 pp. 29-62.

R. Ramamonjison, T. Yu, R. Li, H. Li, G. Carenini, B. Ghaddar,
S. He, M. Mostajabdaveh, A. Banitalebi-Dehkordi, Z. Zhou, and
Y. Zhang, “Nl4opt competition: Formulating optimization problems
based on their natural language descriptions,” in Proceedings
of the NeurlPS 2022 Competitions Track, ser. Proceedings of
Machine Learning Research, M. Ciccone, G. Stolovitzky, and
J. Albrecht, Eds., vol. 220. PMLR, 28 Nov-09 Dec 2022.
doi: 10.48550/arXiv.2303.08233 pp. 189-203. [Online]. Available:
https://proceedings.mlr.press/v220/ramamonjison23a.html

H. Chen, G. E. Constante-Flores, and C. Li, “Diagnosing infeasible
optimization problems using large language models,” 2023.

C. Yang, X. Wang, Y. Lu, H. Liu, Q. V. Le, D. Zhou, and X. Chen,
“Large language models as optimizers,” 2024.

Q. Li, L. Zhang, and V. Mak-Hau, “Synthesizing mixed-integer linear
programming models from natural language descriptions,” 2023.

Z. Xiao, D. Zhang, Y. Wu, L. Xu, Y. J. Wang, X. Han, X. Fu,
T. Zhong, J. Zeng, M. Song, and G. Chen, “Chain-of-experts: When
LLMs meet complex operations research problems,” in The Twelfth
International Conference on Learning Representations, 2024. [Online].
Available: https://openreview.net/forum?id=HobyL.1B9CZ

S. Wasserkrug, L. Boussioux, D. den Hertog, F. Mirzazadeh, I. Birbil,
J. Kurtz, and D. Maragno, “From large language models and optimiza-
tion to decision optimization copilot: A research manifesto,” 2024.

A. AhmadiTeshnizi, W. Gao, and M. Udell, “Optimus: Optimization
modeling using mip solvers and large language models,” 2023.

, “Optimus: Scalable optimization modeling with (mi)lp solvers and
large language models,” 2024.

T. Ahmed and S. Choudhury, “Lm4opt: Unveiling the potential of large
language models in formulating mathematical optimization problems,”
INFOR: Information Systems and Operational Research, vol. 62, no. 4,
pp. 559-572, 2024. doi: 10.1080/03155986.2024.2388452. [Online].
Available: https://doi.org/10.1080/03155986.2024.2388452

R. Fourer, D. Gay, and B. Kernighan, AMPL: A Modeling
Language for Mathematical Programming, ser. Scientific Press
series. Thomson/Brooks/Cole, 2003. ISBN 9780534388096. [Online].
Available: https://books.google.com.hk/books?id=Ij8ZAQAAIAAJ

