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Abstract—The growing adoption of digital technologies in
agriculture has led to a proliferation of heterogeneous data
from sources such as drones, robotic platforms, and IoT sensors.
However, the lack of interoperability across these data streams
poses major challenges for integration into decision support
systems. This paper presents an approach to harmonising such
data using NGSI-LD and Smart Data Models, developed within
the Norwegian research project SMARAGD. We demonstrate how
domain-specific semantic models and linked data principles can
be applied to standardise and enrich geospatial and temporal
metadata across three key agritech domains: aerial imagery,
robotic sensing, and environmental monitoring. The resulting
information assets are integrated into a shared, FIWARE-
compatible data space, enabling cross-platform visualisation,
querying, and reuse. This work contributes to the development of
an open, standards-based digital infrastructure for interoperable,
data-driven agriculture in Norway and beyond.

Index Terms—Data interoperability, NGSI-LD, Smart Data
Models, FIWARE, precision agriculture, semantic data integra-
tion, linked data

I. INTRODUCTION

T
HE digital transformation of agriculture is producing an

increasing volume of data from diverse sources such

as drones, robotic platforms, and IoT sensors. Realising the

full potential of these data streams requires seamless integra-

tion across different formats, systems, and stakeholders – a

challenge that is especially pressing in the fragmented agri-

food sector. Interoperability is essential for enabling advanced

decision support tools, improving data reuse, and fostering

sustainable, data-driven practices.

This paper addresses the challenge of data interoperability

by applying Smart Data Models (SDMs) and the NGSI-LD

standard to create a unified, semantically enriched represen-

tation of heterogeneous agritech data. Developed within the

Norwegian research project SMARAGD1 (Smart Agriculture

Data Fusion for Decision Support), our approach focuses on

1https://www.sintef.no/en/projects/2022/smaragd-smart-agriculture-data-f
usion-for-decision-support/

transforming raw data, such as imagery metadata and sensor

measurements, into structured and interoperable information

assets. The emphasis lies on semantic modelling, rather than

on the technical details of the underlying data pipelines or

system integration components.

The remainder of this paper is organised as follows: Sec-

tion II introduces the research context and outlines key in-

teroperability challenges in the Norwegian agrifood domain.

Section III summarises related research work. Section IV

presents our modelling approach using SDMs and NGSI-LD.

Section V discusses the outcomes and implications of our

approach, while Section VI concludes the paper and outlines

directions for future work.

II. RESEARCH CONTEXT AND MOTIVATION

A. Sector Overview and Interoperability Vision

Norway’s agrifood sector is undergoing rapid digitalisation,

driven by the deployment of advanced technologies such as

UAVs, robotic platforms, and IoT sensors. These tools offer

significant potential to enhance productivity, sustainability, and

data-informed decision making across the entire agricultural

value chain. However, they also introduce a critical barrier –

data heterogeneity. In practice, each technology stack typically

operates in isolation, producing data in incompatible formats

and lacking a shared semantic framework.

This fragmentation results in data silos that hinder inte-

gration, reuse, and meaningful analytics. For instance, when

agronomists or technology providers attempt to combine aerial

imagery with in-soil sensor data, or align robotic observa-

tions with external weather inputs, they face tedious manual

harmonisation processes. Without a common data foundation,

these efforts are error-prone and labour-intensive, ultimately

undermining the value of digital tools in smart farming.

To address this issue, the research project SMARAGD has

adopted a data-centric strategy centred on semantic interoper-

ability. The project’s architecture is built on the open-source
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FIWARE ecosystem2 [1], enabling the creation of so-called

Smart Data Spaces where information from heterogeneous

systems can be fused, queried, and analysed in a unified way.

The cornerstone of this approach is not only the technical

integration of data flows, but also the harmonisation of data

semantics using shared, standardised data models. Specifi-

cally, the NGSI-LD specification and domain-specific SDMs

are used to semantically enrich the data so that it can be

understood and reused across platforms. FIWARE’s modular

components, such as the Context Broker and its standard APIs,

enable interoperability across data sources and stakeholders,

laying the foundation for collaborative, data-driven agriculture.

B. Real-World Interoperability Challenges

Despite the availability of digital infrastructure and ad-

vanced sensing technologies, data interoperability remains a

major obstacle in real-world agritech applications. The fol-

lowing examples illustrate the nature and diversity of these

challenges across three representative domains in SMARAGD.

Aerial imagery. High-resolution images captured by UAVs

provide valuable spatial insights for crop monitoring and yield

estimation. However, these images are typically offloaded

manually from SD cards after field missions, and their em-

bedded metadata (stored in formats like EXIF or proprietary

DJI tags) lacks semantic structure. Different camera types

(RGB, thermal, multispectral) introduce further variability. As

a result, integrating UAV imagery into downstream systems

requires specialised extraction and reformatting steps, often

with little reuse potential beyond the initial use case.

Robotic imagery. Mobile agricultural robots are increas-

ingly used for close-range inspection, weeding, and precision

spraying. These platforms often rely on the Robot Operating

System (ROS), which records multi-sensor data into so-called

bag files. While ROS is highly effective within robotic envi-

ronments, it is not designed for external data interoperability.

Each data stream (e.g., from GPS, IMU, or cameras) follows

a different structure, and the data is typically not enriched

with semantic or geospatial context. Converting this raw

content into usable, interoperable formats requires extensive

processing and domain knowledge.

Environmental sensors. IoT systems deployed in

greenhouses, tunnels, and open fields continuously monitor

soil, climate, and air parameters. However, these devices are

typically vendor-specific, each exposing data through bespoke

APIs, measurement units, and timestamp conventions. The

absence of shared ontologies or data models results in a

proliferation of disconnected systems. For example, two

moisture sensors from different providers may use different

naming conventions, measurement intervals, and units,

hindering aggregation and comparative analysis.

These examples underscore the need for structured, se-

mantically aligned representations that facilitate consistent

integration across space, time, and source. By adopting NGSI-

LD-based SDMs, the SMARAGD project enables the transfor-

2https://www.fiware.org/

mation of heterogeneous sensor outputs into harmonised enti-

ties, thereby making them accessible for advanced analytics,

visualisation, and long-term reuse.

III. RELATED WORK

Interoperability remains a key challenge for smart agricul-

ture, where heterogeneous systems often lack shared standards

[2]. Existing modelling vocabularies for data representation

and exchange [3] are often either too generic or tailored to

narrow, non-reusable use cases. Similarly, ontologies for IoT,

sensor networks, and cyber-physical systems [4], [5] need

further refinement to address the specific needs of the agritech

domain. Although various competing agritech data standards

exist,3 none has achieved wide adoption.

Equally important is the design of data pipelines – auto-

mated workflows that perform extraction, transformation, and

loading (ETL) of data into usable formats [6]. In agriculture,

traditional pipelines often operate in silos, processing drone

imagery, sensor streams, or robotic data separately. More

recent efforts promote unified, context-aware pipelines based

on open standards and semantic models. Initiatives such as

FIWARE4 and NGSI-LD SDMs provide standardised repre-

sentations to enable cross-platform integration [7], [8], [9],

[10]. Another influential reference architecture is Microsoft’s

FarmBeats [11], [12], [13], which combines edge computing,

cloud storage, and AI to process large-scale agritech data.

Many pipeline architectures adopt containerised microservices

[14] and event-driven components for scalability and flexibil-

ity. However, challenges persist, including the harmonisation

of proprietary formats, temporal-spatial alignment of multi-

modal data, and generalisability beyond isolated deployments.

IV. SEMANTIC INTEROPERABILITY APPROACH

While numerous promising solutions exist, much of the

current work remains experimental or domain-specific. This

paper builds on best practices from these efforts, advancing

semantic interoperability through SDMs and open, standards-

based tooling. Achieving semantic interoperability across di-

verse agritech data sources is essential for enabling data shar-

ing, fusion, and value-added analytics. This section outlines

the key enabling technologies and modelling principles that

underpin our approach, developed in the SMARAGD project.

A. SDMs and NGSI-LD for Interoperable Agritech Data

SDMs5 are at the core of the FIWARE ecosystem, designed

to standardise the structure and semantics of data exchanged

across systems. They are based on the NGSI-LD specification

[15], which represents context data as entities composed of

properties and relationships, enriched with geospatial and tem-

poral context. NGSI-LD also supports linked data principles,

facilitating richer semantics and integration across domains.

The SDM initiative maintains a large and evolving reposi-

tory of domain-specific models. In agriculture, these include

3https://www.aspexit.com/standards-and-data-exchange-in-agriculture/
4https://www.fiware.org/community/smart-agrifood/
5https://smartdatamodels.org/
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templates for weather, soil, crop, and sensor data. Reusing

existing models accelerates development and fosters interop-

erability. Where necessary, custom models can be contributed

to fill domain gaps, as in our work with drone/robotic imagery.

NGSI-LD enables interoperable representation of core at-

tributes such as geolocation (GeoJSON), time (ISO 8601),

and sensor metadata. Its machine-readable and extensible

structure allows for integration with third-party data sources,

including weather and satellite data. Together, NGSI-LD and

SDMs provide a robust foundation for harmonising data across

heterogeneous agritech systems.

B. Modelling Strategy for Data Harmonisation

Our modelling approach targets the integration of siloed

datasets, such as drone imagery, robotic data, and IoT sensor

streams, into a unified data space based on NGSI-LD. All

data points are modelled as NGSI-LD entities with standard-

ised attributes, timestamps, and geospatial references, support-

ing spatio-temporal alignment across sources [16], [17]. In

particular, GeoJSON-based GPS coordinates and ISO 8601

timestamps serve as key enablers of data interoperability

in precision agriculture, allowing observations from different

systems to be fused and interpreted in context. Our approach

is guided by three core principles:

• Heterogeneity awareness: We account for the frag-

mented nature of agritech systems and the diversity of

their data formats.

• Reuse of open standards: Wherever possible, we lever-

age the FIWARE stack, NGSI-LD format, and existing

SDMs to avoid redundant development.

• Future-proof interoperability: All modelling aligns

with EU data space principles and emerging best practices

to ensure reusability and policy compliance.

This modelling layer forms the semantic backbone of our ar-

chitecture, enabling integration with third-party datasets (e.g.,

weather forecasts or satellite data) and supporting scalable,

interoperable decision support services. The resulting har-

monised data space serves as the foundation for downstream

decision support services, ranging from visual analytics to

predictive models.

1) Aerial Imagery Metadata Transformation: Aerial im-

agery captured by UAVs is a valuable data source in precision

agriculture, often used for monitoring crop health or planning

interventions. These images, typically stored in the raw DNG

format, include embedded EXIF metadata describing camera

properties, geolocation, and capture time. However, this meta-

data is not natively interoperable.

Several challenges emerge when using this data directly:

(1) metadata is fragmented across namespaces like EXIF, XMP,

and Composite; (2) fields such as EXIF:GPSLatitude or

EXIF:FocalLength lack semantic context; and (3) proprietary

tags from manufacturers like DJI hinder automated processing.

While rich in content, such raw metadata is difficult to

integrate across systems.

To address this, we developed a semantically enriched

representation using a custom NGSI-LD SDM, DroneImage,

which standardises key attributes such as GPS coordinates in

GeoJSON, capture date, and camera settings. GPS coordinates

and timestamps serve as primary anchors for interoperability,

enabling spatial and temporal alignment with data from other

sources. The transformation maps each image into an NGSI-

LD entity with human-readable, structured attributes, suitable

for integration into a shared data space. An example transfor-

mation is illustrated in Table I, comparing raw metadata fields

to their harmonised NGSI-LD representation.

2) Robotic Imagery Metadata Transformation: Agricultural

robots perform close-up imaging and sensor-based monitoring

during tasks such as spraying, weeding, or harvesting. These

systems typically use ROS to synchronise multiple sensor

streams, including imagery, GPS, and orientation data, into

ROS bag files. Although ROS provides a robust internal

structure, its data format is not directly interoperable with

external systems. Three main challenges limit reusability: (1)

sensor data is fragmented across asynchronous topics, (2)

message types are diverse and lack semantic annotations,

and (3) timestamps and geolocation are scattered and incon-

sistently structured. Manual extraction and interpretation are

therefore required to fuse imagery with context metadata such

as position and orientation.

To address this, we developed a custom NGSI-LD SDM

called RoboticFrame, which unifies data from ROS bag files

into semantically enriched entities. The model aligns image

frames with spatial, temporal, and camera-specific attributes,

using ISO 8601 timestamps and GeoJSON-formatted GPS co-

ordinates as primary anchors for interoperability. An example

transformation is shown in Table II, where fragmented ROS

data is merged into a single structured and linked entity.

3) Environmental Sensor Data Harmonisation: Environ-

mental sensors deployed in fields, tunnels, or greenhouses gen-

erate continuous readings of soil moisture, temperature, and

other parameters. These are often transmitted in fragmented

batches via NB-IoT gateways, with metadata scattered across

configuration files or encoded in vendor-specific formats. The

lack of semantic structure, inconsistent timestamp formats, and

loosely coupled geolocation data make it difficult to integrate

such measurements into a unified system.

To address these challenges, we adopt the existing SDM

DeviceMeasurement6 to encode individual readings as se-

mantically structured NGSI-LD entities. This model enables

consistent representation of core attributes such as measure-

ment type, value, timestamp, elevation, and device identity.

Where applicable, we enrich these entities using additional

SDMs from the SmartAgrifood domain. As with the other

two domains, GPS coordinates (GeoJSON) and ISO 8601

timestamps are used as primary anchors for geospatial and

temporal alignment across sources – key enablers for preci-

sion agriculture and longitudinal analysis. Each entity also

establishes NGSI-LD relationships to its originating device,

location, and provider. Table III illustrates a representative

example of this transformation.

6https://github.com/smart-data-models/Smart-Sensoring
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TABLE I
SAMPLE TRANSFORMATION OF THE AERIAL IMAGERY METADATA.

Original format: EXIF metadata

{
"SourceFile": "DJI_0007.DNG",
"File:FileName": "DJI_0007.DNG",
"File:FileSize": 40920003,
"EXIF:Make": "DJI",
"EXIF:Model": "FC6540",
"EXIF:ModifyDate": "2024:09:25 17:33:10",
"EXIF:ImageWidth": 6016,
"EXIF:ImageHeight": 3376,
"EXIF:GPSLatitude": -48.875485,
"EXIF:GPSLongitude": -123.391860,
"EXIF:GPSAltitude": 189.172,
"EXIF:LensModel": "DJI DL 24mm F2.8 LS ASPH",
"EXIF:FocalLength": 24,
"EXIF:ApertureValue": 2.8,
"EXIF:ShutterSpeedValue": 0.002,
"EXIF:ISO": 200,
"XMP:AbsoluteAltitude": "+189.17",
"XMP:RelativeAltitude": "+122.01",
"XMP:GimbalYawDegree": "+90.30",
"XMP:GimbalPitchDegree": -45.0,
"Composite:GPSPosition": "-48.875485 -123.391860",
"Composite:FOV": 53.13

}

NGSI-LD format

{
"id": "urn:ngsi-ld:DroneImage:DJI_0007",
"type": "DroneImage",
"fileName": {
"type": "Property",
"value": "DJI_0007.DNG"

},
"fileSize": {
"type": "Property",
"value": 40920003

},
"manufacturer": {
"type": "Property",
"value": "DJI"

},
"model": {
"type": "Property",
"value": "FC6540"

},
"imageDimensions": {
"type": "Property",
"value": {
"width": 6016,
"height": 3376

}
},
"captureDate": {
"type": "Property",
"value": "2024-09-25T17:33:10Z"

},
"geoLocation": {
"type": "GeoProperty",
"value": {
"type": "Point",
"coordinates": [-48.875485, -123.391860]

}
},
"altitude": {
"type": "Property",
"value": 189.172

},
"lensModel": {
"type": "Property",
"value": "DJI DL 24mm F2.8 LS ASPH"

},
"focalLength": {
"type": "Property",
"value": 24

},
"aperture": {
"type": "Property",
"value": 2.8

},
"shutterSpeed": {
"type": "Property",
"value": 0.002

},
"iso": {
"type": "Property",
"value": 200

},
"fieldOfView": {
"type": "Property",
"value": 53.13

},
"gimbalOrientation": {
"type": "Property",
"value": {
"yaw": 90.3,
"pitch": -45.0

}
},
"imageUrl": "..." // Truncated for brevity

}

V. DISCUSSION: BENEFITS AND IMPLICATIONS OF

INTEROPERABLE AGRITECH DATA

Based on the described data harmonisation strategy, in the

context of the SMARAGD project, we developed data transfor-

TABLE II
SAMPLE TRANSFORMATION OF THE ROS BAG METADATA.

Original format: ROS bag

{
"timestamp": "2025-01-21T12:00:00Z",
"px4/position_world": {
"Point": {
"X": 47.11528015136719,
"Y": 8.670736312866211,
"Z": 1040.333984375

}
},
"px4/orientation": {
"Quaternion": {
"X": -0.04053421614832881,
"Y": 0.1062795290984786,
"Z": -0.9375996305227535,
"W": 0.3285857146308133

}
},
"cam0/image_raw": {
"sensor_msgs/Image": {
"Height": 480,
"Width": 752,
"Encoding": "mono8",
"Data": "[87, 92, 93, ...]" // Truncated for brevity

}
}

}

NGSI-LD format

{
"id": "urn:ngsi-ld:RoboticFrame: 2025-01-21T12:00:00Z",
"type": "RoboticFrame",
"timestamp": {
"type": "Property",
"value": "2025-01-21T12:00:00Z"

},
"position": {
"type": "GeoProperty",
"value": {
"type": "Point",
"coordinates": [-48.875485, -123.391860],
"altitude": 1040.333984375

}
},
"orientation": {
"type": "Property",
"value": {
"quaternion": {
"x": -0.04053421614832881,
"y": 0.1062795290984786,
"z": -0.9375996305227535,
"w": 0.3285857146308133

}
}

},
"camera": {
"type": "Property",
"value": {
"id": "cam0",
"resolution": {
"height": 480,
"width": 752

},
"encoding": "mono8",
"imageUrl": "..." // Truncated for brevity

}
}

}

mation pipelines that enabled the integration of drone imagery,

robotic observations, and environmental sensor measurements

into a unified, standards-based information space. Each dataset

is harmonised using SDMs and encoded in NGSI-LD format,

allowing them to be jointly queried, visualised, or analysed.

Despite differences in data origin, structure, and operational

constraints, all entities share a common representation of key

attributes such as geolocation (via GeoJSON) and timestamps

(ISO 8601). This alignment enables integration across domains

and supports spatial-temporal data fusion. NGSI-LD’s linked

data structure provides machine-readable context by connect-

ing each observation to its corresponding device, location, and

provider. Although NGSI-LD representations are more verbose

than raw formats and require additional modelling effort,

they bring long-term benefits in maintainability, cross-platform

compatibility, and ease of reuse, effectively mitigating future

technical debt.

As a result, this semantically enriched and standardised

representation supports a wide range of decision support use
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TABLE III
SAMPLE TRANSFORMATION OF SOIL SENSOR DATA.

Original format: vendor specific JSON documents

{
"_id": {
"$oid": "634dc15fe4132c6a5cff7372"

},
"time": {
"$date": "2024-07-06T18:41:18.531Z"

},
"value": 21,
"name": 20,
"elevation": 0,
"companyId": {
"$oid": "634db5fd036971b6bf5aba89"

},
"location": {
"_id": {
"$oid": "634db600036971b6bf5abaa1"

}
},
"device": {
"_id": {
"$oid": "634db601036971b6bf5abab7"

},
"vendor": 2,
"type": "hydra",
"soilConfiguration": {
"soilType": "organic",
"depth": 10,
"soilDryBulkDensity": 0.5,
"fieldCapacity": 60,
"wiltingPoint": 15,
"irrigationThreshold": 0.5

},
"serialNumber": "19344",
"externalIdentity": "11003"

}
}

NGSI-LD format

{
"id": "urn:ngsi-ld:DeviceMeasurement: 634dc15fe4132c6a5cff7372",
"type": "DeviceMeasurement",
"measurementType": {
"type": "Property",
"value": "soilTemperature"

},
"measurementValue": {
"type": "Property",
"value": 21

},
"elevation": {
"type": "Property",
"value": 0

},
"timestamp": {
"type": "Property",
"value": "2024-07-06T18:41:18.531Z"

},
"refCompany": {
"type": "Relationship",
"object": "urn:ngsi-ld:Company: 634db5fd036971b6bf5aba89"

},
"refLocation": {
"type": "Relationship",
"object": "urn:ngsi-ld:Location: 634db600036971b6bf5abaa1"

},
"refDevice": {
"type": "Relationship",
"object": "urn:ngsi-ld:Device: 634db601036971b6bf5abab7"

},
"deviceDetails": {
"type": "Property",
"value": {
"vendor": 2,
"type": "hydra",
"soilConfiguration": {
"soilType": "organic",
"depth": 10,
"soilDryBulkDensity": 0.5,
"fieldCapacity": 60,
"wiltingPoint": 15,
"irrigationThreshold": 0.5

},
"serialNumber": "19344",
"externalIdentity": "11003"

}
}

}

cases. For instance, drone-based vegetation indices can be

correlated with robotic imagery and soil moisture readings

to inform irrigation or treatment decisions. Integration with

weather forecasts further enables optimal scheduling of agri-

cultural operations. Even non-expert users can benefit from

basic time-series visualisations, while domain specialists can

perform detailed queries and analytics.

Beyond technical integration, this approach offers value for

both end users and data providers. Farmers and agronomists

benefit from timely, context-aware insights, while data

providers can contribute semantically aligned datasets to

shared platforms, enabling monetisation, collaboration, and

extended reuse. For example, combining ground-based ob-

servations with satellite data or treatment recommendations

from suppliers creates synergy effects that increase the value

of individual datasets. This interoperable infrastructure also

opens the door to new business models, such as real-time advi-

sory services, predictive analytics, or autonomous workflows.

As interoperability improves, stakeholders across the value

chain, from growers to regulators, can engage with trustworthy,

machine-readable information that supports sustainable and

data-driven agriculture.

Contributions in a European Context. The presented

approach aligns with ongoing European efforts to foster data

sharing and interoperability in agriculture. Initiatives like Agri-

DataSpace7 and policy frameworks such as the EU Data Act

[18] emphasise common standards and linked data principles

to facilitate innovation and reuse. By adhering to NGSI-

LD and contributing domain-specific SDMs, the SMARAGD

project lays the groundwork for scalable, semantically inter-

operable agritech systems. The resulting information assets

are reusable in broader European data ecosystems, promoting

sustainable agriculture and cross-sector innovation in both

national and international contexts.

VI. CONCLUSION

This paper presented a standards-based approach to agritech

data interoperability through the application of NGSI-LD and

SDMs. Focusing on three heterogeneous data sources – UAV

imagery, robotic sensing, and environmental IoT measure-

ments – we demonstrated how semantically enriched and

temporally aligned NGSI-LD entities can be used to bring

previously siloed datasets into a unified, interoperable in-

formation space. This transformation facilitates cross-domain

integration, supports spatial-temporal analysis, and lays the

groundwork for advanced decision-support services in the

Norwegian agrifood sector.

The resulting information assets are designed to be reusable

and interoperable across platforms, aligning with the principles

and goals of European initiatives such as AgriDataSpace and

the EU Data Act. By embracing shared ontologies, linked

data principles, and modular, open-source tooling, this work

contributes to a scalable, forward-compatible digital infras-

tructure for sustainable agriculture. In addition to supporting

smarter farm-level decision-making, it enables new forms of

data collaboration and monetisation, unlocking synergy effects

among different data providers and applications.

Future Work. Future work will focus on the broader valida-

tion and evolution of the domain-specific SDMs introduced for

drone and robotic imagery. While initially developed to meet

specific needs in the SMARAGD project, these models will

benefit from wider community review and iterative refinement

within the open SDMs ecosystem.

7https://agridataspace-csa.eu/
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TABLE IV
KEY CHALLENGES IN ORIGINAL DATA FORMATS VS. BENEFITS OF NGSI-LD TRANSFORMATION.

Key challenges of the original formats Key benefits of the transformed NGSI-LD format

• Scattered and Disjoint Metadata: Contextual data (e.g., times-
tamps, geolocation, sensor or device metadata) is spread across mul-
tiple namespaces, files, or topics (e.g., EXIF, ROS bags) and separate
sensor metadata files.
• Proprietary and Inconsistent Structures: Each data source uses
its own format (EXIF for UAV imagery, ROS message types for robots)
and custom enumerations for IoT sensors, requiring domain-specific
logic to interpret or align.
• Limited Interoperability: Original data structures are tightly cou-
pled to specific vendors or platforms (e.g., DJI cameras, ROS message
types, vendor-specific IoT APIs), making cross-system integration
difficult.
• No Semantic Clarity or Linked Context: Field names lack seman-
tic meaning and are not explicitly linked (e.g., sensor measurements
not connected to geolocation or device metadata in machine-readable
form).

• Unified Entity Representation: Each dataset is transformed
into a single NGSI-LD entity (e.g., DroneImage, RoboticFrame,
DeviceMeasurement) representing relevant context in one structure.
• Semantic Interoperability and Enrichment: All properties
and relationships are semantically defined using SDMs (e.g.,
measurementType, deviceDetails, captureDate, geoLocation).
• Spatial and Temporal Alignment: Geo-coordinates are consis-
tently represented using GeoJSON; timestamps are standardised to ISO
8601 across all data types.
• Cross-Platform Integration: NGSI-LD enables seamless ingestion
into context-aware systems (e.g., FIWARE’s Orion-LD), supporting
integration with third-party data sources like satellite imagery or
weather forecasts.
• Machine-Readable Relationships: Explicit links are established
between entities (e.g., sensor → device → location → company),
enabling scalable querying and analytics.

Moreover, we plan to quantitatively evaluate the perfor-

mance and scalability of the underlying data transformation

pipelines under realistic, large-scale workloads [19]. This

includes stress-testing the ingestion and processing capabilities

of the system across different deployment environments (edge,

fog, cloud) and assessing its responsiveness and throughput

when handling high-frequency sensor streams or large image

collections. Such benchmarks will inform optimisation strate-

gies and ensure that the system remains robust, efficient, and

suitable for operational use in demanding agritech scenarios.
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