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Abstract—The growing adoption of digital technologies in
agriculture has led to a proliferation of heterogeneous data
from sources such as drones, robotic platforms, and IoT sensors.
However, the lack of interoperability across these data streams
poses major challenges for integration into decision support
systems. This paper presents an approach to harmonising such
data using NGSI-LD and Smart Data Models, developed within
the Norwegian research project SMARAGD. We demonstrate how
domain-specific semantic models and linked data principles can
be applied to standardise and enrich geospatial and temporal
metadata across three key agritech domains: aerial imagery,
robotic sensing, and environmental monitoring. The resulting
information assets are integrated into a shared, FIWARE-
compatible data space, enabling cross-platform visualisation,
querying, and reuse. This work contributes to the development of
an open, standards-based digital infrastructure for interoperable,
data-driven agriculture in Norway and beyond.

Index Terms—Data interoperability, NGSI-LD, Smart Data
Models, FIWARE, precision agriculture, semantic data integra-
tion, linked data

I. INTRODUCTION

HE digital transformation of agriculture is producing an
Tincreasing volume of data from diverse sources such
as drones, robotic platforms, and IoT sensors. Realising the
full potential of these data streams requires seamless integra-
tion across different formats, systems, and stakeholders — a
challenge that is especially pressing in the fragmented agri-
food sector. Interoperability is essential for enabling advanced
decision support tools, improving data reuse, and fostering
sustainable, data-driven practices.

This paper addresses the challenge of data interoperability
by applying Smart Data Models (SDMs) and the NGSI-LD
standard to create a unified, semantically enriched represen-
tation of heterogeneous agritech data. Developed within the
Norwegian research project SMARAGD' (Smart Agriculture
Data Fusion for Decision Support), our approach focuses on

Uhttps://www.sintef.no/en/projects/2022/smaragd-smart-agriculture- data-f
usion-for-decision-support/
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transforming raw data, such as imagery metadata and sensor
measurements, into structured and interoperable information
assets. The emphasis lies on semantic modelling, rather than
on the technical details of the underlying data pipelines or
system integration components.

The remainder of this paper is organised as follows: Sec-
tion II introduces the research context and outlines key in-
teroperability challenges in the Norwegian agrifood domain.
Section III summarises related research work. Section IV
presents our modelling approach using SDMs and NGSI-LD.
Section V discusses the outcomes and implications of our
approach, while Section VI concludes the paper and outlines
directions for future work.

II. RESEARCH CONTEXT AND MOTIVATION

A. Sector Overview and Interoperability Vision

Norway’s agrifood sector is undergoing rapid digitalisation,
driven by the deployment of advanced technologies such as
UAVs, robotic platforms, and IoT sensors. These tools offer
significant potential to enhance productivity, sustainability, and
data-informed decision making across the entire agricultural
value chain. However, they also introduce a critical barrier —
data heterogeneity. In practice, each technology stack typically
operates in isolation, producing data in incompatible formats
and lacking a shared semantic framework.

This fragmentation results in data silos that hinder inte-
gration, reuse, and meaningful analytics. For instance, when
agronomists or technology providers attempt to combine aerial
imagery with in-soil sensor data, or align robotic observa-
tions with external weather inputs, they face tedious manual
harmonisation processes. Without a common data foundation,
these efforts are error-prone and labour-intensive, ultimately
undermining the value of digital tools in smart farming.

To address this issue, the research project SMARAGD has
adopted a data-centric strategy centred on semantic interoper-
ability. The project’s architecture is built on the open-source

Topical area: Information Technology
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FIWARE ecosystem2 [1], enabling the creation of so-called
Smart Data Spaces where information from heterogeneous
systems can be fused, queried, and analysed in a unified way.

The cornerstone of this approach is not only the technical
integration of data flows, but also the harmonisation of data
semantics using shared, standardised data models. Specifi-
cally, the NGSI-LD specification and domain-specific SDMs
are used to semantically enrich the data so that it can be
understood and reused across platforms. FIWARE’s modular
components, such as the Context Broker and its standard APIs,
enable interoperability across data sources and stakeholders,
laying the foundation for collaborative, data-driven agriculture.

B. Real-World Interoperability Challenges

Despite the availability of digital infrastructure and ad-
vanced sensing technologies, data interoperability remains a
major obstacle in real-world agritech applications. The fol-
lowing examples illustrate the nature and diversity of these
challenges across three representative domains in SMARAGD.

Aerial imagery. High-resolution images captured by UAVs
provide valuable spatial insights for crop monitoring and yield
estimation. However, these images are typically offloaded
manually from SD cards after field missions, and their em-
bedded metadata (stored in formats like EXIF or proprietary
DIJI tags) lacks semantic structure. Different camera types
(RGB, thermal, multispectral) introduce further variability. As
a result, integrating UAV imagery into downstream systems
requires specialised extraction and reformatting steps, often
with little reuse potential beyond the initial use case.

Robotic imagery. Mobile agricultural robots are increas-
ingly used for close-range inspection, weeding, and precision
spraying. These platforms often rely on the Robot Operating
System (ROS), which records multi-sensor data into so-called
bag files. While ROS is highly effective within robotic envi-
ronments, it is not designed for external data interoperability.
Each data stream (e.g., from GPS, IMU, or cameras) follows
a different structure, and the data is typically not enriched
with semantic or geospatial context. Converting this raw
content into usable, interoperable formats requires extensive
processing and domain knowledge.

Environmental sensors. IoT systems deployed in
greenhouses, tunnels, and open fields continuously monitor
soil, climate, and air parameters. However, these devices are
typically vendor-specific, each exposing data through bespoke
APIs, measurement units, and timestamp conventions. The
absence of shared ontologies or data models results in a
proliferation of disconnected systems. For example, two
moisture sensors from different providers may use different
naming conventions, measurement intervals, and units,
hindering aggregation and comparative analysis.

These examples underscore the need for structured, se-
mantically aligned representations that facilitate consistent
integration across space, time, and source. By adopting NGSI-
LD-based SDMs, the SMARAGD project enables the transfor-

Zhttps://www.fiware.org/
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mation of heterogeneous sensor outputs into harmonised enti-
ties, thereby making them accessible for advanced analytics,
visualisation, and long-term reuse.

III. RELATED WORK

Interoperability remains a key challenge for smart agricul-
ture, where heterogeneous systems often lack shared standards
[2]. Existing modelling vocabularies for data representation
and exchange [3] are often either too generic or tailored to
narrow, non-reusable use cases. Similarly, ontologies for IoT,
sensor networks, and cyber-physical systems [4], [S] need
further refinement to address the specific needs of the agritech
domain. Although various competing agritech data standards
exist,? none has achieved wide adoption.

Equally important is the design of data pipelines — auto-
mated workflows that perform extraction, transformation, and
loading (ETL) of data into usable formats [6]. In agriculture,
traditional pipelines often operate in silos, processing drone
imagery, sensor streams, or robotic data separately. More
recent efforts promote unified, context-aware pipelines based
on open standards and semantic models. Initiatives such as
FIWARE* and NGSI-LD SDMs provide standardised repre-
sentations to enable cross-platform integration [7], [8], [9],
[10]. Another influential reference architecture is Microsoft’s
FarmBeats [11], [12], [13], which combines edge computing,
cloud storage, and Al to process large-scale agritech data.
Many pipeline architectures adopt containerised microservices
[14] and event-driven components for scalability and flexibil-
ity. However, challenges persist, including the harmonisation
of proprietary formats, temporal-spatial alignment of multi-
modal data, and generalisability beyond isolated deployments.

IV. SEMANTIC INTEROPERABILITY APPROACH

While numerous promising solutions exist, much of the
current work remains experimental or domain-specific. This
paper builds on best practices from these efforts, advancing
semantic interoperability through SDMs and open, standards-
based tooling. Achieving semantic interoperability across di-
verse agritech data sources is essential for enabling data shar-
ing, fusion, and value-added analytics. This section outlines
the key enabling technologies and modelling principles that
underpin our approach, developed in the SMARAGD project.

A. SDMs and NGSI-LD for Interoperable Agritech Data

SDMs?’ are at the core of the FIWARE ecosystem, designed
to standardise the structure and semantics of data exchanged
across systems. They are based on the NGSI-LD specification
[15], which represents context data as entities composed of
properties and relationships, enriched with geospatial and tem-
poral context. NGSI-LD also supports linked data principles,
facilitating richer semantics and integration across domains.

The SDM initiative maintains a large and evolving reposi-
tory of domain-specific models. In agriculture, these include

3https://www.aspexit.com/standards-and-data-exchange-in-agriculture/
“https://www.fiware.org/community/smart-agrifood/
Shttps:/smartdatamodels.org/
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templates for weather, soil, crop, and sensor data. Reusing
existing models accelerates development and fosters interop-
erability. Where necessary, custom models can be contributed
to fill domain gaps, as in our work with drone/robotic imagery.

NGSI-LD enables interoperable representation of core at-
tributes such as geolocation (GeoJSON), time (ISO 8601),
and sensor metadata. Its machine-readable and extensible
structure allows for integration with third-party data sources,
including weather and satellite data. Together, NGSI-LD and
SDM:s provide a robust foundation for harmonising data across
heterogeneous agritech systems.

B. Modelling Strategy for Data Harmonisation

Our modelling approach targets the integration of siloed
datasets, such as drone imagery, robotic data, and IoT sensor
streams, into a unified data space based on NGSI-LD. All
data points are modelled as NGSI-LD entities with standard-
ised attributes, timestamps, and geospatial references, support-
ing spatio-temporal alignment across sources [16], [17]. In
particular, GeoJSON-based GPS coordinates and ISO 8601
timestamps serve as key enablers of data interoperability
in precision agriculture, allowing observations from different
systems to be fused and interpreted in context. Our approach
is guided by three core principles:

« Heterogeneity awareness: We account for the frag-
mented nature of agritech systems and the diversity of
their data formats.

« Reuse of open standards: Wherever possible, we lever-
age the FIWARE stack, NGSI-LD format, and existing
SDMs to avoid redundant development.

o Future-proof interoperability: All modelling aligns
with EU data space principles and emerging best practices
to ensure reusability and policy compliance.

This modelling layer forms the semantic backbone of our ar-
chitecture, enabling integration with third-party datasets (e.g.,
weather forecasts or satellite data) and supporting scalable,
interoperable decision support services. The resulting har-
monised data space serves as the foundation for downstream
decision support services, ranging from visual analytics to
predictive models.

1) Aerial Imagery Metadata Transformation: Aerial im-
agery captured by UAVs is a valuable data source in precision
agriculture, often used for monitoring crop health or planning
interventions. These images, typically stored in the raw DNG
format, include embedded EXIF metadata describing camera
properties, geolocation, and capture time. However, this meta-
data is not natively interoperable.

Several challenges emerge when using this data directly:
(1) metadata is fragmented across namespaces like EXIF, XMP,
and Composite; (2) fields such as EXIF:GPSLatitude or
EXIF:FocallLength lack semantic context; and (3) proprietary
tags from manufacturers like DJI hinder automated processing.
While rich in content, such raw metadata is difficult to
integrate across systems.

To address this, we developed a semantically enriched
representation using a custom NGSI-LD SDM, Dronelmage,

which standardises key attributes such as GPS coordinates in
GeoJSON, capture date, and camera settings. GPS coordinates
and timestamps serve as primary anchors for interoperability,
enabling spatial and temporal alignment with data from other
sources. The transformation maps each image into an NGSI-
LD entity with human-readable, structured attributes, suitable
for integration into a shared data space. An example transfor-
mation is illustrated in Table I, comparing raw metadata fields
to their harmonised NGSI-LD representation.

2) Robotic Imagery Metadata Transformation: Agricultural
robots perform close-up imaging and sensor-based monitoring
during tasks such as spraying, weeding, or harvesting. These
systems typically use ROS to synchronise multiple sensor
streams, including imagery, GPS, and orientation data, into
ROS bag files. Although ROS provides a robust internal
structure, its data format is not directly interoperable with
external systems. Three main challenges limit reusability: (1)
sensor data is fragmented across asynchronous topics, (2)
message types are diverse and lack semantic annotations,
and (3) timestamps and geolocation are scattered and incon-
sistently structured. Manual extraction and interpretation are
therefore required to fuse imagery with context metadata such
as position and orientation.

To address this, we developed a custom NGSI-LD SDM
called RoboticFrame, which unifies data from ROS bag files
into semantically enriched entities. The model aligns image
frames with spatial, temporal, and camera-specific attributes,
using ISO 8601 timestamps and GeoJSON-formatted GPS co-
ordinates as primary anchors for interoperability. An example
transformation is shown in Table II, where fragmented ROS
data is merged into a single structured and linked entity.

3) Environmental Sensor Data Harmonisation: Environ-
mental sensors deployed in fields, tunnels, or greenhouses gen-
erate continuous readings of soil moisture, temperature, and
other parameters. These are often transmitted in fragmented
batches via NB-IoT gateways, with metadata scattered across
configuration files or encoded in vendor-specific formats. The
lack of semantic structure, inconsistent timestamp formats, and
loosely coupled geolocation data make it difficult to integrate
such measurements into a unified system.

To address these challenges, we adopt the existing SDM
DeviceMeasurement® to encode individual readings as se-
mantically structured NGSI-LD entities. This model enables
consistent representation of core attributes such as measure-
ment type, value, timestamp, elevation, and device identity.
Where applicable, we enrich these entities using additional
SDMs from the SmartAgrifood domain. As with the other
two domains, GPS coordinates (GeoJSON) and ISO 8601
timestamps are used as primary anchors for geospatial and
temporal alignment across sources — key enablers for preci-
sion agriculture and longitudinal analysis. Each entity also
establishes NGSI-LD relationships to its originating device,
location, and provider. Table III illustrates a representative
example of this transformation.

Shttps://github.com/smart-data-models/Smart-Sensoring
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TABLE 1 TABLE II
SAMPLE TRANSFORMATION OF THE AERIAL IMAGERY METADATA. SAMPLE TRANSFORMATION OF THE ROS BAG METADATA.
Original format: EXIF metadata Original format: ROS bag
{ {
"SourceFile”: "DJI_0007.DNG”, "timestamp”: "2025-01-21T12:00:007",
"File:FileName”: "DJI_00@7.DNG", px4/p051t10n world”: {
"File:FileSize"”: 40920003, Po1
"EXIF:Make": ”DJI ”X"' 47 11528015136719,
"EXIF :Model”: "FC6540" "Y": g.676736312866211,
"EXIF :ModifyDate”: "2024:09:25 17:33:10", "Z"} 1040.333984375
"EXIF:ImageWidth”: 6016 }
"EXIF:ImageHeight": 3376, .
"EXIF:GPSLatitude”: -48.875485, pxglfgtrelfgltgrfl_“”{- (
S asemettude s 1225k, TR
"EXIF:LensModel”: “DJI DL Shnm F2.8 Ls ASPH", ; %182%332282%%25
JEx3Eifocallength’s 24, , W' 0.3285857146308133 '
::E%%E:%SggterSgeedValue : 0.@02,
" ; T " 0/image_raw”: {
XMP: AbsoluteAltitude”: "+189.17", "eam .
"XMP:RelativeAltitude”: "+122.01") S?Qesfgrh’"sgsﬁg"age ¢
JXMP:GimbalYawDegree”: "+90.30", "Width”: 752, !
Cont Glmbalgéggh[}egree "33 475485 -123. 391860 JEncoding':_’mono
"Composite: osition”: "-48. - . ", " " " :
, "Composite:FOV": 53.13 ) Data [87 92, 93 ...1" // Truncated for brevity
3}
NGSI-LD format }
0 NGSI-LD format
"id": "urn:ngsi-ld:Dronelmage:DJI_0007", {
"type': "Dronelmage”, "id": "urn:ngsi-1d:RoboticFrame: 2025-01-21T12:00:00Z",
f11eName P§O perty” ::ty e”: "RoboticFrame”,
RIS 0007 .DNG" t'}g])?sg’?tnp”Pr(gperty
”fﬂ;lesi;e E { . value 2025-01- 21T12 00:00Z
type”: "Property”, p051t10n
), value": 40920003 , g : "GeoProPerty )
manufacturer : { Vf?t ', " "
" ype Point
T i Erg‘f?rty "coordinates”: [-48.875485, -123.3918601,
"va "altitude”: 10460.333984375
"‘F.’fel"ﬁ C..P ¢ 3 ’
JLype  hroper Y "drientation”:
alue FC6540 uty e”: ”Erope{r‘ty",
1mageD1me,r,1$ions : a Sz?termon c
”va?e Emperty ’ o 'X": -0.04053421614832881,
" 0 2 "z": -0. s
y nelght”: 3376 j W' 0.3285857146308133
captureDa,‘,cg { } 3
roper H
e, P Ba Y 35117 33: 102 e foroperty”,
geoLocatlon { "value": "
FRet, FBecploperty”, BN
Vat)L/JSe’;:{ "Point wheight”: 480,
"coordinates”: t -48.875485, -123.391860] [width”: 752
} Y:encoding:;- ”mongs”
altltude”' c ) imageUrI”: ".. /7 Truncated for brevity
5) ”Property 3}
"va 189.172 }
iensModel”- {
type’; "hroperty’ . . .. . . .
Sve ve’: "DJT DL 24mm F2.8 LS ASPH mation pipelines that enabled the integration of drone imagery,
ff?ifjlé?f‘gﬁgr;pgrtyn, robotic observations, and environmental sensor measurements
vatuet: 21 into a unified, standards-based information space. Each dataset
a erture H . . . .
i "type”: ”;rgperty", is harmonised using SDMs and encoded in NGSI-LD format,
a ue . . .« . . . .
putterspeed”: ( allow.mg t.hem to be. jointly qltle.rled, visualised, or analysed.
.,\t,g 56,’._ Property”, Despite differences in data origin, structure, and operational
so” constraints, all entities share a common representation of key
"p . . . .
Va’f poperty”, attributes such as geolocation (via GeoJSON) and timestamps
”f"leldOfVlg}\;« - (ISO 8601). This alignment enables integration across domains
: roper y", . . .
Bl and supports spatial-temporal data fusion. NGSI-LD’s linked
glmbglorlsg}g;éggy { data structure provides machine-readable context by connect-
va 5 ing each observation to its corresponding device, location, and
Wi it provider. Although NGSI-LD representations are more verbose
"ImageUrl”: "..." // Truncated for brevity than raw formats and require additional modelling effort,
) they bring long-term benefits in maintainability, cross-platform
compatibility, and ease of reuse, effectively mitigating future
V. DISCUSSION: BENEFITS AND IMPLICATIONS OF technical debt.
INTEROPERABLE AGRITECH DATA As a result, this semantically enriched and standardised

Based on the described data harmonisation strategy, in the Tepresentation supports a wide range of decision support use
context of the SMARAGD project, we developed data transfor-
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TABLE III
SAMPLE TRANSFORMATION OF SOIL SENSOR DATA.

Original format: vendor specific JSON documents

{

"oidr

“"$oid”:

s ",
time”: i_

"$date”: "2024-07-06T18:41:18.531Z"
"Value”: 21,
"name” : 20)

"elevation”: 0,

"companyId”: {

”$01d”' "634db5fd036971b6bf5abagy”
'Igcat}on : {

}7“$0id“: "634db600036971b6bf5abaal”

"634dc15fe4132c6a5cff7372"

"$o0id": "634db601036971b6bf5abab7"
"Vendor”
"type": ”h dra”
”soilConFlguratlon”: {
5011Type "organic”,
”depth
5011DryBu1kDen51ty : 0.5,
”fleldCapac1t ": 60,
w11t1ngP01nt' 15
1rr1gat10nThreshoid”' 0.5

"SerialNumber”: "19344

”externalldentlty : ”11@03”

NGSI-LD format

"id": "urn:ngsi-ld:DeviceMeasurement: 634dc15fe4132c6a5cff7372",
”typ " Dev1ceMeasurement
measurementType

; ? " “Pro erty

va

5011Temperature
measurementValue : {
"type”: ”Property
alue™: 21

'élevatlon :
"type": ”Property",
alue”:
'tlmestamp : {
? ”Pro erty”
1) "va ’ ”2024 07-06T18:41:18.5312"
’refCompany

type”: Relatlonshlp
object "urn:ngsi- 1d* Company: 634db5fd036971b6bf5aba89”

s

refLocat1on {
type": “Relatlonsh1p s

"object”: "urn:ngsi-ld:Location: 634db600036971b6bf5abaal”

-

’
n

refDevice”: {
"type": "Relationship”,
"object”: "urn:ngsi-ld:Device: 634db601036971b6bf5abab7"
dev1ceDetails": {
”ty e": "Property”,
a ue”
vendor 2,
"type": ”h dra"
”soilConflguratlon”: {
5011T¥pe "organic”,
”depth
5011DryBu1kDen51ty :
”f1e1dCapac1ty
"wiltingPoint™: 5
1rr1gat10nThreshold”' 0.5

"SerialNumber”: "19344
”externalldentlty :

0.5,

”11@03”

cases. For instance, drone-based vegetation indices can be
correlated with robotic imagery and soil moisture readings
to inform irrigation or treatment decisions. Integration with
weather forecasts further enables optimal scheduling of agri-
cultural operations. Even non-expert users can benefit from
basic time-series visualisations, while domain specialists can
perform detailed queries and analytics.

Beyond technical integration, this approach offers value for
both end users and data providers. Farmers and agronomists

benefit from timely, context-aware insights, while data
providers can contribute semantically aligned datasets to
shared platforms, enabling monetisation, collaboration, and
extended reuse. For example, combining ground-based ob-
servations with satellite data or treatment recommendations
from suppliers creates synergy effects that increase the value
of individual datasets. This interoperable infrastructure also
opens the door to new business models, such as real-time advi-
sory services, predictive analytics, or autonomous workflows.
As interoperability improves, stakeholders across the value
chain, from growers to regulators, can engage with trustworthy,
machine-readable information that supports sustainable and
data-driven agriculture.

Contributions in a European Context. The presented
approach aligns with ongoing European efforts to foster data
sharing and interoperability in agriculture. Initiatives like Agri-
DataSpace’ and policy frameworks such as the EU Data Act
[18] emphasise common standards and linked data principles
to facilitate innovation and reuse. By adhering to NGSI-
LD and contributing domain-specific SDMs, the SMARAGD
project lays the groundwork for scalable, semantically inter-
operable agritech systems. The resulting information assets
are reusable in broader European data ecosystems, promoting
sustainable agriculture and cross-sector innovation in both
national and international contexts.

VI. CONCLUSION

This paper presented a standards-based approach to agritech
data interoperability through the application of NGSI-LD and
SDMs. Focusing on three heterogeneous data sources — UAV
imagery, robotic sensing, and environmental IoT measure-
ments — we demonstrated how semantically enriched and
temporally aligned NGSI-LD entities can be used to bring
previously siloed datasets into a unified, interoperable in-
formation space. This transformation facilitates cross-domain
integration, supports spatial-temporal analysis, and lays the
groundwork for advanced decision-support services in the
Norwegian agrifood sector.

The resulting information assets are designed to be reusable
and interoperable across platforms, aligning with the principles
and goals of European initiatives such as AgriDataSpace and
the EU Data Act. By embracing shared ontologies, linked
data principles, and modular, open-source tooling, this work
contributes to a scalable, forward-compatible digital infras-
tructure for sustainable agriculture. In addition to supporting
smarter farm-level decision-making, it enables new forms of
data collaboration and monetisation, unlocking synergy effects
among different data providers and applications.

Future Work. Future work will focus on the broader valida-
tion and evolution of the domain-specific SDMs introduced for
drone and robotic imagery. While initially developed to meet
specific needs in the SMARAGD project, these models will
benefit from wider community review and iterative refinement
within the open SDMs ecosystem.

Thttps://agridataspace-csa.eu/



TABLE IV
KEY CHALLENGES IN ORIGINAL DATA FORMATS VS. BENEFITS OF NGSI-LD TRANSFORMATION.
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Key challenges of the original formats

Key benefits of the transformed NGSI-LD format

o Scattered and Disjoint Metadata: Contextual data (e.g., times-
tamps, geolocation, sensor or device metadata) is spread across mul-
tiple namespaces, files, or topics (e.g., EXIF, ROS bags) and separate
sensor metadata files.

o Proprietary and Inconsistent Structures: Each data source uses
its own format (EXIF for UAV imagery, ROS message types for robots)
and custom enumerations for IoT sensors, requiring domain-specific
logic to interpret or align.

o Limited Interoperability: Original data structures are tightly cou-
pled to specific vendors or platforms (e.g., DJI cameras, ROS message
types, vendor-specific IoT APIs), making cross-system integration
difficult.

o No Semantic Clarity or Linked Context: Ficld names lack seman-
tic meaning and are not explicitly linked (e.g., sensor measurements
not connected to geolocation or device metadata in machine-readable
form).

o Unified Entity Representation: Each dataset is transformed
into a single NGSI-LD entity (e.g., DroneImage, RoboticFrame,
DeviceMeasurement) representing relevant context in one structure.

o Semantic Interoperability and Enrichment: All properties

and

relationships are semantically defined using SDMs (e.g.,

measurementType, deviceDetails, captureDate, geoLocation).

o Spatial and Temporal Alignment: Geo-coordinates are consis-
tently represented using GeoJSON; timestamps are standardised to ISO
8601 across all data types.

o Cross-Platform Integration: NGSI-LD enables seamless ingestion
into context-aware systems (e.g., FIWARE’s Orion-LD), supporting
integration with third-party data sources like satellite imagery or
weather forecasts.

o Machine-Readable Relationships: Explicit links are established
between entities (e.g., sensor — device — location — company),
enabling scalable querying and analytics.

Moreover, we plan to quantitatively evaluate the perfor-
mance and scalability of the underlying data transformation
pipelines under realistic, large-scale workloads [19]. This
includes stress-testing the ingestion and processing capabilities
of the system across different deployment environments (edge,
fog, cloud) and assessing its responsiveness and throughput
when handling high-frequency sensor streams or large image
collections. Such benchmarks will inform optimisation strate-
gies and ensure that the system remains robust, efficient, and
suitable for operational use in demanding agritech scenarios.
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