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Abstract—Large Language Models (LLMs) capture linguistic
structure by operating on sequences of sub-word tokens, yet they
often display behaviors that suggest an implicit grasp of high-level
concepts. This study probes whether such “ideas” are genuinely
encoded in LLM representations and, if so, how faithfully and to
what extent. We created a deliberately minimalist LLM (encom-
passing both tokenizer and transformer architecture)designed to
expose internal mechanisms with minimal architectural obscurity.
Using a carefully curated toy corpora and probing tasks, we trace
how semantically related prompts map onto the model’s hidden
states. Our findings reveal emergent clustering of conceptually
similar inputs even in the stripped-down model. These insights
advance our understanding of the representational geometry un-
derpinning modern language models and outline a reproducible
framework for future mechanistic studies of semantic abstraction.

Index Terms—byte-pair encoding, tokenizer, minimalist LLM,
sentiment spectrum, idea discovery

I. INTRODUCTION

NATURAL Language Understanding (NLU) in contem-

porary LLMs is mediated by sub-word tokenization,

a mechanism that excels at surface-level pattern matching

but offers only an indirect handle on the abstract ideas that

underpin human reasoning. Our research focuses on creating

a new model class, whose computations are organized around

explicit high-level abstraction rather than tokens. Motivated

by neuro-cognitive evidence that human thought is concept-

centric, we seek to inherit the efficiency and compositional

complexity of the human brain’s representation strategy while

remaining compatible with modern neural training pipelines.

As one of the first steps, we aim at replicating on a minimal

scale a LLM architecture and probe it with a closely related

variety of ideas. This experimental framework should provide

a regime in which the internal representation of such models

can be easily visualized.

Interpreting how LLMs encode “ideas” is difficult based

on the sheer scale of their parameter spaces and the resulting

high-dimensional activation patterns. Exhaustive inspection is

computationally intractable, so similar work resorts to sur-

rogate techniques, most commonly activation clustering and

dimensionality reduction projections, to peek into the model’s

internal structure. While useful, these tools expose only narrow

cross-sections of the computation, forcing mechanistic studies

to test pre-selected hypotheses instead of capturing a holistic

view of the network. This study follows this established

framework, with the goal of capturing some form of patterns

between abstract ideas withing the model’s internal represen-

tation.

We have implemented a scall-scale LLM (around 31 million

parameters), designed to test whether conceptual structures can

be isolated and examined without the computational overhead

of a large-scale LLM (tens of even hundreds of billions of

parameters). The architecture involves a custom byte pair

encoding tokenizer of 10256 vocabulary size to constrain the

the embedding table and uses a standard Transformer decoder

stack trained auto-regressively on the FineWeb corpus. To

probe its internal representation, we create a set of sentences

that differ only by sentiment adjectives spanning

negative → neutral → positive

positive continuum. Our hypothesis aims at activations which

depict some form of smooth varying trajectories that would

mimic the before mentioned continuum, allowing quantitative

estimates of concept-correlation. The resulting architecture and

probing framework showcases a lightweight and reproducible

mechanistic study of idea representation in LLMs.

The paper is organized as follows: Section II introduces the

methodology and the implemented tokenizer on a simple LLM

architecture. Next, in Section III, we describe our experimental

setup for probing sentiment. The results are presented and in

Section IV, while Section V discusses some of the implications

of our findings. Lastly, our conclusions are given in Section VI.

II. METHODOLOGY

A. Dataset

FineWeb is an openly released, web-scale corpus that Hug-

ging Face and Forward assembled from ninety-six Common

Crawl snapshots spanning from 2013 to 2024 [1]. After

extraction the collection contains a little over 15 trillion tokens

of English text, making it one of the largest high-quality

resources currently available for pre-training language models.

The pipeline first blocks known malicious or NSFW domains

and applies sub-word heuristics to screen out undesirable

URLs. Raw HTML that passes this gate is parsed with
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Trafilatura to isolate the main article body. A FastText-based

language detector then retains only documents whose English

confidence exceeds 0.65. Quality is further improved with the

repetition and formatting heuristics introduced in DeepMind’s

Gopher work, almost all the C4 filters, and several bespoke

rules that discard list-like layouts or heavily duplicated lines.

Each Common Crawl dump is then deduplicated indepen-

dently using a 5-gram MinHash scheme (fourteen bands of

eight hashes) before emails and public IPv4 addresses are

anonymised. The full dataset is distributed under the ODC-

BY 1.0 licence together with the exact code needed to rerun

the pipeline, plus smaller random samples of 350 B, 100 B

and 10 B tokens for users who want to prototype without

downloading tens of terabytes. The current implementation

uses approximately 11 billion tokens to train both the tokenizer

and the LLM, in order to optimize alignment between the two

components.

B. Tokenizer implementation

In [2], Byte-Pair Encoding (BPE) was repurposed from data

compression to sub-word segmentation, laying the groundwork

for all modern transformer tokenizers. Our implementation

follows their recipe closely, but embeds the core merging

algorithm directly into the tokenizer’s training and inference

routines.

We begin by applying the same regular-expression-based

splitter adapted from OpenAI’s tiktokenizer codebase (see

openai/tiktoken/tiktoken_ext/

openai_public.py on GitHub). This splitter segments

text into “chunks” (words, punctuation marks, and whitespace

tokens) ensuring that subsequent processing always respects

linguistic boundaries. Each chunk is then encoded as a se-

quence of UTF-8 bytes, treating every byte as an atomic

symbol and appending a special end-of-word marker to pre-

serve chunk integrity. Once the entire corpus is reduced to

byte-level symbol sequences, we calculate the frequency of

every adjacent symbol pair across all chunks. In a word like

train_ for instance, the pairs (t, r), (r, a), (a, i),

(i, n), and (n, _) each accumulate counts. At each of

10,000 iterations, the tokenizer locates the most frequent pair,

merges it into a new minted token, substitutes every occurrence

in the training data, and records this operation in a merge

table. By the end of this process, our vocabulary comprises

the original 256 byte symbols plus 10,000 newly minted sub-

word tokens, for a total of 10,256 entries.

When encoding unseen text, the tokenizer replicates these

same steps in reverse order but without rescanning the entire

corpus. The input is normalized and chunked identically, then

each chunk’s byte IDs are greedily merged: the tokenizer

repeatedly scans all adjacent ID pairs, consults the precom-

puted merge table and applies the earliest-created merge

whenever possible. This process continues until no further

merges remain, yielding a compact sequence of sub-word IDs

that exactly mirror those learned during training.

By weaving the merge logic into both the training loop

and the encoding routine, our implementation remains faithful

to [2] original algorithmic design while providing a self-

contained, efficient tokenizer.

C. LLM architecture

The current implementation is built on the decoder-only

half of the Transformer architecture first introduced in [3]. By

discarding the encoder and keeping only the auto-regressively

masked decoder stack, the network learns to predict the next

token in a sequence while only attending to previously seen

tokens. [4] demonstrated that this seemingly small modifica-

tion was enough to unlock impressive results based on the

architecture’s unsupervised capabilities when the model is

trained at scale and exposed to a large corpus of text. The

present code-base follows that blueprint: a single stream of

tokens, augmented with learned positional vectors, is passed

through a succession of identical decoder blocks, the final

hidden states are projected back into the same embedding

matrix to score the vocabulary right after one final layer

normalization layer, and the entire network is optimized to

minimize next-token cross-entropy.

Each decoder block in this implementation begins with a

layer normalization applied to the incoming residual stream.

This layer is followed by causal multi-head self-attention,

implemented with FlashAttention introduced in [5], used to

reduce the memory footprint while preserving the exact dot-

product computation. After the attention output is added back

to the residual stream, a second layer normalization prepares

the signal for a position-wise feed-forward network whose

hidden width is quadruple the model dimension and using

the Gaussian Error Linear Unit (GELU) activation function.

Another residual addition completes the block. The paired

attention and feed-forward sub-layers serve complementary

roles: attention lets every token selectively integrate informa-

tion from earlier positions, capturing syntactic and semantic

dependencies that may span multiple tokens, whereas the

feed-forward network performs local feature transformations

that help the model build richer hierarchical representations.

Residual connections preserve gradient flow so that deeper

stacks (eight in this implementation) can be trained without

vanishing or exploding gradients, and the pre-norm ordering

has proved more stable than the original post-norm scheme

when the depth or learning rate is increased.

This configuration specifies a eight-block Transformer with

eight attention heads operating in a 512-dimensional embed-

ding space, a 512-token context window, and a 10 256-token

vocabulary. These choices bring the total parameter count to

30.7 million parameters. For overall faithful replication, [6]

and [4] have been used in conjunction for architecture design

and hyper-parameters choices.

III. EXPERIMENTAL SETUP

A. Training process

The training pipeline that accompanies this implementation

begins with a fully pre-tokenized dataset stored in memory.

The tokens were produced off-line with the same byte-level
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BPE vocabulary used by the model, so no run-time tok-

enization overhead is incurred. At start-up the loader reads

only the array header, then maps the data lazily so that the

text can fit into the process’s virtual address space without

exhausting RAM. A custom data loader performs an 80 / 20

split: the first eighty percent of the token stream is reserved for

training, while the remainder for validation. Within each split

it pre-computes non-overlapping blocks of tokens randomly,

being fetched without substitution, i.e. until the entire training

dataset has been completely traversed the already selected

token cannot be part of a newly create batch.

In order to replicate the training procedure described in

[6], the effective batch size is scaled up through gradient

accumulation rather than through data parallelism. The script

targets a global token batch of 524,288. Given the 8,192 tokens

contained in a micro-batch (16 × 512), the loop accumulates

gradients across 64 steps before issuing an optimizer step. This

strategy keeps GPU memory usage roughly constant while

preserving the training dynamics associated with large-batch

optimization.

On the optimization front, AdamW with β1 = 0.9, β2 =

0.95 and decoupled weight decay provides the same training

dynamics that have become standard in Transformer language

models, while the initialization uses a depth-scaled normal

distribution (σ ≈
0.02

√
layers

) to keep activation variances well

behaved from the first iteration.

Learning-rate scheduling follows the linear warm up and

cosine decay template described in [6]. Over the first 715

steps the rate rises linearly from zero to its peak of 6× 10
−4.

Thereafter it decays following half a cosine toward a floor at

ten percent of the maximum, reaching that floor at the final

update step, 20,980.

Each optimization cycle ends with gradient-norm clipping

to 1.0. This proves enough to manage the largest spikes that

appear during the initial stages of the training process.

B. Probing methodology

Probing how sentiment emerges inside the model requires

an experiment built around a simple stimulus: nine sentences

that differ only in the adjective. All nine stimuli share the fixed

template “The team’s performance was [adj]” while varying

only the adjective.

terrible → bad → poor → average → decent

→ good → great → excellent → outstanding.

We have chosen the adjectives based on the trained vocabulary

so that each adjective would represent exactly one token.

Because every other token and every position in the sentence

remains constant, any systematic pattern we discover in the

activations must be driven by the single word that encodes

sentiment. The adjectives were chosen to march monotonically

from extreme negative terrible through neutral decent to

extreme positive outstanding, giving us a one-dimensional

sentiment continuum that is easier to reason about quantita-

tively.

To capture the activations within the model, we placed

forward hooks on carefully chosen components of every

decoder block. Before the attention mechanism has split its

combined query-key-value projection, a hook captures the raw

QKV tensor. Another hook records the attention output itself,

head by head, exposing whether particular heads fire only

for strongly negative or strongly positive descriptors. Finally,

hooks on the feed-forward sub-layers collect the activations

immediately before and after the non-linear transformation,

revealing how the sentiment signal is reshaped by the position-

wise network. In order to run the capture pass each sentence

is tokenised with exactly the same byte-level BPE vocabulary

that served during pre-training. The model is switched to

evaluation mode so that no gradients accumulate, and the

sentence is fed forward once. Every hook silently detaches

its tensor, moves it to the CPU, and drops it into an ordered

dictionary keyed by the module’s name. When the forward

pass ends, the raw text, the token ids, and the activation

dictionary are stored into an object, producing one file per

sentence.

Once the activations for the nine “team-performance” sen-

tences have been serialized, the final task is to determine

whether they encode a consistent sentiment signal and, if

so, where that signal emerges most cleanly in the network’s

depth. To that end the evaluation framework applies three

complementary dimensionality reduction techniques: princi-

pal component analysis (PCA), t-distributed stochastic neigh-

bor embedding (t-SNE) and uniform manifold approximation

(UMAP) to the tensors captured by the hooks. Although each

method attacks the curse of dimensionality in its own way,

together they provide complementary view of the represen-

tational geometry that would be difficult to analyze in the

original dimensional space.

IV. RESULTS

Probing the model with a deliberately simple stimulus offers

an insightful view through which to analyze “sentiment” mate-

rialize inside the network. One view point of our experiments

involved an analysis of how strong the attention output is

for each of the sentiment token within its particular sentence

across every block. By constructing a heatmap of the L2 norm

of each of the 512 dimensions of the attention layer and doing

so for each individual block, we obtain a 8x9 matrix into

how the strength of the sentiment token shifts as sentiment

goes from negative to positive. We can see the results of this

visualization in Figure 1.

Early blocks (zero to two) most likely focus on mixing low-

level feature extraction, strong sentiment specific signals start

around layer four. By layers five and seven, the magnitude

for great, excellent and outstanding clearly exceed

those for bad, poor and terrible. Neutral adjectives

like average and decent dip in the second layer in a

behavior which seems to indicate that the model tries to sort

out neutral and charged adjectives. The final layer really lights

up the great to outstanding end of the spectrum, which

might suggest that those attention-outputs are driving whatever
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downstream head is classifying or generating sentiment. The

steep rise we see from layer four to five will emerge as a

recurrent turning point when the activation in the MLP layer

will be clustered together.

The output of the last MLP (Multi-Layer Perceptron) layer

within each block called ”mlp down” was ran through a

number of dimensionality reduction technique, namely t-SNE,

UMAP and PCA. At the first two layers the representations

resemble a scatter of unrelated dots. The dimensionality-

reduced t-SNE and UMAP plots show no discernible structure.

PCA, which can be observed in Figure 2, by extracting a

dominant axis that explains roughly a quarter of the variance

cannot align it with the desired semantic scale. In this stage the

hidden states are still dominated by surface features which can

be anything from individual token information, position or the

model’s learned statistical priors. Sentiment, though implicitly

present in the parameters, has not yet formed a clear direction.

By the third layer a gentle stretching becomes visible. Some

of the adjectives begin to form clusters, which although

imperfect, begin to showcase the way in which the model

interprets them after the training process. One particularly in-

teresting pattern appears in PCA where terrible, decent,

outstanding form a clear line based on the fact that they

represent the center and both ends of our sentiment continuum.

An important transformation occurs in layers four, five and six.

Here the feed-forward networks, amplify whatever directional

hints attention has supplied. PCA forms in layers 5 and 6 a

visually clear line of sentiment, although this behavior is not

replicated in layer 7 and average seems to be left outside

of this line in both occasions. Nonetheless, PCA confirms that

impression quantitatively: the first principal component now

captures close to thirty percent of total variance and almost

perfectly sorts the nine sentences in the intuitive order a human

would impose. The final layer rather shows an interesting

feature, it snaps the representation once the polarity of the

sentiment has been decided and the model seems to no longer

waste capacity on this specific internal variation.

This progression could illustrate several broader principles

about idea formation in transformers. Concepts do not ap-

pear fully formed but emerge through a gradual alignment

process, first hinted at in the initial layers, then sharpened

in the middle blocks and finally insignificant with regards to

the other processes the model attends to. The path is one

of dimensional collapse: the network trades representational

breadth for semantic depth, compressing many token-level

details into a low-dimensional subspace that encodes to some

degree an abstract property. Even in a model stripped down to

eight layers, the machinery is powerful enough to carve out

that subspace within five or six steps of computation.

V. DISCUSSION

The evolution of a concept inside a Transformer can be

tracked, layer by layer, as the network reshapes raw to-

ken statistics into increasingly abstract structure. Our 31 M-

parameter model, probed with nine sentiment-bearing sen-

tences that differ only by a single adjective, offers a concise

case study. In the first two blocks the activations appear almost

patternless. By the third block, sentiment slowly starts to begin

forming and some terms closely related in their end of the

spectrum begin to form clusters. Middle layers encompass a

geometry that is sentiment-shaped to a large degree. The model

is, in effect, compressing many token-level distinctions into a

low-dimensional manifold in which on of the axis embodies

polarity.

The clarity we gain by reducing a language model to a

handful of layers and feeding it a set of varying sentences

may come at the cost of realism. A compact transformer,

such as the eight-block system explored earlier, operates under

severe representational constraints. It is forced to recycle the

same few dimensions to encode grammar, knowledge and

much more. While this scarcity makes the emergence of

a single semantic axis easy to observe, it also means the

network lacks the expressive width to host several concepts

simultaneously without interference. There is also the matter of

compositional breadth. A minimal model that excels at ranking

adjectives inside a fixed syntactic frame may still struggle to

generalize that knowledge when the structure mutates (say,

when sentiment is conveyed through metaphor, multi-clause

reasoning, or cross-sentence contrast). Without ample depth

and width, the transformer cannot allocate separate sub-circuits

for these varied pathways. Instead, what might happen is

that it reuses the same mechanisms, which leads to brittle

performance outside the probe’s narrow domain.

The lessons drawn from watching sentiment take shape to

some extend inside a minimal transformer reverberate well

beyond the confines of our toy experiment. They suggest,

first, that interpretability research should embrace a telescopic

strategy: zoom in until the phenomenon of interest is clearly

visible, and secondly, that research in areas discussed by [7]

could in fact benefit from the same strategy. Small models

reveal the basis of an idea, the incremental alignment, the

dimensional collapses and the competition for representational

space. Once these are mapped, larger architectures can be

dissected along the same joints, guided by probes tuned

on their miniature counterparts. The experiment also warns

against relying on a single visualization or metric. t-SNE and

UMAP although more common, PCA confirmed with a higher

accuracy that those clusters lay along a nearly straight axis.

In future work, multiple reduction lenses should be treated

not as interchangeable but as complementary instruments,

each sensitive to a different property of the hidden space.

Moreover, comparison with already established open-source

models would provide an insight into how this behavior

appears in larger LLMs.

VI. CONCLUSION

This work explored how abstract ideas, such as sentiment,

can emerge in the internal representations of a minimalist

LLM. By constructing a lightweight model and probing it

with controlled stimuli, we identified patterns of semantic

organization that gradually form across layers. While the

simplicity of the model limits generalization, it offers a
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Fig. 1. Visualization of the attention heatmap

Fig. 2. Visualization of the MLP down projection layer in each layer using PCA

transparent platform for studying representational geometry.

Our findings suggest that even constrained architectures can

encode meaningful abstractions. They also motivate future

comparisons with larger models to better understand how

the representations of concepts change when the model size

increases.
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