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Abstract—Large Language Models (LLMs) capture linguistic
structure by operating on sequences of sub-word tokens, yet they
often display behaviors that suggest an implicit grasp of high-level
concepts. This study probes whether such “ideas” are genuinely
encoded in LLM representations and, if so, how faithfully and to
what extent. We created a deliberately minimalist LLM (encom-
passing both tokenizer and transformer architecture)designed to
expose internal mechanisms with minimal architectural obscurity.
Using a carefully curated toy corpora and probing tasks, we trace
how semantically related prompts map onto the model’s hidden
states. OQur findings reveal emergent clustering of conceptually
similar inputs even in the stripped-down model. These insights
advance our understanding of the representational geometry un-
derpinning modern language models and outline a reproducible
framework for future mechanistic studies of semantic abstraction.

Index Terms—byte-pair encoding, tokenizer, minimalist LLM,
sentiment spectrum, idea discovery

I. INTRODUCTION

ATURAL Language Understanding (NLU) in contem-

porary LLMs is mediated by sub-word tokenization,
a mechanism that excels at surface-level pattern matching
but offers only an indirect handle on the abstract ideas that
underpin human reasoning. Our research focuses on creating
a new model class, whose computations are organized around
explicit high-level abstraction rather than tokens. Motivated
by neuro-cognitive evidence that human thought is concept-
centric, we seek to inherit the efficiency and compositional
complexity of the human brain’s representation strategy while
remaining compatible with modern neural training pipelines.
As one of the first steps, we aim at replicating on a minimal
scale a LLM architecture and probe it with a closely related
variety of ideas. This experimental framework should provide
a regime in which the internal representation of such models
can be easily visualized.

Interpreting how LLMs encode “ideas” is difficult based
on the sheer scale of their parameter spaces and the resulting
high-dimensional activation patterns. Exhaustive inspection is
computationally intractable, so similar work resorts to sur-
rogate techniques, most commonly activation clustering and
dimensionality reduction projections, to peek into the model’s
internal structure. While useful, these tools expose only narrow
cross-sections of the computation, forcing mechanistic studies
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to test pre-selected hypotheses instead of capturing a holistic
view of the network. This study follows this established
framework, with the goal of capturing some form of patterns
between abstract ideas withing the model’s internal represen-
tation.

We have implemented a scall-scale LLM (around 31 million
parameters), designed to test whether conceptual structures can
be isolated and examined without the computational overhead
of a large-scale LLM (tens of even hundreds of billions of
parameters). The architecture involves a custom byte pair
encoding tokenizer of 10256 vocabulary size to constrain the
the embedding table and uses a standard Transformer decoder
stack trained auto-regressively on the FineWeb corpus. To
probe its internal representation, we create a set of sentences
that differ only by sentiment adjectives spanning

negative — neutral — positive

positive continuum. Our hypothesis aims at activations which
depict some form of smooth varying trajectories that would
mimic the before mentioned continuum, allowing quantitative
estimates of concept-correlation. The resulting architecture and
probing framework showcases a lightweight and reproducible
mechanistic study of idea representation in LLMs.

The paper is organized as follows: Section II introduces the
methodology and the implemented tokenizer on a simple LLM
architecture. Next, in Section III, we describe our experimental
setup for probing sentiment. The results are presented and in
Section IV, while Section V discusses some of the implications
of our findings. Lastly, our conclusions are given in Section VL.

II. METHODOLOGY
A. Dataset

FineWeb is an openly released, web-scale corpus that Hug-
ging Face and Forward assembled from ninety-six Common
Crawl snapshots spanning from 2013 to 2024 [1]. After
extraction the collection contains a little over 15 trillion tokens
of English text, making it one of the largest high-quality
resources currently available for pre-training language models.
The pipeline first blocks known malicious or NSFW domains
and applies sub-word heuristics to screen out undesirable
URLs. Raw HTML that passes this gate is parsed with
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Trafilatura to isolate the main article body. A FastText-based
language detector then retains only documents whose English
confidence exceeds 0.65. Quality is further improved with the
repetition and formatting heuristics introduced in DeepMind’s
Gopher work, almost all the C4 filters, and several bespoke
rules that discard list-like layouts or heavily duplicated lines.
Each Common Crawl dump is then deduplicated indepen-
dently using a 5-gram MinHash scheme (fourteen bands of
eight hashes) before emails and public IPv4 addresses are
anonymised. The full dataset is distributed under the ODC-
BY 1.0 licence together with the exact code needed to rerun
the pipeline, plus smaller random samples of 350 B, 100 B
and 10 B tokens for users who want to prototype without
downloading tens of terabytes. The current implementation
uses approximately 11 billion tokens to train both the tokenizer
and the LLM, in order to optimize alignment between the two
components.

B. Tokenizer implementation

In [2], Byte-Pair Encoding (BPE) was repurposed from data
compression to sub-word segmentation, laying the groundwork
for all modern transformer tokenizers. Our implementation
follows their recipe closely, but embeds the core merging
algorithm directly into the tokenizer’s training and inference
routines.

We begin by applying the same regular-expression-based
splitter adapted from OpenAl’s tiktokenizer codebase (see
openai/tiktoken/tiktoken_ext/
openai_public.py on GitHub). This splitter segments
text into “chunks” (words, punctuation marks, and whitespace
tokens) ensuring that subsequent processing always respects
linguistic boundaries. Each chunk is then encoded as a se-
quence of UTF-8 bytes, treating every byte as an atomic
symbol and appending a special end-of-word marker to pre-
serve chunk integrity. Once the entire corpus is reduced to
byte-level symbol sequences, we calculate the frequency of
every adjacent symbol pair across all chunks. In a word like
train_ for instance, the pairs (t, r), (r, a), (a, 1),
(i, n), and (n, _) each accumulate counts. At each of
10,000 iterations, the tokenizer locates the most frequent pair,
merges it into a new minted token, substitutes every occurrence
in the training data, and records this operation in a merge
table. By the end of this process, our vocabulary comprises
the original 256 byte symbols plus 10,000 newly minted sub-
word tokens, for a total of 10,256 entries.

When encoding unseen text, the tokenizer replicates these
same steps in reverse order but without rescanning the entire
corpus. The input is normalized and chunked identically, then
each chunk’s byte IDs are greedily merged: the tokenizer
repeatedly scans all adjacent ID pairs, consults the precom-
puted merge table and applies the earliest-created merge
whenever possible. This process continues until no further
merges remain, yielding a compact sequence of sub-word IDs
that exactly mirror those learned during training.

By weaving the merge logic into both the training loop
and the encoding routine, our implementation remains faithful
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to [2] original algorithmic design while providing a self-
contained, efficient tokenizer.

C. LLM architecture

The current implementation is built on the decoder-only
half of the Transformer architecture first introduced in [3]. By
discarding the encoder and keeping only the auto-regressively
masked decoder stack, the network learns to predict the next
token in a sequence while only attending to previously seen
tokens. [4] demonstrated that this seemingly small modifica-
tion was enough to unlock impressive results based on the
architecture’s unsupervised capabilities when the model is
trained at scale and exposed to a large corpus of text. The
present code-base follows that blueprint: a single stream of
tokens, augmented with learned positional vectors, is passed
through a succession of identical decoder blocks, the final
hidden states are projected back into the same embedding
matrix to score the vocabulary right after one final layer
normalization layer, and the entire network is optimized to
minimize next-token cross-entropy.

Each decoder block in this implementation begins with a
layer normalization applied to the incoming residual stream.
This layer is followed by causal multi-head self-attention,
implemented with FlashAttention introduced in [5], used to
reduce the memory footprint while preserving the exact dot-
product computation. After the attention output is added back
to the residual stream, a second layer normalization prepares
the signal for a position-wise feed-forward network whose
hidden width is quadruple the model dimension and using
the Gaussian Error Linear Unit (GELU) activation function.
Another residual addition completes the block. The paired
attention and feed-forward sub-layers serve complementary
roles: attention lets every token selectively integrate informa-
tion from earlier positions, capturing syntactic and semantic
dependencies that may span multiple tokens, whereas the
feed-forward network performs local feature transformations
that help the model build richer hierarchical representations.
Residual connections preserve gradient flow so that deeper
stacks (eight in this implementation) can be trained without
vanishing or exploding gradients, and the pre-norm ordering
has proved more stable than the original post-norm scheme
when the depth or learning rate is increased.

This configuration specifies a eight-block Transformer with
eight attention heads operating in a 512-dimensional embed-
ding space, a 512-token context window, and a 10 256-token
vocabulary. These choices bring the total parameter count to
30.7 million parameters. For overall faithful replication, [6]
and [4] have been used in conjunction for architecture design
and hyper-parameters choices.

III. EXPERIMENTAL SETUP

A. Training process

The training pipeline that accompanies this implementation
begins with a fully pre-tokenized dataset stored in memory.
The tokens were produced off-line with the same byte-level
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BPE vocabulary used by the model, so no run-time tok-
enization overhead is incurred. At start-up the loader reads
only the array header, then maps the data lazily so that the
text can fit into the process’s virtual address space without
exhausting RAM. A custom data loader performs an 80 / 20
split: the first eighty percent of the token stream is reserved for
training, while the remainder for validation. Within each split
it pre-computes non-overlapping blocks of tokens randomly,
being fetched without substitution, i.e. until the entire training
dataset has been completely traversed the already selected
token cannot be part of a newly create batch.

In order to replicate the training procedure described in
[6], the effective batch size is scaled up through gradient
accumulation rather than through data parallelism. The script
targets a global token batch of 524,288. Given the 8,192 tokens
contained in a micro-batch (16 x 512), the loop accumulates
gradients across 64 steps before issuing an optimizer step. This
strategy keeps GPU memory usage roughly constant while
preserving the training dynamics associated with large-batch
optimization.

On the optimization front, AdamW with 5; = 0.9, 85 =
0.95 and decoupled weight decay provides the same training
dynamics that have become standard in Transformer language
models, while the initialization uses a depth-scaled normal

distribution (o =~ ) to keep activation variances well
rs

%/laye
behaved from the first iteration.

Learning-rate scheduling follows the linear warm up and
cosine decay template described in [6]. Over the first 715
steps the rate rises linearly from zero to its peak of 6 x 1074,
Thereafter it decays following half a cosine toward a floor at
ten percent of the maximum, reaching that floor at the final
update step, 20,980.

Each optimization cycle ends with gradient-norm clipping
to 1.0. This proves enough to manage the largest spikes that
appear during the initial stages of the training process.

B. Probing methodology

Probing how sentiment emerges inside the model requires
an experiment built around a simple stimulus: nine sentences
that differ only in the adjective. All nine stimuli share the fixed
template “The team’s performance was [adj]” while varying
only the adjective.

terrible — bad — poor — average — decent
— good — great — excellent — outstanding.

We have chosen the adjectives based on the trained vocabulary
so that each adjective would represent exactly one token.
Because every other token and every position in the sentence
remains constant, any systematic pattern we discover in the
activations must be driven by the single word that encodes
sentiment. The adjectives were chosen to march monotonically
from extreme negative terrible through neutral decent to
extreme positive out standing, giving us a one-dimensional
sentiment continuum that is easier to reason about quantita-
tively.

To capture the activations within the model, we placed
forward hooks on carefully chosen components of every
decoder block. Before the attention mechanism has split its
combined query-key-value projection, a hook captures the raw
QKYV tensor. Another hook records the attention output itself,
head by head, exposing whether particular heads fire only
for strongly negative or strongly positive descriptors. Finally,
hooks on the feed-forward sub-layers collect the activations
immediately before and after the non-linear transformation,
revealing how the sentiment signal is reshaped by the position-
wise network. In order to run the capture pass each sentence
is tokenised with exactly the same byte-level BPE vocabulary
that served during pre-training. The model is switched to
evaluation mode so that no gradients accumulate, and the
sentence is fed forward once. Every hook silently detaches
its tensor, moves it to the CPU, and drops it into an ordered
dictionary keyed by the module’s name. When the forward
pass ends, the raw text, the token ids, and the activation
dictionary are stored into an object, producing one file per
sentence.

Once the activations for the nine “team-performance” sen-
tences have been serialized, the final task is to determine
whether they encode a consistent sentiment signal and, if
so, where that signal emerges most cleanly in the network’s
depth. To that end the evaluation framework applies three
complementary dimensionality reduction techniques: princi-
pal component analysis (PCA), t-distributed stochastic neigh-
bor embedding (t-SNE) and uniform manifold approximation
(UMAP) to the tensors captured by the hooks. Although each
method attacks the curse of dimensionality in its own way,
together they provide complementary view of the represen-
tational geometry that would be difficult to analyze in the
original dimensional space.

IV. RESULTS

Probing the model with a deliberately simple stimulus offers
an insightful view through which to analyze “sentiment” mate-
rialize inside the network. One view point of our experiments
involved an analysis of how strong the attention output is
for each of the sentiment token within its particular sentence
across every block. By constructing a heatmap of the L2 norm
of each of the 512 dimensions of the attention layer and doing
so for each individual block, we obtain a 8x9 matrix into
how the strength of the sentiment token shifts as sentiment
goes from negative to positive. We can see the results of this
visualization in Figure 1.

Early blocks (zero to two) most likely focus on mixing low-
level feature extraction, strong sentiment specific signals start
around layer four. By layers five and seven, the magnitude
for great, excellent and outstanding clearly exceed
those for bad, poor and terrible. Neutral adjectives
like average and decent dip in the second layer in a
behavior which seems to indicate that the model tries to sort
out neutral and charged adjectives. The final layer really lights
up the great to outstanding end of the spectrum, which
might suggest that those attention-outputs are driving whatever
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downstream head is classifying or generating sentiment. The
steep rise we see from layer four to five will emerge as a
recurrent turning point when the activation in the MLP layer
will be clustered together.

The output of the last MLP (Multi-Layer Perceptron) layer
within each block called “mlp_down” was ran through a
number of dimensionality reduction technique, namely t-SNE,
UMAP and PCA. At the first two layers the representations
resemble a scatter of unrelated dots. The dimensionality-
reduced t-SNE and UMAP plots show no discernible structure.
PCA, which can be observed in Figure 2, by extracting a
dominant axis that explains roughly a quarter of the variance
cannot align it with the desired semantic scale. In this stage the
hidden states are still dominated by surface features which can
be anything from individual token information, position or the
model’s learned statistical priors. Sentiment, though implicitly
present in the parameters, has not yet formed a clear direction.
By the third layer a gentle stretching becomes visible. Some
of the adjectives begin to form clusters, which although
imperfect, begin to showcase the way in which the model
interprets them after the training process. One particularly in-
teresting pattern appears in PCA where terrible, decent,
outstanding form a clear line based on the fact that they
represent the center and both ends of our sentiment continuum.
An important transformation occurs in layers four, five and six.
Here the feed-forward networks, amplify whatever directional
hints attention has supplied. PCA forms in layers 5 and 6 a
visually clear line of sentiment, although this behavior is not
replicated in layer 7 and average seems to be left outside
of this line in both occasions. Nonetheless, PCA confirms that
impression quantitatively: the first principal component now
captures close to thirty percent of total variance and almost
perfectly sorts the nine sentences in the intuitive order a human
would impose. The final layer rather shows an interesting
feature, it snaps the representation once the polarity of the
sentiment has been decided and the model seems to no longer
waste capacity on this specific internal variation.

This progression could illustrate several broader principles
about idea formation in transformers. Concepts do not ap-
pear fully formed but emerge through a gradual alignment
process, first hinted at in the initial layers, then sharpened
in the middle blocks and finally insignificant with regards to
the other processes the model attends to. The path is one
of dimensional collapse: the network trades representational
breadth for semantic depth, compressing many token-level
details into a low-dimensional subspace that encodes to some
degree an abstract property. Even in a model stripped down to
eight layers, the machinery is powerful enough to carve out
that subspace within five or six steps of computation.

V. DISCUSSION

The evolution of a concept inside a Transformer can be
tracked, layer by layer, as the network reshapes raw to-
ken statistics into increasingly abstract structure. Our 31 M-
parameter model, probed with nine sentiment-bearing sen-
tences that differ only by a single adjective, offers a concise
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case study. In the first two blocks the activations appear almost
patternless. By the third block, sentiment slowly starts to begin
forming and some terms closely related in their end of the
spectrum begin to form clusters. Middle layers encompass a
geometry that is sentiment-shaped to a large degree. The model
is, in effect, compressing many token-level distinctions into a
low-dimensional manifold in which on of the axis embodies
polarity.

The clarity we gain by reducing a language model to a
handful of layers and feeding it a set of varying sentences
may come at the cost of realism. A compact transformer,
such as the eight-block system explored earlier, operates under
severe representational constraints. It is forced to recycle the
same few dimensions to encode grammar, knowledge and
much more. While this scarcity makes the emergence of
a single semantic axis easy to observe, it also means the
network lacks the expressive width to host several concepts
simultaneously without interference. There is also the matter of
compositional breadth. A minimal model that excels at ranking
adjectives inside a fixed syntactic frame may still struggle to
generalize that knowledge when the structure mutates (say,
when sentiment is conveyed through metaphor, multi-clause
reasoning, or cross-sentence contrast). Without ample depth
and width, the transformer cannot allocate separate sub-circuits
for these varied pathways. Instead, what might happen is
that it reuses the same mechanisms, which leads to brittle
performance outside the probe’s narrow domain.

The lessons drawn from watching sentiment take shape to
some extend inside a minimal transformer reverberate well
beyond the confines of our toy experiment. They suggest,
first, that interpretability research should embrace a telescopic
strategy: zoom in until the phenomenon of interest is clearly
visible, and secondly, that research in areas discussed by [7]
could in fact benefit from the same strategy. Small models
reveal the basis of an idea, the incremental alignment, the
dimensional collapses and the competition for representational
space. Once these are mapped, larger architectures can be
dissected along the same joints, guided by probes tuned
on their miniature counterparts. The experiment also warns
against relying on a single visualization or metric. t-SNE and
UMAP although more common, PCA confirmed with a higher
accuracy that those clusters lay along a nearly straight axis.
In future work, multiple reduction lenses should be treated
not as interchangeable but as complementary instruments,
each sensitive to a different property of the hidden space.
Moreover, comparison with already established open-source
models would provide an insight into how this behavior
appears in larger LLMs.

VI. CONCLUSION

This work explored how abstract ideas, such as sentiment,
can emerge in the internal representations of a minimalist
LLM. By constructing a lightweight model and probing it
with controlled stimuli, we identified patterns of semantic
organization that gradually form across layers. While the
simplicity of the model limits generalization, it offers a
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Fig. 1. Visualization of the
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Fig. 2. Visualization of the MLP down projection layer in each layer using PCA

transparent platform for studying representational geometry.
Our findings suggest that even constrained architectures can
encode meaningful abstractions. They also motivate future
comparisons with larger models to better understand how
the representations of concepts change when the model size
increases.
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