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Abstract—The Subset Sum Problem (SSP) is one of those
combinatorial problems that are very easy to understand (take
a bunch of integer numbers and verify whether there exists a
subset of these numbers which sums up to a given target integer),
but it can be very difficult to solve. The SSP is actually an NP-
complete problem, but it is “weakly” NP-hard, implying that
there are instances of SSP that can be solved in polynomial
time. For this particular problem, the instance hardness can
be measured by evaluating the so-called “density” index, which
basically compares the number of involved integer numbers to
the number of bits we need for their binary representation. In our
preliminary study on the use of adiabatic quantum computing
for the SSP, we investigate the actual feasibility in solving hard
instances of the problem. In fact, hard SSP instances are those
requiring a large number of bits for the representation of the
integers, while the analog nature of the quantum computer does
not allow us to ensure highly accurate integer representations.
Some preliminary computational experiments performed on D-
Wave quantum annealer are presented and compared to standard
solvers for classical computers.

I. INTRODUCTION

G
IVEN a set A of n positive integer numbers and a

positive target t, the SUBSET SUM PROBLEM (SSP) asks

whether there is a subset S of A such that the elements of S
sum up exactly to t. The original set A may be a multiset,

but in this work we assume, for simplicity, that it contains

no repeated elements. In a typical problem variant, the SSP

asks to enumerate all possible solutions (i.e. all subsets) of

a given SSP instance. But again, for simplicity, we make the

assumption in this work that only one solution is required.

The SSP is one of the famous Karp’s NP-complete prob-

lems [12]. It is considered to be weakly NP-hard, because there

exist large classes of SSP instances for which algorithms ad-

mitting a pseudo-polynomial complexity have been proposed

[6]. In order to find out the actual hardness of a given SSP

instance, the so-called density index can be employed:

ρ :=
n

ℓ(n)
,

where

ℓ(n) = log2 max
a∈A

a.

SSP instances having a density index ρ equal to 1 are the

hardest to solve, and indeed, to date, no pseudo-polynomial

algorithm for these instances have been found. In these in-

stances, the number of bits necessary to represent the integers

in A equals the number of integers in A. In this work, we will

focus our attention on these density-1 instances.

There is a large scientific literature on the SSP. A large

review of the existing literature is out of the scope of this

short paper, so that we will limit ourselves to cite only a

few recent works aiming at improving the performance of

SSP algorithms for hard “density-1” instances. The algorithm

that has been considered to be the fastest for these instances

for a very long time is one proposed by Horowitz and Sahni

in 1974 [11], which has, however, an exponential theoretical

complexity. In more recent times, the works presented in [3]

and [19], for example, showed that there exist algorithmic

solutions which can exhibit better performance. It is important

to remark that the research is progressing in parallel in both

areas of deterministic algorithms (such as in [3]) and heuristics

(such as in [19]). The most recent effort in the former category

of algorithms was presented in the pre-print [18]. To date,

however, algorithms having polynomial complexity have not

been found yet for solving density-1 instances (a discovery

that could imply that P=NP, which is unlikely).

Many researchers are exploring nowadays alternative ap-

proaches for tackling the SSP. Some of us are for example

currently working on a novel approach in optical computing

[10], where the use of the spatial properties of light allow us

to speedup the solution of hard SSP instances (very recently,

moreover, the same optical circuit has been adapted to perform

single-key cryptography in [7]). Even if these optical circuits

are not “quantum devices”, they exploit physical phenomena

normally used in quantum computing, such as interference.
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Some recent theoretical studies aiming at exploiting the po-

tential “quantum advantage” of modern quantum technologies

for solving the SSP can be found for example in [2], [5], [9].

In this work, we study the feasibility of solving hard

density-1 instances of the SSP by adiabatic quantum comput-

ing. To the best of our knowledge, this alternative approach to

the SSP was only a little studied in recent times. One example

of such studies can be found in [20], where a mathematical

model similar to ours is introduced, whose solution is however

attempted in a different manner. Moreover, in our study, we

will focus our attention on the analog nature of the consid-

ered quantum computer, and on the consequent representation

issues for the elements of A (as well as for the target t). We

also point out that several of the publications cited above are

mostly theoretical and provide no computational experiments.

The rest of the paper is organized as follows. Two general

methods for the SSP are briefly presented in Section II,

because they will be involved in the performance comparisons

presented with our computational experiments. Section III

will briefly describe the physics behind the quantum annealer

implemented by the D-Wave quantum processing units, and

propose a reformulation of the SSP as a Quadratic Uncon-

trained Binary Optimization (QUBO), a problem format that

can handled by D-Wave quantum computers. Finally, our

experiments will be reported in Section IV, and Section V

will conclude the paper.

II. METHODS FOR THE SSP

A. The BP algorithm

We begin this section by presenting a generic algorithm

whose worst-case complexity is exponential, but that is suit-

able for all kinds of SSP instances, including the hard ones.

This algorithm is presented in different guises in textbooks

about NP-complete problems, and under different names. We

make the choice to refer to it as the BRANCH-AND-PRUNE

(BP) algorithm [15]: this is the name of an algorithm for

a more general problem, the DISCRETIZABLE DISTANCE

GEOMETRY PROBLEM (DDGP) [17], which can be reduced

to the SSP under special conditions. The DDGP has several

important applications in various research fields [16].

The BP algorithm is based on the idea to construct a binary

tree, where every path from the root to one of the leaf nodes

represents a possible subset S of the original set A. Every

layer of the tree is related to one of the integers in A: if

the subsets “opting” for the left-handed branch at a given

level do not contain the corresponding integer, then this same

integer would instead be contained in all other subsets where

the right-handed branch is selected. The tree grows regularly

by doubling its nodes as we step from one layer to the next.

The full tree contains therefore 2n nodes, but they do not

need to be all explored. Some tree branches can in fact be

pruned by verifying some feasibility tests. If the integers that

are selected in the current branch sum up to a value that is

larger than the target t, for example, then we can prune the

current branch. Also, if the sum of all remaining (i.e. not yet

considered) integers at the current tree layer does not allow

the current partial sum to reach the desired target t, then the

branch can also be pruned.

An implementation in C programming language of the BP

algorithm for the SSP is publicly available on the GitHub1.

B. MILP formulation

Given the set A = {a1, . . . , an} and the target t, the SSP

can be cast as the following boolean linear equation:

n
∑

i=1

aixi = t, (1)

where x ∈ {0, 1}n. Since, in principle, the SSP instance at

hand may be infeasible, we need to take into consideration

the case where the equation above may admit no solutions.

For this reason, we introduce a slack variable z ∈ R and

formulate the following optimization problem:

min
x,z

|z|

s.t

n
∑

i=1

aixi + z = t,

x ∈ {0, 1}n, z ∈ R.

If the optimal value for the problem above is zero, then the

SSP has a solution given by the binary decision variables xi,
where xi = 1 indicates that ai is a member of the solution

subset S .

In order to make the objective function linear, we can

represent z = ∆+−∆−, where ∆+,∆− are non-negative real

variables. Then, we have the following Mixed Integer Linear

Program (MILP):

min
x,∆+,∆−

∆+ +∆−

s.t aTx+∆+ −∆− = t,

∆+ ≥ 0, ∆− ≥ 0,

xi ∈ {0, 1}, i = 1, . . . , n,

(2)

where

aTx =
n
∑

i=1

aixi.

Such a formulation is ideal for MILP solvers (as for

example Gurobi [22], which we will use in our computational

experiments) that implement branch-and-bound techniques for

MILPs.

III. QUANTUM ANNEALING

Quantum annealing is an optimization technique used to find

the ground state of a given Hamiltonian through the adiabatic

evolution of the quantum system [1]. The problem to be solved

can be encoded in the time-dependent Hamiltonian:

H(τ) = A(τ)HI +B(τ)HF ,

where the time-dependent coefficients A(τ) and B(τ) satisfy

the condition A(0) ̸= 0, B(0) = 0 and B(T ) ̸= 0, A(T ) =

1https://github.com/mucherino/DistanceGeometry
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0, with T being the total evolution time, which corresponds

to the computation time. Following the proposal of quantum

annealing in the transverse field Ising model [13], the initial

Hamiltonian for n qubits is described by

HI = −
n
∑

i

σi
x

and the final one by

HF =
n
∑

i

hiσ
i
z +

n
∑

i,j

Ji,jσ
i
zσ

j
z.

In these equations, hi denotes the bias field acting on the i-th
qubit and Ji,j is the coupling constant between the qubits i
and j. Besides of being an easy-to-prepare Hamiltonian, whose

ground state is

|ψ(0)⟩ =
( |0⟩+ |1⟩√

2

)⊗n

,

HI acts as a driver Hamiltonian, which is responsible for

mixing the states in the computational basis. Therefore, if

initially the physical system starts in the ground state of

the Hamiltonian HI and is adiabatically driven until the

final configuration determined by HF , then, by performing

measurements in the computational basis, we can find the

solution to our problem as a string of bits.

The strategy described above is the one implemented by

the quantum computers produced by the D-Wave Systems

Inc. company. In practice, the quantum system is working on

20 mK [21], so there is a no null probability of finding the

system outside the ground state, indicating the probabilistic

character of the solution of the computation. This implies that,

in order to solve a given problem using the D-Wave’s quantum

processing units, it is necessary to run the calculations several

times.

Instead of formulating the problem in terms of the Ising

Hamiltonian, it is possible to write it in the form of a Quadratic

Unconstrained Binary Optimization (QUBO) problem [8]. The

mapping of Pauli operators (σi) to QUBO operators (qi) is

obtained by σi = 2qi − I , where I is the identity matrix.

Therefore, the QUBO Hamiltonian becomes:

HF =

n
∑

i

Qiq
i +

n
∑

i,j

Qi,jq
iqj ,

where the operators qi have eigenvalues 0 or 1, provided that

the eigenvalues of the Pauli matrices are −1 and 1. From a

practical point of view, the problem is in general written in

the QUBO formulation and then translated to the Ising model,

which is the natural physical formulation.

In order to obtain a QUBO formulation for the SSP, we

remark that x ∈ {0, 1}n solves equ. (1) if it is a zero for the

quadratic function:

q(x) = (aTx− t)2, (3)

where a is a column vector with elements ai, and the same

goes for x ∈ {0, 1}n. We can therefore re-write:

q(x) = xTaaTx− (2ta)Tx+ t2 = xTQx+ bTx+ c,

with Q = aaT , b = −2ta and c = t2. By ignoring the constant

term c, we have a correspondence with the QUBO Hamiltonian

where

Qi = −2tai, Qi,j = aiaj ,

are its coefficients.

IV. COMPUTATIONAL EXPERIMENTS

A. Generating hard SSP instances

In order to generate hard SSP instances, we make sure that

its density index is as close as possible to 1. To this end, we

define the very first integer to be included in the original set

A as 2n, where n is the desired size of the instance. All other

integers, used to fill the set A until it reaches the desired size

n, are generated by randomly choosing integers with a uniform

distribution in the (open) interval (1, 2n).

In order to control the hardness of our instances, we

also follow some additional recommendations given in [4]

when generating our instances. The range of the target t is

constrained and taken between

(n/2−
√
n) · 2n−1 and (n/2 +

√
n) · 2n−1,

while approximately half of the original integers in A are

chosen to take part to one pre-constructed SSP solution, which

needs to satisfy the selected target t.

Our method for a random generation of hard instances

begins by selecting the maximum integer in the set, as de-

scribed above, and then selects the target t in the bounds

given above. Only at this point does the random generation

of the other integers begin, and the decision on whether

or not to include each generated integer (with chance 1/2)

in one associated solution is randomly made. However, the

probability of defining a valid solution in this way is extremely

unlikely (the randomly chosen integers should sum up exactly

at t), and therefore a correction step is implemented in our

generation algorithm, where the values of the integers selected

to form an SSP solution are modified in order to have their

sum correspond to the pre-defined target t.

Before delivering the generated instance, our method

double-checks that the number of integers forming the con-

structed SSP solution actually concerns exactly the half of

the integers in A (the only tolerated approximation is the one

implied by an odd n). When this is not the case, integers

belonging to the SSP solution are either randomly split or

fusioned, while other integers (not belonging to the solution)

may be erased or added in order to keep the cardinality of A
equal to n.
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TABLE I
SOME COMPUTATIONAL EXPERIMENTS WHERE THE GENERATED SSP INSTANCES ARE SOLVED BY A C IMPLEMENTATION OF THE BP ALGORITHM, BY

GUROBI (MILP MODEL), BY THE SA SIMULATION PROVIDED BY D-WAVE, AND FINALLY BY D-WAVE ITSELF. THE VALUES OF THE TARGETS, FOR THE

4 INSTANCES, ARE t1 = 1024, t2 = 3145728, t3 = 5368709120, AND t4 = 7696581394432. THE VALUE OF ϵ INDICATES THE OBSERVED ERROR WITH

THE RESPECT TO THE KNOWN SOLUTIONS. THE COMPUTATIONAL TIME IS GIVEN IN SECONDS.

Size/target 10 t1 20 t2 30 t3 40 t4
ϵ time ϵ time ϵ time ϵ time

BP 0 0.00 0 0.00 0 0.07 0 9.36

Gurobi 0 0.01 0 0.31 0 1.53 0 1138.00

SA 0 2.00 -8 4.00 -249 8.00 21959 15.00

D-Wave 0 0.02 11 0.25 20926 1.1 173294 2.80

B. Preliminary experiments

We provide some preliminary computational experiments

where we solve 4 hard instances of the SSP, having 4 different

sizes: 10, 20, 30 and 40. We limit ourselves to instances having

size 40 because we have soon noticed that we had already

hit the limits of the quantum computer when using instances

having this relatively small size. Since our instances all have

density equal to 1, the number of bits necessary to represent

the elements of A in the 4 instances is 10, 20, 30 and 40,

respectively. On standard 64-bit machines, therefore, standard

primitive types, in the majority of programming languages,

can hold values that are sufficiently large for our purposes.

This is, however, not the case in the analog environment of

D-Wave QPUs (Quantum Processing Units).

Our experiments are reported in Table I. The value of ϵ
indicates the absolute error with respect to the known so-

lutions, while the computational time is given in seconds.

All experiments have been performed on a laptop computer

equipped with an 11th Gen Intel(R) Core(TM) i7-1185G7

@ 3.00GHz, running Linux. We used Gurobi version 11,

with default parameters except for IntFeasTol = 10−9

and NumericFocus = 1. Concerning D-Wave QPUs, we

considered two topologies, ZEPHYR and CHIMERA, and varied

num reads in [2000, 4000] and annealing time in [40, 80].
The results reported in Table I are the best over all the

variations considered and over 10 runs/jobs.

We can remark that the BP algorithm, in spite of its worst-

case exponential complexity, performs quite efficiently on a

standard computer: it is able to solve exactly all SSP instances

in a reasonable time. Gurobi applied to (2) also solved all

instances but its drawback is the computation time. The

Simulated Annealing (SA) meta-heuristics [14], implemented

in the D-Wave standard Python package, appears to be slower

than BP and faster than Gurobi, and provides solutions affected

by large errors. This tendency is then amplified when running

the experiments on D-Wave. The analog quantum computer is

able to output its solution quickly (it is even faster than BP

on the largest instances), but the given solutions are affected

by much larger errors.

One interesting remark is that most of the solutions found

by D-Wave are “local” minimizers, in the following sense. The

concept of neighbouring, and hence the one of locality, makes

sense in the context of the SSP only if we take into account

the discrete nature of the search space. When we talk about

local solutions, we make reference here to solutions that can

be obtained from a provided solution x by performing only

one bit flip: in other words, the solutions that are considered

to be in the neighbourhood of x are those for which only

one integer is added or removed from the current subset. We

consider all D-Wave solutions to be local minimizers because

they cannot be improved (with respect to the loss function (3))

by one single bit flip.

On D-Wave QPUs, the biases hi and coupling parameters

Jij have specific physical ranges that the hardware can imple-

ment. These are typically floating-point numbers rather than

integers, and they are restricted to a relatively small range:

typically hi ∈ [−2.0, 2.0] and Jij ∈ [−1.0, 1.0]. Besides, the

D-Wave software interface has an automatic scaling feature

which scales the problem data in order to fit in these intervals.

Thus, if the problem data has a very large range, scaling them

all down can make the smaller differences less distinguishable

by the noisy analog hardware, potentially affecting solution

quality.

We conjecture that, when D-Wave is actually not able to

find the correct solutions, it is because of the representation

errors implied by its analog nature. Part of our future works

will be devoted to further studying this conjecture.

V. CONCLUSIONS

This paper focuses on the SSP, one of the most important,

well-known and largely studied NP-complete problems. We

have briefly surveyed two basic methods for the solution of

SSP instances, provided a QUBO formulation of the problem,

which we have then used for performing some preliminary

computational experiments on D-Wave.

The main point in this work is the following: can we actually

represent hard SSP instances on the quantum computer? Or is

this rather possible only for some of the “easy” SSP instances?

Our experiments show that an important difficulty is related

to the accuracy in the representation of the integers in the

set A. As the number of bits necessary for representing the

integers increases, it becomes harder and harder to have an

error-free representation in the analog quantum computer. Our

preliminary experiments seem to indicate that the primary

impediment to quantum advantage in this domain is not

algorithmic design but rather the limitations in representation

in the analog computer.
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Work is currently in progress to design methods for over-

coming this representation issue. We will also study the

possibility to represent and solve more general problems on

D-Wave, such as for example the DDGP mentioned in the

Introduction.
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