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Abstract—Efficient container handling and early damage de-
tection are critical for minimizing operational delays, reducing
costs, and ensuring safety in global maritime logistics. This
work presents a deep learning-based methodology for real-time
container tracking and automated damage detection during crane
unloading operations at container terminals. We develop and
deploy two specialized YOLOv12-based object detection models:
one for identifying containers in motion and another for detecting
structural damages such as bents, dents, and holes. Our models
are trained and evaluated on a real-world dataset curated from
video feeds captured at the EUROGATE Container Terminal in
Limassol, Cyprus. The system is designed for robust performance
under realistic terminal conditions, including variable lighting
and motion. Our models achieve high detection accuracy, with
a mAPS0 of 0.99 for container detection and 0.75 for dam-
age detection, substantially outperforming existing benchmarks.
These results highlight the practical potential of our method for
improving efficiency and safety in automated maritime logistics.

I. INTRODUCTION

ONTAINERS play a pivotal role in global maritime

commerce by supporting the movement of incoming,
outgoing, and transshipped goods. Due to the significant
increase in international seaborne containerized trade volumes,
port operators must improve and automate various terminal
operations to meet the growing demand and reduce safety risks
due to human-computer cross-operations [1]. Approximately
20 million active containers are in use worldwide, completing
over 200 million trips annually. Ports serve as central hubs
where cargo from around the world converges as it enters or
exits. These terminals are responsible for securely loading,
unloading, and handling containers. However, the high volume
of containers passing through makes it challenging to track
damaged ones. Most damage detection methods are based on
manual inspection around the globe [2], [3], which causes
low efficiency, low accuracy, slow speed, high cost, and safety
risks. Hence, an efficient inspection of the container body is
essential to reduce disputes between container terminals and
transportation enterprises due to damage to containers [4]. The
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common damaged types of containers include dents, scratches,
distortions, holes, convex, damage to container doors, etc.
[4]. These damages can result from various factors, including
harsh weather conditions, poor transportation, or inadequate
storage at the terminal. If the port fails to identify damaged
containers upon unloading, the shipping company may impose
fines, claiming the damage occurred within the port rather than
beforehand.

In current research studies, computer vision and ma-
chine/deep learning methods are commonly used to detect
damages in containers at seaports [2]. Machine learning meth-
ods are extensively adopted for object detection in images and
videos in various fields, including medical, security, military,
construction, and transportation [5]. To deal with damage
detection in maritime containers at the ports, several maritime
companies, stakeholders, and researchers started investing in
automatic methods to detect damaged containers [4], [6]. For
instance, the authors of [7] propose an image processing-
based method (e.g., looking at hue, saturation, and intensity)
using sensors and cameras. Another study [8] employs a
phase correlation approach to detect damage in containers.
Both studies rely on manual detection and employ cloud-
based processing and storage. Any information that must be
accessed is transmitted from the cloud to the terminal, which
consumes significant time and resources. Due to the high
real-time requirements of container detection, this approach
is impractical. To address this limitation of cloud computing,
the authors of [9] proposed the concept of edge computing,
which enables effective data processing at the source, thereby
meeting real-time requirements.

To improve the efficiency and accuracy of container damage
detection, the current study develops a deep learning-based
method for performing two key tasks in real time: 1) detection
of containers and 2) detection of damages on containers using
video data. We opt for the YOLOvVI2 model, a state-of-the-
art object detection algorithm designed for fast and accurate
real-time applications. It is trained initially on the COCO128
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dataset for 100 epochs, optimizing parameters using tech-
niques like stochastic gradient descent (SGD) or its variants.
The models were then fine-tuned using the transfer learn-
ing methodology with real, manually-labeled datasets. Our
extensive experimental evaluation demonstrates our proposed
approach’s efficacy in terms of higher accuracy regarding
container and damage detection.

The remaining manuscript is organized as follows. Related
work is presented in Section II. Section III presents com-
prehensive details of the proposed methodology along with
a description of the employed datasets. Section IV shows
simulation settings along with results and discussion. Finally,
Section V concludes the study.

II. RELATED WORK

Several pieces of research focus on developing automatic
container and damage detection approaches. The most relevant
ones are reviewed and analyzed in this section.

A study disclosed in [10] proposes a system for container
damage detection using the correlation coefficient method.
The system can be set at the port gate to detect damage
in the arriving containers. Another study [11] develops a
container damage detection model by proposing an Fmask-
RCNN model. It is based on Mask-RCNN, introducing the
Res2Net101 framework and adding path fusion augmentation,
multiple fully connected layers, and fusion upsampling. The
Fmask-RCNN model is applied to the identification of port
container damage. Simulation results reveal that their proposed
model achieves a miss rate of 4.59% and an error rate of
18.88%. The authors of [6] developed an automatic system
by employing CNN and transfer learning from MobileNetV2
[12] and InceptionV3 [13] models to detect various types of
damage in maritime containers. They also develop a dataset
considering nine typical types of container damage. The pro-
posed model and the existing methods are trained on developed
data and then validated on test data. Results from experiments
demonstrate higher accuracy in damage detection compared to
prior approaches.

In [14], an automatic system (Spatial Structure Window plus
texture clustering by K-Means algorithm) is used to recognize
ISO-codes, improving the automatic methods that rapidly
identify containers. On the one hand, this method increases
the efficiency with which containers are registered after being
discharged (thus increasing the supply chain and international
trade efficiency). On the other hand, it eliminates the human-
led errors likely to occur before the process’s digitalization. In
[15], an automatic image recognition system is used together
with an adaptive control system based on neural networks for
container identification and its position for smooth container
landing on the platform. The benefits these authors mention
are more effective control, reduced waste, and more precise
measurements. A study presented in [16] develops a computer
vision-based model to minimize total costs at terminals and
reduce delay time by avoiding wrong container unloading.
For this, an alarm system is designed based on container color
detection. The proposed method alerts the quay crane operator
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if the detected color of a container does not comply with the
correct color. It is concluded from several experiments at the
Hong Kong Port that the proposed method can help in saving
resources, especially total annual costs up to 85%.

The authors of [17] propose a computer vision-based
method to determine the container location during the loading
operation and record it. This process is typically performed
by the human eye, and sometimes small miscalculations cause
dangerous consequences. For accurate location prediction, the
proposed method uses coastline, container edge line, and con-
tainer number as features to locate and analyze. Experimental
results from Ningbo-Zhoushan Port, China, show the proposed
method’s efficacy in accurate location prediction with mini-
mum processing time (less than 0.6 seconds). Another study
[18] also deals with container position prediction for gantry
cranes at the container terminals by proposing a computer
vision method. The primary objective of the newly developed
system is to provide precise parameters for container lifting
operations. The developed method utilizes cameras for collect-
ing container information, then the corners of the containers
are detected by employing a traditional image processing
algorithm and a convolutional neural network (CNN). Finally,
the offset distance and deflection angle are measured by
precise corner position. Results from simulations demonstrate
that the detection rate of the proposed system reaches 94%.
Huang et al. propose an accident prevention system based on
vision tracking during container lifting operations [19]. The
developed system uses a camera to detect and track the move-
ment of the truck wheel hub and the corners of the container to
be loaded. The proposed algorithm combines CNN, traditional
image processing, and a multi-target tracking algorithm to
calculate the displacement and posture information of the
truck during the operation. Experiment results show that the
proposed method’s measurement accuracy reaches 52mm.

ITII. ADOPTED METHODOLOGY AND DATASET
DESCRIPTION

The current study develops two models for container detec-
tion and damage detection for the Port of Limassol, Cyprus.
Both models utilize a pre-trained YOLOv12 model [20], [21],
which we fine-tuned on custom datasets created specifically for
this research. Separating the tasks into two models provides
key advantages: damage detection is only performed when a
container is first identified, reducing unnecessary computation
and enabling the second model to be more specialized and
focused. Further details regarding the datasets and the chosen
methodology are presented next.

A. Dataset for Container and Damage Detection

This study utilizes a real-world dataset from EUROGATE
Container Terminal Limassol, Cyprus. The dataset comprises
video data recorded by IPTV cameras installed on the quay
cranes responsible for loading/unloading containers to/from
vessels. The data from these videos was converted into image
frames, which were manually labeled when they contained
containers and container damage.
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1) Data Preparation: To prepare the data for the container
detection model, we collected videos taken throughout the year
2024, at different times of day and night, and under different
weather conditions (e.g., sunny, cloudy, raining). We converted
these videos into frames, after which we manually reviewed
each frame, defined a bounding box around the containers
using an open-source tool called Labellmg (also known as
Label Studio) [22]. A total of 1927 images with containers
were labeled, containing containers of different sizes (e.g., 20
ft, 40 ft), types (e.g., regular, reefer, open top), and colors
(e.g., yellow, blue, red).

For the damage detection model, we utilized images from
the container dataset. We followed the same labeling procedure
with video data as the first model, but for the types of
damages instead, as shown in Figure 1. We recorded three
main types of container damage that are of interested to the
container terminal: (a) holes, which represent visible holes
on the container surface; (b) bents/dents, which represent
deformation features such as concave damage, indentations, or
arching on the container surface; and (c) normal wear, which
represents minor damage such as cuts, cracks, rust, and other
similar features on the container surface. A total of 732 images
with damage were labeled.

2) Data Augmentation: Due to the limited amount of usable
data (especially for damaged containers), we employed data
augmentation techniques to expand our datasets. For both
the container and the damage datasets, we added images
using horizontal flips. In addition, we added custom-created
damage images, specifically for holes, as the available data was
severely limited due to it being a rare occurrence. By using
these methods, we successfully increased our datasets from
1927 and 732 images to 3854 and 1764 images, for container
and damage, respectively. Both datasets were then randomly
split into training, validation, and testing. The containers
dataset contains 2470, 598, and 786 images for training,
validation, and testing, respectively, while the damage dataset
includes 1442, 182, and 140 images for training, validation,
and testing, respectively.

B. Model Development

YOLOVI12 is a cutting-edge object detection algorithm engi-
neered to deliver speed and accuracy for real-time applications
[23]. Trained on the COCOI128 dataset over 100 epochs,
it refines parameters through techniques such as stochastic
gradient descent (SGD) or its derivatives. The YOLOvI12
model architecture is constructed upon a deep convolutional
neural network (CNN) that divides the image into grids and
predicts objects in each grid cell. Unlike traditional two-stage
detectors (e.g., R-CNN), YOLO is a single-stage detector,
making it fast and suitable for real-time applications like video
surveillance, autonomous driving, and robotics [24].

For the container detection model, we utilize our dataset
of container images to train a customized YOLOvI2 model.
The training process involved fine-tuning several key training
parameters to optimize performance: training for 80 epochs,
using an image size of 1024 pixels to capture detail, and setting

Q4. Gantry Cam2

0C4. Gantry Cam2

(b) Damage Dataset

Fig. 1: Sample of labeled images from (a) the container and
(b) the damage datasets

a batch size of 24 for efficient processing. We also built on the
YOLOV12n pre-trained model, chosen for its strong balance of
speed and capability. This setup allowed us to achieve accurate
and reliable container detection suited to our application.

For the damage detection scenario, we trained the same pre-
trained YOLOvI12n model on our damage dataset. We also
perform model optimization, like the one performed in the
first stage for the container identification model. The model
was trained on 1442 images and validated on 182 images.
The model is able to classify the type of damage into three
categories: Holes, Bents/Dents, and Normal Wear.

To improve our models’ performance, we tested different
configuration options provided by the YOLOv12 model, a very
common practice known as hyperparameter tuning. This in-
cluded adjusting the hue and saturation of the input images and
tuning the IoU threshold to better detect multiple containers
and damages that appear close together. The parameter ranges
and optimal values are listed in Table I, which are the same
for both the container and damage detection models.
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Fig. 2: Tracking experiment with reassignment box visible

TABLE I: Parameter ranges and optimal values for model
hyperparameter tuning

Parameter Tested Range Optimal Value
IoU Threshold 03 -0.7 0.5
HSV Saturation 0.1 -09 0.7
HSV Value 0.1-09 0.4

Image Resolution 640px, 1024px

C. Tracking Capabilities

YOLO includes integrated real-time tracking capabilities
by implementing BoT-SORT [25], an advanced multi-object
tracking algorithm that assigns a unique ID to each detected
container. This allows us to track individual containers over
time, recording details such as when each one was first and
last seen, how long it was present, and whether any damage
was detected. The model’s streamlined design and adjustable
tracking parameters make it adaptable to a wide range of
deployment scenarios, from edge devices to cloud-based APIs
[24].

One of the biggest difficulties faced was the occasional
view impairment due to other external factors (trucks, straddle
carriers, etc.) beyond our control, which could cause multiple
IDs of the same container. To combat this, we implemented
some extra checks needed before a container gets a new
ID assigned, like a minimum time between detections, using
detection coordinates before and after the object was lost, with
a dynamic confidence threshold that works in tandem with the
minimum time. In basic terms, if a container is lost for a few
frames, the model will reassign the same ID to the container as
the confidence is very high. But as time passes, the confidence
is reduced, and so does the probable location box of the object.

Figure 2 shows the tracking algorithm in action. In the first
frame, we have the detection of a container with an ID of
1. In the second frame, the container is lost due to a straddle
carrier passing over the container. The green outline represents
the confidence of a re-assignment if an object is found again.
The confidence is high because the container is lost for only a
few frames. In the third frame, some time has passed, so the
possible location of a reassignment converges towards the last
known position of the last detection. The container is found
again in the last frame, but only half of what it was. Because
the new detection is inside the reassignment box, we reassign
the same ID to the new detection. This algorithm has helped
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Fig. 3: Validation results for container detection

us solve many problems related to losing objects due to such
external factors.

IV. RESULTS AND DISCUSSION

This section presents the experimental evaluation results
of the container and damage detection models using the
YOLOvV12 model. The study uses real-world datasets from
the EUROGATE Container Terminal Limassol, Cyprus, as
discussed in Section III-A. The training and testing of the
models were performed on a server with two AMD EPYC
7352 24-core processors, 128 GB RAM, and an NVIDIA Tesla
T4 GPU running Ubuntu 22.04.4 LTS. We first present the
results for the container and damage detection models, and
then compare them against other state-of-the-art approaches.

A. Container Detection Model Evaluation

Figure 3 shows some validation results for the container
detection model, illustrating the model’s ability to detect and
bound containers in images, including scenarios with multi-
ple containers per image or partially-viewed containers. To
concretely evaluate the performance of the developed models,
we employ the mAP50 and mAP50-95 metrics, as these
are commonly used metrics in object detection models [26].
mAP50 measures the mean average precision at an intersection
over union (IoU) threshold of 0.5, indicating how accurately
the model detects objects with at least 50% overlap between
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Fig. 4: mAP50 and mAP50-95 for container detection during
training (the x-axis denotes the number of epochs)
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Fig. 5: F1 score for container detection across varying confi-
dence thresholds

predicted and ground truth boxes. mAP50-95 measures the
mean average precision across multiple IoU thresholds ranging
from 0.5 to 0.95. We also investigate the F1 score, which
represents the harmonic mean of the precision and recall. The
selection of these evaluation metrics collectively contributes to
a robust and comprehensive evaluation of the model’s efficacy.

The evaluation of the container detection model, based
on the mAP50 and mAP50-95 metrics, indicates remarkable
performance. As illustrated in Figure 4, the model achieved
mAP50 scores ranging from 0.96 to 0.99 after 10 epochs and
mAP50-95 scores from 0.91 to 0.93 after 20 epochs. Notably,
the model reached its peak performance at the 35th epoch,
where it recorded a mAP50 score of 0.9921 and a mAP50-95
score of 0.9331. The initial drops in both figures are common
and reflect sensitivity to noise or random initialization, but
both metrics stabilize quickly. These high scores demonstrate
the model’s robustness and precision, highlighting its efficacy
and reliability in container detection. Even with the relatively
low amount of data, our developed model performs well in
detecting containers.
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Fig. 6: Confusion matrix for container detection

The results depicted in Figure 5 show the F1 scores of the
container detection model across varying confidence thresh-
olds, providing insights into the model’s balance between
false positives and false negatives. The model achieves high
performance, with a near-perfect F1 score at the confidence
thresholds between 0.5 and 0.8. This indicates a strong balance
between precision and recall, confirming the model’s reliability
in detecting containers accurately. The consistently high F1
scores across thresholds further demonstrate the robustness of
the detection system.

This study also constructs a confusion matrix to validate
the performance of the container detection model, shown in
Figure 6. A confusion matrix serves as a valuable tool to
assess the prediction/detection accuracy of any model, and it
supports visual and robust validation of the approach. This
matrix enables the comparison of actual and predicted values
for each class within the dataset, providing valuable insights
into key metrics such as true positives, true negatives, false
positives, and false negatives. Figure 6 illustrates that the
container detection model only misclassified 8 images (as false
negatives) out of the 786 images of the test set, validating the
strong detection power of the model.

B. Damage Detection Model Evaluation

Figure 7 shows some results for the damage detection
model, illustrating that the model can detect and differentiate
various types of damages, as well as detect multiple damages
per container (if any).

Figure 8 shows the results of the container damage de-
tection model. The damage detection model achieved a final
mAP50 of 0.685 and mAP50-95 of 0.458 after 80 training
epochs, indicating moderate detection accuracy. The metrics
improved steadily throughout training, suggesting a smooth
training process. The main reasons for the lower performance
compared to the container detection model are the limited
size of the dataset, as well as the far more complicated
detection problem, since container damages are often small
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Fig. 8: mAP50 and mAP50-95 for damage detection during
training (the x-axis denotes the number of epochs)

in size (compared to a container) and hard to distinguish
from the rough container surface. However, this performance
is significantly better than the damage detection achieved by
other state-of-the-art models, as we will see in Section IV-D.

The results depicted in Figure 9 show the F1 score of the
damage detection model across varying confidence thresholds.
While the average F1 score peaks at 0.75 at a 0.27 confidence
threshold, the model achieves much higher F1 scores for
detecting the more important damages of bents/dents (0.92)
and holes (0.88) at the 0.5 confidence threshold. The main
difficulty for the model is the detection of normal wear, which
is typically much more subtle compared to the other damages.
The lower F1 scores are attributed to the limited dataset, as
well as the more complex nature of damages (different sizes,
types, locations, etc.).

Figure 10 shows the confusion matrix of the damage detec-
tion model based on the testing data, which again shows the
good performance of the model in detecting and classifying
the types of damages found. The confusion matrix reveals that
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Fig. 9: F1 score for damage detection across varying confi-
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Fig. 10: Confusion matrix for multi-class damage detection

the model achieves high accuracy for the bent/dent damages
(40/44 correct) and performs reasonably well for normal wear
(38/50 correct). The most frequent misclassifications occur
when the model fails to detect some minor normal wear
areas. The model also exhibits some confusion between the
hole and the other damage types, mainly due to the small
training and testing sizes. These results indicate some areas
for improvement in discriminative learning and class boundary
clarity.

Driven by the above results and the small difficulties ob-
served in detecting specific damage types, we also developed
a binary damage detection model, which detects whether
damage is present without attempting to categorize it. The
key motivation behind this approach was to evaluate whether
combining all damage types into a single class could improve
the overall detection performance by simplifying the task and
leveraging a larger combined dataset.

Figure 11 shows the mAP50 and mAP50-95 metrics for
the binary damage detection model. When comparing Figures
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Fig. 11: mAP50 and mAP50-95 for binary damage detection
during training (the x-axis denotes the number of epochs)
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8 and 11, we observe that the binary model achieved higher
mAP50 and mAP50-95 scores. Specifically, the binary model
reached a final mAP50 of 0.79 and a mAP50-95 of 0.48 after
80 training epochs, as opposed to 0.69 and 0.46, respectively,
for the multi-class model. This indicates that a simplified
binary formulation benefits from greater sample density per
class and suggests that our multi-class model could also benefit
from a larger, more diverse dataset.

The confusion matrix for the binary damage detection is
shown in Figure 12, revealing that the model achieved a
precision of 92.5%, a recall of 81.1%, and an Fl-score of
86.4%. These values reflect high confidence in positive pre-
dictions, but also reveal that 20 out of 106 damaged instances
were missed. While the binary damage/no-damage model
achieved high performance, the multi-class model revealed
important distinctions in model performance across specific
damage types. In particular, the model performed very well
on bent/dent detections but struggled to identify hole instances
reliably. This suggests that while binary classification may
be sufficient for general screening, multi-class classification

TABLE II: Inference speed and latency breakdown on two
hardware setups

Metric Jetson AGX Orin Server Machine
GPU Integrated NVIDIA T4
Container Detection (ms) 37.5 25.0
Damage Detection (ms) 18.8 12.5
Other Processing (ms) 6.2 4.2

Total Frame Time (ms) 62.5 41.7
Achieved FPS 16 24

is essential when damage type differentiation is operationally
important.

C. Model Inference Speed

Minimizing latency was a key requirement for these models,
given their intended use in real-time applications. To evaluate
performance, we benchmarked the tracking system along with
container and damage detection on two different machines: (i)
the server machine that was used to train the models, and (ii)
a Jetson AGX Orin 64GB device that will be deployed on the
quay crane for processing the video stream from the IPTV
cameras in real time.

Table II shows the average latency (in ms) required to
detect a container, detect damages on a container, and other
required processing (e.g., split the frame, track the container,
output result, etc.). Latency values (ms) are approximate and
estimated based on the proportional contribution of each com-
ponent to the total frame processing time at 1024x1024 input
resolution. Overall, even the more resource-constrained device,
i.e., the Jetson AGX Orin, can fully process a frame in 62.5
ms, which showcases the lightweight nature of the developed
models. Note that the input video streams are recorded at six
frames per second (FPS). As shown in Table II, both the Jetson
AGX Orin and the server equipped with an NVIDIA T4 GPU
achieved inference speeds significantly higher than the input
rate, at 16 FPS and 24 FPS, respectively. This performance
margin enables the system to process multiple video streams
concurrently while maintaining real-time responsiveness.

D. Comparison with Other Work

This section compares our approach with the latest state-
of-the-art models proposed in [6], specifically MobileNetV2
[12] and InceptionV3 [13]. To ensure a fair and meaningful
comparison, we made several adjustments to our YOLOv12
model. Since MobileNetV2 and InceptionV3 are classification
models that assign a single label to each image, we modified
YOLOVI12 to output only the most important class per image
(holes, bents/dents, normal wear), effectively aligning its out-
put format with that of the classification models. This allowed
us to directly compare classification performance across all
models under similar evaluation conditions.

Table III summarizes the classification performance of Mo-
bileNetV2, InceptionV3, and YOLOV12 in terms of precision,
recall, and F1 score. The results clearly show that YOLOv12
significantly outperforms both MobileNetV2 and InceptionV3
across all classes and evaluation metrics. YOLOvV12 achieved
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TABLE III: Multi-class damage detection performance comparison across models

Class MobileNetV2 InceptionV3 YOLOv12
Prec. Rec. F1 Pred/Real  Prec. Rec. F1 Pred/Real  Prec. Rec. F1 Pred/Real

Normal Wear 0.43 0.26 0.33 10/38 056 0.13 0.21 5/38 0.85 0.70 0.77 28/38
Bent/Dent 0.56 0.18 0.27 10/56 0.66 0.52 0.58 29/56 0.91 0.89  0.90 50/56
Hole 0.10 033 0.15 4/12 0.10 042 0.16 5/12 090 0.75 0.82 9/12
No Damage 0.00 0.00 0.00 0/34 0.20 033 0.25 1/34 0.69 073 0.71 29/34
Macro Avg 027 0.19 0.19 - 0.38 0.35 0.30 - 084 0.77 0.80 -
Weighted Avg  0.45 022 0.27 - 0.55 0.37 0.40 - 0.84 0.80 0.82 -

Note: Prec. = Precision, Rec. = Recall, FI = Fl-score, Pred/Real = Number of predicted samples over ground truth count for each class.

TABLE IV: Binary damage detection performance comparison across models

Class MobileNetV2 InceptionV3 YOLOv12

Prec. Rec. F1 Pred/Real Prec. Rec. F1 Pred/Real Prec. Rec. F1 Pred/Real
Damage 0.72 059 0.65 63/106 0.78 066 0.71 70/106 089 0.82 0.85 87/106
No Damage 0.17 026 021 9/34 028 041 033 14/34 0.55 0.68 0.61 23/34
Macro Avg 044 043 043 - 0.53 0.54 0.52 - 072 075 0.73 -
Weighted Avg  0.58 0.51 0.54 - 0.66 060 0.62 - 082 079 0.79 -

Note: Prec. = Precision, Rec. = Recall, FI = Fl-score, Pred/Real = Number of predicted samples over ground truth count for each class.

a macro-average Fl-score of 0.80 and a weighted average
of 0.82, while InceptionV3 reached 0.30 and 0.40, and Mo-
bileNetV2 only managed 0.19 and 0.27, respectively. A closer
look reveals that both MobileNetV2 and InceptionV3 struggled
to correctly identify images with no visible damage, often
misclassifying them as one of the damage types. YOLOvVI12,
on the other hand, maintained a relatively high Fl-score in
these cases by correctly predicting the absence of damage in
most of the 34 images.

An important factor influencing these results is the input
resolution of each model. MobileNetV?2 operates on 224x224
pixel images, InceptionV3 on 299x299, and YOLOv12 on
1024x1024. The performance of the models shows a clear
correlation with input size: larger inputs allow more detailed
spatial information to be retained, which is especially impor-
tant for detecting subtle or localized damage features. This
linear relationship between input resolution and classification
performance highlights the importance of high-resolution pro-
cessing in damage detection tasks.

To further confirm our results, we ran the same tests by
creating models for container detection and binary damage
detection. The performance metrics followed the same pattern
shown in Table IV for the binary damage detection models.
MobileNetV2 and InceptionV3 achieved better results in the
binary case compared to the multi-class case, but they were
still inferior to the results yielded by our YOLOv12 models.

In summary, YOLOvV12 not only provides stronger perfor-
mance due to its architecture but also benefits from higher
input resolution, making it more reliable in distinguishing
between different damage types and identifying undamaged

cases correctly. In addition, MobileNetV2 and InceptionV3
can only detect the presence of damage on a container, whereas
our model can (i) detect multiple damage areas on the same
container (if there are any), and (ii) localize the damage
by outputting a bounding box around each damaged area.
Hence, our proposed model not only offers higher detection
performance but also offers additional useful functionality.

V. CONCLUSION

In this study, YOLOv12-based container detection and
damage detection models have been proposed to enhance
optimization at the container terminal. The primary aim of
this study is to reduce manual operations by humans in a
risky environment by proposing automated systems to perform
the same tasks. The proposed models are trained using real-
world data collected from the EUROGATE Container Terminal
Limassol, Cyprus. Due to the low amount of available data,
this study also adopts data augmentation to increase the
dataset. Finally, the proposed models are validated on test data,
and the results show the high performance of the proposed
models in terms of high accuracy and low error rate. The
proposed models offer significant advantages over the existing
state-of-the-art approaches, both in terms of higher detection
accuracy as well as providing new functionalities, including
tracking multiple containers in the same video frame and
detecting multiple damages (of potentially different types) on
the same container.

In future work, we aim to leverage the current damage
detection model in a feedback loop that will automatically
identify and incorporate new instances of container damage,
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thereby expanding our dataset and improving model perfor-
mance over time. In addition, we plan to extend the system’s
capabilities to detect whether container seals are intact or
broken. Finally, we intend to integrate the detection models
into a real-time monitoring system that operates through port
IP network cameras and interfaces directly with the port
management infrastructure.
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