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Abstract—Efficient container handling and early damage de-
tection are critical for minimizing operational delays, reducing
costs, and ensuring safety in global maritime logistics. This
work presents a deep learning-based methodology for real-time
container tracking and automated damage detection during crane
unloading operations at container terminals. We develop and
deploy two specialized YOLOv12-based object detection models:
one for identifying containers in motion and another for detecting
structural damages such as bents, dents, and holes. Our models
are trained and evaluated on a real-world dataset curated from
video feeds captured at the EUROGATE Container Terminal in
Limassol, Cyprus. The system is designed for robust performance
under realistic terminal conditions, including variable lighting
and motion. Our models achieve high detection accuracy, with
a mAP50 of 0.99 for container detection and 0.75 for dam-
age detection, substantially outperforming existing benchmarks.
These results highlight the practical potential of our method for
improving efficiency and safety in automated maritime logistics.

I. INTRODUCTION

C
ONTAINERS play a pivotal role in global maritime

commerce by supporting the movement of incoming,

outgoing, and transshipped goods. Due to the significant

increase in international seaborne containerized trade volumes,

port operators must improve and automate various terminal

operations to meet the growing demand and reduce safety risks

due to human-computer cross-operations [1]. Approximately

20 million active containers are in use worldwide, completing

over 200 million trips annually. Ports serve as central hubs

where cargo from around the world converges as it enters or

exits. These terminals are responsible for securely loading,

unloading, and handling containers. However, the high volume

of containers passing through makes it challenging to track

damaged ones. Most damage detection methods are based on

manual inspection around the globe [2], [3], which causes

low efficiency, low accuracy, slow speed, high cost, and safety

risks. Hence, an efficient inspection of the container body is

essential to reduce disputes between container terminals and

transportation enterprises due to damage to containers [4]. The

common damaged types of containers include dents, scratches,

distortions, holes, convex, damage to container doors, etc.

[4]. These damages can result from various factors, including

harsh weather conditions, poor transportation, or inadequate

storage at the terminal. If the port fails to identify damaged

containers upon unloading, the shipping company may impose

fines, claiming the damage occurred within the port rather than

beforehand.

In current research studies, computer vision and ma-

chine/deep learning methods are commonly used to detect

damages in containers at seaports [2]. Machine learning meth-

ods are extensively adopted for object detection in images and

videos in various fields, including medical, security, military,

construction, and transportation [5]. To deal with damage

detection in maritime containers at the ports, several maritime

companies, stakeholders, and researchers started investing in

automatic methods to detect damaged containers [4], [6]. For

instance, the authors of [7] propose an image processing-

based method (e.g., looking at hue, saturation, and intensity)

using sensors and cameras. Another study [8] employs a

phase correlation approach to detect damage in containers.

Both studies rely on manual detection and employ cloud-

based processing and storage. Any information that must be

accessed is transmitted from the cloud to the terminal, which

consumes significant time and resources. Due to the high

real-time requirements of container detection, this approach

is impractical. To address this limitation of cloud computing,

the authors of [9] proposed the concept of edge computing,

which enables effective data processing at the source, thereby

meeting real-time requirements.

To improve the efficiency and accuracy of container damage

detection, the current study develops a deep learning-based

method for performing two key tasks in real time: 1) detection

of containers and 2) detection of damages on containers using

video data. We opt for the YOLOv12 model, a state-of-the-

art object detection algorithm designed for fast and accurate

real-time applications. It is trained initially on the COCO128
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dataset for 100 epochs, optimizing parameters using tech-

niques like stochastic gradient descent (SGD) or its variants.

The models were then fine-tuned using the transfer learn-

ing methodology with real, manually-labeled datasets. Our

extensive experimental evaluation demonstrates our proposed

approach’s efficacy in terms of higher accuracy regarding

container and damage detection.

The remaining manuscript is organized as follows. Related

work is presented in Section II. Section III presents com-

prehensive details of the proposed methodology along with

a description of the employed datasets. Section IV shows

simulation settings along with results and discussion. Finally,

Section V concludes the study.

II. RELATED WORK

Several pieces of research focus on developing automatic

container and damage detection approaches. The most relevant

ones are reviewed and analyzed in this section.

A study disclosed in [10] proposes a system for container

damage detection using the correlation coefficient method.

The system can be set at the port gate to detect damage

in the arriving containers. Another study [11] develops a

container damage detection model by proposing an Fmask-

RCNN model. It is based on Mask-RCNN, introducing the

Res2Net101 framework and adding path fusion augmentation,

multiple fully connected layers, and fusion upsampling. The

Fmask-RCNN model is applied to the identification of port

container damage. Simulation results reveal that their proposed

model achieves a miss rate of 4.59% and an error rate of

18.88%. The authors of [6] developed an automatic system

by employing CNN and transfer learning from MobileNetV2

[12] and InceptionV3 [13] models to detect various types of

damage in maritime containers. They also develop a dataset

considering nine typical types of container damage. The pro-

posed model and the existing methods are trained on developed

data and then validated on test data. Results from experiments

demonstrate higher accuracy in damage detection compared to

prior approaches.

In [14], an automatic system (Spatial Structure Window plus

texture clustering by K-Means algorithm) is used to recognize

ISO-codes, improving the automatic methods that rapidly

identify containers. On the one hand, this method increases

the efficiency with which containers are registered after being

discharged (thus increasing the supply chain and international

trade efficiency). On the other hand, it eliminates the human-

led errors likely to occur before the process’s digitalization. In

[15], an automatic image recognition system is used together

with an adaptive control system based on neural networks for

container identification and its position for smooth container

landing on the platform. The benefits these authors mention

are more effective control, reduced waste, and more precise

measurements. A study presented in [16] develops a computer

vision-based model to minimize total costs at terminals and

reduce delay time by avoiding wrong container unloading.

For this, an alarm system is designed based on container color

detection. The proposed method alerts the quay crane operator

if the detected color of a container does not comply with the

correct color. It is concluded from several experiments at the

Hong Kong Port that the proposed method can help in saving

resources, especially total annual costs up to 85%.

The authors of [17] propose a computer vision-based

method to determine the container location during the loading

operation and record it. This process is typically performed

by the human eye, and sometimes small miscalculations cause

dangerous consequences. For accurate location prediction, the

proposed method uses coastline, container edge line, and con-

tainer number as features to locate and analyze. Experimental

results from Ningbo-Zhoushan Port, China, show the proposed

method’s efficacy in accurate location prediction with mini-

mum processing time (less than 0.6 seconds). Another study

[18] also deals with container position prediction for gantry

cranes at the container terminals by proposing a computer

vision method. The primary objective of the newly developed

system is to provide precise parameters for container lifting

operations. The developed method utilizes cameras for collect-

ing container information, then the corners of the containers

are detected by employing a traditional image processing

algorithm and a convolutional neural network (CNN). Finally,

the offset distance and deflection angle are measured by

precise corner position. Results from simulations demonstrate

that the detection rate of the proposed system reaches 94%.

Huang et al. propose an accident prevention system based on

vision tracking during container lifting operations [19]. The

developed system uses a camera to detect and track the move-

ment of the truck wheel hub and the corners of the container to

be loaded. The proposed algorithm combines CNN, traditional

image processing, and a multi-target tracking algorithm to

calculate the displacement and posture information of the

truck during the operation. Experiment results show that the

proposed method’s measurement accuracy reaches 52mm.

III. ADOPTED METHODOLOGY AND DATASET

DESCRIPTION

The current study develops two models for container detec-

tion and damage detection for the Port of Limassol, Cyprus.

Both models utilize a pre-trained YOLOv12 model [20], [21],

which we fine-tuned on custom datasets created specifically for

this research. Separating the tasks into two models provides

key advantages: damage detection is only performed when a

container is first identified, reducing unnecessary computation

and enabling the second model to be more specialized and

focused. Further details regarding the datasets and the chosen

methodology are presented next.

A. Dataset for Container and Damage Detection

This study utilizes a real-world dataset from EUROGATE

Container Terminal Limassol, Cyprus. The dataset comprises

video data recorded by IPTV cameras installed on the quay

cranes responsible for loading/unloading containers to/from

vessels. The data from these videos was converted into image

frames, which were manually labeled when they contained

containers and container damage.
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1) Data Preparation: To prepare the data for the container

detection model, we collected videos taken throughout the year

2024, at different times of day and night, and under different

weather conditions (e.g., sunny, cloudy, raining). We converted

these videos into frames, after which we manually reviewed

each frame, defined a bounding box around the containers

using an open-source tool called LabelImg (also known as

Label Studio) [22]. A total of 1927 images with containers

were labeled, containing containers of different sizes (e.g., 20

ft, 40 ft), types (e.g., regular, reefer, open top), and colors

(e.g., yellow, blue, red).

For the damage detection model, we utilized images from

the container dataset. We followed the same labeling procedure

with video data as the first model, but for the types of

damages instead, as shown in Figure 1. We recorded three

main types of container damage that are of interested to the

container terminal: (a) holes, which represent visible holes

on the container surface; (b) bents/dents, which represent

deformation features such as concave damage, indentations, or

arching on the container surface; and (c) normal wear, which

represents minor damage such as cuts, cracks, rust, and other

similar features on the container surface. A total of 732 images

with damage were labeled.

2) Data Augmentation: Due to the limited amount of usable

data (especially for damaged containers), we employed data

augmentation techniques to expand our datasets. For both

the container and the damage datasets, we added images

using horizontal flips. In addition, we added custom-created

damage images, specifically for holes, as the available data was

severely limited due to it being a rare occurrence. By using

these methods, we successfully increased our datasets from

1927 and 732 images to 3854 and 1764 images, for container

and damage, respectively. Both datasets were then randomly

split into training, validation, and testing. The containers

dataset contains 2470, 598, and 786 images for training,

validation, and testing, respectively, while the damage dataset

includes 1442, 182, and 140 images for training, validation,

and testing, respectively.

B. Model Development

YOLOv12 is a cutting-edge object detection algorithm engi-

neered to deliver speed and accuracy for real-time applications

[23]. Trained on the COCO128 dataset over 100 epochs,

it refines parameters through techniques such as stochastic

gradient descent (SGD) or its derivatives. The YOLOv12

model architecture is constructed upon a deep convolutional

neural network (CNN) that divides the image into grids and

predicts objects in each grid cell. Unlike traditional two-stage

detectors (e.g., R-CNN), YOLO is a single-stage detector,

making it fast and suitable for real-time applications like video

surveillance, autonomous driving, and robotics [24].

For the container detection model, we utilize our dataset

of container images to train a customized YOLOv12 model.

The training process involved fine-tuning several key training

parameters to optimize performance: training for 80 epochs,

using an image size of 1024 pixels to capture detail, and setting

(a) Container Dataset

(b) Damage Dataset

Fig. 1: Sample of labeled images from (a) the container and

(b) the damage datasets

a batch size of 24 for efficient processing. We also built on the

YOLOv12n pre-trained model, chosen for its strong balance of

speed and capability. This setup allowed us to achieve accurate

and reliable container detection suited to our application.

For the damage detection scenario, we trained the same pre-

trained YOLOv12n model on our damage dataset. We also

perform model optimization, like the one performed in the

first stage for the container identification model. The model

was trained on 1442 images and validated on 182 images.

The model is able to classify the type of damage into three

categories: Holes, Bents/Dents, and Normal Wear.

To improve our models’ performance, we tested different

configuration options provided by the YOLOv12 model, a very

common practice known as hyperparameter tuning. This in-

cluded adjusting the hue and saturation of the input images and

tuning the IoU threshold to better detect multiple containers

and damages that appear close together. The parameter ranges

and optimal values are listed in Table I, which are the same

for both the container and damage detection models.
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Fig. 2: Tracking experiment with reassignment box visible

TABLE I: Parameter ranges and optimal values for model

hyperparameter tuning

Parameter Tested Range Optimal Value

IoU Threshold 0.3 – 0.7 0.5
HSV Saturation 0.1 – 0.9 0.7
HSV Value 0.1 – 0.9 0.4
Image Resolution 640px, 1024px 1024px

C. Tracking Capabilities

YOLO includes integrated real-time tracking capabilities

by implementing BoT-SORT [25], an advanced multi-object

tracking algorithm that assigns a unique ID to each detected

container. This allows us to track individual containers over

time, recording details such as when each one was first and

last seen, how long it was present, and whether any damage

was detected. The model’s streamlined design and adjustable

tracking parameters make it adaptable to a wide range of

deployment scenarios, from edge devices to cloud-based APIs

[24].

One of the biggest difficulties faced was the occasional

view impairment due to other external factors (trucks, straddle

carriers, etc.) beyond our control, which could cause multiple

IDs of the same container. To combat this, we implemented

some extra checks needed before a container gets a new

ID assigned, like a minimum time between detections, using

detection coordinates before and after the object was lost, with

a dynamic confidence threshold that works in tandem with the

minimum time. In basic terms, if a container is lost for a few

frames, the model will reassign the same ID to the container as

the confidence is very high. But as time passes, the confidence

is reduced, and so does the probable location box of the object.

Figure 2 shows the tracking algorithm in action. In the first

frame, we have the detection of a container with an ID of

1. In the second frame, the container is lost due to a straddle

carrier passing over the container. The green outline represents

the confidence of a re-assignment if an object is found again.

The confidence is high because the container is lost for only a

few frames. In the third frame, some time has passed, so the

possible location of a reassignment converges towards the last

known position of the last detection. The container is found

again in the last frame, but only half of what it was. Because

the new detection is inside the reassignment box, we reassign

the same ID to the new detection. This algorithm has helped

Fig. 3: Validation results for container detection

us solve many problems related to losing objects due to such

external factors.

IV. RESULTS AND DISCUSSION

This section presents the experimental evaluation results

of the container and damage detection models using the

YOLOv12 model. The study uses real-world datasets from

the EUROGATE Container Terminal Limassol, Cyprus, as

discussed in Section III-A. The training and testing of the

models were performed on a server with two AMD EPYC

7352 24-core processors, 128 GB RAM, and an NVIDIA Tesla

T4 GPU running Ubuntu 22.04.4 LTS. We first present the

results for the container and damage detection models, and

then compare them against other state-of-the-art approaches.

A. Container Detection Model Evaluation

Figure 3 shows some validation results for the container

detection model, illustrating the model’s ability to detect and

bound containers in images, including scenarios with multi-

ple containers per image or partially-viewed containers. To

concretely evaluate the performance of the developed models,

we employ the mAP50 and mAP50-95 metrics, as these

are commonly used metrics in object detection models [26].

mAP50 measures the mean average precision at an intersection

over union (IoU) threshold of 0.5, indicating how accurately

the model detects objects with at least 50% overlap between

280 PROCEEDINGS OF THE FEDCSIS. KRAKÓW, POLAND, 2025



Fig. 4: mAP50 and mAP50-95 for container detection during

training (the x-axis denotes the number of epochs)

Fig. 5: F1 score for container detection across varying confi-

dence thresholds

predicted and ground truth boxes. mAP50-95 measures the

mean average precision across multiple IoU thresholds ranging

from 0.5 to 0.95. We also investigate the F1 score, which

represents the harmonic mean of the precision and recall. The

selection of these evaluation metrics collectively contributes to

a robust and comprehensive evaluation of the model’s efficacy.

The evaluation of the container detection model, based

on the mAP50 and mAP50-95 metrics, indicates remarkable

performance. As illustrated in Figure 4, the model achieved

mAP50 scores ranging from 0.96 to 0.99 after 10 epochs and

mAP50-95 scores from 0.91 to 0.93 after 20 epochs. Notably,

the model reached its peak performance at the 35th epoch,

where it recorded a mAP50 score of 0.9921 and a mAP50-95

score of 0.9331. The initial drops in both figures are common

and reflect sensitivity to noise or random initialization, but

both metrics stabilize quickly. These high scores demonstrate

the model’s robustness and precision, highlighting its efficacy

and reliability in container detection. Even with the relatively

low amount of data, our developed model performs well in

detecting containers.

Fig. 6: Confusion matrix for container detection

The results depicted in Figure 5 show the F1 scores of the

container detection model across varying confidence thresh-

olds, providing insights into the model’s balance between

false positives and false negatives. The model achieves high

performance, with a near-perfect F1 score at the confidence

thresholds between 0.5 and 0.8. This indicates a strong balance

between precision and recall, confirming the model’s reliability

in detecting containers accurately. The consistently high F1

scores across thresholds further demonstrate the robustness of

the detection system.

This study also constructs a confusion matrix to validate

the performance of the container detection model, shown in

Figure 6. A confusion matrix serves as a valuable tool to

assess the prediction/detection accuracy of any model, and it

supports visual and robust validation of the approach. This

matrix enables the comparison of actual and predicted values

for each class within the dataset, providing valuable insights

into key metrics such as true positives, true negatives, false

positives, and false negatives. Figure 6 illustrates that the

container detection model only misclassified 8 images (as false

negatives) out of the 786 images of the test set, validating the

strong detection power of the model.

B. Damage Detection Model Evaluation

Figure 7 shows some results for the damage detection

model, illustrating that the model can detect and differentiate

various types of damages, as well as detect multiple damages

per container (if any).

Figure 8 shows the results of the container damage de-

tection model. The damage detection model achieved a final

mAP50 of 0.685 and mAP50-95 of 0.458 after 80 training

epochs, indicating moderate detection accuracy. The metrics

improved steadily throughout training, suggesting a smooth

training process. The main reasons for the lower performance

compared to the container detection model are the limited

size of the dataset, as well as the far more complicated

detection problem, since container damages are often small
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Fig. 7: Validation results for damage detection

Fig. 8: mAP50 and mAP50-95 for damage detection during

training (the x-axis denotes the number of epochs)

in size (compared to a container) and hard to distinguish

from the rough container surface. However, this performance

is significantly better than the damage detection achieved by

other state-of-the-art models, as we will see in Section IV-D.

The results depicted in Figure 9 show the F1 score of the

damage detection model across varying confidence thresholds.

While the average F1 score peaks at 0.75 at a 0.27 confidence

threshold, the model achieves much higher F1 scores for

detecting the more important damages of bents/dents (0.92)

and holes (0.88) at the 0.5 confidence threshold. The main

difficulty for the model is the detection of normal wear, which

is typically much more subtle compared to the other damages.

The lower F1 scores are attributed to the limited dataset, as

well as the more complex nature of damages (different sizes,

types, locations, etc.).

Figure 10 shows the confusion matrix of the damage detec-

tion model based on the testing data, which again shows the

good performance of the model in detecting and classifying

the types of damages found. The confusion matrix reveals that

Fig. 9: F1 score for damage detection across varying confi-

dence thresholds

Fig. 10: Confusion matrix for multi-class damage detection

the model achieves high accuracy for the bent/dent damages

(40/44 correct) and performs reasonably well for normal wear

(38/50 correct). The most frequent misclassifications occur

when the model fails to detect some minor normal wear

areas. The model also exhibits some confusion between the

hole and the other damage types, mainly due to the small

training and testing sizes. These results indicate some areas

for improvement in discriminative learning and class boundary

clarity.

Driven by the above results and the small difficulties ob-

served in detecting specific damage types, we also developed

a binary damage detection model, which detects whether

damage is present without attempting to categorize it. The

key motivation behind this approach was to evaluate whether

combining all damage types into a single class could improve

the overall detection performance by simplifying the task and

leveraging a larger combined dataset.

Figure 11 shows the mAP50 and mAP50-95 metrics for

the binary damage detection model. When comparing Figures
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Fig. 11: mAP50 and mAP50-95 for binary damage detection

during training (the x-axis denotes the number of epochs)

Fig. 12: Confusion matrix for binary damage detection

8 and 11, we observe that the binary model achieved higher

mAP50 and mAP50-95 scores. Specifically, the binary model

reached a final mAP50 of 0.79 and a mAP50-95 of 0.48 after

80 training epochs, as opposed to 0.69 and 0.46, respectively,

for the multi-class model. This indicates that a simplified

binary formulation benefits from greater sample density per

class and suggests that our multi-class model could also benefit

from a larger, more diverse dataset.

The confusion matrix for the binary damage detection is

shown in Figure 12, revealing that the model achieved a

precision of 92.5%, a recall of 81.1%, and an F1-score of

86.4%. These values reflect high confidence in positive pre-

dictions, but also reveal that 20 out of 106 damaged instances

were missed. While the binary damage/no-damage model

achieved high performance, the multi-class model revealed

important distinctions in model performance across specific

damage types. In particular, the model performed very well

on bent/dent detections but struggled to identify hole instances

reliably. This suggests that while binary classification may

be sufficient for general screening, multi-class classification

TABLE II: Inference speed and latency breakdown on two

hardware setups

Metric Jetson AGX Orin Server Machine

GPU Integrated NVIDIA T4
Container Detection (ms) 37.5 25.0
Damage Detection (ms) 18.8 12.5
Other Processing (ms) 6.2 4.2
Total Frame Time (ms) 62.5 41.7
Achieved FPS 16 24

is essential when damage type differentiation is operationally

important.

C. Model Inference Speed

Minimizing latency was a key requirement for these models,

given their intended use in real-time applications. To evaluate

performance, we benchmarked the tracking system along with

container and damage detection on two different machines: (i)

the server machine that was used to train the models, and (ii)

a Jetson AGX Orin 64GB device that will be deployed on the

quay crane for processing the video stream from the IPTV

cameras in real time.

Table II shows the average latency (in ms) required to

detect a container, detect damages on a container, and other

required processing (e.g., split the frame, track the container,

output result, etc.). Latency values (ms) are approximate and

estimated based on the proportional contribution of each com-

ponent to the total frame processing time at 1024×1024 input

resolution. Overall, even the more resource-constrained device,

i.e., the Jetson AGX Orin, can fully process a frame in 62.5

ms, which showcases the lightweight nature of the developed

models. Note that the input video streams are recorded at six

frames per second (FPS). As shown in Table II, both the Jetson

AGX Orin and the server equipped with an NVIDIA T4 GPU

achieved inference speeds significantly higher than the input

rate, at 16 FPS and 24 FPS, respectively. This performance

margin enables the system to process multiple video streams

concurrently while maintaining real-time responsiveness.

D. Comparison with Other Work

This section compares our approach with the latest state-

of-the-art models proposed in [6], specifically MobileNetV2

[12] and InceptionV3 [13]. To ensure a fair and meaningful

comparison, we made several adjustments to our YOLOv12

model. Since MobileNetV2 and InceptionV3 are classification

models that assign a single label to each image, we modified

YOLOv12 to output only the most important class per image

(holes, bents/dents, normal wear), effectively aligning its out-

put format with that of the classification models. This allowed

us to directly compare classification performance across all

models under similar evaluation conditions.

Table III summarizes the classification performance of Mo-

bileNetV2, InceptionV3, and YOLOv12 in terms of precision,

recall, and F1 score. The results clearly show that YOLOv12

significantly outperforms both MobileNetV2 and InceptionV3

across all classes and evaluation metrics. YOLOv12 achieved
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TABLE III: Multi-class damage detection performance comparison across models

Class
MobileNetV2 InceptionV3 YOLOv12

Prec. Rec. F1 Pred/Real Prec. Rec. F1 Pred/Real Prec. Rec. F1 Pred/Real

Normal Wear 0.43 0.26 0.33 10/38 0.56 0.13 0.21 5/38 0.85 0.70 0.77 28/38
Bent/Dent 0.56 0.18 0.27 10/56 0.66 0.52 0.58 29/56 0.91 0.89 0.90 50/56
Hole 0.10 0.33 0.15 4/12 0.10 0.42 0.16 5/12 0.90 0.75 0.82 9/12
No Damage 0.00 0.00 0.00 0/34 0.20 0.33 0.25 1/34 0.69 0.73 0.71 29/34

Macro Avg 0.27 0.19 0.19 – 0.38 0.35 0.30 – 0.84 0.77 0.80 –
Weighted Avg 0.45 0.22 0.27 – 0.55 0.37 0.40 – 0.84 0.80 0.82 –

Note: Prec. = Precision, Rec. = Recall, F1 = F1-score, Pred/Real = Number of predicted samples over ground truth count for each class.

TABLE IV: Binary damage detection performance comparison across models

Class
MobileNetV2 InceptionV3 YOLOv12

Prec. Rec. F1 Pred/Real Prec. Rec. F1 Pred/Real Prec. Rec. F1 Pred/Real

Damage 0.72 0.59 0.65 63/106 0.78 0.66 0.71 70/106 0.89 0.82 0.85 87/106
No Damage 0.17 0.26 0.21 9/34 0.28 0.41 0.33 14/34 0.55 0.68 0.61 23/34

Macro Avg 0.44 0.43 0.43 – 0.53 0.54 0.52 – 0.72 0.75 0.73 –
Weighted Avg 0.58 0.51 0.54 – 0.66 0.60 0.62 – 0.82 0.79 0.79 –

Note: Prec. = Precision, Rec. = Recall, F1 = F1-score, Pred/Real = Number of predicted samples over ground truth count for each class.

a macro-average F1-score of 0.80 and a weighted average

of 0.82, while InceptionV3 reached 0.30 and 0.40, and Mo-

bileNetV2 only managed 0.19 and 0.27, respectively. A closer

look reveals that both MobileNetV2 and InceptionV3 struggled

to correctly identify images with no visible damage, often

misclassifying them as one of the damage types. YOLOv12,

on the other hand, maintained a relatively high F1-score in

these cases by correctly predicting the absence of damage in

most of the 34 images.

An important factor influencing these results is the input

resolution of each model. MobileNetV2 operates on 224×224

pixel images, InceptionV3 on 299×299, and YOLOv12 on

1024×1024. The performance of the models shows a clear

correlation with input size: larger inputs allow more detailed

spatial information to be retained, which is especially impor-

tant for detecting subtle or localized damage features. This

linear relationship between input resolution and classification

performance highlights the importance of high-resolution pro-

cessing in damage detection tasks.

To further confirm our results, we ran the same tests by

creating models for container detection and binary damage

detection. The performance metrics followed the same pattern

shown in Table IV for the binary damage detection models.

MobileNetV2 and InceptionV3 achieved better results in the

binary case compared to the multi-class case, but they were

still inferior to the results yielded by our YOLOv12 models.

In summary, YOLOv12 not only provides stronger perfor-

mance due to its architecture but also benefits from higher

input resolution, making it more reliable in distinguishing

between different damage types and identifying undamaged

cases correctly. In addition, MobileNetV2 and InceptionV3

can only detect the presence of damage on a container, whereas

our model can (i) detect multiple damage areas on the same

container (if there are any), and (ii) localize the damage

by outputting a bounding box around each damaged area.

Hence, our proposed model not only offers higher detection

performance but also offers additional useful functionality.

V. CONCLUSION

In this study, YOLOv12-based container detection and

damage detection models have been proposed to enhance

optimization at the container terminal. The primary aim of

this study is to reduce manual operations by humans in a

risky environment by proposing automated systems to perform

the same tasks. The proposed models are trained using real-

world data collected from the EUROGATE Container Terminal

Limassol, Cyprus. Due to the low amount of available data,

this study also adopts data augmentation to increase the

dataset. Finally, the proposed models are validated on test data,

and the results show the high performance of the proposed

models in terms of high accuracy and low error rate. The

proposed models offer significant advantages over the existing

state-of-the-art approaches, both in terms of higher detection

accuracy as well as providing new functionalities, including

tracking multiple containers in the same video frame and

detecting multiple damages (of potentially different types) on

the same container.

In future work, we aim to leverage the current damage

detection model in a feedback loop that will automatically

identify and incorporate new instances of container damage,
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thereby expanding our dataset and improving model perfor-

mance over time. In addition, we plan to extend the system’s

capabilities to detect whether container seals are intact or

broken. Finally, we intend to integrate the detection models

into a real-time monitoring system that operates through port

IP network cameras and interfaces directly with the port

management infrastructure.
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