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Abstract—We present a novel multi-stage method for colour
image segmentation, with a primary focus on vessels segmentation
in retinal fundus images, using a U-Net based architecture. Our
approach tackles challenges posed by varying image resolutions
through a coarse-to-fine segmentation pipeline. It begins with a
rough segmentation at varying scales, guided by a traditional
CNN and progressively refines results to find a target resolution.
It culminates with detailed segmentation at a target scale with
a smaller window sliding step, compared to previous stages.
We train and validate our method using four publicly available
datasets FIVES, DRHAGIS, HRF, and STARE - and demonstrate
superior performance compared to traditional sliding window
techniques. Notably, our model achieves high accuracy with
relatively few training images. The entire framework is open-
sourced and adaptable to a wide range of image segmentation
tasks.

Index Terms—U-Net, segmentation, deep learning, vessel seg-
mentation, medical imaging, fundus images

I. INTRODUCTION

T
HE process of image segmentation has been for many

years a challenge, that was only partially solveable. This

changed with an advent of deep learning and introduction of

convoutional neural networks. In the year 2012 Krizhevsky et

al [1] introduced ImageNet, which achieved a new level of

image recognition accuracy. It won the ImageNet competition

that year, and inspired a plethora of other researchers to im-

prove upon it. This milestone in image classification allowed

a development of new class of segmentation algorithms.

One of the challenges in research was to segment biomed-

ical images. It was partially solved by Ronneberger et al. [2]

by introduction of U-Net architecture. The U-Net is designed

to work with very few training images and to yield more

precise segmentations. It consists of a contracting path to

capture context and a symmetric expanding path that enables

precise localization. However it comes with drawbacks, such

as sensitivity to input image resolution and segmentation

window position, and high demand for GPU memory which

is limiting the segmentation window size (WS).

In this article, we address challenges in image segmentation

by proposing a multi-step framework for training a U-Net
adaptable to varying image resolutions. We evaluate segmen-

tation results at multiple scales to select the most effective

output and analyze how resolution affects performance when

the model is applied at different scales. We also assess the

annotation effort required to achieve satisfactory results. Ex-

periments on four public vessel segmentation datasets enable

us to test how well a U-Net trained on one dataset generalizes

to others.

The article has six chapters. The first introduces the topic.

The second reviews recent work on U-Net segmentation in

medical imaging. The third explains our approach with illus-

trations. The fourth describes our experiments and results. The

fifth highlights key findings. The final chapter states there are

no competing interests.

The main contributions of this work are:

• A multi-scale rough segmentation step that processes

images at multiple predefined scales using a sliding

window approach.

• A CNN-based scoring mechanism that selects the optimal

segmentation scale for each image based on predicted

segmentation quality.

• Experimental validation of cross-dataset generalization,

demonstrating that models trained on one dataset can

perform well on others.

• An analysis of how the number of training images affects

segmentation quality, providing insight into the annota-

tion effort required for satisfactory performance.

• An open-source implementation of the method, available

on GitHub [3].

II. RELATED WORKS

Ren et al. [4] proposed an improved U-Net-based method

for retinal vessel image segmentation, enhancing the origi-

nal architecture to achieve greater accuracy and robustness.

Their improvements include modifications to both the network

structure and the training process. Liu et al. [5] introduced a

three-path U-Net model for retina image segmentation, which

leverages multiple pathways to capture features at different

levels, resulting in improved segmentation performance. Das

et al. [6] evaluated the performance of the standard U-Net for

retinal blood vessel segmentation, confirming its effectiveness

for this task. Yun et al. [7] proposed a Multi-Path Recurrent U-
Net for segmenting retinal fundus images, incorporating both

multiple paths and recurrent units to enhance feature extrac-

tion. Similarly, Huang et al. [8] developed an improved U-Net
architecture based on residual modules, achieving increased
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robustness and better segmentation results in retinal vascular

images.

Many existing studies aim to enhance the performance

of U-Net across a range of applications. A common theme

among these efforts is the focus on segmenting disconnected

or localized objects [9], often overlooking use cases like

vessel segmentation, where structures are continuous and span

the entire image. Additionally, relatively few works address

the challenge of handling images with varying resolutions

- a critical factor in real-world medical imaging scenarios.

Notably, many proposed improvements to U-Net result in only

marginal performance gains, typically in the range of 1–2%

absolute accuracy, as the original U-Net already performs

strongly, often achieving over 95% accuracy under favorable

conditions.

III. METHODOLOGY

In recent years, numerous high-quality datasets for fndus

eye images (FEI) were published. We selected four publicly

available datasets for our experiments: FIVES [10], consisting

of 1,200 images with a resolution of 2048×2048 pixels;

DRHAGIS [11], containing 80 images at 4752×3168 pixels;

HRF [12], which includes 45 images at 3504×2336 pixels;

and STARE [13], from which we used 20 images at 700×605

pixels resolution.

A. Training data preparation

In preparing data for U-Net training, it is essential to extract

square windows (ideally with dimensions of 2n) from the input

images. These windows are then fed into the training pipeline

to iteratively refine the model’s performance. Although U-
Net is known for its efficiency and accuracy under favorable

conditions, a significant challenge lies in determining which

parts of the image should be selected for training.To address

this challenge, several key questions must be considered:

• Which locations should be chosen to ensure that windows

cover both object and background regions effectively?

• How many windows should be sampled from each image?

• How many of these windows should predominantly con-

tain the object of interest, and how many background?

Below, we present our approach to answering the foremen-

tioned questions by constructing a mechanism for automatic

data generation. We use the FIVES dataset [10] as the primary

input for training the U-Net model. The original dataset,

consisting of 1,200 images, is divided into two subsets. The

first subset, referred to as the U-Net Main Training Set (UN-
ETMTS), includes 900 images and is used for model training.

The second subset, called the U-Net Segmentation Validation

Set (UNETSVS), comprises the remaining 300 images and is

used to validate segmentation performance.

1) Mask finding: Each image is processed as follows:

1) Convert from RGB to grayscale.

2) Compute a threshold:

threshold =
mean(grayscale_image)

3
− 5

and binarize to generate a mask.

3) Apply flood fill from all four corners to produce an

additional mask.

4) Combine the two masks by pixel-wise summation.

5) Apply erosion and dilation with a 20× 20 kernel.

Finally, the mask is applied via logical AND operation.

Pixels within its outer layer are blacked out; others remain

unchanged (see Fig. 1).

(a) Input image (b) Mask (c) Masked image

Fig. 1. Image Masking Results

After the mask is generated, the image is trimmed from the

left, right, top, and bottom edges to ensure that no completely

black vertical or horizontal lines remain.

2) Random windows: The initial set, UNETMTS, is reduced

to a specified value referred to as TRDTSZ (training data size),

which is initially set to 900. However, this value is varied and

analyzed in later sections of this article (see Section IV) to

investigate whether the full set of 900 images is necessary, or

if smaller subsets can still yield high segmentation accuracy.

The goal is to investigate how much training data the U-Net
model requires to achieve optimal results. Once the value of

TRDTSZ is selected, UNETMTS is randomly divided into two

subsets: a training set (DPSTR) and a test set (DPSTS), using

a 75% to 25% split.

From each image, a set of training windows is randomly

sampled. Two types of windows are defined: object-type

windows (OBTW) and background-type windows (BKTW).

A window is classified as OBTW if the number of pixels

corresponding to the ground truth label exceeds a minimum

threshold (e.g., 15%). Conversely, a window is labeled as

BKTW if the proportion of object pixels does not exceed a

maximum threshold (e.g., 5%). We also define target ratio of

object to background windows per image (e.g., 50%), to ensure

a representative sampling that reflects typical pixel distribution

between object and background regions in FEI.
The underlying motivation for this windowing strategy

is to balance object and background representation during

training. This balance is reinforced by employing a weighted

binary cross-entropy loss function in the U-Net implemen-

tation, which helps to address class imbalance. The size of

each sampled window (WS) is typically set to either 64×64

or 128×128 pixels. Input images are rescaled after mask

generation to 512×512 pixels. Larger values of WS and image

resolution significantly increase GPU memory consumption -

an important consideration given that our hardware setup was

a GPU with only 8GB of memory.

364 PROCEEDINGS OF THE FEDCSIS. KRAKÓW, POLAND, 2025



The percentage values used in this step are based on

intuition and can be adjusted depending on the type of images,

particularly when the ratio of object pixels to background

pixels varies. For instance, these values would differ when

segmenting structures such as the eye cup (EC) or optic disc

(ED) in other FEI datasets. The goal of this strategy is to

capture a wide range of spatial arrangements of the target

object within randomly selected windows, thereby enriching

the training dataset for the U-Net model used in later stages

of the system.

B. U-Net network training

The windows extracted in Section III-A are grouped into

training batches, with a predefined number of epochs and a

selected (WS) that matches the input dimensions of the U-Net
model. The input windows, referred to as X windows, consist

of RGB channels, with pixel values normalized to the range [0,

1]. The corresponding output windows Y windows, represent

the segmentation masks, and are converted into binary image.

C. U-Net preliminary multi resolution segmentation

This step begins with a rough segmentation step (RSS). Input

image is scaled to a resolution of 512×512, then segmented

using a sliding window technique. Its primary goal is to

produce preliminary segmentation results which are passed to

the next stage Section III-D, where a dedicated CNN model

is trained how to evaluate segmentation result.

1) Windows mesh creation: Once the image has been

prepared for segmentation - by generating a mask as described

in Section III-A1 - it typically contains a black border sur-

rounding the scene, with the retina centered. This preprocessed

image is then analyzed across three color channels: red, green,

and blue. Each color channel is divided into a collection of

meshes (i.e., image patches) by sliding a window across the

image. Mesh extraction begins with an offset of 0 and proceeds

up to WS − 1, using a predefined sliding step denoted as SS.

While it is not required for WS mod SS = 0, it is essential

that SS < WS to ensure overlapping patches and continuous

coverage of the entire image. The idea of meshes is shown in

Fig. 2

(a) Offset 0 (b) Offset 32 (c) Offset 64 (d) Offset 96

Fig. 2. Sample meshes generated for an image of size 1024×1024 pixels,
WS of 128×128 pixels, and WSS set to 32

Each mesh allows the input image to be segmented using

a different window configuration. This approach is crucial

for capturing diverse spatial variations within the image, as

each mesh is processed independently by the trained U-Net
model. For each mesh, the U-Net generates a probability

map, assigning to each pixel the likelihood of belonging

to the object or background. Due to overlapping meshes, a

single pixel may appear in multiple segmentations, resulting

in multiple probability estimates. These values are averaged to

generate a heatmap, which represents the overall likelihood of

each pixel being part of the object. In this heatmap, brighter

pixels correspond to higher confidence in object presence.

Finally, the heatmap is binarized using a fixed threshold of

127, producing a black-and-white segmentation mask. An

example of this process is shown in Fig. 2, where four meshes

contribute to the heatmap visualized in Fig. 3. This method is

referred to as the Sliding Window Algorithm (SWA).

(a) Input image (b) Pre binarization heatmap

Fig. 3. Input image from [10] along with generated heatmap

2) Data preparation for CNN training: As described in

Section III-A, the main dataset [10] was partitioned to include

a subset named UNETSVS, which is used for training the CNN
in the subsequent evaluation stage. All images in this subset

are processed through the (RSS). We perform segmentation at

multiple scales, ranging from 20% to 100% of the original

image size, in increments of 10%. This produces a series of

black-and-white segmentation outputs for each image at vary-

ing resolutions. Figure 4 presents the segmentation results for

three selected scales: 60%, 80%, and 100%. It is apparent from

the visual comparison that the quality of the segmentations

varies significantly across different scales.

(a) Scale of 60% (b) Scale of 80%

(c) Scale of 100% (d) Groud truth

Fig. 4. Different scales of input image for CNN segmentation assessment
training

To objectively assess which of the segmentation results is

most optimal, we design and train a simple CNN-based scoring

network. This network consists of a single output neuron that

produces a score between 0 and 1, where 0 indicates the
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poorest segmentation quality and 1 indicates the best (see

Fig. 7). The trained CNN is employed in the final segmentation

stage, as described in Section III-E.

D. CNN training for segmentation results assessment

Using the UNETSVS set, we segment each image into nine

black-and-white binarizations, producing a total of 300× (9+
1) = 3000 samples for training the CNN. The additional term

in the formula accounts for the ground truth image (GT),

which serves as the expected output from the segmentation

algorithm. This ground truth image is also used to compute

the Jaccard index [14], which measures the similarity between

the segmented output and its corresponding GT. The index

yields a value between 0 and 1, where 0 indicates a completely

incorrect segmentation and 1 indicates a perfect match. The

CNN architecture used for evaluation consists of a simple stack

of convolutional layers, followed by batch normalization and

pooling layers. Once the CNN scorer is trained, it can be used

to evaluate and select the most accurate segmentation result.

This final decision-making step is carried out as described in

Section III-E.

E. Optimal segmentation step

The final segmentation comprises of three stages.

1) Rough stage of final segmentation: The final segmen-

tation algorithm builds upon the approach described in Sec-

tion III-C. We continue to perform the Rough Segmentation

Step (RSS), but in this phase, segmentation is carried out

at scales ranging from 20% to 100%, with a step size of

20%. From the five resulting segmentation candidates, the

one deemed most accurate by the trained CNN (introduced

in Section III-D) is selected as the final output. The scale

at which this optimal segmentation occurs is referred to as

the RSOR. It is important to note that for smaller images

(up to 800×800 pixels), we increase the maximum scale to

150%. This adjustment accounts for the fact that U-Net may

underperform when operating on very low-resolution inputs.

2) Detailed stage of final segmentation: The RSOR ratio

plays a crucial role, as it serves as the starting point for the

subsequent stage, known as the Detailed Segmentation Step

(DSS). This step further refines the search for the optimal

segmentation scale. Specifically, segmentation is performed at

scales ranging from RSOR−10% to RSOR+10%, using a step

size of 4%. As before, the trained CNN from Section III-D is

used to evaluate the quality of each segmentation. The scale

identified as producing the best result is referred to as the

DSOR.

3) Most detailed stage of final segmentation: With the

DSOR ratio now established, we proceed to the Most Detailed

Segmentation Step (MDSS). In this final stage, the input image

is rescaled according to the selected DSOR value. Unlike in

Section III-C, where the window sliding step (SS) was set

to 64, we now adopt a finer step size of 32 to enhance

segmentation precision. The results of this final segmentation

step, applied to a sample image from the DRHAGIS dataset

[11], are shown in Figure 5. It is important to note that

both the binarized segmentation outputs and the probability

heatmaps, originally generated at the scaled resolution, are

rescaled back to the original image dimensions for consistency

and visualization.

(a) Input image from [11] (b) Heatmap at Section III-E1

(d) Heatmap at Section III-E2 (f) Heatmap at Section III-E3

Fig. 5. Input image from [11] along with generated heatmaps at 3 different
stages with SS at 128, 64 and 32

All configuration parameters associated with window size

(WS), sliding step (SS), and the scale percentages used for

segmentation are fully adjustable by the user of the imple-

mentation provided in [3]. In Section IV, we present a series

of experiments evaluating segmentation accuracy using the

Jaccard Index across a dataset composed of three sources:

DRHAGIS [11], HRF [12], and STARE [13]. This dataset is

referred as the Combined Validation Dataset (CVDS).

IV. EXPERIMENTS

In our experiments, we aimed to evaluate how well the

proposed approach generalizes when a U-Net model trained

on one dataset is applied to a completely different dataset.

We conducted a total of three experiments:

1) In the first experiment, both the U-Net and CNN models

were trained on 100 randomly selected images from the

FIVES dataset [10]. The trained models were then tested

on the Combined Validation Dataset (CVDS), which

consists of 150 images.

2) In the second experiment, 900 randomly selected images

from the FIVES dataset were used to train both the U-
Net and CNN models.

3) In the third experiment, we used the same U-Net model

trained in the first experiment, but applied a naive

Sliding Window Algorithm (SWA), as described in Sec-

tion III-C.

The purpose of these experiments was to assess whether the

full pipeline, outlined in Sections III-A through III-E, achieves

superior segmentation performance compared to the traditional

Sliding Window Algorithm (SWA). The central hypothesis is

that identifying an optimal resolution, at which the U-Net
model performs best for each individual image, leads to more

accurate segmentation results then applying the model directly,

at a fixed resolution in a brute-force manner. The U-Net
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architecture used for segmentation is shown in Figure 6. As

illustrated, the structure is simplified compared to the original

version proposed in [2]. The accompanying CNN (Figure 7)

was designed to be lightweight.

Fig. 6. U-Net used across all segmentation stages

Fig. 7. CNN used for segmentation quality assessment

A. First experiment

In the first experiment we randomly selected 100 images

from FIVES dataset. Results are shown in Table I.

TABLE I
EXPERIMENT 1 WITH JACCARD METRICS AND TTE FOR VARIOUS

PARAMETER SETTINGS OF WSS.

RWSS DWSS OWSS TTE AJI MNJI MXJI

128 128 16 3316 0.6114 0.2722 0.7705
128 16 8 53107 0.6123 0.2823 0.7672
128 16 16 5641 0.6145 0.274 0.7650
128 32 8 10527 0.6148 0.2713 0.7672
128 64 8 3822 0.6147 0.2722 0.7705
128 64 32 2704 0.6125 0.2714 0.7694

128 64 8 12877 0.6153 0.2713 0.7713

16 16 8 35212 0.6078 0.2823 0.7570
16 32 8 18842 0.6089 0.2823 0.7570
16 64 8 7653 0.6097 0.2823 0.7516
32 32 8 14048 0.6082 0.2823 0.7436
32 64 8 11784 0.6099 0.2823 0.7516
64 16 8 16839 0.6137 0.2823 0.7649
64 16 16 5627 0.6147 0.2829 0.7634
64 32 8 9680 0.6151 0.2819 0.7665
64 32 16 4091 0.6153 0.2819 0.7668
64 64 8 7938 0.6143 0.2823 0.7601

The common parameters selected for the segmentation

process are as follows:

• Minimum rough segmentation scale: 20%,

• Maximum rough segmentation scale: 100%,

• Rough segmentation scale step: 20%,

• Rough segmentation range for optimal resolution: ±10%,

• Detailed segmentation range for optimal resolution: ±4%.

The meanings of the column headings used in the evaluation

tables are:

• RWSS: Rough Segmentation Window Step,

• DWSS: Detailed Segmentation Window Step,

• FOWSS: Final Optimal Window Step for Segmentation,

• TTE: Total Time Elapsed (in seconds),

• AJI: Average Jaccard Index,

• MNJI: Minimum Jaccard Index,

• MXJI: Maximum Jaccard Index.

The highest achieved AJI was 0.6153; however, this result

came at the cost of a total time elapsed (TTE) of 12,877

seconds. In contrast, the fastest configuration, with a TTE of

just 2,704 seconds, was obtained using the parameters RWSS
= 128 pixels, DWSS = 64 pixels, and FOWSS = 32 pixels.

This setup yielded an AJI of 0.6125, which is only marginally

lower than the best result. As such, it represents a significantly

more efficient trade-off between segmentation accuracy and

computational performance.

B. Second experiment

In the second experiment we randomly selected 900 images

from FIVES dataset. Exactly the same experiments in terms

of values for RWSS, DWSS and OWSS were conducted and

can be previewed in details in [3].

The best achieved AJI in this experiment was 0.5957,

obtained with a total time elapsed (TTE) of 8,320 seconds.

The fastest configuration, with a TTE of just 6,208 seconds,

was achieved using the parameters RWSS = 128 pixels, DWSS
= 64 pixels, and FOWSS = 32 pixels. However, this setup

yielded an AJI of only 0.5813, which is noticeably lower than

the optimal value. This indicates a trade-off between speed

and accuracy, with the faster configuration sacrificing some

segmentation performance.

C. Third experiment

In the third experiment we decided to try and apply only

a part of the Section III-E3. We specified the SS to values

of 8, 16, 32, 64 and 128. You can see the segmentation

results in Table II. The results in this experiment are notably

inferior to those presented in Section IV-A. The best outcome

observed corresponds to SS of 8, resulting in TTE of 24,227

seconds and AJI of 0.5639. While this approach demonstrates

high execution speed for SS values ranging between 32 and

128 pixels, the resulting AJI scores remain unsatisfactory. In

contrast, the fastest configuration from Section IV-A achieved

an AJI of 0.6125, clearly demonstrating the superiority of the

hybrid approach described in this article over the traditional

SWA-based method.

V. CONCULSIONS

The experiments conducted in this article reveal several

notable observations regarding the proposed HUS algorithm:

• When using only 100 training images from the FIVES
dataset [10], we achieved a higher accuracy of 0.6153

compared to 0.5957 obtained with 900 training images.

This suggests that in Section IV-B, the U-Net and CNN
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TABLE II
EXPERIMENT 3 WITH JACCARD METRICS AND TTE FOR VARIOUS

PARAMETER SETTINGS OF WSS.

WSS TTE AJI MNJI MXJI

128 454 0.4878 0.1824 0.6490
64 591 0.5226 0.1920 0.6918
32 1354 0.5591 0.2582 0.7131
16 4504 0.5626 0.2626 0.7153
8 24727 0.5639 0.2642 0.71705

models may have become overly specialized to the train-

ing data, resulting in decreased generalization to the test

set.

• In Experiments IV-A and IV-B, we demonstrated that

the hybrid method outperforms the classic SWA approach

by nearly 0.05 in AJI, while maintaining comparable

execution speeds.

• Our experiments with HUS also indicate that high values

of the sliding step (SS) are not necessarily critical for

achieving optimal performance. The results suggest a

possible correlation between hierarchical window sizes.

Specifically, for a window size of 2n, typically asso-

ciated with the first convolutional layer of U-Net, the

following configuration yields strong results: RWSS = 2n,

DWSS = 2n−1, and FOWSS = 2n−2.

The HUS algorithm [3] effectively addresses limitations

associated with traditional U-Net segmentation:

• The requirement for training and test datasets to have

similar resolutions.

• The substantial memory consumption of U-Net when

processing high-resolution images.

• The sensitivity of classical U-Net to variations in the

spatial location of the target object.
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