Proceedings of the 20" Conference on Computer

DOI: 10.15439/2025F5613

Science and Intelligence Systems (FedCSIS) pp. 531-542 ISSN 2300-5963 ACSIS, Vol. 43

Machine-Readable by Design: Language
Specifications as the Key to Integrating LLMs into
Industrial Tools

Alexander Fischer®, Louis Burk*, Ramin Tavakoli Kolagari, Uwe Wienkop
0009-0001-1737-7395
0009-0003-0727-6456
0000-0002-7470-3767
0009-0000-4487-2458
Nuremberg Institute of Technology,
Faculty of Computer Science,
Kesslerplatz 12,
90489 Nuremberg, Germany
Email: {a.fischer, louis.burk, ramin.tavakolikolagari, uwe.wienkop } @th-nuernberg.de

Abstract—We propose a meta-language-based approach en-
abling Large Language Models (LLMs) to reliably generate struc-
tured, machine-readable artifacts referred to as Meta-Language-
defined Structures (MLDS) adapted to domain requirements,
without adhering strictly to standard formats like JSON or
XML. By embedding explicit schema instructions within prompts,
we evaluated the method across diverse use cases, including
automated Virtual Reality environment generation and automo-
tive security modeling. Our experiments demonstrate that the
meta-language approach significantly improves LLM-generated
structure compliance, with an 88 % validation rate across 132 test
scenarios. Compared to traditional methods using LangChain
and Pydantic, our MLDS method reduces setup complexity by
approximately 80%, despite a marginally higher error rate.
Furthermore, the MLDS artifacts produced were easily editable,
enabling rapid iterative refinement. This flexibility greatly al-
leviates the “blank page syndrome” by providing structured
initial artifacts suitable for immediate use or further human
enhancement, making our approach highly practical for rapid
prototyping and integration into complex industrial workflows.

I. INTRODUCTION

NDUSTRIAL tools have become increasingly powerful
Iand can now handle vast amounts of data. However, as
their range of functions continues to grow, operating these
tools often overshadows the core task of content or problem
management. This situation is further exacerbated by the
common “blank page syndrome,” [1], a common phenomenon
in complex design or modeling tasks, where the absence of any
initial structure or guidance leads to hesitation, inefficiency,
or even creative paralysis. In such cases, users face difficulty
starting from scratch, especially when formal specifications or
architectural expertise are required. This not only slows down
the initial design process but may also prevent domain experts
from effectively contributing to model-driven workflows. Con-
sequently, the focus moves away from the substantive content

"Both authors contributed equally to this work.

IEEE Catalog Number: CFP2585N-ART ©2025, PTI

531

toward the tool itself, lowering productivity and widening the
gap between content and tooling

At the same time, LLMs offer new opportunities by helping
domain experts generate creative impulses and mitigate the
“blank page syndrome.” These assisting tools have evolved
rapidly—especially through the integration of Al capabili-
ties—that they have become even more complex, making
proper integration of LLMs into content creation workflows
difficult. In particular, when domain-specific languages are
used that deviate from common formats like JSON or XML,
producing reliably machine-readable artifacts remains a sig-
nificant challenge.

Our approach addresses this issue by defining a language
specification (meta-language) that is adapted to the require-
ments of each domain, and which likewise does not rely
on existing standard formats. This enables us to capture the
structural differences and specific relationships of a domain.
By combining LLMs with this meta-language, it becomes
possible to produce customized, machine-readable artifacts
without requiring domain experts to possess extensive knowl-
edge of architectural or formal specifications.

To clarify our terminology, we define two key concepts
central to this paper. A Meta-Language-defined Structure
(MLDS) refers to a structured, machine-readable artifact that
is generated based on natural language input, using a set of
schema rules defined in a meta-language which we call Meta-
Language-defined Structure Instructions (MLDSI) . The meta-
language itself is a domain-specific specification that defines
the structure of the expected artifact. It serves as a structural
blueprint that guides the generation of MLDS artifacts and
ensures that the resulting outputs conform to the expected
semantics of the target domain.

Although recent approaches have explored how LLMs can
be guided to generate structured outputs, they typically rely on
rigid, domain-agnostic formats such as JSON or XML. These

Thematic Session: Model Driven Approaches in
System Development

532

solutions offer limited semantic adaptability and often require
specialized tools or substantial manual intervention. This high-
lights a persistent research gap: the lack of a lightweight,
domain-adaptable framework for generating structured outputs
from natural language in a way that is both semantically mean-
ingful and technically accessible. Our work addresses this gap
by introducing the MLDS approach, which enables domain
experts to produce customized, machine-readable content with
minimal setup effort and without requiring expertise in schema
tooling or formal languages.

Whether this meta-language approach is viable and benefi-
cial is examined by focusing on the following central question:

What conditions must be met for meta-languages to
function as a bridging element between natural content
descriptions and machine-readable structures, enabling the
integration of LLMs into industrial toolchains?

This central question is addressed through the following
three sub-questions:

R1: Which methods can be used to incorporate
meta-language definitions into a model?
What criteria can be considered to validate
the output?
R3: To what extent can reference examples be
used to adapt the output to specific needs?

R2:

To ensure transparency and facilitate reproducibility, all rel-
evant research artifacts, including evaluation results, domain-
specific meta-language definitions and generated Meta-
Language-defined Structures (MLDS) artifacts, have been
made publicly available in our GitHub repository [2].

In the remainder of this paper, we present the technical
background and motivation for our meta-language approach
in Section II. An overview of related research follows in
Section III, which positions our work within the broader field.
Next, Section IV introduces our proposed methodology and the
design of the meta-language. We then provide a comprehensive
evaluation in Section V, showcasing its applicability across
various domains. Section VI discusses our key findings and
highlights potential limitations, while Section VII outlines
promising avenues for future research. Finally, Section VIII
concludes the paper with a summary of our main contributions.

II. BACKGROUND AND MOTIVATION

In many technical and economic fields, there are specialized
challenges that can only be successfully addressed with the
help of experts. This is especially true for the development
and implementation of complex software and system archi-
tectures [3]. A classic example is the collaboration between
a person with architectural expertise (Architectural Domain
Expert, ADE) and someone with substantive or specialized
expertise (Content Domain Expert, CDE). While an architect
generally possesses deep knowledge of a specific, clearly
defined domain, the transfer of architectural concepts to other
domains is often difficult and time-consuming. This hurdle
complicates efficient collaboration and leads to practical inef-
ficiencies when the same fundamental principle is applied in
different fields.

PROCEEDINGS OF THE FEDCSIS. KRAKOW, POLAND, 2025

The goal, therefore, is to allow CDEs in a given domain to
create structured artifacts directly processable by machines,
even without extensive knowledge of software or system
architecture. These artifacts, which we refer to as MLDS,
make it possible to model specialized requirements in detail.
By using MLDS, ideas and requirements expressed in natural
language are transformed into formal structures that adhere
to certain rules and constraints. Consequently, the ADE’s role
shifts to a higher-level task: defining a structural specification
(the “meta-language”) that ensures the resulting MLDS meet
the desired quality and formatting requirements.

Currently, structured outputs from natural language models,
such as JSON-based responses, typically require specialized
tools and significant manual intervention. Tools like Pydantic
and LangChain have emerged to facilitate structured outputs
by validating and enforcing schemas, thereby ensuring JSON
structures are accurately generated and adhered to [4], [5].
However, effective use of these tools demands substantial
technical expertise and familiarity with their underlying frame-
works [6]. Moreover, these tools require ongoing adaptation to
handle differences in how newer LLM architectures generate
structured output, which introduces additional maintenance
overhead and complexity.

Furthermore, not all LLMs inherently support structured
output generation effectively. This limitation restricts their
applicability to scenarios requiring strictly formatted out-
puts [7], [8]. For models that do support structured outputs,
outputs often need post-processing and manual corrections
due to subtle inconsistencies, ambiguities, or deviations from
predefined structures, increasing complexity and effort [9].

To circumvent these challenges, our approach introduces
MLDS Instructions—structured prompts explicitly designed
to guide LLMs in generating precisely defined structured
artifacts. LLMs are powerful models that can interpret and
produce natural language [8]. However, a key issue arises
because LLMs generally do not generate precise, user-defined
structures unless these are already standard formats. This
is precisely where our solution comes into play: with so-
called “MLDS instructions,” we provide the LLM with a
meta-language characterized by a clear structure and defined
relationships, without relying on existing standard formats.

The MLDS instructions inform the model about both the
desired output format and the rules needed to produce it.
This distinguishes our approach from classic procedures that
require extensive fine-tuning of the model or force the output
into a fixed format. Through the meta-language and its meta-
levels, complex relationships within the MLDS can also be
represented. In this way, MLDS builds a bridge between the
conceptual problem statements formulated by CDE and a
strictly formatted output that can be processed by machines.

Our approach is inspired by established metamodeling ar-
chitectures, such as those found in the Meta-Object Facility
(MOF) [10] and the Unified Modeling Language (UML) [11],
and is structured into four layers:

o At the MO level, the focus is on concrete data or instance-

level elements—the real-world objects or executions that

ALEXANDER FISCHER ET AL.: MACHINE-READABLE BY DESIGN: LANGUAGE SPECIFICATIONS AS THE KEY TO INTEGRATING LLMS

result from applying the MLDS. This level is where
the model “comes to life” and is directly processed by
software systems.

e The M1 level, known as the model level, is where the
MLDS artifacts reside. These artifacts are formal repre-
sentations that capture the concrete, structured require-
ments of a domain, serving as blueprints derived from
the natural language input provided by domain experts.

e The M2 level, or metamodel level, contains the meta-
language. This layer defines the rules, constraints, and
abstract syntax and semantics required for constructing
valid MLDS artifacts. The MLDS instructions used to
guide the LLM in generating structured outputs are
derived from this meta-language.

o At the highest M3 level, the meta-meta model is de-
fined. This layer establishes the fundamental constructs
and abstractions upon which the meta-language is built.
Although users do not normally interact directly with this
level, it is necessary to ensure that the meta-language
(M2) is consistent, which in turn ensures that the rules
governing the MLDS (M1) are sound.

By organizing our approach into these four intercon-
nected layers, MO for instances, M1 for MLDS artifacts, M2
for the meta-language, and M3 for the meta-meta model,
we create a structured, hierarchical approach that ensures
domain-specific requirements are transformed consistently into
machine-processable formats. While content domain experts
focus on formulating concrete requirements at the M1 level,
the meta-language at the M2 level ensures that these require-
ments are implemented within a consistent, formal scope. The
M3 layer supports the whole system by providing a basis for
the meta-language.

In this paper, we will illustrate the functionality of our
MLDS instructions and the resulting MLDS outputs using
two application scenarios: (1) Automotive Software Security
and (2) Virtual Reality in business applications. By “Auto-
motive Software Security,” we mean the specific security and
reliability requirements in vehicle software engineering, while
“Virtual Reality in business applications” refers to immersive
and interactive digital learning and work environments used
within companies. These examples highlight how varied the
domains can be in which experts (CDE)—for instance, from
the security or VR fields—wish to express their specialized
requirements in MLDS, without being trained as architects in
the sense of software system architecture.

An illustrative use case demonstrates this: a VR specialist
wants to model a virtual learning space for internal corporate
training. Although this expert (CDE) has a clear understanding
of the requirements for the learning space, they lack the
experience to describe it in a precise architectural form. The
existing tool for creating VR environments requires a clearly
defined structure in the form of MLDS. Until now, it was
the architect’s job to convert these specialized requirements
into the corresponding formal structure. With our approach,
a natural language description of the desired learning space
and the MLDS instructions satisfy for an LLM to generate

the appropriate MLDS. Thanks to the MLDS instructions,
the LLM knows exactly how the resulting artifact should be
structured. As a result, the CDE’s specialized requirements are
transformed into a formally processable data format, without
the need for the CDE to possess deeper knowledge of software
architecture or formal languages.

III. RELATED WORK

In our approach, we propose a meta-language framework
that allows the creation of formally defined structures from
purely natural-language descriptions without relying on stan-
dard formats like JSON or UML, nor requiring extensive fine-
tuning.

A variety of prior studies already employ LLLMs for struc-
tured output generation, yet they pursue either more special-
ized or fundamentally different techniques. For instance, Wang
et al. [12] demonstrate a grammar prompting procedure, where
LLMs are constrained by a Backus—Naur Form (BNF) gram-
mar to produce strictly formal outputs. While this approach
works very well for specific languages that fit into a context-
free grammar, it often requires explicit modifications to the
decoding process (such as restricting token choices) or relies
on well-defined, existing grammar rules. By contrast, our focus
is on designing a flexible meta-language that need not be
encoded in BNF.

A related but narrower method is illustrated by Scholak
et al. [13] with their PICARD approach, where an autore-
gressive model is incrementally validated against the desired
language (e.g., SQL). Similar to grammar prompting, token
decoding is continuously constrained during generation. How-
ever, in contrast to our meta-language paradigm, PICARD
involves invasive modifications to the decoding algorithm. We
rely instead on clearly defined meta-language instructions and
LLM prompt processing, yielding more latitude for language
structures.

Further research in retrieval augmentation or fine-tuning
comes from Bassamzadeh and Methani [14], comparing
whether structured code is best produced via specialized fine-
tuning or optimized prompting techniques. While these find-
ings are valuable for reducing errors and hallucinations, they
typically assume a known format (e. g. JSON/YAML). In our
method, no specialized model training is needed; we generate
all target structures solely via prompt-based instructions and
meta-language rules.

In the context of model-driven software development, Netz
et al. [15] show how UML-like class diagrams (CD4A) can
be generated by GPT-3.5/GPT-4 and transformed directly
into complete web applications. However, they rely on UML
notations and existing generator frameworks (e. g. MontiGem).
This differs from our approach, which does not require any
model-driven development toolchain or standardized notation.
Instead, we allow arbitrary domain-specific structures—for
instance, automotive security or VR scenarios—specified with
a freely definable meta-language.

Key Contribution of Our Approach: While the mentioned
studies employ various forms of grammar-based decoding,

533

534

fine-tuning, or predefined formats, our method provides a
universal meta-language definition. Thus, architects or tool
developers can prescribe any target structure (from security
modeling to 3D scenes) at the meta-level so that an LLM
subsequently outputs machine-readable artifacts in exactly that
format—without training, without invasive decoder modifica-
tions, and without restricting to JSON/UML. Because our
approach does not fix a specific output format, it supports both
machine-driven and human refinements of the same structure,
fostering an iterative co-creation process. Domain experts
bring in new scenario descriptions, the LLM generates or
extends the MLDS, and humans can then fine-tune or correct
the result in the meta-language immediately. This openness,
combined with a clear metamodel architecture, constitutes the
central distinguishing feature of our work.

IV. METHODOLOGY

In this Section, we explain our proposed approach (Section
ID) in detail, showing how we use our custom meta-language
together with the MLDS framework to solve the problem. We
begin by outlining how the meta-language is derived from
the tool’s requirements, providing a starting point for the
process. Next, we describe how to structure the descriptions
of tasks and scenarios, setting up a foundation for generating
the MLDS using LLMs. The complete procedure is shown in
Figure 1.

To keep the process transparent, we provide examples
that demonstrate how prompts are combined with the meta-
language. A notable feature of our approach is that it allows
users to influence different parts of the MLDS in various
ways, making the method adaptable. After fully explaining the
MLDS, we show how it can be directly imported into tools,
and we conclude by demonstrating how this method addresses
the blank page syndrome.

A. Conception of the Meta-Language

The core of our approach lies in developing a meta-language
that incorporates the specific requirements of a domain or
tool and organizes them into a structured form that is not
bound to common standards. In contrast to JSON or XML,
the meta-language may deliberately allow specialized object
types, relationships, and value ranges that thoroughly reflect
the peculiarities of a domain. The meta-language thus pursues
two primary objectives: on the one hand, it provides the LLM
with explicit guidelines on which structures, attributes, and
relationships should appear in the generated MLDS. On the
other hand, it is designed to be easily understandable and
extendable by human domain experts, allowing them to add
new elements or rules when necessary.

1) Reasons for a Meta-Language: One of the main chal-
lenges in automatically generating structured output is that
LLMs initially lack any knowledge of custom formats. Al-
though models can be adapted to standard formats, they often
reach their limits when specialized domains require formats
that differ from these standards or go beyond their seman-
tics. Many advanced tools employ proprietary definitions that

PROCEEDINGS OF THE FEDCSIS. KRAKOW, POLAND, 2025

cannot readily be mapped onto common standards. Our meta-
language addresses this gap by:

« Allowing freely definable object and relationship types to
represent specific domain concepts.

« Defining clearly delimited value ranges (e.g., discrete se-
lection options, predefined numerical ranges, or boolean
variables) for each attribute, so that the LLM is not forced
to “improvise” unnecessarily but instead chooses from a
set of valid options.

« Providing structural guidelines that define the “skeleton”
of an MLDS, ensuring that the generated output follows
a meaningful and machine-readable architecture.

In this way, it is not necessary to extensively fine-tune the
LLM. Instead, we present the model with precise rules via the
meta-language and corresponding prompt instructions, which
it follows when generating the MLDS.

2) Analysis of the Required Input: Before implementing the
meta-language, it is necessary to determine which information
a particular tool or domain actually needs. A standard example
is a VR development tool that manages various object types
(e.g., rooms, avatars, or interactions), each with specific
properties (size, access rights, animation logic, etc.). These
aspects are collected, categorized, and eventually transferred
into the meta-language. On this basis, one can also estimate the
relationships between objects—an avatar, for instance, may
be assigned to a room, and an inferaction may be tied to an
object.

3) Extracting Relevant Objects and Properties: Once the
domain analysis is complete, relevant objects are defined.
An object corresponds to a central concept in the domain
(e.g., learning environment, avatar, security component). A
learning environment, for example, might have properties such
as name, maximum number of users, or room configuration.
Each property is assigned a corresponding value range (e.g.,
a fixed set of room types, numerical ranges for the number of
users) to ensure consistency and comprehensibility.

4) Defining Relations: Another key to understanding and
modeling complex relationships is specifying the links be-
tween objects. For instance, a human actor object at a certain
resilience level could refer to an attack object, or multiple
vehicle features could form a single item. These relationships
may be configured hierarchically within the meta-language
or refer to the same level, each implying different semantic
connections. Such a relational network dictates the subsequent
structure of the MLDS, guiding the LLM in how individual
elements should interrelate.

5) Domain-Specific Meta-Language Instructions: In the
following, we present three excerpts from a possible domain-
specific meta-language design, illustrating its key concepts. Al-
though the example involves a 3D scene for VR applications,
the same underlying mechanisms can be applied to virtually
any domain.

a) Defining the Scene Structure: The first step is to
establish a top-level object that acts as a global container for all
subsequent elements (Listing 1). In the VR domain, we call

ALEXANDER FISCHER ET AL.: MACHINE-READABLE BY DESIGN: LANGUAGE SPECIFICATIONS AS THE KEY TO INTEGRATING LLMS

Describe Tasks and
Scenarios for a given
Use Case

Define Meta-Language

Analyze Tool
Requirements

Describe Objects

Describe Object
Properties

Describe Object

Relationships

Adapt MLDS manually

Generate MLDS using LLMs

Define Prompt using
Meta-Language Input

Combine Prompt
with Meta-Language

Generate MLDS

Review MLDS j [Extend Content j

o)

Extend MLDS j

ﬁ.;

[Manual Adaption necessary] Y [Re-genereation necessary]

[MLDS OK]

Adapt Output in Tool

Import MLDS into Tool

H Interpret MLDS H Review Objects]—‘

Use Tool with pre-
generated Content

\—{Review Relationsh ipsj—{

Construct Tool
Output

S @

Fig. 1. Workflow for generating and refining MLDS from natural language input, combining meta-language specification, LLM-based structure generation,

and iterative human-Al co-editing for tool integration.

this object scene, which holds basic environmental details
and a list of objects.

1 {

2 "scene":

LR

4 "sceneName": "VR Training Room",

5 "environment":

6 {

7 "type": "indoor",

8 "dimensions": { "width": 10.0, "
height": 3.0, "depth": 15.0 }

9 by

10 "objects":

1 [

12 /* Objects go here */

13]

15}

Listing 1. Definition of the Scene Structure

In other domains, what is here called "scene" could
be labeled "system" or "project" and might include
completely different properties (e.g., systemCategory or
budget). Nevertheless, the principle remains the same: a
clearly defined parent object provides the framework in which
all detailed elements and their attributes are nested.

b) Modeling Objects and Their Relationships: Each ob-
ject has a unique objectId and is characterized by proper-
ties (e.g., objectType, position, rotation) as well
as optional relational information. Listing 2 shows how to
place an object (a table) relative to another object using
relativePositioning.

535

536

1o

> "objectId": "object_01",

3 "objectType": "table",

4 "position": { "x": 2, "y": 0, "z": 3 },

5 "rotation": { "x": O, "y": 45, "z": O
by

6 "dimensions": { "width": 1.5, "height":
0.75, "depth": 1.0 },

7 "relativePositioning":

s |

9 "referenceObject": "object_02",

10 "relation": "next_to"

11 by

12 "offset": { "x": 0.2, "y": 0, "z": 0 }

Listing 2. Objects with Relative Positioning

In other domains, objects may have entirely different prop-
erties (for instance, memoryLimit or location in a cloud
application). Similarly, a relationship like next_to could
be replaced by something like depends_on if you want to
describe software dependencies. By specifying such structures
in a meta-language, you ensure that the LLM knows exactly
which attributes exist and which values are permissible.

c) Hierarchical Nesting of Objects: To describe more
complex scenarios, objects can themselves have children (List-
ing 3). This enables a hierarchical organization with subordi-
nate elements.

{

"objectId": "object_02",

"objectType": "shelf",

"relativePositioning":

{

® 9 o U kW -

"referenceObject": "object_03",
"relation": "on_top_of"
}l
9 "children":
10 [
1 {
12 "objectId": "object_02_child 01",
13 "objectType": "box",
14 "relativePositioning": {
15 "referenceObject": "object_02",
16 "relation": "next_to"
17 b
18 "offset": { "x": 0.1, "y": 0, "z": O

}

Listing 3. Object Hierarchies Using Children

This type of children property could represent, for
example, submodules within a larger module in a software
architecture or smaller processes within a bigger industrial
workflow. Likewise, a relationship such as "on_top_of"
is just an example of a hierarchical link; in other contexts, it
might be "contained_in" or "extends".

B. Generation of the MLDS

Once the meta-language is established, natural language
descriptions or scenarios adapted to a specific use case can

PROCEEDINGS OF THE FEDCSIS. KRAKOW, POLAND, 2025

be created. As illustrated in Figure 1, the meta-language is
developed as a separate module that, once finalized, can be
reused for all subsequent generations.

In the most compact workflow, we concatenate the meta-
language and the scenario into one composite prompt and
pass it to a pretrained LLM via its API. Because the model
already possesses broad world knowledge, it needs no task-
specific fine-tuning; instead, the embedded meta-language
rules channel the model towards a syntactically correct MLDS
while the scenario text supplies the domain content. A prompt
segment might therefore read:

1 <<META LANGUAGE>>
2 object room { width:float height:float
depth:float ... }

4 <<SCENARIO>>

Create a training classroom with 20
student desks, one teacher desk,

¢ and a projector mounted to the ceiling.

7

Listing 4. Excerpt of a single-shot prompt that merges meta-language
and scenario
For projects that demand stricter traceability or staged
quality control, we separate the process into two calls. The
first call feeds nothing but the meta-language to the LLM and
receives back a condensed, token-optimised representation, the
second call injects the scenario plus the condensed rules. This
split makes it easy to inspect intermediate artifacts, attach
unit tests to the generated schema, or swap in a different
scenario without retransmitting an unchanged meta-language,
an advantage when prompt length becomes a bottleneck.
Regardless of the single- or multi-step variant, the raw
MLDS is fed through an automatic validator that flags missing
attributes, illegal value ranges or broken references. Only after
the MLDS passes this gatekeeper is it handed to the target
tool, guaranteeing that the downstream pipeline never receives
malformed input.

C. Adaption of the MLDS

In practice, generating the initial MLDS is only the first
step in its full utilization. Because the MLDS can be produced
in a format that is easily readable by humans, domain experts
can readily validate its contents without a steep learning curve.
Once generated, the MLDS may be scrutinized for correctness,
and any missing information can be added. As illustrated in
Figure 1, these iterative improvements can be carried out by
the LLM itself, which can respond to feedback or correction
prompts. At the same time, domain experts remain free to
make manual adjustments, ensuring a high degree of precision
where Al suggestions may not capture every nuance. This
dual approach of automated and manual editing fosters a co-
creative process, merging Al-driven speed and consistency
with human expertise. Moreover, the MLDS’s structured na-
ture facilitates intuitive graphical interfaces, allowing content
specialists to modify or enrich the MLDS without delving into
the underlying code. By accommodating both fully automated
and personalized interventions, the workflow remains flexible,
transparent, and accessible to all involved stakeholders.

ALEXANDER FISCHER ET AL.: MACHINE-READABLE BY DESIGN: LANGUAGE SPECIFICATIONS AS THE KEY TO INTEGRATING LLMS

D. Integration into the Tool Environment

Once the finalized version of the MLDS is ready, it can
be loaded directly into the target tool. The tool interprets the
generated structure and creates the required output, represent-
ing all defined objects and their relationships according to the
MLDS specifications. Additional modifications and enhance-
ments can then be carried out directly within the tool, giving
users the flexibility to refine or extend the setup as needed.
This ensures that the produced content is fully leveraged, while
minimizing both development effort and potential errors.

V. EVALUATION
A. Objective and Approach

To demonstrate the developed Meta-Language approach, we
selected two distinct domains: (1) the automated generation of
Virtual Reality (VR) worlds and (2) the Security Modeling
of embedded systems in the automotive context. The aim
is to show that from a defined meta-language, a domain-
specific MLDS can be generated that consistently follows
the given specification. Furthermore, we highlight how this
method mitigates the so-called “blank page syndrome,” where
a completely unstructured starting point often leads to high
efforts in initial model or environment creation. By providing
a machine-readable foundation, users can directly refine and
adapt the generated MLDS artifacts.

B. Use Case: Automated VR World Generation

The first domain focuses on automatically generating VR
worlds in Unity. A structured description is created to form a
basic layout of the virtual environment. Designers provide a
natural-language prompt (for instance: “Generate a classroom
for 20 students”), which is then transformed into a JSON-
based MLDS using our meta-language. Unity processes the
resulting MLDS to position objects and define relationships in
the 3D scene. Initially, placeholders (e.g., cubes) are placed to
help visualize object arrangements. Designers can later replace
these placeholders with final assets, ensuring a quick start for
prototyping. This effectively reduces the blank page syndrome
since each new scene already has a predefined structure.

Over 200 test scenarios (see Section IX) were conducted,
demonstrating that LLMs are able to generate coherent ob-
ject hierarchies and spatial relationships. For example, List-
ing 5 shows a parent-child relationship where a desk acts
as the parent object, and a chair is placed relative to the
desk. Positioning attributes and relational references (e.g.,
in_front_of_positive_z) are used to automate the
placement in the 3D environment.

{

1

2 "objectId": "studentDesk_r0_cO",

3 "objectType": "student_desk",

4 "assetName": "student_desk_asset",

5 "position": {"x": -6, "y": 0.5, "z":
8},

6 "dimensions": {"width": 2, "height": 1
, "depth": 2},

7 "group": "furniture",

8 "children":

11 "objectId": "studentChair_r0_cO",

12 "objectType": "chair",

13 "assetName": "student_chair_asset",
14 "relativePositioning": {

15 "referenceObject": "

studentDesk_r0_cO",

16 "relation": "in_front_of_positive_z
4
17 "distance": 1
18 by
19 "dimensions": {"width": 0.5, "height
": 0.5, "depth": 0.75},
20 "group": "furniture"

Listing 5. VR Parent-Child Relation

By incorporating such parent-child relations, users benefit
from an iterative co-creation process: the generated foundation
can be refined either through extended prompts (in natural
language) or direct modifications of the MLDS output.

C. Use Case: Security Modeling in Automotive

The second use case addresses Security Modeling for em-
bedded systems in the automotive context. Building upon the
metamodel proposed in [16], we define a meta-language for
an MLDS that helps create a foundational security model.
Security experts or systems engineers can outline potential
threats or vulnerabilities in natural language (e.g., “unsecured
wireless communication” or “man-in-the-middle attack’). An
LLM then translates these descriptions into the MLDS, which
is directly processable by a security modeling tool. Such a tool
subsequently calculates risk levels or highlights vulnerabilities.
Manual adjustments remain possible at any stage, ensuring a
flexible co-creation process.

Listing 6 illustrates a JSON-based MLDS snippet
with typical attributes for attack characterization, such as
AttackComplexity and UserInteraction. By as-
signing initial values to these fields, the LLM provides a
starting point for further risk assessments.

1A

2 "Name": "Man-in-the-middle:
intercepting and manipulating
wireless traffic",

3 "AccessRequired": "Network",

4 "AttackComplexity": " (H)igh",

s "PrivilegesRequired": " (N)one",
6 "Urgency": " (L)ow",

7 "UserInteraction": " (N)one",

8 "AvailabilityImpact": " (L)ow",
9 "ConfidentialityImpact": " (H)igh",
10 "IntegrityImpact": " (L)ow",

1 "SafetyRelevance": " (H)igh",

12 "vulnerabilities":

13 [

14 {

15 "Name": "Unsecured Wireless

Communication Protocol"

537

538

Listing 6. Automotive Security Attack Representation

Since risk or vulnerability scores are computed within the
modeling tool itself, attributes assigned by the LLM can be
refined later. This aligns with the cooperative design principle,
where the model’s first version is automatically generated and
then iteratively improved.

D. Results and Insights

In both domains, we combined the language specification
with natural-language prompts across several LLMs (including
GPT 40 mini, GPT 03 mini, DeepSeek-R1, and DeepSeek-
R1 14B running locally). Most generated MLDS files were
syntactically correct and machine-readable. Occasional issues
arose mainly from incomplete API responses or minor inaccu-
racies in the meta-language. Notably, even complex problem
descriptions in natural language led to well-structured and
valid MLDS artifacts. Key findings are:

« High Machine-Readability: The LLM outputs conform
closely to the defined meta-language, minimizing parsing
errors.

« Blank Page Syndrome Mitigation: In both VR world
creation and security modeling, users start with a usable
blueprint rather than a completely empty project.

« Ease of Extension: Generated models or VR scenes can
be expanded using extended prompts or direct modifica-
tions.

« Domain-Agnostic Feasibility: The approach works ef-
fectively in multiple domains, provided a domain-specific
meta-language is well-defined—for example, structuring
content in education, automating routines in smart envi-
ronments, modeling workflows in business, formalizing
scenarios in healthcare, or generating logic in games and
legal contexts.

We further evaluated our approach by systematically analyzing
132 generated MLDS files to quantify adherence to the pre-
scribed meta-language schema. This analysis was automated
through a custom Python-based parser validating each file
against the defined schema.

E. Evaluation Setup

The evaluation dataset consisted of files categorized into two
complexity levels: easy (n=72) and medium (n=60), selected
from the VR dataset based on the required content complexity.
The dataset aimed to enable an end-to-end pipeline for gen-
erating virtual environments. Furthermore, each complexity
level had two variations: one employing semantic validators
(withValidator) and one without validators (withoutValidator).
These validators were applied downstream of the MLDS trans-
lation process and specifically assessed semantic correctness,
such as checking for overlapping objects, rather than syntactic
accuracy. As our analysis indicated no significant differences

PROCEEDINGS OF THE FEDCSIS. KRAKOW, POLAND, 2025

in syntactic correctness between these variations, we decided
to merge them into a single unified dataset for evaluation
purposes. Each file was evaluated based on structural validity,
completeness of schema components, and the presence of
specific parsing errors.

We defined the metrics as follows:

V=) valid files, [=N-V 1)

\%
Validity Rate (%) = N x 100 2)
Fil taini h t
Presence Rate (%) — iles con amlijg schema part 100
3)

where N is the total number of evaluated files, V' is the number
of valid (correctly structured) files, and [is the number of
invalid (incorrect) files.

F. Quantitative Results

Out of N = 132 files, V = 116 (87.9%) were valid, while
I = 16 (12.1%) contained parsing errors (Fig. 2). Errors
primarily arose from JSON parsing issues due to incorrect
string formatting.

Validity of MLDS JSON Files
120

100

Number of Files

Invalid

Valid

File Classification

Fig. 2. Distribution of valid vs. invalid MLDS JSON files.

Out of the 16 invalid files, 15 exhibited a parsing error
indicated by the message ’str’ object has no attribute "get’.
This error occurred because the JSON parser expected a
structured object but encountered a string instead. Only one file
showed a different issue, specifically missing essential schema
components: environment and sceneName.

Table I summarizes the presence rates of schema parts. Most
elements showed high presence rates, indicating strong schema
adherence, except for optional fields like env.background,
which appeared less frequently (72.7%).

ALEXANDER FISCHER ET AL.: MACHINE-READABLE BY DESIGN: LANGUAGE SPECIFICATIONS AS THE KEY TO INTEGRATING LLMS 539

TABLE I
SCHEMA PART PRESENCE SUMMARY

Schema Part Presence | Missing files
sceneName 87.9% 16
environment 87.9% 16
env.type 87.9% 16
env.dimensions 87.9% 16
env.lighting 85.6% 19
env.background 72.7% 36
objectGroups 87.9% 16
objects 88.6% 15
obj.objectld 87.9% 16
obj.objectType 87.1% 17
obj.position 87.9% 16
obj.rotation 87.1% 17
obj.dimensions 87.1% 17

Since we did not explicitly request the inclusion of back-
ground components and instead relied on the LLM’s initiative
to incorporate them as part of the MLDS, the observed number
of omissions was anticipated. This could be improved by
explicitly addressing background components within the input
prompt, thus providing clearer guidance to the LLM.

Figure 3 visually presents these results and highlights areas
for possible improvements.

Schema Component Presence (%)
sceneName
environment

env.type
env.dimensions
env.lighting
env.background

objectGroups

objects

Schema Component

obj.objectld
obj.objectType
obj.position
obj.rotation

obj.dimensions

°
3
8
2

40
Presence (%)

Fig. 3. Presence rates of schema parts in MLDS files.

Figures 4 and 5 highlight the complexity of generated files.
Most scenarios had a moderate number of objects, suitable for
realistic industrial applications, while nesting depth indicated
well-structured JSON.

Distribution of Top-Level Object Counts

50
40
W
@
i
"5 30
@
=
E 2
=4
) I
e il ._
0 20 40 60 80
Number of Top-Level Objects
Fig. 4. Distribution of object counts per MLDS file.
Distribution of JSON Nesting Depths
100
80
w
k]
L 6
5]
@
E
5 40
=4
20
0 | [
50 55 6.0 65 70 75 8.0

Nesting Depth

Fig. 5. Distribution of nesting depths in MLDS files.

The nesting depth was computed with the following Python
function:

1 def compute_depth (obj, depth=0):

2 if isinstance(obj, dict):

3 return max ([compute_depth (v, depth
+1) for v in obj.values ()] or [
depthl])

4 if isinstance (obj, 1list):

5 return max ([compute_depth (i, depth
+1) for i in obj] or [depth])

6 return depth

Listing 7. Computing JSON nesting depth

G. Comparison with Traditional Approaches

We compared our MLDS approach directly against a tra-
ditional structured-output pipeline using LangChain and Py-
dantic [5], [4]. The implementation of the traditional ap-
proach took approximately five times longer than preparing
our MLDS instructions, primarily due to the complexity and
steep learning curve associated with LangChain and Pydantic.
While the traditional approach consistently produced compi-
lable results when successfully executed, approximately 7%

540

of pipeline runs failed entirely due to validation errors or
incomplete responses. In contrast, our MLDS-based approach
resulted in a slightly higher error rate (around 6% more errors),
but significantly reduced the overall complexity, effort, and
required expertise. Therefore, especially for rapid prototyping,
iterative adjustments, or when specific expertise in Pydantic
and LangChain is not readily available, our MLDS approach
offers a clear practical advantage.

H. Implications

Explicitly embedding meta-language schema instructions
within prompts enhances structural compliance and machine
readability. This efficiency allows rapid prototyping and seam-
less integration into diverse industrial workflows, underscoring
the practical effectiveness of our approach.

VI. DISCUSSION

In this Section, we revisit the insights gained from our eval-
uation in light of the research questions posed in Section I. We
then compare our approach to existing work (see Section III)
and critically examine potential limitations as well as threats
to validity.

A. Interpretation of Evaluation Results

1) Research Question R1: Methods for Incorporating Meta-
Language Definitions into Models: Our experiments in the
domains of Virtual Reality (VR) world generation and Auto-
motive Security indicate that a well-specified meta-language
can effectively convey structural and relational constraints to
LLMs. The results suggest that this method scales to both
creative (VR design) and safety-critical (automotive security)
fields. We observed that generating complex MLDS artifacts
worked particularly well when the meta-language was suffi-
ciently fine-grained and included specific object definitions
and enumerated attribute values (e.g., relativePositioning).
This confirms that incorporating meta-language definitions
does not require adherence to standardized formats, so long
as the underlying structure is clear and domain-relevant.

2) Research Question R2: Criteria for Validating the Gen-
erated Output: Our evaluation revealed that, on one hand,
formal aspects such as syntax and mandatory attributes can be
automatically validated. On the other hand, certain domain-
specific or semantic aspects (e.g., the correctness of spatial
relationships in VR scenarios or the accuracy of security
attributes in automotive models) often benefit from human
review. Thus, a purely syntactic validation is a valuable first
step but does not eliminate the need for semantic validation.
A cooperative feedback loop—where experts refine machine-
generated MLDS artifacts and tools provide automated format
checks—Ileverages the strengths of both human expertise and
automated structure enforcement.

3) Research Question R3: Adapting Output via Reference
Examples: Including examples (e.g., prototype scene defini-
tions for VR environments or sample attack entities in security
modeling) improved both the consistency and format of the
generated outputs. The LLM relies on these “exemplary”

PROCEEDINGS OF THE FEDCSIS. KRAKOW, POLAND, 2025

structures to align with domain-specific expectations. Notably,
references can demonstrate not only value ranges but also
relational patterns (children objects, hierarchy levels, depen-
dencies). Moreover, the use of templates allows for targeted
adjustments of the desired model detail, for instance by
distinguishing between minimal or extended output variants.

B. Comparison with Related Work

Meta-languages for architecture and modeling are well-
established in research, typically appearing in the form of
DSMLs (Domain-Specific Modeling Languages) or UML pro-
files. Our approach extends these ideas by leveraging LLMs:
instead of conforming strictly to standardized outputs (e.g.,
UML diagrams or XML), we demonstrate that “custom” meta-
languages can be reliably processed by LLMs, provided the
rules are clearly specified. This addresses a gap often left
by other methods: reliable and flexible structured modeling
without extensive fine-tuning of the model or proprietary
export layers.

C. Implications and Practical Benefits

Our findings suggest that the proposed MLDS approach
offers a flexible means of translating domain-centric (natural-
language) descriptions into formally processable artifacts, even
for users lacking deep architecture knowledge. In both do-
mains, the technique reduced the “blank page syndrome,” as
users begin with a ready-to-use framework rather than an
empty project. At the same time, the generated MLDS remains
open to subsequent modifications, either by further prompting
or by direct model editing.

Looking ahead, this could reshape workflows in software
architecture and engineering. Architects may focus on de-
signing and maintaining the meta-language, while domain
experts continue to think in natural-language scenarios. This
division of responsibilities can foster more productive, model-
based processes and raise the adoption of structured modeling
methods.

D. Limitations and Threats to Validity

While our results are encouraging, some constraints remain:

« Domain-Specific Complexity: As domains grow more
detailed, the meta-language itself can become large and
complex. An insufficiently granular metamodel may pro-
duce vague or incomplete MLDS artifacts.

o Dependence on Prompt Quality: The clarity of the
natural-language input significantly affects the generated
output. Ambiguous or insufficiently detailed prompts may
result in incomplete models.

o Technical Limitations of LLMs: Issues such as model
confusion or output truncation can arise with especially
lengthy or nested structures. While example MLDS pat-
terns help mitigate these risks, LLMs are not foolproof.

o Generalizability: Although we explored two notably
different domains (VR and automotive security), other do-
mains could impose even more specialized requirements
that warrant extended validation.

ALEXANDER FISCHER ET AL.: MACHINE-READABLE BY DESIGN: LANGUAGE SPECIFICATIONS AS THE KEY TO INTEGRATING LLMS

VII. FUTURE DIRECTIONS

The integration of LLMs and meta-languages opens up
several research areas. One is the development of automated
quality checks that address both syntactic and semantic co-
herence (e.g., inconsistencies in hierarchical relationships).
Another is exploring multi-prompting strategies or incremental
fine-tuning to further improve MLDS consistency. There is
also potential value in establishing a cross-domain vocabulary
for reusable structural elements (e.g., children, parent,
referenceObject).

Lastly, a more collaborative platform could be developed,
where architects design new meta-languages while domain
experts contribute reference MLDS examples. Such a shared
knowledge base could be continuously updated and utilized
by LLMs, enabling more efficient and accurate generation of
structured domain artifacts.

VIII. CONCLUSION

We presented a domain-adaptable method for generating
machine-readable, structured outputs from natural language
prompts using Large Language Models. Our approach com-
bines a custom-defined meta-language with schema-aware
prompting to enable the creation of Meta-Language-defined
Structures (MLDS). Evaluation results across two distinct
use cases demonstrated a high validation rate (88%) and a
substantial reduction in setup complexity (approx. 80% com-
pared to LangChain and Pydantic). The resulting artifacts were
interpretable and easy to refine, supporting rapid iterations in
industrial workflows.

This approach is particularly valuable in domains where
structured modeling is required but formal schema design
presents a bottleneck. In addition to the use cases analyzed in
this paper, we have successfully applied MLDS-based methods
in a parallel study on immersive learning environments in
Virtual Reality. There, natural language descriptions were
used to generate didactically structured 3D scenes, allowing
instructors to prototype entire VR labs without 3D design ex-
pertise, significantly reducing creation time while maintaining
structural consistency.

These examples illustrate the broader potential for MLDS-
based modeling in industries such as digital twin development,
technical education, process automation, and safety-critical
system design. Here, our method enables faster prototyping,
reduces reliance on technical tooling, and facilitates interdis-
ciplinary collaboration between domain experts and system
architects.

Future work may explore the integration of MLDS with
execution engines, real-time simulation tools, or graphical
editors, as well as an expansion of the approach to additional
modeling paradigms.

To reproduce our findings, please consult the readme file in
our repository as referenced in Section IX.

IX. DATA AVAILABILITY

We have made all relevant research artifacts publicly avail-
able in the interest of fostering open science. Our repos-

itory contains two domain-specific meta-languages as well
as additional MLDS artifacts generated with the help of
these meta-languages. All materials can be accessed at the
following GitHub repository: https://github.com/CoNaLaDe-
MLDS/Artifacts.

STATEMENT CONCERNING GENERATIVE AIS

We would like to clarify that this paper does not include
substantial Sections of text directly produced by Generative
Al, including LLMs.

However, since the primary objective of our work is to
explore effective integration and utilization of LLMs in struc-
tured data generation and domain-specific modeling, we have
naturally employed GenAl-generated outputs as part of our
technical approach. In particular, LLMs were utilized to auto-
matically generate structured MLDS files, code snippets, and
example artifacts crucial to our experiments. Additionally, in
selected cases, GenAl models assisted in translating specific
text segments from German into English to enhance readability
and accuracy.

We have clearly indicated within the paper all instances
where GenAl-generated content was integrated, and provided
an explicit analysis of its impact, including both benefits and
limitations.

REFERENCES

[1] C. K. Joyce, “The blank page: Effects of constraint on creativity,” Social
Science Research Network (SSRN), 2009.

[2] A. Fischer, L. Burk, R. Tavakoli Kolagari, and U. Wienkop, “Conalade
mlds research artifacts,” https://github.com/CoNaLaDe-MLDS/Artifacts.

[3] J. A. Diaz-Pace, A. Tommasel, and R. Capilla, “Helping novice ar-
chitects to make quality design decisions using an llm-based assis-
tant,” in Software Architecture, M. Galster, P. Scandurra, T. Mikkonen,
P. Oliveira Antonino, E. Y. Nakagawa, and E. Navarro, Eds. Cham:
Springer Nature Switzerland, 2024, pp. 324-332.

[4] S. Colvin, “Pydantic: Data validation and settings management using
python type annotations.” [Online]. Available: https://pydantic.dev/

[5] H. Chase, “Langchain: Building applications with large language
models,” 2023. [Online]. Available: https://github.com/langchain-ai/
langchain

[6] E. Filipovska, A. Mladenovska, M. Bajrami, J. Dobreva, V. Hillman,
P. Lameski, and E. Zdravevski, “Benchmarking openai’s apis and other
large language models for repeatable and efficient question answering
across multiple documents,” in 2024 19th Conference on Computer
Science and Intelligence Systems (FedCSIS), 2024, pp. 107-117.

[7]1 L. Ouyang, J. Wu, X. Jiang, D. Almeida, C. L. Wainwright, P. Mishkin,
C. Zhang, S. Agarwal, K. Slama, A. Ray, J. Schulman, J. Hilton, F. Kel-
ton, L. Miller, M. Simens, A. Askell, P. Welinder, P. Christiano, J. Leike,
and R. Lowe, “Training language models to follow instructions with
human feedback,” in Proceedings of the 36th International Conference
on Neural Information Processing Systems, ser. NIPS °22. Red Hook,
NY, USA: Curran Associates Inc., 2022.

[81 W. X. Zhao, K. Zhou, J. Li, T. Tang, X. Wang, Y. Hou, Y. Min,
B. Zhang, J. Zhang, Z. Dong, Y. Du, C. Yang, Y. Chen, Z. Chen,
J. Jiang, R. Ren, Y. Li, X. Tang, Z. Liu, P. Liu, J.-Y. Nie, and J.-R.
Wen, “A survey of large language models,” 2025. [Online]. Available:
https://arxiv.org/abs/2303.18223

[91 S. Geng, H. Cooper, M. Moskal, S. Jenkins, J. Berman, N. Ranchin,

R. West, E. Horvitz, and H. Nori, “JSON-SchemaBench: A rigorous

benchmark of structured outputs for language models,” arXiv preprint

arXiv:2501.10868, 2025.

Object Management Group (OMG), “Meta object facility (MOF) 2.0

core specification,” 2006. [Online]. Available: http://www.omg.org/spec/

MOF/2.0

——, “Unified modeling language (UML) specification version 2.5.1,”

2017. [Online]. Available: https://www.omg.org/spec/UML/2.5.1/

[10]

[11]

541

542

[12]

(13]

[14]

B. Wang, Z. Wang, X. Wang, Y. Cao, R. A Saurous, and Y. Kim,
“Grammar prompting for domain-specific language generation with large
language models,” Advances in Neural Information Processing Systems,
vol. 36, pp. 65030-65 055, 2023.

T. Scholak, N. Schucher, and D. Bahdanau, “Picard: Parsing incremen-
tally for constrained auto-regressive decoding from language models,” in
Proceedings of the 2021 Conference on Empirical Methods in Natural
Language Processing, 2021, pp. 9895-9901.

N. Bassamzadeh and C. Methani, “A Comparative Study of DSL Code
Generation: Fine-Tuning vs. Optimized Retrieval Augmentation,” arXiv
preprint arXiv:2407.02742, 2024.

[15]

[16]

PROCEEDINGS OF THE FEDCSIS. KRAKOW, POLAND, 2025

L. Netz, J. Michael, and B. Rumpe, “From Natural Language to Web
Applications: Using Large Language Models for Model-Driven Software
Engineering,” in Modellierung, 2024.

A. Fischer, J.-P. Tolvanen, and R. Tavakoli Kolagari, “Automotive cyber-
security engineering with modeling support,” in 2024 19th Conference
on Computer Science and Intelligence Systems (FedCSIS), 2024, pp.
319-329.

