
Machine-Readable by Design: Language

Specifications as the Key to Integrating LLMs into

Industrial Tools

Alexander Fischer∗, Louis Burk∗, Ramin Tavakoli Kolagari, Uwe Wienkop

0009-0001-1737-7395

0009-0003-0727-6456

0000-0002-7470-3767

0009-0000-4487-2458

Nuremberg Institute of Technology,

Faculty of Computer Science,

Kesslerplatz 12,

90489 Nuremberg, Germany

Email: {a.fischer, louis.burk, ramin.tavakolikolagari, uwe.wienkop}@th-nuernberg.de

Abstract—We propose a meta-language-based approach en-
abling Large Language Models (LLMs) to reliably generate struc-
tured, machine-readable artifacts referred to as Meta-Language-
defined Structures (MLDS) adapted to domain requirements,
without adhering strictly to standard formats like JSON or
XML. By embedding explicit schema instructions within prompts,
we evaluated the method across diverse use cases, including
automated Virtual Reality environment generation and automo-
tive security modeling. Our experiments demonstrate that the
meta-language approach significantly improves LLM-generated
structure compliance, with an 88% validation rate across 132 test
scenarios. Compared to traditional methods using LangChain
and Pydantic, our MLDS method reduces setup complexity by
approximately 80%, despite a marginally higher error rate.
Furthermore, the MLDS artifacts produced were easily editable,
enabling rapid iterative refinement. This flexibility greatly al-
leviates the “blank page syndrome” by providing structured
initial artifacts suitable for immediate use or further human
enhancement, making our approach highly practical for rapid
prototyping and integration into complex industrial workflows.

I. INTRODUCTION

I
NDUSTRIAL tools have become increasingly powerful

and can now handle vast amounts of data. However, as

their range of functions continues to grow, operating these

tools often overshadows the core task of content or problem

management. This situation is further exacerbated by the

common “blank page syndrome,” [1], a common phenomenon

in complex design or modeling tasks, where the absence of any

initial structure or guidance leads to hesitation, inefficiency,

or even creative paralysis. In such cases, users face difficulty

starting from scratch, especially when formal specifications or

architectural expertise are required. This not only slows down

the initial design process but may also prevent domain experts

from effectively contributing to model-driven workflows. Con-

sequently, the focus moves away from the substantive content

*Both authors contributed equally to this work.

toward the tool itself, lowering productivity and widening the

gap between content and tooling

At the same time, LLMs offer new opportunities by helping

domain experts generate creative impulses and mitigate the

“blank page syndrome.” These assisting tools have evolved

rapidly—especially through the integration of AI capabili-

ties—that they have become even more complex, making

proper integration of LLMs into content creation workflows

difficult. In particular, when domain-specific languages are

used that deviate from common formats like JSON or XML,

producing reliably machine-readable artifacts remains a sig-

nificant challenge.

Our approach addresses this issue by defining a language

specification (meta-language) that is adapted to the require-

ments of each domain, and which likewise does not rely

on existing standard formats. This enables us to capture the

structural differences and specific relationships of a domain.

By combining LLMs with this meta-language, it becomes

possible to produce customized, machine-readable artifacts

without requiring domain experts to possess extensive knowl-

edge of architectural or formal specifications.

To clarify our terminology, we define two key concepts

central to this paper. A Meta-Language-defined Structure

(MLDS) refers to a structured, machine-readable artifact that

is generated based on natural language input, using a set of

schema rules defined in a meta-language which we call Meta-

Language-defined Structure Instructions (MLDSI) . The meta-

language itself is a domain-specific specification that defines

the structure of the expected artifact. It serves as a structural

blueprint that guides the generation of MLDS artifacts and

ensures that the resulting outputs conform to the expected

semantics of the target domain.

Although recent approaches have explored how LLMs can

be guided to generate structured outputs, they typically rely on

rigid, domain-agnostic formats such as JSON or XML. These

Proceedings of the 20th Conference on Computer
Science and Intelligence Systems (FedCSIS) pp. 531–542

DOI: 10.15439/2025F5613
ISSN 2300-5963 ACSIS, Vol. 43

IEEE Catalog Number: CFP2585N-ART ©2025, PTI 531 Thematic Session: Model Driven Approaches in
System Development



solutions offer limited semantic adaptability and often require

specialized tools or substantial manual intervention. This high-

lights a persistent research gap: the lack of a lightweight,

domain-adaptable framework for generating structured outputs

from natural language in a way that is both semantically mean-

ingful and technically accessible. Our work addresses this gap

by introducing the MLDS approach, which enables domain

experts to produce customized, machine-readable content with

minimal setup effort and without requiring expertise in schema

tooling or formal languages.

Whether this meta-language approach is viable and benefi-

cial is examined by focusing on the following central question:

What conditions must be met for meta-languages to

function as a bridging element between natural content

descriptions and machine-readable structures, enabling the

integration of LLMs into industrial toolchains?

This central question is addressed through the following

three sub-questions:

R1: Which methods can be used to incorporate

meta-language definitions into a model?

R2: What criteria can be considered to validate

the output?

R3: To what extent can reference examples be

used to adapt the output to specific needs?

To ensure transparency and facilitate reproducibility, all rel-

evant research artifacts, including evaluation results, domain-

specific meta-language definitions and generated Meta-

Language-defined Structures (MLDS) artifacts, have been

made publicly available in our GitHub repository [2].

In the remainder of this paper, we present the technical

background and motivation for our meta-language approach

in Section II. An overview of related research follows in

Section III, which positions our work within the broader field.

Next, Section IV introduces our proposed methodology and the

design of the meta-language. We then provide a comprehensive

evaluation in Section V, showcasing its applicability across

various domains. Section VI discusses our key findings and

highlights potential limitations, while Section VII outlines

promising avenues for future research. Finally, Section VIII

concludes the paper with a summary of our main contributions.

II. BACKGROUND AND MOTIVATION

In many technical and economic fields, there are specialized

challenges that can only be successfully addressed with the

help of experts. This is especially true for the development

and implementation of complex software and system archi-

tectures [3]. A classic example is the collaboration between

a person with architectural expertise (Architectural Domain

Expert, ADE) and someone with substantive or specialized

expertise (Content Domain Expert, CDE). While an architect

generally possesses deep knowledge of a specific, clearly

defined domain, the transfer of architectural concepts to other

domains is often difficult and time-consuming. This hurdle

complicates efficient collaboration and leads to practical inef-

ficiencies when the same fundamental principle is applied in

different fields.

The goal, therefore, is to allow CDEs in a given domain to

create structured artifacts directly processable by machines,

even without extensive knowledge of software or system

architecture. These artifacts, which we refer to as MLDS,

make it possible to model specialized requirements in detail.

By using MLDS, ideas and requirements expressed in natural

language are transformed into formal structures that adhere

to certain rules and constraints. Consequently, the ADE’s role

shifts to a higher-level task: defining a structural specification

(the “meta-language”) that ensures the resulting MLDS meet

the desired quality and formatting requirements.

Currently, structured outputs from natural language models,

such as JSON-based responses, typically require specialized

tools and significant manual intervention. Tools like Pydantic

and LangChain have emerged to facilitate structured outputs

by validating and enforcing schemas, thereby ensuring JSON

structures are accurately generated and adhered to [4], [5].

However, effective use of these tools demands substantial

technical expertise and familiarity with their underlying frame-

works [6]. Moreover, these tools require ongoing adaptation to

handle differences in how newer LLM architectures generate

structured output, which introduces additional maintenance

overhead and complexity.

Furthermore, not all LLMs inherently support structured

output generation effectively. This limitation restricts their

applicability to scenarios requiring strictly formatted out-

puts [7], [8]. For models that do support structured outputs,

outputs often need post-processing and manual corrections

due to subtle inconsistencies, ambiguities, or deviations from

predefined structures, increasing complexity and effort [9].

To circumvent these challenges, our approach introduces

MLDS Instructions—structured prompts explicitly designed

to guide LLMs in generating precisely defined structured

artifacts. LLMs are powerful models that can interpret and

produce natural language [8]. However, a key issue arises

because LLMs generally do not generate precise, user-defined

structures unless these are already standard formats. This

is precisely where our solution comes into play: with so-

called “MLDS instructions,” we provide the LLM with a

meta-language characterized by a clear structure and defined

relationships, without relying on existing standard formats.

The MLDS instructions inform the model about both the

desired output format and the rules needed to produce it.

This distinguishes our approach from classic procedures that

require extensive fine-tuning of the model or force the output

into a fixed format. Through the meta-language and its meta-

levels, complex relationships within the MLDS can also be

represented. In this way, MLDS builds a bridge between the

conceptual problem statements formulated by CDE and a

strictly formatted output that can be processed by machines.

Our approach is inspired by established metamodeling ar-

chitectures, such as those found in the Meta-Object Facility

(MOF) [10] and the Unified Modeling Language (UML) [11],

and is structured into four layers:

• At the M0 level, the focus is on concrete data or instance-

level elements—the real-world objects or executions that

532 PROCEEDINGS OF THE FEDCSIS. KRAKÓW, POLAND, 2025



result from applying the MLDS. This level is where

the model “comes to life” and is directly processed by

software systems.

• The M1 level, known as the model level, is where the

MLDS artifacts reside. These artifacts are formal repre-

sentations that capture the concrete, structured require-

ments of a domain, serving as blueprints derived from

the natural language input provided by domain experts.

• The M2 level, or metamodel level, contains the meta-

language. This layer defines the rules, constraints, and

abstract syntax and semantics required for constructing

valid MLDS artifacts. The MLDS instructions used to

guide the LLM in generating structured outputs are

derived from this meta-language.

• At the highest M3 level, the meta-meta model is de-

fined. This layer establishes the fundamental constructs

and abstractions upon which the meta-language is built.

Although users do not normally interact directly with this

level, it is necessary to ensure that the meta-language

(M2) is consistent, which in turn ensures that the rules

governing the MLDS (M1) are sound.

By organizing our approach into these four intercon-

nected layers, M0 for instances, M1 for MLDS artifacts, M2

for the meta-language, and M3 for the meta-meta model,

we create a structured, hierarchical approach that ensures

domain-specific requirements are transformed consistently into

machine-processable formats. While content domain experts

focus on formulating concrete requirements at the M1 level,

the meta-language at the M2 level ensures that these require-

ments are implemented within a consistent, formal scope. The

M3 layer supports the whole system by providing a basis for

the meta-language.

In this paper, we will illustrate the functionality of our

MLDS instructions and the resulting MLDS outputs using

two application scenarios: (1) Automotive Software Security

and (2) Virtual Reality in business applications. By “Auto-

motive Software Security,” we mean the specific security and

reliability requirements in vehicle software engineering, while

“Virtual Reality in business applications” refers to immersive

and interactive digital learning and work environments used

within companies. These examples highlight how varied the

domains can be in which experts (CDE)—for instance, from

the security or VR fields—wish to express their specialized

requirements in MLDS, without being trained as architects in

the sense of software system architecture.

An illustrative use case demonstrates this: a VR specialist

wants to model a virtual learning space for internal corporate

training. Although this expert (CDE) has a clear understanding

of the requirements for the learning space, they lack the

experience to describe it in a precise architectural form. The

existing tool for creating VR environments requires a clearly

defined structure in the form of MLDS. Until now, it was

the architect’s job to convert these specialized requirements

into the corresponding formal structure. With our approach,

a natural language description of the desired learning space

and the MLDS instructions satisfy for an LLM to generate

the appropriate MLDS. Thanks to the MLDS instructions,

the LLM knows exactly how the resulting artifact should be

structured. As a result, the CDE’s specialized requirements are

transformed into a formally processable data format, without

the need for the CDE to possess deeper knowledge of software

architecture or formal languages.

III. RELATED WORK

In our approach, we propose a meta-language framework

that allows the creation of formally defined structures from

purely natural-language descriptions without relying on stan-

dard formats like JSON or UML, nor requiring extensive fine-

tuning.

A variety of prior studies already employ LLMs for struc-

tured output generation, yet they pursue either more special-

ized or fundamentally different techniques. For instance, Wang

et al. [12] demonstrate a grammar prompting procedure, where

LLMs are constrained by a Backus–Naur Form (BNF) gram-

mar to produce strictly formal outputs. While this approach

works very well for specific languages that fit into a context-

free grammar, it often requires explicit modifications to the

decoding process (such as restricting token choices) or relies

on well-defined, existing grammar rules. By contrast, our focus

is on designing a flexible meta-language that need not be

encoded in BNF.

A related but narrower method is illustrated by Scholak

et al. [13] with their PICARD approach, where an autore-

gressive model is incrementally validated against the desired

language (e. g., SQL). Similar to grammar prompting, token

decoding is continuously constrained during generation. How-

ever, in contrast to our meta-language paradigm, PICARD

involves invasive modifications to the decoding algorithm. We

rely instead on clearly defined meta-language instructions and

LLM prompt processing, yielding more latitude for language

structures.

Further research in retrieval augmentation or fine-tuning

comes from Bassamzadeh and Methani [14], comparing

whether structured code is best produced via specialized fine-

tuning or optimized prompting techniques. While these find-

ings are valuable for reducing errors and hallucinations, they

typically assume a known format (e. g. JSON/YAML). In our

method, no specialized model training is needed; we generate

all target structures solely via prompt-based instructions and

meta-language rules.

In the context of model-driven software development, Netz

et al. [15] show how UML-like class diagrams (CD4A) can

be generated by GPT-3.5/GPT-4 and transformed directly

into complete web applications. However, they rely on UML

notations and existing generator frameworks (e. g. MontiGem).

This differs from our approach, which does not require any

model-driven development toolchain or standardized notation.

Instead, we allow arbitrary domain-specific structures—for

instance, automotive security or VR scenarios—specified with

a freely definable meta-language.

Key Contribution of Our Approach: While the mentioned

studies employ various forms of grammar-based decoding,

ALEXANDER FISCHER ET AL.: MACHINE-READABLE BY DESIGN: LANGUAGE SPECIFICATIONS AS THE KEY TO INTEGRATING LLMS 533



fine-tuning, or predefined formats, our method provides a

universal meta-language definition. Thus, architects or tool

developers can prescribe any target structure (from security

modeling to 3D scenes) at the meta-level so that an LLM

subsequently outputs machine-readable artifacts in exactly that

format–without training, without invasive decoder modifica-

tions, and without restricting to JSON/UML. Because our

approach does not fix a specific output format, it supports both

machine-driven and human refinements of the same structure,

fostering an iterative co-creation process. Domain experts

bring in new scenario descriptions, the LLM generates or

extends the MLDS, and humans can then fine-tune or correct

the result in the meta-language immediately. This openness,

combined with a clear metamodel architecture, constitutes the

central distinguishing feature of our work.

IV. METHODOLOGY

In this Section, we explain our proposed approach (Section

II) in detail, showing how we use our custom meta-language

together with the MLDS framework to solve the problem. We

begin by outlining how the meta-language is derived from

the tool’s requirements, providing a starting point for the

process. Next, we describe how to structure the descriptions

of tasks and scenarios, setting up a foundation for generating

the MLDS using LLMs. The complete procedure is shown in

Figure 1.

To keep the process transparent, we provide examples

that demonstrate how prompts are combined with the meta-

language. A notable feature of our approach is that it allows

users to influence different parts of the MLDS in various

ways, making the method adaptable. After fully explaining the

MLDS, we show how it can be directly imported into tools,

and we conclude by demonstrating how this method addresses

the blank page syndrome.

A. Conception of the Meta-Language

The core of our approach lies in developing a meta-language

that incorporates the specific requirements of a domain or

tool and organizes them into a structured form that is not

bound to common standards. In contrast to JSON or XML,

the meta-language may deliberately allow specialized object

types, relationships, and value ranges that thoroughly reflect

the peculiarities of a domain. The meta-language thus pursues

two primary objectives: on the one hand, it provides the LLM

with explicit guidelines on which structures, attributes, and

relationships should appear in the generated MLDS. On the

other hand, it is designed to be easily understandable and

extendable by human domain experts, allowing them to add

new elements or rules when necessary.

1) Reasons for a Meta-Language: One of the main chal-

lenges in automatically generating structured output is that

LLMs initially lack any knowledge of custom formats. Al-

though models can be adapted to standard formats, they often

reach their limits when specialized domains require formats

that differ from these standards or go beyond their seman-

tics. Many advanced tools employ proprietary definitions that

cannot readily be mapped onto common standards. Our meta-

language addresses this gap by:

• Allowing freely definable object and relationship types to

represent specific domain concepts.

• Defining clearly delimited value ranges (e.g., discrete se-

lection options, predefined numerical ranges, or boolean

variables) for each attribute, so that the LLM is not forced

to “improvise” unnecessarily but instead chooses from a

set of valid options.

• Providing structural guidelines that define the “skeleton”

of an MLDS, ensuring that the generated output follows

a meaningful and machine-readable architecture.

In this way, it is not necessary to extensively fine-tune the

LLM. Instead, we present the model with precise rules via the

meta-language and corresponding prompt instructions, which

it follows when generating the MLDS.

2) Analysis of the Required Input: Before implementing the

meta-language, it is necessary to determine which information

a particular tool or domain actually needs. A standard example

is a VR development tool that manages various object types

(e.g., rooms, avatars, or interactions), each with specific

properties (size, access rights, animation logic, etc.). These

aspects are collected, categorized, and eventually transferred

into the meta-language. On this basis, one can also estimate the

relationships between objects—an avatar, for instance, may

be assigned to a room, and an interaction may be tied to an

object.

3) Extracting Relevant Objects and Properties: Once the

domain analysis is complete, relevant objects are defined.

An object corresponds to a central concept in the domain

(e.g., learning environment, avatar, security component). A

learning environment, for example, might have properties such

as name, maximum number of users, or room configuration.

Each property is assigned a corresponding value range (e.g.,

a fixed set of room types, numerical ranges for the number of

users) to ensure consistency and comprehensibility.

4) Defining Relations: Another key to understanding and

modeling complex relationships is specifying the links be-

tween objects. For instance, a human actor object at a certain

resilience level could refer to an attack object, or multiple

vehicle features could form a single item. These relationships

may be configured hierarchically within the meta-language

or refer to the same level, each implying different semantic

connections. Such a relational network dictates the subsequent

structure of the MLDS, guiding the LLM in how individual

elements should interrelate.

5) Domain-Specific Meta-Language Instructions: In the

following, we present three excerpts from a possible domain-

specific meta-language design, illustrating its key concepts. Al-

though the example involves a 3D scene for VR applications,

the same underlying mechanisms can be applied to virtually

any domain.

a) Defining the Scene Structure: The first step is to

establish a top-level object that acts as a global container for all

subsequent elements (Listing 1). In the VR domain, we call

534 PROCEEDINGS OF THE FEDCSIS. KRAKÓW, POLAND, 2025



Adapt MLDS manually

Generate MLDS using LLMsDefine Meta-Language

Describe Tasks and 

Scenarios for a given 

Use Case

Define Prompt using 

Meta-Language Input

Combine Prompt 

with Meta-Language

Generate MLDS

Analyze Tool 

Requirements

Describe Objects

Describe Object 

Properties

Describe Object 

Relationships

Fix MLDS Extend MLDS

Review MLDS Extend Content

[Re-genereation necessary][Manual Adaption necessary]

[MLDS OK]

Import MLDS into Tool

Interpret MLDS Review Objects

Review Relationships
Construct Tool 

Output

Adapt Output in Tool

Use Tool with pre-

generated Content

Fig. 1. Workflow for generating and refining MLDS from natural language input, combining meta-language specification, LLM-based structure generation,
and iterative human-AI co-editing for tool integration.

this object scene, which holds basic environmental details

and a list of objects.

1 {

2 "scene":

3 {

4 "sceneName": "VR Training Room",

5 "environment":

6 {

7 "type": "indoor",

8 "dimensions": { "width": 10.0, "

height": 3.0, "depth": 15.0 }

9 },

10 "objects":

11 [

12 /* Objects go here */

13 ]

14 }

15 }

Listing 1. Definition of the Scene Structure

In other domains, what is here called "scene" could

be labeled "system" or "project" and might include

completely different properties (e.g., systemCategory or

budget). Nevertheless, the principle remains the same: a

clearly defined parent object provides the framework in which

all detailed elements and their attributes are nested.

b) Modeling Objects and Their Relationships: Each ob-

ject has a unique objectId and is characterized by proper-

ties (e.g., objectType, position, rotation) as well

as optional relational information. Listing 2 shows how to

place an object (a table) relative to another object using

relativePositioning.

ALEXANDER FISCHER ET AL.: MACHINE-READABLE BY DESIGN: LANGUAGE SPECIFICATIONS AS THE KEY TO INTEGRATING LLMS 535



1 {

2 "objectId": "object_01",

3 "objectType": "table",

4 "position": { "x": 2, "y": 0, "z": 3 },

5 "rotation": { "x": 0, "y": 45, "z": 0

},

6 "dimensions": { "width": 1.5, "height":

0.75, "depth": 1.0 },

7 "relativePositioning":

8 {

9 "referenceObject": "object_02",

10 "relation": "next_to"

11 },

12 "offset": { "x": 0.2, "y": 0, "z": 0 }

13 }

Listing 2. Objects with Relative Positioning

In other domains, objects may have entirely different prop-

erties (for instance, memoryLimit or location in a cloud

application). Similarly, a relationship like next_to could

be replaced by something like depends_on if you want to

describe software dependencies. By specifying such structures

in a meta-language, you ensure that the LLM knows exactly

which attributes exist and which values are permissible.
c) Hierarchical Nesting of Objects: To describe more

complex scenarios, objects can themselves have children (List-

ing 3). This enables a hierarchical organization with subordi-

nate elements.

1 {

2 "objectId": "object_02",

3 "objectType": "shelf",

4 "relativePositioning":

5 {

6 "referenceObject": "object_03",

7 "relation": "on_top_of"

8 },

9 "children":

10 [

11 {

12 "objectId": "object_02_child_01",

13 "objectType": "box",

14 "relativePositioning": {

15 "referenceObject": "object_02",

16 "relation": "next_to"

17 },

18 "offset": { "x": 0.1, "y": 0, "z": 0

}

19 }

20 ]

21 }

Listing 3. Object Hierarchies Using Children

This type of children property could represent, for

example, submodules within a larger module in a software

architecture or smaller processes within a bigger industrial

workflow. Likewise, a relationship such as "on_top_of"

is just an example of a hierarchical link; in other contexts, it

might be "contained_in" or "extends".

B. Generation of the MLDS

Once the meta-language is established, natural language

descriptions or scenarios adapted to a specific use case can

be created. As illustrated in Figure 1, the meta-language is

developed as a separate module that, once finalized, can be

reused for all subsequent generations.

In the most compact workflow, we concatenate the meta-

language and the scenario into one composite prompt and

pass it to a pretrained LLM via its API. Because the model

already possesses broad world knowledge, it needs no task-

specific fine-tuning; instead, the embedded meta-language

rules channel the model towards a syntactically correct MLDS

while the scenario text supplies the domain content. A prompt

segment might therefore read:

1 <<META LANGUAGE>>

2 object room { width:float height:float

depth:float ... }

3 ...

4 <<SCENARIO>>

5 Create a training classroom with 20

student desks, one teacher desk,

6 and a projector mounted to the ceiling.

Listing 4. Excerpt of a single-shot prompt that merges meta-language
and scenario

For projects that demand stricter traceability or staged

quality control, we separate the process into two calls. The

first call feeds nothing but the meta-language to the LLM and

receives back a condensed, token-optimised representation, the

second call injects the scenario plus the condensed rules. This

split makes it easy to inspect intermediate artifacts, attach

unit tests to the generated schema, or swap in a different

scenario without retransmitting an unchanged meta-language,

an advantage when prompt length becomes a bottleneck.

Regardless of the single- or multi-step variant, the raw

MLDS is fed through an automatic validator that flags missing

attributes, illegal value ranges or broken references. Only after

the MLDS passes this gatekeeper is it handed to the target

tool, guaranteeing that the downstream pipeline never receives

malformed input.

C. Adaption of the MLDS

In practice, generating the initial MLDS is only the first

step in its full utilization. Because the MLDS can be produced

in a format that is easily readable by humans, domain experts

can readily validate its contents without a steep learning curve.

Once generated, the MLDS may be scrutinized for correctness,

and any missing information can be added. As illustrated in

Figure 1, these iterative improvements can be carried out by

the LLM itself, which can respond to feedback or correction

prompts. At the same time, domain experts remain free to

make manual adjustments, ensuring a high degree of precision

where AI suggestions may not capture every nuance. This

dual approach of automated and manual editing fosters a co-

creative process, merging AI-driven speed and consistency

with human expertise. Moreover, the MLDS’s structured na-

ture facilitates intuitive graphical interfaces, allowing content

specialists to modify or enrich the MLDS without delving into

the underlying code. By accommodating both fully automated

and personalized interventions, the workflow remains flexible,

transparent, and accessible to all involved stakeholders.

536 PROCEEDINGS OF THE FEDCSIS. KRAKÓW, POLAND, 2025



D. Integration into the Tool Environment

Once the finalized version of the MLDS is ready, it can

be loaded directly into the target tool. The tool interprets the

generated structure and creates the required output, represent-

ing all defined objects and their relationships according to the

MLDS specifications. Additional modifications and enhance-

ments can then be carried out directly within the tool, giving

users the flexibility to refine or extend the setup as needed.

This ensures that the produced content is fully leveraged, while

minimizing both development effort and potential errors.

V. EVALUATION

A. Objective and Approach

To demonstrate the developed Meta-Language approach, we

selected two distinct domains: (1) the automated generation of

Virtual Reality (VR) worlds and (2) the Security Modeling

of embedded systems in the automotive context. The aim

is to show that from a defined meta-language, a domain-

specific MLDS can be generated that consistently follows

the given specification. Furthermore, we highlight how this

method mitigates the so-called “blank page syndrome,” where

a completely unstructured starting point often leads to high

efforts in initial model or environment creation. By providing

a machine-readable foundation, users can directly refine and

adapt the generated MLDS artifacts.

B. Use Case: Automated VR World Generation

The first domain focuses on automatically generating VR

worlds in Unity. A structured description is created to form a

basic layout of the virtual environment. Designers provide a

natural-language prompt (for instance: “Generate a classroom

for 20 students”), which is then transformed into a JSON-

based MLDS using our meta-language. Unity processes the

resulting MLDS to position objects and define relationships in

the 3D scene. Initially, placeholders (e.g., cubes) are placed to

help visualize object arrangements. Designers can later replace

these placeholders with final assets, ensuring a quick start for

prototyping. This effectively reduces the blank page syndrome

since each new scene already has a predefined structure.

Over 200 test scenarios (see Section IX) were conducted,

demonstrating that LLMs are able to generate coherent ob-

ject hierarchies and spatial relationships. For example, List-

ing 5 shows a parent-child relationship where a desk acts

as the parent object, and a chair is placed relative to the

desk. Positioning attributes and relational references (e.g.,

in_front_of_positive_z) are used to automate the

placement in the 3D environment.

1 {

2 "objectId": "studentDesk_r0_c0",

3 "objectType": "student_desk",

4 "assetName": "student_desk_asset",

5 "position": {"x": -6, "y": 0.5, "z":

8},

6 "dimensions": {"width": 2, "height": 1

,"depth": 2},

7 "group": "furniture",

8 "children":

9 [

10 {

11 "objectId": "studentChair_r0_c0",

12 "objectType": "chair",

13 "assetName": "student_chair_asset",

14 "relativePositioning": {

15 "referenceObject": "

studentDesk_r0_c0",

16 "relation": "in_front_of_positive_z

",

17 "distance": 1

18 },

19 "dimensions": {"width": 0.5, "height

": 0.5, "depth": 0.75},

20 "group": "furniture"

21 }

22 ]

23 }

Listing 5. VR Parent-Child Relation

By incorporating such parent-child relations, users benefit

from an iterative co-creation process: the generated foundation

can be refined either through extended prompts (in natural

language) or direct modifications of the MLDS output.

C. Use Case: Security Modeling in Automotive

The second use case addresses Security Modeling for em-

bedded systems in the automotive context. Building upon the

metamodel proposed in [16], we define a meta-language for

an MLDS that helps create a foundational security model.

Security experts or systems engineers can outline potential

threats or vulnerabilities in natural language (e.g., “unsecured

wireless communication” or “man-in-the-middle attack”). An

LLM then translates these descriptions into the MLDS, which

is directly processable by a security modeling tool. Such a tool

subsequently calculates risk levels or highlights vulnerabilities.

Manual adjustments remain possible at any stage, ensuring a

flexible co-creation process.

Listing 6 illustrates a JSON-based MLDS snippet

with typical attributes for attack characterization, such as

AttackComplexity and UserInteraction. By as-

signing initial values to these fields, the LLM provides a

starting point for further risk assessments.

1 {

2 "Name": "Man-in-the-middle:

intercepting and manipulating

wireless traffic",

3 "AccessRequired": "Network",

4 "AttackComplexity": "(H)igh",

5 "PrivilegesRequired": "(N)one",

6 "Urgency": "(L)ow",

7 "UserInteraction": "(N)one",

8 "AvailabilityImpact": "(L)ow",

9 "ConfidentialityImpact": "(H)igh",

10 "IntegrityImpact": "(L)ow",

11 "SafetyRelevance": "(H)igh",

12 "vulnerabilities":

13 [

14 {

15 "Name": "Unsecured Wireless

Communication Protocol"

ALEXANDER FISCHER ET AL.: MACHINE-READABLE BY DESIGN: LANGUAGE SPECIFICATIONS AS THE KEY TO INTEGRATING LLMS 537



16 }

17 ]

18 }

Listing 6. Automotive Security Attack Representation

Since risk or vulnerability scores are computed within the

modeling tool itself, attributes assigned by the LLM can be

refined later. This aligns with the cooperative design principle,

where the model’s first version is automatically generated and

then iteratively improved.

D. Results and Insights

In both domains, we combined the language specification

with natural-language prompts across several LLMs (including

GPT 4o mini, GPT o3 mini, DeepSeek-R1, and DeepSeek-

R1 14B running locally). Most generated MLDS files were

syntactically correct and machine-readable. Occasional issues

arose mainly from incomplete API responses or minor inaccu-

racies in the meta-language. Notably, even complex problem

descriptions in natural language led to well-structured and

valid MLDS artifacts. Key findings are:

• High Machine-Readability: The LLM outputs conform

closely to the defined meta-language, minimizing parsing

errors.

• Blank Page Syndrome Mitigation: In both VR world

creation and security modeling, users start with a usable

blueprint rather than a completely empty project.

• Ease of Extension: Generated models or VR scenes can

be expanded using extended prompts or direct modifica-

tions.

• Domain-Agnostic Feasibility: The approach works ef-

fectively in multiple domains, provided a domain-specific

meta-language is well-defined—for example, structuring

content in education, automating routines in smart envi-

ronments, modeling workflows in business, formalizing

scenarios in healthcare, or generating logic in games and

legal contexts.

We further evaluated our approach by systematically analyzing

132 generated MLDS files to quantify adherence to the pre-

scribed meta-language schema. This analysis was automated

through a custom Python-based parser validating each file

against the defined schema.

E. Evaluation Setup

The evaluation dataset consisted of files categorized into two

complexity levels: easy (n=72) and medium (n=60), selected

from the VR dataset based on the required content complexity.

The dataset aimed to enable an end-to-end pipeline for gen-

erating virtual environments. Furthermore, each complexity

level had two variations: one employing semantic validators

(withValidator) and one without validators (withoutValidator).

These validators were applied downstream of the MLDS trans-

lation process and specifically assessed semantic correctness,

such as checking for overlapping objects, rather than syntactic

accuracy. As our analysis indicated no significant differences

in syntactic correctness between these variations, we decided

to merge them into a single unified dataset for evaluation

purposes. Each file was evaluated based on structural validity,

completeness of schema components, and the presence of

specific parsing errors.

We defined the metrics as follows:

V =

∑
valid files, I = N − V (1)

Validity Rate (%) =
V

N
× 100 (2)

Presence Rate (%) =
Files containing schema part

N
× 100

(3)

where N is the total number of evaluated files, V is the number

of valid (correctly structured) files, and I is the number of

invalid (incorrect) files.

F. Quantitative Results

Out of N = 132 files, V = 116 (87.9%) were valid, while

I = 16 (12.1%) contained parsing errors (Fig. 2). Errors

primarily arose from JSON parsing issues due to incorrect

string formatting.

Fig. 2. Distribution of valid vs. invalid MLDS JSON files.

Out of the 16 invalid files, 15 exhibited a parsing error

indicated by the message ’str’ object has no attribute ’get’.

This error occurred because the JSON parser expected a

structured object but encountered a string instead. Only one file

showed a different issue, specifically missing essential schema

components: environment and sceneName.

Table I summarizes the presence rates of schema parts. Most

elements showed high presence rates, indicating strong schema

adherence, except for optional fields like env.background,

which appeared less frequently (72.7%).

538 PROCEEDINGS OF THE FEDCSIS. KRAKÓW, POLAND, 2025



TABLE I
SCHEMA PART PRESENCE SUMMARY

Schema Part Presence Missing files

sceneName 87.9% 16

environment 87.9% 16

env.type 87.9% 16

env.dimensions 87.9% 16

env.lighting 85.6% 19

env.background 72.7% 36

objectGroups 87.9% 16

objects 88.6% 15

obj.objectId 87.9% 16

obj.objectType 87.1% 17

obj.position 87.9% 16

obj.rotation 87.1% 17

obj.dimensions 87.1% 17

Since we did not explicitly request the inclusion of back-

ground components and instead relied on the LLM’s initiative

to incorporate them as part of the MLDS, the observed number

of omissions was anticipated. This could be improved by

explicitly addressing background components within the input

prompt, thus providing clearer guidance to the LLM.

Figure 3 visually presents these results and highlights areas

for possible improvements.

Fig. 3. Presence rates of schema parts in MLDS files.

Figures 4 and 5 highlight the complexity of generated files.

Most scenarios had a moderate number of objects, suitable for

realistic industrial applications, while nesting depth indicated

well-structured JSON.

Fig. 4. Distribution of object counts per MLDS file.

Fig. 5. Distribution of nesting depths in MLDS files.

The nesting depth was computed with the following Python

function:

1 def compute_depth(obj, depth=0):

2 if isinstance(obj, dict):

3 return max([compute_depth(v, depth

+1) for v in obj.values()] or [

depth])

4 if isinstance(obj, list):

5 return max([compute_depth(i, depth

+1) for i in obj] or [depth])

6 return depth

Listing 7. Computing JSON nesting depth

G. Comparison with Traditional Approaches

We compared our MLDS approach directly against a tra-

ditional structured-output pipeline using LangChain and Py-

dantic [5], [4]. The implementation of the traditional ap-

proach took approximately five times longer than preparing

our MLDS instructions, primarily due to the complexity and

steep learning curve associated with LangChain and Pydantic.

While the traditional approach consistently produced compi-

lable results when successfully executed, approximately 7%

ALEXANDER FISCHER ET AL.: MACHINE-READABLE BY DESIGN: LANGUAGE SPECIFICATIONS AS THE KEY TO INTEGRATING LLMS 539



of pipeline runs failed entirely due to validation errors or

incomplete responses. In contrast, our MLDS-based approach

resulted in a slightly higher error rate (around 6% more errors),

but significantly reduced the overall complexity, effort, and

required expertise. Therefore, especially for rapid prototyping,

iterative adjustments, or when specific expertise in Pydantic

and LangChain is not readily available, our MLDS approach

offers a clear practical advantage.

H. Implications

Explicitly embedding meta-language schema instructions

within prompts enhances structural compliance and machine

readability. This efficiency allows rapid prototyping and seam-

less integration into diverse industrial workflows, underscoring

the practical effectiveness of our approach.

VI. DISCUSSION

In this Section, we revisit the insights gained from our eval-

uation in light of the research questions posed in Section I. We

then compare our approach to existing work (see Section III)

and critically examine potential limitations as well as threats

to validity.

A. Interpretation of Evaluation Results

1) Research Question R1: Methods for Incorporating Meta-

Language Definitions into Models: Our experiments in the

domains of Virtual Reality (VR) world generation and Auto-

motive Security indicate that a well-specified meta-language

can effectively convey structural and relational constraints to

LLMs. The results suggest that this method scales to both

creative (VR design) and safety-critical (automotive security)

fields. We observed that generating complex MLDS artifacts

worked particularly well when the meta-language was suffi-

ciently fine-grained and included specific object definitions

and enumerated attribute values (e.g., relativePositioning).

This confirms that incorporating meta-language definitions

does not require adherence to standardized formats, so long

as the underlying structure is clear and domain-relevant.

2) Research Question R2: Criteria for Validating the Gen-

erated Output: Our evaluation revealed that, on one hand,

formal aspects such as syntax and mandatory attributes can be

automatically validated. On the other hand, certain domain-

specific or semantic aspects (e.g., the correctness of spatial

relationships in VR scenarios or the accuracy of security

attributes in automotive models) often benefit from human

review. Thus, a purely syntactic validation is a valuable first

step but does not eliminate the need for semantic validation.

A cooperative feedback loop—where experts refine machine-

generated MLDS artifacts and tools provide automated format

checks—leverages the strengths of both human expertise and

automated structure enforcement.

3) Research Question R3: Adapting Output via Reference

Examples: Including examples (e.g., prototype scene defini-

tions for VR environments or sample attack entities in security

modeling) improved both the consistency and format of the

generated outputs. The LLM relies on these “exemplary”

structures to align with domain-specific expectations. Notably,

references can demonstrate not only value ranges but also

relational patterns (children objects, hierarchy levels, depen-

dencies). Moreover, the use of templates allows for targeted

adjustments of the desired model detail, for instance by

distinguishing between minimal or extended output variants.

B. Comparison with Related Work

Meta-languages for architecture and modeling are well-

established in research, typically appearing in the form of

DSMLs (Domain-Specific Modeling Languages) or UML pro-

files. Our approach extends these ideas by leveraging LLMs:

instead of conforming strictly to standardized outputs (e.g.,

UML diagrams or XML), we demonstrate that “custom” meta-

languages can be reliably processed by LLMs, provided the

rules are clearly specified. This addresses a gap often left

by other methods: reliable and flexible structured modeling

without extensive fine-tuning of the model or proprietary

export layers.

C. Implications and Practical Benefits

Our findings suggest that the proposed MLDS approach

offers a flexible means of translating domain-centric (natural-

language) descriptions into formally processable artifacts, even

for users lacking deep architecture knowledge. In both do-

mains, the technique reduced the “blank page syndrome,” as

users begin with a ready-to-use framework rather than an

empty project. At the same time, the generated MLDS remains

open to subsequent modifications, either by further prompting

or by direct model editing.

Looking ahead, this could reshape workflows in software

architecture and engineering. Architects may focus on de-

signing and maintaining the meta-language, while domain

experts continue to think in natural-language scenarios. This

division of responsibilities can foster more productive, model-

based processes and raise the adoption of structured modeling

methods.

D. Limitations and Threats to Validity

While our results are encouraging, some constraints remain:

• Domain-Specific Complexity: As domains grow more

detailed, the meta-language itself can become large and

complex. An insufficiently granular metamodel may pro-

duce vague or incomplete MLDS artifacts.

• Dependence on Prompt Quality: The clarity of the

natural-language input significantly affects the generated

output. Ambiguous or insufficiently detailed prompts may

result in incomplete models.

• Technical Limitations of LLMs: Issues such as model

confusion or output truncation can arise with especially

lengthy or nested structures. While example MLDS pat-

terns help mitigate these risks, LLMs are not foolproof.

• Generalizability: Although we explored two notably

different domains (VR and automotive security), other do-

mains could impose even more specialized requirements

that warrant extended validation.

540 PROCEEDINGS OF THE FEDCSIS. KRAKÓW, POLAND, 2025



VII. FUTURE DIRECTIONS

The integration of LLMs and meta-languages opens up

several research areas. One is the development of automated

quality checks that address both syntactic and semantic co-

herence (e.g., inconsistencies in hierarchical relationships).

Another is exploring multi-prompting strategies or incremental

fine-tuning to further improve MLDS consistency. There is

also potential value in establishing a cross-domain vocabulary

for reusable structural elements (e.g., children, parent,

referenceObject).

Lastly, a more collaborative platform could be developed,

where architects design new meta-languages while domain

experts contribute reference MLDS examples. Such a shared

knowledge base could be continuously updated and utilized

by LLMs, enabling more efficient and accurate generation of

structured domain artifacts.

VIII. CONCLUSION

We presented a domain-adaptable method for generating

machine-readable, structured outputs from natural language

prompts using Large Language Models. Our approach com-

bines a custom-defined meta-language with schema-aware

prompting to enable the creation of Meta-Language-defined

Structures (MLDS). Evaluation results across two distinct

use cases demonstrated a high validation rate (88%) and a

substantial reduction in setup complexity (approx. 80% com-

pared to LangChain and Pydantic). The resulting artifacts were

interpretable and easy to refine, supporting rapid iterations in

industrial workflows.

This approach is particularly valuable in domains where

structured modeling is required but formal schema design

presents a bottleneck. In addition to the use cases analyzed in

this paper, we have successfully applied MLDS-based methods

in a parallel study on immersive learning environments in

Virtual Reality. There, natural language descriptions were

used to generate didactically structured 3D scenes, allowing

instructors to prototype entire VR labs without 3D design ex-

pertise, significantly reducing creation time while maintaining

structural consistency.

These examples illustrate the broader potential for MLDS-

based modeling in industries such as digital twin development,

technical education, process automation, and safety-critical

system design. Here, our method enables faster prototyping,

reduces reliance on technical tooling, and facilitates interdis-

ciplinary collaboration between domain experts and system

architects.

Future work may explore the integration of MLDS with

execution engines, real-time simulation tools, or graphical

editors, as well as an expansion of the approach to additional

modeling paradigms.

To reproduce our findings, please consult the readme file in

our repository as referenced in Section IX.

IX. DATA AVAILABILITY

We have made all relevant research artifacts publicly avail-

able in the interest of fostering open science. Our repos-

itory contains two domain-specific meta-languages as well

as additional MLDS artifacts generated with the help of

these meta-languages. All materials can be accessed at the

following GitHub repository: https://github.com/CoNaLaDe-

MLDS/Artifacts.

STATEMENT CONCERNING GENERATIVE AIS

We would like to clarify that this paper does not include

substantial Sections of text directly produced by Generative

AI, including LLMs.

However, since the primary objective of our work is to

explore effective integration and utilization of LLMs in struc-

tured data generation and domain-specific modeling, we have

naturally employed GenAI-generated outputs as part of our

technical approach. In particular, LLMs were utilized to auto-

matically generate structured MLDS files, code snippets, and

example artifacts crucial to our experiments. Additionally, in

selected cases, GenAI models assisted in translating specific

text segments from German into English to enhance readability

and accuracy.

We have clearly indicated within the paper all instances

where GenAI-generated content was integrated, and provided

an explicit analysis of its impact, including both benefits and

limitations.

REFERENCES

[1] C. K. Joyce, “The blank page: Effects of constraint on creativity,” Social
Science Research Network (SSRN), 2009.

[2] A. Fischer, L. Burk, R. Tavakoli Kolagari, and U. Wienkop, “Conalade
mlds research artifacts,” https://github.com/CoNaLaDe-MLDS/Artifacts.

[3] J. A. Díaz-Pace, A. Tommasel, and R. Capilla, “Helping novice ar-
chitects to make quality design decisions using an llm-based assis-
tant,” in Software Architecture, M. Galster, P. Scandurra, T. Mikkonen,
P. Oliveira Antonino, E. Y. Nakagawa, and E. Navarro, Eds. Cham:
Springer Nature Switzerland, 2024, pp. 324–332.

[4] S. Colvin, “Pydantic: Data validation and settings management using
python type annotations.” [Online]. Available: https://pydantic.dev/

[5] H. Chase, “Langchain: Building applications with large language
models,” 2023. [Online]. Available: https://github.com/langchain-ai/
langchain

[6] E. Filipovska, A. Mladenovska, M. Bajrami, J. Dobreva, V. Hillman,
P. Lameski, and E. Zdravevski, “Benchmarking openai’s apis and other
large language models for repeatable and efficient question answering
across multiple documents,” in 2024 19th Conference on Computer

Science and Intelligence Systems (FedCSIS), 2024, pp. 107–117.
[7] L. Ouyang, J. Wu, X. Jiang, D. Almeida, C. L. Wainwright, P. Mishkin,

C. Zhang, S. Agarwal, K. Slama, A. Ray, J. Schulman, J. Hilton, F. Kel-
ton, L. Miller, M. Simens, A. Askell, P. Welinder, P. Christiano, J. Leike,
and R. Lowe, “Training language models to follow instructions with
human feedback,” in Proceedings of the 36th International Conference

on Neural Information Processing Systems, ser. NIPS ’22. Red Hook,
NY, USA: Curran Associates Inc., 2022.

[8] W. X. Zhao, K. Zhou, J. Li, T. Tang, X. Wang, Y. Hou, Y. Min,
B. Zhang, J. Zhang, Z. Dong, Y. Du, C. Yang, Y. Chen, Z. Chen,
J. Jiang, R. Ren, Y. Li, X. Tang, Z. Liu, P. Liu, J.-Y. Nie, and J.-R.
Wen, “A survey of large language models,” 2025. [Online]. Available:
https://arxiv.org/abs/2303.18223

[9] S. Geng, H. Cooper, M. Moskal, S. Jenkins, J. Berman, N. Ranchin,
R. West, E. Horvitz, and H. Nori, “JSON-SchemaBench: A rigorous
benchmark of structured outputs for language models,” arXiv preprint

arXiv:2501.10868, 2025.
[10] Object Management Group (OMG), “Meta object facility (MOF) 2.0

core specification,” 2006. [Online]. Available: http://www.omg.org/spec/
MOF/2.0

[11] ——, “Unified modeling language (UML) specification version 2.5.1,”
2017. [Online]. Available: https://www.omg.org/spec/UML/2.5.1/

ALEXANDER FISCHER ET AL.: MACHINE-READABLE BY DESIGN: LANGUAGE SPECIFICATIONS AS THE KEY TO INTEGRATING LLMS 541



[12] B. Wang, Z. Wang, X. Wang, Y. Cao, R. A Saurous, and Y. Kim,
“Grammar prompting for domain-specific language generation with large
language models,” Advances in Neural Information Processing Systems,
vol. 36, pp. 65 030–65 055, 2023.

[13] T. Scholak, N. Schucher, and D. Bahdanau, “Picard: Parsing incremen-
tally for constrained auto-regressive decoding from language models,” in
Proceedings of the 2021 Conference on Empirical Methods in Natural

Language Processing, 2021, pp. 9895–9901.

[14] N. Bassamzadeh and C. Methani, “A Comparative Study of DSL Code
Generation: Fine-Tuning vs. Optimized Retrieval Augmentation,” arXiv

preprint arXiv:2407.02742, 2024.

[15] L. Netz, J. Michael, and B. Rumpe, “From Natural Language to Web
Applications: Using Large Language Models for Model-Driven Software
Engineering,” in Modellierung, 2024.

[16] A. Fischer, J.-P. Tolvanen, and R. Tavakoli Kolagari, “Automotive cyber-
security engineering with modeling support,” in 2024 19th Conference

on Computer Science and Intelligence Systems (FedCSIS), 2024, pp.
319–329.

542 PROCEEDINGS OF THE FEDCSIS. KRAKÓW, POLAND, 2025


