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Abstract—Accurate crop yield prediction is essential for en-
hancing food security, optimizing resource use, and supporting
smart farming initiatives. Traditional statistical models often fail
to capture the nonlinear interactions between environmental,
climatic, and agronomic variables. To address these challenges,
this research evaluated seven ensemble machine learning models:
Random Forest, Bagged Decision Tree, AdaBoost, Gradient
Boosting, Stochastic Gradient Boosting, eXtreme Gradient Boost-
ing, and CatBoost. Being interested in the region of Saudi Arabia,
we collected and integrated multi-source data that resulted
in meteorological factors (temperature, humidity, precipitation),
vegetation indices, pesticide usage, and historical yield records of
thirty eight crop categories. While selecting only eight crops to
study in the optimization phase, each model was assessed under
four experimental configurations: baseline models, hyperparame-
ter tuning, outliers’ removal, and Bayesian optimization. Results
showed that the optimized models performed up to 47% better
than the default models. More precisely, hyperparameter tuning
showed marginal gains, and Bayesian optimization and outliers’
removal led to noticeable performance improvements. However,
the effectiveness of each strategy was crop-specific.

Index Terms—Crop Pield Prediction, Ensemble Machine
Learning, Bagging, Boosting, Hyperparameter Tuning, Bayesian
Optimization

I. INTRODUCTION

ENSURING sustainable food production is a global chal-

lenge, especially in arid regions like Saudi Arabia, where

agriculture is constrained by extreme climate, water scarcity,

and limited arable land. Crop yield prediction has emerged

as a critical tool to enhance agricultural planning, reduce

resource waste, and support national food security strategies.

Accurate forecasting allows for informed decisions in land

management, irrigation scheduling, and fertilizer application,

while also aiding in mitigating the risks of climate variability

and supply chain disruptions.

Despite the advances in machine learning (ML) and deep

learning (DL) methods for yield prediction, many existing

studies are either based on synthetic or global datasets and

rarely reflect the local agro-climatic and environmental reali-

ties of the Gulf region in general. Moreover, predictive models

are often developed for major cereal crops like wheat and

maize, with limited attention to a broader range of fruits and

vegetables that are vital to the regional diet and agricultural

economy. The present study addresses these gaps by devel-

oping an ensemble learning-based framework to forecast the

yield of several crops grown in Saudi Arabia.

We propose a framework that leverages multiple ensemble

learning techniques including Random Forest, Bagging Deci-

sion Trees, Gradient Boosting, Stochastic Gradient Boosting,

XGBoost, AdaBoost, and CatBoost to exploit the strengths of

individual models while enhancing robustness and accuracy.

For each crop, the models are trained and evaluated using

historical yield data alongside environmental variables such

as temperature, precipitation, humidity, NDVI, VCI, WDRVI,

and pesticide application rates.

In our research, we seek to develop predictive models

specifically tailored to key crops grown in Saudi Arabia by

utilizing real, localized agricultural data. The study aims to

systematically compare the performance of various ensemble

learning algorithms across multiple crop types to determine

their relative strengths and limitations. Also, it seeks to identify

the most effective model for each crop by evaluating their per-

formance using standard regression metrics such as the coeffi-

cient of determination (R2), Mean Absolute Error (MAE),Root

Mean Squared Error (RMSE), and Mean Absolute Percentage

Error (MAPE). Ultimately, the research aims to provide a

scalable and reliable modeling framework that supports yield

forecasting, enhances strategic food security planning, and

promotes the adoption of smart agriculture practices in arid

and data-constrained environments.

By combining local data with advanced ensemble learning

strategies, this research contributes to the growing body of

precision agriculture literature and offers practical insights for

decision-makers aiming to modernize agriculture in Saudi Ara-

bia. More precisely, the contributions of the present research

are the following:

• Unified ensemble-based prediction framework tailored to

the Saudi agro-environmental context.

• Comprehensive comparative analysis of seven ensemble

machine learning models across multiple crop categories,

revealing insights into their relative performance under

different optimization conditions.
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• Multi-stage optimization pipeline to enhance models’

accuracy and stability; including direct optimization tech-

niques such as hyperparameter tuning and Bayesian

search and methods of enhancing performance like out-

liers’ removal.

The remainder of the paper is organized as follows. Section

2 recalls the works existing in the literature for crop yield

forecasting. Section 3 details the methodology adopted to

realize the aforementioned contributions. The main results are

discussed in section 4. Finally, section 5 concludes the paper.

II. RELATED WORK

Crop yield prediction has emerged as a critical area of

research in agriculture [32], especially in the face of climate

change, population growth, and food security challenges. Ac-

curate prediction of agricultural production enables farmers,

and agribusiness stakeholders to make decisions about re-

source allocation, land management, and market planning. It

also plays a role in supporting food sustainability and reducing

risks in agricultural investment and planning [11], [18].

In recent years, artificial intelligence (AI) and machine

learning (ML) have been increasingly adopted for crop yield

forecasting due to their capacity to model complex, nonlin-

ear relationships among environmental, soil, and agronomic

variables [12], [18]. These technologies have shown results

compared to traditional statistical methods, especially when

dealing with large datasets.

Palanivel and Surianarayanan [13] reviewed ML methods

for crop yield prediction, highlighting ANN and SVM for han-

dling nonlinear agricultural data. Studies from India, China,

and South Africa covered wheat, maize, rice, cotton, and pota-

toes. Key features: climate (rainfall, temperature, humidity)

and soil. ANN showed high accuracy—e.g., ±9% error in

wheat yield. A big data framework was proposed to improve

prediction via distributed processing.

Ashfaq et al. [1] proposed an ML framework for winter

wheat yield prediction in Multan, Pakistan (2017–2022), in-

tegrating meteorological, NDVI, soil, and spatial data. Three

models—SVM, RF, and LASSO—were evaluated using NDVI

(Landsat 8), climate, and soil features. RF outperformed others

with R2 = 0.88, 97% accuracy, and RMSE of 0.056 t/ha.

NDVI and climate data boosted accuracy, with water-related

features more impactful. The study also produced spatial yield

maps and highlighted RF’s suitability for heterogeneous, data-

scarce regions.

Ilyas et al. [4] proposed an AI-based framework for auto-

mated crop classification and yield prediction using remote

sensing and ensemble learning. A fuzzy hybrid ensembled

model was developed, combining spatial filtering and data

augmentation with a bagging ensemble classifier. Yield pre-

diction used GB, RF, DT, and linear regression trained on

FAO and World Bank data (2017–2021) for flaxseed, lentils,

rice, sugarcane, and wheat. The ensemble classifier improved

accuracy by +13% over GB and +24% over DT. GB regressor

achieved the best performance with lowest MSE and highest

accuracy.

Yewlea et al. [2] proposed RicEns-Net, a deep ensem-

ble model for rice yield prediction in Vietnam’s An Giang

province using multi-modal data: Sentinel-1 (SAR), Sentinel-

2 (MSI), Sentinel-3 (meteorology), NASA rainfall, and field

data. From 557 observations, 15 features were selected via sta-

tistical filtering. RicEns-Net combines CNN, MLP, DenseNet,

and AE, weighted by validation error. It outperformed all

tested models, achieving MAE = 341.13 kg/ha, RMSE =

436.26 kg/ha, and adjusted R2 = 0.589, with minimal train-test

variance (∆R2 = 0.063).

Wang et al. [6] reviewed DL models for yield prediction

across crops: corn, soybean, rice, wheat, tomato, and let-

tuce. They evaluated LSTM, CNN, CNN-RNN, BO-LSTM,

ConvLSTM, DNN, and GRU against ML models (RF, SVR,

GBR, KNN), using meteorological, soil, remote sensing, and

management data. Notable results: BO-LSTM (R2 = 0.82 for

wheat), GRU (R2 = 0.98 for corn), CNN-RNN (R2 = 0.9995
for tomato). DL outperformed ML on large datasets but at

higher computational cost and lower interpretability.

Morales and Villalobos [15] evaluated ML models for

wheat and sunflower yield prediction using synthetic data

from DSSAT models across five Spanish regions. Features

included weather, soil, cultivar, and management practices.

Models tested: Lasso, Ridge, RF, and ANN (ANN-2 to ANN-

12). RF achieved best test results for both crops (e.g., wheat:

RMSE = 5%, R2 = 0.99 train; sunflower: RMSE = 12%, R2

= 0.97). ANN models showed overfitting risks. Chronologi-

cal validation confirmed RF’s robustness over random splits,

supporting its use in real-world forecasting.

El-Kenawy et al. [21] evaluated ML and DL models for

potato yield prediction using a Kaggle dataset with agro-

climatic, temporal, and spatial variables. Models included

KNN, GB, XGBoost, MLP (ML), and GNN, GRU, LSTM

(DL). GNN outperformed all, achieving R2 = 0.5172 and

MSE=0.0236. LSTM and GRU followed with R2 = 0.4474
and 0.3872. DL models better captured spatial-temporal de-

pendencies. The study applied extensive preprocessing, hyper-

parameter tuning, and emphasized DL’s value for sustainable

agriculture and food security.

Joshi et al. [3] explored deep transfer learning for winter

wheat yield prediction in U.S. climate zones using satellite

time-series and climate data (2008–2020). A BiLSTM re-

placed MLP to better model spatiotemporal features. Four

transfer techniques were tested: TrAdaBoost.R2, Two-stage

TrAdaBoost.R2, DANN, and Fine-tuning. Two-stage TrAd-

aBoost.R2 + BiLSTM yielded top results (MAE = 0.41/0.42;

R2 = 0.51/0.53). DANN underperformed due to domain mis-

match. The study highlights BiLSTM’s and domain similar-

ity’s roles in enhancing transfer learning efficacy.

Brandt et al. [5] developed an ensemble learning frame-

work for predicting yields of winter wheat, barley, and rape-

seed in Germany using data from 140,000–155,000 parcels

(2019–2022). Features included Sentinel-2 imagery, mete-

orological data, and soil properties. Two ensemble strate-

gies—stacking (PLSR, RF, SVR, CTB, LGB, XGBoost with

Elastic Net meta-learner) and majority voting—were tested.
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The voting ensemble achieved the best parcel-level R2 scores:

wheat (0.74), barley (0.68), rapeseed (0.66). High-resolution

EO and agro-climatic fusion enhanced accuracy and scalabil-

ity.

Rao et al. [11] proposed a supervised ML model to guide

crop selection based on soil nutrients (N, P, K), temperature,

humidity, pH, and rainfall, using a dataset of 2200 samples

across 22 crops. Evaluated models included KNN, DT, and

RF classifiers. RF achieved top test accuracy (99.32%) with

both Gini and Entropy. DT reached up to 98.86%, while KNN

scored 97.04%. Regression analysis (ENet, Lasso, Kernel

Ridge) and stacking were also used for yield approximation.

A mobile app with GPS/rainfall tracking was suggested for

practical deployment.

In Saudi Arabia, multiple research papers have studied crop

yield prediction. For instance, Assous et al. [12] developed

a neural network model for yield prediction across Gulf

countries using some features such as temperature, rainfall,

nitrogen, and pesticide use, achieved a determination coeffi-

cient (R2) of 0.93. Likewise, Al-Adhaileh and Aldhyani [9]

explained that pesticide, temperature, and rainfall were among

the most effective predictors for major crops in Saudi Arabia

like wheat and sorghum, achieved 0.96 of R2 and 0.0449 of

root mean square error (RMSE) using a multilayer perceptron

(MLP) model.

Another recent research by Islam et al. [14] used XGBoost

for yield prediction like wheat, maize, sorghum, potatoes and

rice in the Saudi Arabia and obtained an R2 score of 0.97 and

RSME of 15803.15. Their research focused on the role of data

in promoting climate-resilient agriculture in the region.

Al-Gaadi et al. [25] developed a precision agriculture frame-

work to predict potato yield in Eastern Saudi Arabia using

multispectral imagery (Landsat-8, Sentinel-2). Vegetation in-

dices (NDVI, SAVI, CNDVI, CSAVI) were correlated with

field yield data from 30-ha plots. Linear regression models

showed Sentinel-2 performed best (R2 = 0.65, RMSE =

4.96%), with optimal prediction 60–70 days post-planting. The

study highlights the effectiveness of high-resolution satellite

monitoring for yield estimation in arid regions.

Al-Gaadi et al. [26] assessed the water footprint (WF) and

productivity of carrots and onions in arid Saudi conditions

using Sentinel-2, Landsat-8, and the SSEB model. Spectral

indices (NDVI, SAVI, RDVI, EVI) and LST were used to

predict yield and evapotranspiration. Linear regression with

NIR band achieved R2 = 0.77 (carrots) and 0.68 (onions).

Estimated WF was 312 m3/t (carrots) and 230 m3/t (onions),

confirming the value of satellite-based monitoring for yield

and water use efficiency.

Li et al. [27] performed a national-scale analysis of Saudi

agriculture (1990–2021) using a hybrid ML framework com-

bining DBSCAN, CNNs, and spectral clustering to map

28,000+ center-pivot fields via Landsat NDVI composites.

Delineation accuracy was high (R2 > 0.97; producer’s:

83.7–94.8%, user’s: 90.2–97.9%). Results showed expansion

(2010–2015) and post-2016 contraction tied to water policy.

The study offers high-resolution field data for future yield,

WF, and crop type studies in arid regions.

Ahmed [28] proposed a maize yield prediction frame-

work for Saudi Arabia using a modified MLP optimized by

Spider Monkey Optimization (SMO). Trained on FAO and

World Bank data (rainfall, temperature, yield), the MLP-

SMO model outperformed LASSO, XGBoost, LightGBM,

RF, SVM, GRNN, and LSTM, achieving R2 = 0.98 and

RMSE = 0.11 Mg/Ha. Statistical tests (MAE, MBE, Wilcoxon)

confirmed its robustness. The study highlights the potential of

hybrid neural-metaheuristic models for accurate yield forecast-

ing in arid regions.

Jabbari et al. [29] studied IoT adoption for crop monitoring

and yield prediction among 550 farmers in Jizan, Saudi Arabia.

Statistical analysis showed a strong correlation between aware-

ness and perceived benefits (r = 0.835, p < 0.001). Perceived

benefits explained 21% of adoption variance (R2 = 0.210),

while access to information and government support were also

significant predictors (R2 = 0.191). The study highlights the

need for targeted training and institutional backing to boost

IoT adoption in precision agriculture.

A summary of the approaches for crop yield prediction in

Saudi Arabia is given in table I.

TABLE I
EXISTING WORKS OF CROP YIELD PREDICTION IN SAUDI ARABIA

Ref, Year Crop Model R
2 Data Source

[14], 2024 Maize, Potatoes,
Sorghum, Soy-
bean, Wheat

Bagging
RF
XGBoost

≥0.91 FAO + World
Bank Open
Data

[12], 2023 Dates Neural Net-
work

0.974 FAO + Thier
global data

Maize Neural Net-
work

0.792

Potatoe 0.499
Wheat 0.930

[27], 2023 Wheat, Barley,
Alfalfa, Fruits,
Vegetables

DBSCAN,
CNN
(AlexNet),
Spectral
Clustering

0.97 GEE, Manual
digitization

[28], 2023 Maize MLP +
Spider
Monkey
Optimiza-
tion (SMO)

0.98 FAO, World
Data Bank

[29], 2023 Various Regression
(correlation
+ MLR)

0.698 Questionnaire

[9], 2022 Potatoes MLP 0.99 Kaggle
Rice MLP 0.90
Sorghum MLP 0.99
Wheat MLP 0.99

[26], 2022 Carrots Linear Re-
gression

0.77 USGS,
WorldClim.org,
Tawdeehiya
Farms

[25], 2016 Potatoes Linear Re-
gression

0.65 USGS, INMA
Co.

Despite advances in ML/DL for crop yield prediction,

significant gaps exist in the literature, particularly in terms

of regional adaptability to arid climates, full ensemble model

evaluation, and holistic data fusion methodologies. Existing

models frequently lack calibration for regions such as Saudi
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Arabia, and therefore struggle with generalizable, scalable

architecture. While specific ensemble strategies have been

verified, few studies have systematically compared a wide

range of ensemble methods across many crops and regions,

a gap that this work fills by evaluating seven algorithms

for Saudi crops. Furthermore, many implementations miss

critical data fusion, particularly the combined influence of

environmental, temporal, remote sensing, and management

variables, whereas this study distinguishes the varied impor-

tance of components such as NDVI versus precipitation in the

Saudi context. Also, we claim that the suggested approach has

great generalizability, allowing for unlimited use across many

situations, provided the necessary data is available.

III. METHODOLOGY

Sustainable food production in arid regions like Saudi

Arabia faces significant challenges due to extreme climate,

limited water resources, and constrained arable land. Crop

yield prediction serves as a crucial tool to improve agricultural

planning, optimize resources use, and support national food

security. While ML and DL methods have shown promise in

this domain, most prior studies rely on global datasets and

focus primarily on few crops. These approaches often fail to

generalize to local conditions and underrepresent crops vital

to the Saudi agricultural economy, such as fruits and dates.

This research proposes a framework based on ensemble

machine learning tailored to the agro-climatic context of Saudi

Arabia. By leveraging multi-source datasets and a range of

ensemble models including Random Forest, Bagging Decision

Trees, Gradient Boosting, Stochastic Gradient Boosting, XG-

Boost, AdaBoost, and CatBoost, this study aims to deliver

accurate and scalable yield predictions.

As illustrated in figure 1, the methodology is structured

as follows: data collection and preprocessing, model training

using historical and environmental variables (e.g., temperature,

precipitation, NDVI, pesticide usage), performance evaluation

using standard regression metrics (R2, MAE, RMSE, MAPE),

and different optimization experiments. This structured ap-

proach ensures robust, context-aware model development that

supports smart agriculture in arid environments.

A. Data collection

To develop an effective crop yield prediction framework

tailored to Saudi Arabia, a diverse set of datasets was compiled

from reputable global platforms. The features were selected to

reflect environmental, agronomic, and remote sensing variables

that have been shown to impact crop productivity in prior

studies.

• Crop type and yield: Crop-specific production and yield

data were obtained from the the Food and Agriculture

Organization (FAO) [30]. The data included total yield

values (in kg per hectare) for several crops cultivated

in Saudi Arabia like wheat, maize, tomatoes, potatoes,

barley, sorghum, and dates.

• Pesticide use: Annual pesticide usage was collected from

FAO databases. This variable represents the total quantity

of pesticides applied in agricultural operations per year.

• Weather data: Meteorological data, including average

annual temperature, total precipitation, and average hu-

midity, were extracted from the World Bank Climate Data

API [31]. The data were aggregated on a yearly basis for

the studied country.

• Vegetation indices: The Normalized Difference Vegeta-

tion Index (NDVI) is a widely used spectral index that

quantifies vegetation health and density by measuring the

difference between near-infrared (NIR) and red (RED)

reflectance captured by satellite sensors [1]. NDVI is

calculated using the formula:

NDVI =
NIR − RED

NIR + RED

This formula exploits the fact that healthy vegetation

reflects more NIR light and absorbs more red light, while

sparse or unhealthy vegetation shows the opposite pattern.

NDVI values range from −1 to +1, where higher positive

values typically indicate dense, healthy vegetation, and

values near zero or negative indicate barren areas, water

bodies, or built-up land.

In this study, NDVI images were extracted and processed

using the Google Earth Engine (GEE) platform, which

provides cloud-based access to satellite imagery and

enables large-scale geospatial analysis. Landsat 5, 7, and

8 Surface Reflectance (SR) collections were utilized to

ensure temporal continuity from 1990 to 2022. The satel-

lite images were first filtered for cloud-free conditions

and spatially clipped to specific agricultural regions in

Saudi Arabia. For each image, NDVI was computed using

GEE’s built-in normalizedDifference() function,

which efficiently implements the NDVI formula.

A summary of the data sources is given in Table II.

TABLE II
SUMMARY OF DATA SOURCES USED IN THE STUDY

Source Type of Data Time Range

FAO Crop yield, pesticide use 1990–2022
GEE Vegetation indices (NDVI) 1990–2023
World Bank Climate
Data

Temperature, humidity, precip-
itation

1990–2022

B. Data pre-processing

Following the collection of raw datasets from various

sources, basic pre-processing steps were applied to prepare the

data for ML modeling. These steps were essential to ensure the

consistency, completeness, and relevance of the input features.

• Vegetation indices computation:

To obtain a comprehensive overview of the crop condi-

tion, NDVI is used along with VCI (Vegetation Condition

Index) and WDRVI (Wide Dynamic Range Vegetation

Index). The three indices give complementary vegetation
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Fig. 1. Proposed framework

information, which is notably significant in agricultural

surveillance and crop yield forecasting.

– VCI was calculated using the standard formula [4]:

V CI =
NDV I −NDV Imin

NDV Imax −NDV Imin

× 100

– WDRVI was derived from red and near-infrared

reflectance bands using:

WDRV I =
(0.1 ·NIR)−RED

(0.1 ·NIR) +RED

where NIR and RED are the near-infrared and red

reflectance values from MODIS [4].

• Data aggregation: All variables were aggregated at the

annual level to align crop yield values with climate,

pesticide, and remote sensing data.

• Missing data handling: Records with missing values

were dropped or imputed using mean imputation where

appropriate. This was particularly relevant in the early

years with sparse pesticide data.

• Categorical encoding: The crop name (such as Wheat,

Sorghum, Dates) was converted into numeric labels using

label encoding to allow its use as a categorical feature

in selected models. This is a critical step since machine

learning models need numerical data. For presentation

and evaluation, the original harvest names are kept in

distinct variables or extracted using inverse transform.

All datasets were harmonized to a common temporal reso-

lution (annual), cleaned to remove missing values, and merged

into a unified data frame containing 1117 records across all

crop types and years. Descriptive data statistics are illustrated

in figure 2.

C. Ensemble models

This research proposes a multi-stage ML pipeline to predict

crop yields in various types of crop cultivated in Saudi Arabia.

The methodology is centered on ensemble techniques, given

that ensemble machine learning takes advantage of the comple-

mentary characteristics of many models to improve predictive

accuracy, minimize variation and bias, and achieve improved

generalization in complicated tasks. We implemented seven

from the famous bagging and boosting models and proposed

different optimizations based on regularization and hyperpa-

rameter tuning applied to the seven models. The analysis

involved the evaluation of each model across all crops in

the dataset, then the selection of the top-performing crops

on which the optimization techniques were tested, and finally

the in-depth training, tuning, and evaluation of all models per

selected crop. The seven applied ensemble learning models

fall in the bagging and boosting ensemble categories:

• Bagging models: Bagging models increase the accuracy

of predictions by training several base learners simulta-

neously on random portions of the data.

– Random Forest (RF) is an ensemble method that

constructs multiple decision trees on bootstrapped

samples of the data and averages their outputs. For

regression, the prediction is given by:

ŷ =
1

K

K
∑

i=1

Ti(x)
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Fig. 2. Collected Data Statistics

where Ti(x) is the prediction from the i-th DT and

K is the total number of trees [14].

– Bagged Decision Tree (Bagged DT) is similar to RF

but without feature randomness; trees are trained on

bootstrapped datasets only.

• Boosting models: Boosting models construct ensembles

in stages, with each model focusing on rectifying the

faults of the previous ones.

– Gradient Boosting (GB) iteratively minimizes a loss

function via gradient descent:

Fm(x) = Fm−1(x) + γmhm(x)

– Stochastic Gradient Boosting (Stochastic GB) is a

variant of GB that introduces randomness by sam-

pling the training set at each iteration [20].

– eXtreme Gradient Boosting (XGBoost) is an opti-

mized version of GB with regularization:

Obj =
∑

i

l(yi, ŷi) +
∑

t

Ω(ft)

where Ω(ft) is a complexity penalty for tree ft [20].

– AdaBoost sequentially trains weak learners and com-

bines them with weights:

F (x) =
M
∑

m=1

αmhm(x)

where hm is the m-th weak learner and αm is its

weight.

– CatBoost uses ordered boosting and handles categor-

ical features natively to reduce prediction shift and

overfitting [20].

This ensemble learning-based framework proposed for crop

yield prediction was inspired by the work of Zhou [20], which

details the theoretical underpinnings and practical successes of

such models in various domains.

All seven models were trained and evaluated in their base-

line definition (called baseline models in the sequel), then

three optimizations were proposed for each model resulting

in 21 other models named respectively OR, Hypertuned, and

BayesSearchCV for models optimized using Outliers Removal,

Hyperparameters tuning, and Bayesian optimization.

D. Model’s optimization

To enhance the accuracy and generalizability of the en-

semble models, a structured optimization pipeline was im-

plemented. This process consisted of three sequential steps:

hyperparameter tuning, outlier removal, and Bayesian opti-

mization. Each step was selected to address specific challenges

in predictive modeling and improve the models’ robustness.

1) Hyperparameter tuning: The optimization phase began

with hyperparameter tuning using GridSearchCV, a technique

that systematically explores combinations of predefined hy-

perparameter values. This approach enables the selection of

optimal configurations for each model, such as the number of

estimators, tree depth, and learning rate, by evaluating model

performance across cross-validated folds.

Hyperparameter tuning plays a crucial role in reducing

underfitting or overfitting, and ensures that models are well-

calibrated for the underlying data distribution. Its effectiveness

is well-documented in the ML literature [22].

In this study, a distinct set of parameter grids was defined

for each ensemble model to account for their structural and

functional differences. The search space proposed for each

model, the best parameters obtained, and the crop for which

the best values are achieved are summarized in table III.

2) Outliers’ removal: As an indirect optimization method,

we relied on the outliers’ removal method to clean the data by

removing anomalies, which identifies and excludes data points

that differ considerably from the dataset’s anticipated trends or

distribution. This may lead to better generalization and lower

error metrics (e.g., RMSE and MAE).
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TABLE III
SELECTED HYPERPARAMETERS FOR TUNING THE DEVELOPED ENSEMBLE MODELS

Model Search Space Best Parameters Crop

Random Forset

n estimators: [50, 100, 200, 300]
max depth: [None, 10, 20]

min samples split: [2, 5, 10]
min samples leaf: [1, 3]

max features: [’sqrt’, ’log2’, 0.8]

50
None

2
1

0.8

Pulses, Total

AdaBoost

n estimators: [50, 100, 200, 300, 500]
learning rate: [0.001, 0.01, 0.1, 0.5]

loss: [’linear’, ’square’, ’exponential’]

300
0.001

exponential
Pulses, Total

XGBoost

n estimators: [100, 200, 300]
learning rate: [0.02, 0.05, 0.1, 0.2]

subsample: [0.8, 0.9, 1.0]
colsample bytree: [0.8, 0.9, 1.0]

max depth: [3, 4, 5]
reg alpha: [0, 0.001, 0.01, 0.1]
reg lambda: [1, 0.1, 0.5, 1.0]

200
0.2
0.8
0.8
3

0.1
0.1

Pulses, Total

CatBoost

iterations: [100, 200, 300]
learning rate: [0.01, 0.05, 0.1, 0.2]

depth: [3, 4, 5]
l2 leaf reg: [1.0, 3.0, 5.0]

300
0.05

4
5.0

Pulses, Total

Bagged Decision Tree

n estimators: [10, 50, 100, 200]
max samples: [0.5, 0.6, 0.8, 1.0]
max features: [0.5, 0.6, 0.8, 1.0]

estimator max depth: [None, 5, 10, 15]

10
1.0
1.0

None

Pulses, Total

Gradient Boosting

n estimators: [100, 200,300,500]
learning rate: [0.05, 0.1, 0.2]

subsample: [0.6, 0.8, 1.0]
max depth: [3, 4, 5]

100
0.1
0.8
3

Fruit Primary

Stochastic Gradient Boosting

n estimators: [100, 200, 300, 400]
learning rate: [0.05, 0.1, 0.2]

subsample: [0.7, 0.8, 0.9]
max depth: [3, 4, 5]

min samples split: [2, 5]
min samples leaf: [1,3]

400
0.05
0.8
3
2
3

Pulses, Total

Once the models were tuned, Isolation Forest was applied

to remove outliers from the data. This unsupervised anomaly

detection technique isolates unusual observations by randomly

partitioning the feature space. Its strength lies in its scalability

and independence from the data distribution assumptions.

To maintain consistency, the cleaned dataset was passed

into retrained versions of the same ensemble models, each

with fixed hyperparameters tailored for robust generaliza-

tion. For instance, RF and Bagged DT were retrained using

100 estimators, while AdaBoost used 100 weak learners.

GB and SGB were configured with 200 and 100 estimators

respectively, with subsampling enabled to enhance robust-

ness. XGBoost was applied with additional regularization

(reg_alpha = 0.1, reg_lambda = 1.0) and feature sub-

sampling (colsample_bytree = 0.8), aiming to mitigate

overfitting on reduced data. CatBoost was configured with 200

iterations, a moderate learning rate (0.05), and a regularization

term (l2_leaf_reg = 3.0), while disabling verbose output

for computational efficiency.

All models used a consistent random seed to ensure repro-

ducibility across experimental runs. Outliers’ removal helped

to mitigate the impact of noise and extreme values, which

can distort model learning and inflate error metrics. This is

particularly beneficial in agricultural datasets where variability

is high [23].

3) Bayesian optimization: In the final step, Bayesian Opti-

mization was conducted using BayesSearchCV. Unlike grid

search, which exhaustively tests all combinations, Bayesian

optimization models the objective function and iteratively

selects hyperparameters that are likely to yield the best results.

This method improves the search efficiency, particularly in

high-dimensional spaces, and has been shown to outperform

traditional tuning methods in many ML applications [24].

For this study, specific search spaces for each model were

designed to reflect their structural characteristics and known

sensitivities. The parameters used in these spaces are defined in

table IV. In the same table, we report the best values obtained

and the crop for which the model performs better.

These customized search spaces allowed for targeted ex-

ploration of the hyperparameter landscape while maintaining

computational efficiency. All models were optimized with

a fixed random seed for reproducibility, and verbosity was

disabled for resource-controlled environments.

IV. RESULTS AND DISCUSSION

Rigorous assessment of the developed models is critical

for verifying the efficacy of models, ensuring repeatability,

and quantifying predicted reliability, which helps to enable

accurate choices and trustworthy real-world deployment.

Our objective was to develop and evaluate seven ensemble

machine learning models in their base configuration in addition
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TABLE IV
SELECTED HYPERPARAMETERS FOR BAYESIAN OPTIMIZATION OF THE DEVELOPED ENSEMBLE MODELS

Model Search Space Best Parameters Crop

Random Forset

n estimators: (100, 1000)
max depth: (3, 25)

max features: (0.1, 1.0)

100
3

0.9274781325161314
Pulses, Total

AdaBoost

n estimators: (50, 500)
learning rate’ (0.005, 2.0, loguniform)
loss: [’linear’, ’square’, ’exponential’]

53
0.018596594453385986)

exponential
Pulses, Total

XGBoost

n estimators: (100, 1000)
learning rate: (0.005, 0.5, loguniform)

max depth: (3, 15)
subsample: (0.5, 1.0)

colsample bytree: (0.5, 1.0)

384
0.1426991843302091

14
0.8350739741344673
0.705051979426657

Pulses, Total

CatBoost

iterations: (100, 1000)
learning rate: (0.005, 0.5, loguniform)

depth: (3, 15)
l2 leaf reg: (0.1, 20.0, loguniform)

border count: (32, 255)

898
0.035612784787118226

3
1.2563877010366442

59

Other fruits, n.e.c.

Bagged Decision Tree

n estimators: (10, 200)
max samples: (0.5, 1.0)
max features: (0.5, 1.0)

estimator max depth: (3, 20)

10
1.0
1.0
3

Fruit Primary

Gradient Boosting

n estimators: (100, 1000)
learning rate: (0.005, 0.5, log-uniform)

max depth: (3, 15)

247
0.14690143571379652

14
Pulses, Total

Stochastic Gradient Boosting

n estimators: (100, 1000)
learning rate: (0.005, 0.5, log-uniform)

max depth: (3, 15)
subsample: (0.5, 1.0)

min samples split: (2, 10)
min samples leaf: (1, 10)

269
0.03878243104032394

14
0.7268326719031495

5
2

Pulses, Total

to the application of three techniques to study the models’

performance enhancement. This resulted in the evaluation of

28 models resulting from the seven ensemble models discussed

earlier multiplied by the four possible configurations. For this,

we chose to assess these models on selected crops instead

of studying all the crops obtained in the collected data. This

choice is made on the basis of training the seven baseline

models on each crop in the dataset and selecting the eight

crops with best results according to the following metrics:

• R2: Measures the proportion of variance in the depen-

dent variable that is predictable from the independent

variables. Values range from 0 to 1, with higher values

indicating better model fit:

R2 = 1−

∑

(yi − ŷi)
2

∑

(yi − ȳ)2

• Root Mean Squared Error (RMSE): is a fundamental

evaluation metric widely used in regression problems,

including crop yield prediction. It quantifies the square

root of the average of the squared differences between

predicted values ŷi and actual values yi, and is formally

defined as:

RMSE =

√

√

√

√

1

n

n
∑

i=1

(yi − ŷi)2

where n denotes the number of observations. The squar-

ing of errors penalizes larger deviations more than smaller

ones, making MSE particularly sensitive to outliers. This

sensitivity allows it to highlight substantial prediction

errors that may impact agricultural decision making.

• Mean Absolute Error (MAE): Represents the average

magnitude of the prediction errors, without considering

their direction:

MAE =
1

n

n
∑

i=1

|yi − ŷi|

• Mean Absolute Percentage Error (MAPE): is a regression

metric that measures the average absolute percentage

difference between predicted and actual values, making

it useful for determining the accuracy of the model

MAPE =
100%

n

n
∑

i=1

∣

∣

∣

∣

yi − ŷi

yi

∣

∣

∣

∣

The crops selected for further investigation and the metrics

obtained for the best model for each crop are summarized in

table V.

A. Baseline models’ Performance

As mentioned in the previous section, to establish a bench-

mark for model performance, all ensemble models were ini-

tially evaluated using default (untuned) configurations. The

evaluation was carried out across eight diverse crop categories

using standard regression metrics: MAE, RMSE, R2, and

MAPE (table V). We aim here to provide more insights

about the training of the seven ensemble models (with default

configurations) on the selected crops.
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TABLE V
BEST MODEL AND ITS EVALUATION METRICS FOR EACH CROP

Crop Best Model MAE RMSE R
2 MAPE

Cereals, primary AdaBoost (Baseline) 0.015 0.019 0.829 0.042
Dates Gradient Boosting (Baseline) 0.022 0.034 0.861 0.299
Fruit Primary Stochastic Gradient Boosting (Baseline) 0.026 0.035 0.918 0.890
Other fruits, n.e.c. Stochastic Gradient Boosting (Baseline) 0.075 0.103 0.923 0.252
Pulses, Total AdaBoost (Baseline) 0.003 0.005 0.976 0.007
Sorghum Stochastic Gradient Boosting (Baseline) 0.008 0.013 0.894 0.016
Wheat Stochastic Gradient Boosting (Baseline) 0.014 0.019 0.864 0.051
Pumpkins, squash and gourds Random Forest (Baseline) 0.088 0.119 0.880 0.534

To visualize the overall model performance across crops,

figure 3 presents a heatmap of R2 scores, capturing the

comparative behavior of all base models.

The heatmap confirms that CatBoost and Stochastic GB

seem to be strong performers overall, consistently showing

high R2 scores. AdaBoost and Gradient Boosting show very

good performance across most crops. Random Forest generally

performs well achieving 97% for Pulses crop. On the other

hand, Bagged DT and XGBoost appear to have lower R2

scores, particularly for Dates and Other fruits, which supposes

that they might not be suitable for these crop types compared

to the other models.

From the lens of crops, Pulses, Fruit, and Sorghum seem

to be relatively well-predicted across most models, with many

R2 scores greater than 0.80 and a score ranging between 0.91

and 0.98 for Pulses crop. Whereas, Dates and Other fruits tend

to have lower R2 scores for several models, indicating that

predicting the target variable for these crops might be more

challenging.

Learning curves obtained by testing the models’ effective-

ness on progressively bigger subsets of the input data through

cross-validation were studied to identify probable variance and

bias concerns. To understand how the seven models learn

and generalize from data, we visualize the learning curves

for ”Pulses, Total” and ”Dates”. For Pulses crop, figure 4

shows that the models are capable of extremely quick learning.

Despite limited training instances (e.g., 5-10), most models

get strong R2 values (typically greater than 0.80) on both

training and cross-validated data. The curves increase rapidly

and converge soon. However, figure 5 shows that for Dates,

the models demonstrate slower and less efficient learning.

Low training instances (e.g., up to 15-20) show a significant

disparity between training R2 (typically 1.0) and CV R2 (near

0 or even negative), indicating early overfitting.

B. Performance of the optimized Models

For direct and indirect optimization of the developed models

across the selected crops, we performed the following tasks as

explained in the methodology section.

• Hyperparameter tuning

• Outliers’ removal

• Bayesian optimization

The R2 scores for all models are summarized in table

VI. Accoding to the table, the proposed optimizations have

significantly improved the models’ performance across the

studied crops, particularly for formerly underperforming pre-

dictions. For Dates crop for example, the XGBoost model

showed an increase in R2 score by 4̃7% after hyperparameter

tuning. Also, Bayesian optimization enhances dramatically the

prediction of Dates by Bagged Decision Tree (R2 scores

passes from 0.67 to 0.92). It is indeed clear from the table

that almost all the optimizated models perform better than the

default models.

We also highlighted in gray the cell showing the best R2

score for each crop for model selection. For example, the best

predictor for Fruits is the hypertuned Stochastic GB model

with a score R2 of 0.98.

The capacity to accomplish such consistent generalization

over a broader range of crop varieties demonstrates the success

of our optimization method and establishes these models as

dependable tools for the forecasting of crop yields.

V. CONCLUSION

In this research, we developed and evaluated seven

ensemble-based machine learning models to predict eight crop

yields in Saudi Arabia. In order to enhance the baseline mod-

els’ performance, three optimization methods were developed:

direct optimization via hyperparameter tuning and Bayesian

optimization and indirect optimization through outliers’ re-

moval.

The results demonstrated that Stochastic Gradient Boosting

and XGBoost are the best performers, each model achieving

the highest R2 values for three different crops. Then, CatBoost

and AdaBoost were champions in predicting Other fruits and

Cereals, resp. However, bagging models (RF and Bagged DT),

and the GB model did not outperform the developed models

in any of the selected crops.

It should be noted that the optimization strategies had

varied effects. Hyperparameter tuning showed marginal gains,

while Bayesian optimization and outlier removal (via Isolation

Forest) led to noticeable performance improvements. However,

the effectiveness of each strategy was dependent on the crop.

In summary, the proposed framework provided a scalable

and interpretable approach to smart agriculture in Saudi Ara-

bia. Its crop-level insights support data-driven decision-making

for farmers and policymakers.

For future investigations, it is promising to expand the

dataset to include soil characteristics, crop management prac-

tices, and economic indicators to improve model generaliza-

tion. Also, it is propitious to explore deep learning architec-
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Fig. 3. Heatmap of R2 values for baseline models across crops

tures such as LSTM or CNN to capture temporal dynamics

more effectively where larger amount of data is available.

Finally, exploring the performance of deep ensemble learning

on the studied crops appears promising, given the encouraging

results reported in [33].
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TABLE VI
R

2 SCORE FOR EACH MODEL PER CROP
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