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Abstract—Accurate crop yield prediction is essential for en-
hancing food security, optimizing resource use, and supporting
smart farming initiatives. Traditional statistical models often fail
to capture the nonlinear interactions between environmental,
climatic, and agronomic variables. To address these challenges,
this research evaluated seven ensemble machine learning models:
Random Forest, Bagged Decision Tree, AdaBoost, Gradient
Boosting, Stochastic Gradient Boosting, eXtreme Gradient Boost-
ing, and CatBoost. Being interested in the region of Saudi Arabia,
we collected and integrated multi-source data that resulted
in meteorological factors (temperature, humidity, precipitation),
vegetation indices, pesticide usage, and historical yield records of
thirty eight crop categories. While selecting only eight crops to
study in the optimization phase, each model was assessed under
four experimental configurations: baseline models, hyperparame-
ter tuning, outliers’ removal, and Bayesian optimization. Results
showed that the optimized models performed up to 47% better
than the default models. More precisely, hyperparameter tuning
showed marginal gains, and Bayesian optimization and outliers’
removal led to noticeable performance improvements. However,
the effectiveness of each strategy was crop-specific.

Index Terms—Crop Pield Prediction, Ensemble Machine
Learning, Bagging, Boosting, Hyperparameter Tuning, Bayesian
Optimization

I. INTRODUCTION

NSURING sustainable food production is a global chal-

lenge, especially in arid regions like Saudi Arabia, where
agriculture is constrained by extreme climate, water scarcity,
and limited arable land. Crop yield prediction has emerged
as a critical tool to enhance agricultural planning, reduce
resource waste, and support national food security strategies.
Accurate forecasting allows for informed decisions in land
management, irrigation scheduling, and fertilizer application,
while also aiding in mitigating the risks of climate variability
and supply chain disruptions.

Despite the advances in machine learning (ML) and deep
learning (DL) methods for yield prediction, many existing
studies are either based on synthetic or global datasets and
rarely reflect the local agro-climatic and environmental reali-
ties of the Gulf region in general. Moreover, predictive models
are often developed for major cereal crops like wheat and
maize, with limited attention to a broader range of fruits and
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vegetables that are vital to the regional diet and agricultural
economy. The present study addresses these gaps by devel-
oping an ensemble learning-based framework to forecast the
yield of several crops grown in Saudi Arabia.

We propose a framework that leverages multiple ensemble
learning techniques including Random Forest, Bagging Deci-
sion Trees, Gradient Boosting, Stochastic Gradient Boosting,
XGBoost, AdaBoost, and CatBoost to exploit the strengths of
individual models while enhancing robustness and accuracy.
For each crop, the models are trained and evaluated using
historical yield data alongside environmental variables such
as temperature, precipitation, humidity, NDVI, VCI, WDRVI,
and pesticide application rates.

In our research, we seek to develop predictive models
specifically tailored to key crops grown in Saudi Arabia by
utilizing real, localized agricultural data. The study aims to
systematically compare the performance of various ensemble
learning algorithms across multiple crop types to determine
their relative strengths and limitations. Also, it seeks to identify
the most effective model for each crop by evaluating their per-
formance using standard regression metrics such as the coeffi-
cient of determination (R?), Mean Absolute Error (MAE),Root
Mean Squared Error (RMSE), and Mean Absolute Percentage
Error (MAPE). Ultimately, the research aims to provide a
scalable and reliable modeling framework that supports yield
forecasting, enhances strategic food security planning, and
promotes the adoption of smart agriculture practices in arid
and data-constrained environments.

By combining local data with advanced ensemble learning
strategies, this research contributes to the growing body of
precision agriculture literature and offers practical insights for
decision-makers aiming to modernize agriculture in Saudi Ara-
bia. More precisely, the contributions of the present research
are the following:

« Unified ensemble-based prediction framework tailored to

the Saudi agro-environmental context.

« Comprehensive comparative analysis of seven ensemble
machine learning models across multiple crop categories,
revealing insights into their relative performance under
different optimization conditions.
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e Multi-stage optimization pipeline to enhance models’
accuracy and stability; including direct optimization tech-
niques such as hyperparameter tuning and Bayesian
search and methods of enhancing performance like out-
liers’ removal.

The remainder of the paper is organized as follows. Section
2 recalls the works existing in the literature for crop yield
forecasting. Section 3 details the methodology adopted to
realize the aforementioned contributions. The main results are
discussed in section 4. Finally, section 5 concludes the paper.

II. RELATED WORK

Crop yield prediction has emerged as a critical area of
research in agriculture [32], especially in the face of climate
change, population growth, and food security challenges. Ac-
curate prediction of agricultural production enables farmers,
and agribusiness stakeholders to make decisions about re-
source allocation, land management, and market planning. It
also plays a role in supporting food sustainability and reducing
risks in agricultural investment and planning [11], [18].

In recent years, artificial intelligence (AI) and machine
learning (ML) have been increasingly adopted for crop yield
forecasting due to their capacity to model complex, nonlin-
ear relationships among environmental, soil, and agronomic
variables [12], [18]. These technologies have shown results
compared to traditional statistical methods, especially when
dealing with large datasets.

Palanivel and Surianarayanan [13] reviewed ML methods
for crop yield prediction, highlighting ANN and SVM for han-
dling nonlinear agricultural data. Studies from India, China,
and South Africa covered wheat, maize, rice, cotton, and pota-
toes. Key features: climate (rainfall, temperature, humidity)
and soil. ANN showed high accuracy—e.g., £9% error in
wheat yield. A big data framework was proposed to improve
prediction via distributed processing.

Ashfaq et al. [1] proposed an ML framework for winter
wheat yield prediction in Multan, Pakistan (2017-2022), in-
tegrating meteorological, NDVI, soil, and spatial data. Three
models—SVM, RF, and LASSO—were evaluated using NDVI
(Landsat 8), climate, and soil features. RF outperformed others
with R? = 0.88, 97% accuracy, and RMSE of 0.056 t/ha.
NDVI and climate data boosted accuracy, with water-related
features more impactful. The study also produced spatial yield
maps and highlighted RF’s suitability for heterogeneous, data-
scarce regions.

Ilyas et al. [4] proposed an Al-based framework for auto-
mated crop classification and yield prediction using remote
sensing and ensemble learning. A fuzzy hybrid ensembled
model was developed, combining spatial filtering and data
augmentation with a bagging ensemble classifier. Yield pre-
diction used GB, RF, DT, and linear regression trained on
FAO and World Bank data (2017-2021) for flaxseed, lentils,
rice, sugarcane, and wheat. The ensemble classifier improved
accuracy by +13% over GB and +24% over DT. GB regressor
achieved the best performance with lowest MSE and highest
accuracy.
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Yewlea et al. [2] proposed RicEns-Net, a deep ensem-
ble model for rice yield prediction in Vietnam’s An Giang
province using multi-modal data: Sentinel-1 (SAR), Sentinel-
2 (MSI), Sentinel-3 (meteorology), NASA rainfall, and field
data. From 557 observations, 15 features were selected via sta-
tistical filtering. RicEns-Net combines CNN, MLP, DenseNet,
and AE, weighted by validation error. It outperformed all
tested models, achieving MAE = 341.13 kg/ha, RMSE =
436.26 kg/ha, and adjusted R? =0.589, with minimal train-test
variance (AR? = 0.063).

Wang et al. [6] reviewed DL models for yield prediction
across crops: corn, soybean, rice, wheat, tomato, and let-
tuce. They evaluated LSTM, CNN, CNN-RNN, BO-LSTM,
ConvLSTM, DNN, and GRU against ML models (RF, SVR,
GBR, KNN), using meteorological, soil, remote sensing, and
management data. Notable results: BO-LSTM (R? = 0.82 for
wheat), GRU (R? = 0.98 for corn), CNN-RNN (R? = 0.9995
for tomato). DL outperformed ML on large datasets but at
higher computational cost and lower interpretability.

Morales and Villalobos [15] evaluated ML models for
wheat and sunflower yield prediction using synthetic data
from DSSAT models across five Spanish regions. Features
included weather, soil, cultivar, and management practices.
Models tested: Lasso, Ridge, RF, and ANN (ANN-2 to ANN-
12). RF achieved best test results for both crops (e.g., wheat:
RMSE = 5%, R? = 0.99 train; sunflower: RMSE = 12%, R?
= 0.97). ANN models showed overfitting risks. Chronologi-
cal validation confirmed RF’s robustness over random splits,
supporting its use in real-world forecasting.

El-Kenawy et al. [21] evaluated ML and DL models for
potato yield prediction using a Kaggle dataset with agro-
climatic, temporal, and spatial variables. Models included
KNN, GB, XGBoost, MLP (ML), and GNN, GRU, LSTM
(DL). GNN outperformed all, achieving R? = 0.5172 and
MSE=0.0236. LSTM and GRU followed with R? = 0.4474
and 0.3872. DL models better captured spatial-temporal de-
pendencies. The study applied extensive preprocessing, hyper-
parameter tuning, and emphasized DL’s value for sustainable
agriculture and food security.

Joshi et al. [3] explored deep transfer learning for winter
wheat yield prediction in U.S. climate zones using satellite
time-series and climate data (2008-2020). A BiLSTM re-
placed MLP to better model spatiotemporal features. Four
transfer techniques were tested: TrAdaBoost.R2, Two-stage
TrAdaBoost.R2, DANN, and Fine-tuning. Two-stage TrAd-
aBoost.R2 + BiLSTM yielded top results (MAE = 0.41/0.42;
R? = 0.51/0.53). DANN underperformed due to domain mis-
match. The study highlights BiLSTM’s and domain similar-
ity’s roles in enhancing transfer learning efficacy.

Brandt et al. [5] developed an ensemble learning frame-
work for predicting yields of winter wheat, barley, and rape-
seed in Germany using data from 140,000-155,000 parcels
(2019-2022). Features included Sentinel-2 imagery, mete-
orological data, and soil properties. Two ensemble strate-
gies—stacking (PLSR, RF, SVR, CTB, LGB, XGBoost with
Elastic Net meta-learner) and majority voting—were tested.
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The voting ensemble achieved the best parcel-level R? scores:
wheat (0.74), barley (0.68), rapeseed (0.66). High-resolution
EO and agro-climatic fusion enhanced accuracy and scalabil-
ity.

Rao et al. [11] proposed a supervised ML model to guide
crop selection based on soil nutrients (N, P, K), temperature,
humidity, pH, and rainfall, using a dataset of 2200 samples
across 22 crops. Evaluated models included KNN, DT, and
RF classifiers. RF achieved top test accuracy (99.32%) with
both Gini and Entropy. DT reached up to 98.86%, while KNN
scored 97.04%. Regression analysis (ENet, Lasso, Kernel
Ridge) and stacking were also used for yield approximation.
A mobile app with GPS/rainfall tracking was suggested for
practical deployment.

In Saudi Arabia, multiple research papers have studied crop
yield prediction. For instance, Assous et al. [12] developed
a neural network model for yield prediction across Gulf
countries using some features such as temperature, rainfall,
nitrogen, and pesticide use, achieved a determination coeffi-
cient (R?) of 0.93. Likewise, Al-Adhaileh and Aldhyani [9]
explained that pesticide, temperature, and rainfall were among
the most effective predictors for major crops in Saudi Arabia
like wheat and sorghum, achieved 0.96 of R? and 0.0449 of
root mean square error (RMSE) using a multilayer perceptron
(MLP) model.

Another recent research by Islam et al. [14] used XGBoost
for yield prediction like wheat, maize, sorghum, potatoes and
rice in the Saudi Arabia and obtained an R? score of 0.97 and
RSME of 15803.15. Their research focused on the role of data
in promoting climate-resilient agriculture in the region.

Al-Gaadi et al. [25] developed a precision agriculture frame-
work to predict potato yield in Eastern Saudi Arabia using
multispectral imagery (Landsat-8, Sentinel-2). Vegetation in-
dices (NDVI, SAVI, CNDVI, CSAVI) were correlated with
field yield data from 30-ha plots. Linear regression models
showed Sentinel-2 performed best (R? = 0.65, RMSE =
4.96%), with optimal prediction 60-70 days post-planting. The
study highlights the effectiveness of high-resolution satellite
monitoring for yield estimation in arid regions.

Al-Gaadi et al. [26] assessed the water footprint (WF) and
productivity of carrots and onions in arid Saudi conditions
using Sentinel-2, Landsat-8, and the SSEB model. Spectral
indices (NDVI, SAVI, RDVI, EVI) and LST were used to
predict yield and evapotranspiration. Linear regression with
NIR band achieved R?> = 0.77 (carrots) and 0.68 (onions).
Estimated WF was 312 m3/t (carrots) and 230 m®/t (onions),
confirming the value of satellite-based monitoring for yield
and water use efficiency.

Li et al. [27] performed a national-scale analysis of Saudi
agriculture (1990-2021) using a hybrid ML framework com-
bining DBSCAN, CNNs, and spectral clustering to map
28,000+ center-pivot fields via Landsat NDVI composites.
Delineation accuracy was high (R? > 0.97; producer’s:
83.7-94.8%, user’s: 90.2-97.9%). Results showed expansion
(2010-2015) and post-2016 contraction tied to water policy.
The study offers high-resolution field data for future yield,

WE, and crop type studies in arid regions.

Ahmed [28] proposed a maize yield prediction frame-
work for Saudi Arabia using a modified MLP optimized by
Spider Monkey Optimization (SMO). Trained on FAO and
World Bank data (rainfall, temperature, yield), the MLP-
SMO model outperformed LASSO, XGBoost, LightGBM,
RF, SVM, GRNN, and LSTM, achieving B> = 0.98 and
RMSE =0.11 Mg/Ha. Statistical tests (MAE, MBE, Wilcoxon)
confirmed its robustness. The study highlights the potential of
hybrid neural-metaheuristic models for accurate yield forecast-
ing in arid regions.

Jabbari et al. [29] studied IoT adoption for crop monitoring
and yield prediction among 550 farmers in Jizan, Saudi Arabia.
Statistical analysis showed a strong correlation between aware-
ness and perceived benefits (r = 0.835, p < 0.001). Perceived
benefits explained 21% of adoption variance (R? = 0.210),
while access to information and government support were also
significant predictors (R? = 0.191). The study highlights the
need for targeted training and institutional backing to boost
IoT adoption in precision agriculture.

A summary of the approaches for crop yield prediction in
Saudi Arabia is given in table I.

TABLE I
EXISTING WORKS OF CROP YIELD PREDICTION IN SAUDI ARABIA

Ref, Year Crop Model R? Data Source
[14], 2024 | Maize, Potatoes, | Bagging >091| FAO + World
Sorghum, Soy- | RF Bank Open
bean, Wheat XGBoost Data
[12], 2023 | Dates Neural Net- | 0.974 | FAO + Thier
work global data
Maize Neural Net- | 0.792
work
Potatoe 0.499
Wheat 0.930
[27], 2023 | Wheat, Barley, | DBSCAN, 0.97 GEE, Manual
Alfalfa, Fruits, | CNN digitization
Vegetables (AlexNet),
Spectral
Clustering
[28], 2023 | Maize MLP + | 0.98 FAO, World
Spider Data Bank
Monkey
Optimiza-
tion (SMO)
[29], 2023 | Various Regression 0.698 | Questionnaire
(correlation
+ MLR)
[9], 2022 Potatoes MLP 0.99 Kaggle
Rice MLP 0.90
Sorghum MLP 0.99
Wheat MLP 0.99
[26], 2022 | Carrots Linear Re- | 0.77 USGS,
gression WorldClim.org,
Tawdeehiya
Farms
[25], 2016 | Potatoes Linear Re- | 0.65 USGS, INMA
gression Co.

Despite advances in ML/DL for crop yield prediction,
significant gaps exist in the literature, particularly in terms
of regional adaptability to arid climates, full ensemble model
evaluation, and holistic data fusion methodologies. Existing
models frequently lack calibration for regions such as Saudi
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Arabia, and therefore struggle with generalizable, scalable
architecture. While specific ensemble strategies have been
verified, few studies have systematically compared a wide
range of ensemble methods across many crops and regions,
a gap that this work fills by evaluating seven algorithms
for Saudi crops. Furthermore, many implementations miss
critical data fusion, particularly the combined influence of
environmental, temporal, remote sensing, and management
variables, whereas this study distinguishes the varied impor-
tance of components such as NDVI versus precipitation in the
Saudi context. Also, we claim that the suggested approach has
great generalizability, allowing for unlimited use across many
situations, provided the necessary data is available.

III. METHODOLOGY

Sustainable food production in arid regions like Saudi
Arabia faces significant challenges due to extreme climate,
limited water resources, and constrained arable land. Crop
yield prediction serves as a crucial tool to improve agricultural
planning, optimize resources use, and support national food
security. While ML and DL methods have shown promise in
this domain, most prior studies rely on global datasets and
focus primarily on few crops. These approaches often fail to
generalize to local conditions and underrepresent crops vital
to the Saudi agricultural economy, such as fruits and dates.

This research proposes a framework based on ensemble
machine learning tailored to the agro-climatic context of Saudi
Arabia. By leveraging multi-source datasets and a range of
ensemble models including Random Forest, Bagging Decision
Trees, Gradient Boosting, Stochastic Gradient Boosting, XG-
Boost, AdaBoost, and CatBoost, this study aims to deliver
accurate and scalable yield predictions.

As illustrated in figure 1, the methodology is structured
as follows: data collection and preprocessing, model training
using historical and environmental variables (e.g., temperature,
precipitation, NDVI, pesticide usage), performance evaluation
using standard regression metrics (R?, MAE, RMSE, MAPE),
and different optimization experiments. This structured ap-
proach ensures robust, context-aware model development that
supports smart agriculture in arid environments.

A. Data collection

To develop an effective crop yield prediction framework
tailored to Saudi Arabia, a diverse set of datasets was compiled
from reputable global platforms. The features were selected to
reflect environmental, agronomic, and remote sensing variables
that have been shown to impact crop productivity in prior
studies.

o Crop type and yield: Crop-specific production and yield
data were obtained from the the Food and Agriculture
Organization (FAO) [30]. The data included total yield
values (in kg per hectare) for several crops cultivated
in Saudi Arabia like wheat, maize, tomatoes, potatoes,
barley, sorghum, and dates.

PROCEEDINGS OF THE FEDCSIS. KRAKOW, POLAND, 2025

« Pesticide use: Annual pesticide usage was collected from
FAO databases. This variable represents the total quantity
of pesticides applied in agricultural operations per year.

o Weather data: Meteorological data, including average
annual temperature, total precipitation, and average hu-
midity, were extracted from the World Bank Climate Data
API [31]. The data were aggregated on a yearly basis for
the studied country.

o Vegetation indices: The Normalized Difference Vegeta-
tion Index (NDVI) is a widely used spectral index that
quantifies vegetation health and density by measuring the
difference between near-infrared (NIR) and red (RED)
reflectance captured by satellite sensors [1]. NDVI is
calculated using the formula:

NIR — RED
NIR + RED

This formula exploits the fact that healthy vegetation
reflects more NIR light and absorbs more red light, while
sparse or unhealthy vegetation shows the opposite pattern.
NDVI values range from —1 to +1, where higher positive
values typically indicate dense, healthy vegetation, and
values near zero or negative indicate barren areas, water
bodies, or built-up land.

In this study, NDVI images were extracted and processed
using the Google Earth Engine (GEE) platform, which
provides cloud-based access to satellite imagery and
enables large-scale geospatial analysis. Landsat 5, 7, and
8 Surface Reflectance (SR) collections were utilized to
ensure temporal continuity from 1990 to 2022. The satel-
lite images were first filtered for cloud-free conditions
and spatially clipped to specific agricultural regions in
Saudi Arabia. For each image, NDVI was computed using
GEE’s built-in normalizedDifference () function,
which efficiently implements the NDVI formula.

NDVI =

A summary of the data sources is given in Table II.

TABLE 1II
SUMMARY OF DATA SOURCES USED IN THE STUDY
Source Type of Data Time Range
FAO Crop yield, pesticide use 1990-2022
GEE Vegetation indices (NDVI) 1990-2023
World Bank Climate  Temperature, humidity, precip- ~ 1990-2022
Data itation

B. Data pre-processing

Following the collection of raw datasets from various
sources, basic pre-processing steps were applied to prepare the
data for ML modeling. These steps were essential to ensure the
consistency, completeness, and relevance of the input features.

o Vegetation indices computation:
To obtain a comprehensive overview of the crop condi-
tion, NDVT is used along with VCI (Vegetation Condition
Index) and WDRVI (Wide Dynamic Range Vegetation
Index). The three indices give complementary vegetation
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Fig. 1. Proposed framework

information, which is notably significant in agricultural
surveillance and crop yield forecasting.

— VCI was calculated using the standard formula [4]:

NDVI—NDVI,n
VCI o NDVImam — NDVImln x 100
— WDRVI was derived from red and near-infrared

reflectance bands using:

(0.1-NIR) — RED
(0.1-NIR) + RED

where NIR and RED are the near-infrared and red
reflectance values from MODIS [4].

o Data aggregation: All variables were aggregated at the
annual level to align crop yield values with climate,
pesticide, and remote sensing data.

e Missing data handling: Records with missing values
were dropped or imputed using mean imputation where
appropriate. This was particularly relevant in the early
years with sparse pesticide data.

« Categorical encoding: The crop name (such as Wheat,
Sorghum, Dates) was converted into numeric labels using
label encoding to allow its use as a categorical feature
in selected models. This is a critical step since machine
learning models need numerical data. For presentation
and evaluation, the original harvest names are kept in
distinct variables or extracted using inverse_transform.

WDRVI =

All datasets were harmonized to a common temporal reso-
lution (annual), cleaned to remove missing values, and merged
into a unified data frame containing 1117 records across all

crop types and years. Descriptive data statistics are illustrated
in figure 2.

C. Ensemble models

This research proposes a multi-stage ML pipeline to predict
crop yields in various types of crop cultivated in Saudi Arabia.
The methodology is centered on ensemble techniques, given
that ensemble machine learning takes advantage of the comple-
mentary characteristics of many models to improve predictive
accuracy, minimize variation and bias, and achieve improved
generalization in complicated tasks. We implemented seven
from the famous bagging and boosting models and proposed
different optimizations based on regularization and hyperpa-
rameter tuning applied to the seven models. The analysis
involved the evaluation of each model across all crops in
the dataset, then the selection of the top-performing crops
on which the optimization techniques were tested, and finally
the in-depth training, tuning, and evaluation of all models per
selected crop. The seven applied ensemble learning models
fall in the bagging and boosting ensemble categories:

« Bagging models: Bagging models increase the accuracy
of predictions by training several base learners simulta-
neously on random portions of the data.

— Random Forest (RF) is an ensemble method that
constructs multiple decision trees on bootstrapped
samples of the data and averages their outputs. For
regression, the prediction is given by:

1 K
j=— E T,
Y K 2 i(7)

433



434 PROCEEDINGS OF THE FEDCSIS. KRAKOW, POLAND, 2025

Year Yield Value Temperature Precipitation Humidity NDVI_Mean
count 1117.00 1117.06 1117.06 1117.08 1117. 68 1117 .88
mean 2086.93 12698.34 25.59 60.67 31.16 .85
std 9.79 11713.60 8.41 5.93 8.45 .01
min 199@.00 96.80 24.55 52.69 30.48 8.94
25% 1998.00 3974.50 25.29 56.089 3@.81 2.04
50% 2007 .00 10000.00 25.60 59.47 31.09 0.04
75% 2016.00 18946.80 25.88 64.34 31.41 .85
max 2022.00 85800.50 26.21 75.59 32.04 8.06
VCI WDRVI Mean Pesticides Value
count 1117.60 1117.00 1117.00
mean 46.48 9.03 4653.51
std 32.52 .00 2717.36
min @.00 9.02 994.00
25% 15.99 8.02 2683.37
50% 36.04 9.03 4216.71
75% 81.06 8.03 7255.65
max 100.00 .03 10495.54

Fig. 2. Collected Data Statistics

where T;(z) is the prediction from the i-th DT and
K is the total number of trees [14].

— Bagged Decision Tree (Bagged DT) is similar to RF
but without feature randomness; trees are trained on
bootstrapped datasets only.

« Boosting models: Boosting models construct ensembles
in stages, with each model focusing on rectifying the
faults of the previous ones.

— Gradient Boosting (GB) iteratively minimizes a loss
function via gradient descent:

F(x) = Fe1(2) + Ymbhm ()

— Stochastic Gradient Boosting (Stochastic GB) is a
variant of GB that introduces randomness by sam-
pling the training set at each iteration [20].

— eXtreme Gradient Boosting (XGBoost) is an opti-
mized version of GB with regularization:

Obj = > "Iy, 5i) + _ Q(fy)

(2

where Q(f;) is a complexity penalty for tree f; [20].
— AdaBoost sequentially trains weak learners and com-
bines them with weights:

M
F($) = Z amhm(x)

m=1
where h,, is the m-th weak learner and «,, is its
weight.

— CatBoost uses ordered boosting and handles categor-

ical features natively to reduce prediction shift and
overfitting [20].

This ensemble learning-based framework proposed for crop
yield prediction was inspired by the work of Zhou [20], which
details the theoretical underpinnings and practical successes of
such models in various domains.

All seven models were trained and evaluated in their base-
line definition (called baseline models in the sequel), then
three optimizations were proposed for each model resulting
in 21 other models named respectively OR, Hypertuned, and
BayesSearchCV for models optimized using Outliers Removal,
Hyperparameters tuning, and Bayesian optimization.

D. Model’s optimization

To enhance the accuracy and generalizability of the en-
semble models, a structured optimization pipeline was im-
plemented. This process consisted of three sequential steps:
hyperparameter tuning, outlier removal, and Bayesian opti-
mization. Each step was selected to address specific challenges
in predictive modeling and improve the models’ robustness.

1) Hyperparameter tuning: The optimization phase began
with hyperparameter tuning using GridSearchCV, a technique
that systematically explores combinations of predefined hy-
perparameter values. This approach enables the selection of
optimal configurations for each model, such as the number of
estimators, tree depth, and learning rate, by evaluating model
performance across cross-validated folds.

Hyperparameter tuning plays a crucial role in reducing
underfitting or overfitting, and ensures that models are well-
calibrated for the underlying data distribution. Its effectiveness
is well-documented in the ML literature [22].

In this study, a distinct set of parameter grids was defined
for each ensemble model to account for their structural and
functional differences. The search space proposed for each
model, the best parameters obtained, and the crop for which
the best values are achieved are summarized in table III.

2) Outliers’ removal: As an indirect optimization method,
we relied on the outliers’ removal method to clean the data by
removing anomalies, which identifies and excludes data points
that differ considerably from the dataset’s anticipated trends or
distribution. This may lead to better generalization and lower
error metrics (e.g., RMSE and MAE).
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TABLE III
SELECTED HYPERPARAMETERS FOR TUNING THE DEVELOPED ENSEMBLE MODELS
Model Search Space Best Parameters Crop
n_estimators: [50, 100, 200, 300] 50
max_depth: [None, 10, 20] None
Random Forset min_samples_split: [2, 5, 10] 2 Pulses, Total
min_samples_leaf: [1, 3] 1
max_features: [’sqrt’, "log2’, 0.8] 0.8
n_estimators: [50, 100, 200, 300, 500] 300
AdaBoost learning_rate: [0.001, 0.01, 0.1, 0.5] 0.001 Pulses, Total
loss: ['linear’, ’square’, *exponential’] exponential
n_estimators: [100, 200, 300] 200
learning_rate: [0.02, 0.05, 0.1, 0.2] 0.2
subsample: [0.8, 0.9, 1.0] 0.8
XGBoost colsample_bytree: [0.8, 0.9, 1.0] 0.8 Pulses, Total
max_depth: [3, 4, 5] 3
reg_alpha: [0, 0.001, 0.01, 0.1] 0.1
reg_lambda: [1, 0.1, 0.5, 1.0] 0.1
iterations: [100, 200, 300] 300
CatBoost learning_rate: [0.01, 0.05, 0.1, 0.2] 0.05 Pulses, Total

depth: [3, 4, 5]
12_leaf_reg: [1.0, 3.0, 5.0]

n_estimators: [10, 50, 100, 200]

max_samples: [0.5, 0.6, 0.8, 1.0]

max_features: [0.5, 0.6, 0.8, 1.0]
estimator__max_depth: [None, 5, 10, 15]

Bagged Decision Tree

Pulses, Total

n_estimators: [100, 200,300,500]
learning_rate: [0.05, 0.1, 0.2]
subsample: [0.6, 0.8, 1.0]
max_depth: [3, 4, 5]

Gradient Boosting

Fruit Primary

n_estimators: [100, 200, 300, 400]
learning_rate: [0.05, 0.1, 0.2]
subsample: [0.7, 0.8, 0.9]
max_depth: [3, 4, 5]
min_samples_split: [2, 5]
min_samples_leaf: [1,3]

Stochastic Gradient Boosting

4
5.0
10
1.0
1.0
None
100
0.1
0.8
3
400
0.05
038 Pulses, Total
2
3

Once the models were tuned, Isolation Forest was applied
to remove outliers from the data. This unsupervised anomaly
detection technique isolates unusual observations by randomly
partitioning the feature space. Its strength lies in its scalability
and independence from the data distribution assumptions.

To maintain consistency, the cleaned dataset was passed
into retrained versions of the same ensemble models, each
with fixed hyperparameters tailored for robust generaliza-
tion. For instance, RF and Bagged DT were retrained using
100 estimators, while AdaBoost used 100 weak learners.
GB and SGB were configured with 200 and 100 estimators
respectively, with subsampling enabled to enhance robust-
ness. XGBoost was applied with additional regularization
(reg_alpha = 0.1, reg_lambda = 1.0) and feature sub-
sampling (colsample_bytree = 0.8), aiming to mitigate
overfitting on reduced data. CatBoost was configured with 200
iterations, a moderate learning rate (0.05), and a regularization
term (12_leaf_reg = 3.0), while disabling verbose output
for computational efficiency.

All models used a consistent random seed to ensure repro-
ducibility across experimental runs. Outliers’ removal helped
to mitigate the impact of noise and extreme values, which
can distort model learning and inflate error metrics. This is
particularly beneficial in agricultural datasets where variability
is high [23].

3) Bayesian optimization: In the final step, Bayesian Opti-
mization was conducted using BayesSearchCV. Unlike grid
search, which exhaustively tests all combinations, Bayesian
optimization models the objective function and iteratively
selects hyperparameters that are likely to yield the best results.
This method improves the search efficiency, particularly in
high-dimensional spaces, and has been shown to outperform
traditional tuning methods in many ML applications [24].

For this study, specific search spaces for each model were
designed to reflect their structural characteristics and known
sensitivities. The parameters used in these spaces are defined in
table IV. In the same table, we report the best values obtained
and the crop for which the model performs better.

These customized search spaces allowed for targeted ex-
ploration of the hyperparameter landscape while maintaining
computational efficiency. All models were optimized with
a fixed random seed for reproducibility, and verbosity was
disabled for resource-controlled environments.

IV. RESULTS AND DISCUSSION

Rigorous assessment of the developed models is critical
for verifying the efficacy of models, ensuring repeatability,
and quantifying predicted reliability, which helps to enable
accurate choices and trustworthy real-world deployment.

Our objective was to develop and evaluate seven ensemble
machine learning models in their base configuration in addition
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SELECTED HYPERPARAMETERS FOR BAYESIAN OPTIMIZATION OF THE DEVELOPED ENSEMBLE MODELS

Model Search Space Best Parameters Crop
n_estimators: (100, 1000) 100
Random Forset max_depth: (3, 25) 3 Pulses, Total
max_features: (0.1, 1.0) 0.9274781325161314
n_estimators: (50, 500) 53
AdaBoost learning_rate’ (0.005, 2.0, loguniform)  0.018596594453385986) Pulses, Total
loss: [linear’, ’square’, ’exponential’] exponential
n_estimators: (100, 1000) 384
learning_rate: (0.005, 0.5, loguniform) 0.1426991843302091
XGBoost max_depth: (3, 15) 14 Pulses, Total
subsample: (0.5, 1.0) 0.8350739741344673
colsample_bytree: (0.5, 1.0) 0.705051979426657
iterations: (100, 1000) 898
learning_rate: (0.005, 0.5, loguniform) 0.035612784787118226
CatBoost depth: (3, 15) 3 Other fruits, n.e.c.
12_leaf_reg: (0.1, 20.0, loguniform) 1.2563877010366442
border_count: (32, 255) 59
n_estimators: (10, 200) 10
Bagged Decision Tree 231:?;?5:: Egg’ }8} %8 Fruit Primary
estimator__max_depth: (3, 20) 3
n_estimators: (100, 1000) 247
Gradient Boosting learning_rate: (0.005, 0.5, log-uniform) 0.14690143571379652 Pulses, Total
max_depth: (3, 15) 14
n_estimators: (100, 1000) 269
learning_rate: (0.005, 0.5, log-uniform) 0.03878243104032394
Stochastic Gradient Boosting Sfﬁi);;: glpe[ h(()(35, 115())) 0‘72683261? 19031495 Pulses, Total
min_samples_split: (2, 10) 5
min_samples_leaf: (1, 10) 2

to the application of three techniques to study the models’
performance enhancement. This resulted in the evaluation of
28 models resulting from the seven ensemble models discussed
earlier multiplied by the four possible configurations. For this,
we chose to assess these models on selected crops instead
of studying all the crops obtained in the collected data. This
choice is made on the basis of training the seven baseline
models on each crop in the dataset and selecting the eight
crops with best results according to the following metrics:

o R?: Measures the proportion of variance in the depen-
dent variable that is predictable from the independent
variables. Values range from O to 1, with higher values
indicating better model fit:

R2—1_ Sy — 9:)°
> (yi —9)?

e« Root Mean Squared Error (RMSE): is a fundamental
evaluation metric widely used in regression problems,
including crop yield prediction. It quantifies the square
root of the average of the squared differences between
predicted values ¢; and actual values y;, and is formally
defined as:

I X
RMSE = | = (y: = §:)?
"=
where n denotes the number of observations. The squar-

ing of errors penalizes larger deviations more than smaller
ones, making MSE particularly sensitive to outliers. This

sensitivity allows it to highlight substantial prediction
errors that may impact agricultural decision making.

e« Mean Absolute Error (MAE): Represents the average
magnitude of the prediction errors, without considering
their direction:

1 n
MAE = — > |yi — i
- ; | |
« Mean Absolute Percentage Error (MAPE): is a regression
metric that measures the average absolute percentage
difference between predicted and actual values, making
it useful for determining the accuracy of the model

Yi — Ui
Yi

100% <
MAPE =

The crops selected for further investigation and the metrics
obtained for the best model for each crop are summarized in
table V.

A. Baseline models’ Performance

As mentioned in the previous section, to establish a bench-
mark for model performance, all ensemble models were ini-
tially evaluated using default (untuned) configurations. The
evaluation was carried out across eight diverse crop categories
using standard regression metrics: MAE, RMSE, R?, and
MAPE (table V). We aim here to provide more insights
about the training of the seven ensemble models (with default
configurations) on the selected crops.
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TABLE V
BEST MODEL AND ITS EVALUATION METRICS FOR EACH CROP
Crop Best Model MAE RMSE R? MAPE
Cereals, primary AdaBoost (Baseline) 0.015 0.019 0.829 0.042
Dates Gradient Boosting (Baseline) 0.022 0.034 0.861 0.299
Fruit Primary Stochastic Gradient Boosting (Baseline) 0.026 0.035 0.918 0.890
Other fruits, n.e.c. Stochastic Gradient Boosting (Baseline) 0.075 0.103 0.923 0.252
Pulses, Total AdaBoost (Baseline) 0.003 0.005 0.976 0.007
Sorghum Stochastic Gradient Boosting (Baseline) 0.008 0.013 0.894 0.016
Wheat Stochastic Gradient Boosting (Baseline) 0.014 0.019 0.864 0.051
Pumpkins, squash and gourds Random Forest (Baseline) 0.088 0.119 0.880 0.534

To visualize the overall model performance across crops,
figure 3 presents a heatmap of R? scores, capturing the
comparative behavior of all base models.

The heatmap confirms that CatBoost and Stochastic GB
seem to be strong performers overall, consistently showing
high R? scores. AdaBoost and Gradient Boosting show very
good performance across most crops. Random Forest generally
performs well achieving 97% for Pulses crop. On the other
hand, Bagged DT and XGBoost appear to have lower R?
scores, particularly for Dates and Other fruits, which supposes
that they might not be suitable for these crop types compared
to the other models.

From the lens of crops, Pulses, Fruit, and Sorghum seem
to be relatively well-predicted across most models, with many
R? scores greater than 0.80 and a score ranging between 0.91
and 0.98 for Pulses crop. Whereas, Dates and Other fruits tend
to have lower R? scores for several models, indicating that
predicting the target variable for these crops might be more
challenging.

Learning curves obtained by testing the models’ effective-
ness on progressively bigger subsets of the input data through
cross-validation were studied to identify probable variance and
bias concerns. To understand how the seven models learn
and generalize from data, we visualize the learning curves
for ”Pulses, Total” and “Dates”. For Pulses crop, figure 4
shows that the models are capable of extremely quick learning.
Despite limited training instances (e.g., 5-10), most models
get strong R? values (typically greater than 0.80) on both
training and cross-validated data. The curves increase rapidly
and converge soon. However, figure 5 shows that for Dates,
the models demonstrate slower and less efficient learning.
Low training instances (e.g., up to 15-20) show a significant
disparity between training R? (typically 1.0) and CV R? (near
0 or even negative), indicating early overfitting.

B. Performance of the optimized Models

For direct and indirect optimization of the developed models
across the selected crops, we performed the following tasks as
explained in the methodology section.

o Hyperparameter tuning

e Outliers’ removal

« Bayesian optimization

The R? scores for all models are summarized in table
VI. Accoding to the table, the proposed optimizations have
significantly improved the models’ performance across the

studied crops, particularly for formerly underperforming pre-
dictions. For Dates crop for example, the XGBoost model
showed an increase in R? score by 47% after hyperparameter
tuning. Also, Bayesian optimization enhances dramatically the
prediction of Dates by Bagged Decision Tree (R? scores
passes from 0.67 to 0.92). It is indeed clear from the table
that almost all the optimizated models perform better than the
default models.

We also highlighted in gray the cell showing the best R2
score for each crop for model selection. For example, the best
predictor for Fruits is the hypertuned Stochastic GB model
with a score R? of 0.98.

The capacity to accomplish such consistent generalization
over a broader range of crop varieties demonstrates the success
of our optimization method and establishes these models as
dependable tools for the forecasting of crop yields.

V. CONCLUSION

In this research, we developed and evaluated seven
ensemble-based machine learning models to predict eight crop
yields in Saudi Arabia. In order to enhance the baseline mod-
els’ performance, three optimization methods were developed:
direct optimization via hyperparameter tuning and Bayesian
optimization and indirect optimization through outliers’ re-
moval.

The results demonstrated that Stochastic Gradient Boosting
and XGBoost are the best performers, each model achieving
the highest R? values for three different crops. Then, CatBoost
and AdaBoost were champions in predicting Other fruits and
Cereals, resp. However, bagging models (RF and Bagged DT),
and the GB model did not outperform the developed models
in any of the selected crops.

It should be noted that the optimization strategies had
varied effects. Hyperparameter tuning showed marginal gains,
while Bayesian optimization and outlier removal (via Isolation
Forest) led to noticeable performance improvements. However,
the effectiveness of each strategy was dependent on the crop.

In summary, the proposed framework provided a scalable
and interpretable approach to smart agriculture in Saudi Ara-
bia. Its crop-level insights support data-driven decision-making
for farmers and policymakers.

For future investigations, it is promising to expand the
dataset to include soil characteristics, crop management prac-
tices, and economic indicators to improve model generaliza-
tion. Also, it is propitious to explore deep learning architec-
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R? Scores by Model and Crop

AdaBoost (Baseline)

Bagged Decision Tree (Baseline)

CatBoost (Baseline)

Gradient Boosting (Baseline)

Model

Random Forest (Baseline)

Stochastic Gradient Boosting (Baseline)

X%GBoost (Baseline)

Dates

Cereals, primary
Fruit Primary

-0.95

Sorghum
Wheat

I
"
o
S

"
@
e
=1
=8

Other fruits, n.e.c.

Pumpkins, squash and gourds

Crop

Fig. 3. Heatmap of R? values for baseline models across crops

tures such as LSTM or CNN to capture temporal dynamics
more effectively where larger amount of data is available.
Finally, exploring the performance of deep ensemble learning
on the studied crops appears promising, given the encouraging
results reported in [33].

(1]

[2]

(3]

(4]

(3]

(el

REFERENCES

M. Ashfaq, I. Khan, A. Alzahrani, M. U. Tariq, H. Khan, and A. Ghani,
Accurate Wheat Yield Prediction Using Machine Learning and Climate-
NDVI Data Fusion, IEEE Access, vol. 12, pp. 40947-40961, 2024.
doi:10.1109/ACCESS.2024.3376735.

A. D. Yewlea, L. Mirzayeva, and O. Karakus, Multi-modal Data Fusion
and Deep Ensemble Learning for Accurate Crop Yield Prediction,
Preprint submitted to Elsevier, Feb. 2025.

A. Joshi, B. Pradhan, S. Chakraborty, R. Varatharajoo, S. Gite, and
A. Alamri, Deep-Transfer-Learning Strategies for Crop Yield Prediction
Using Climate Records and Satellite Image Time-Series Data, Remote
Sensing, vol. 16, no. 24, 4804, 2024. https://doi.org/10.3390/rs16244804.
Q. M. Ilyas, M. Ahmad, and A. Mehmood, Automated Estimation
of Crop Yield Using Artificial Intelligence and Remote Sensing Tech-
nologies, Bioengineering, vol. 10, no. 2, article 125, pp. 1-24, 2023.
doi:10.3390/bioengineering10020125.

P. Brandt, F. Beyer, P. Borrmann, M. Moller, and H. Gerighausen,
Ensemble learning-based crop yield estimation: a scalable approach for
supporting agricultural statistics, GIScience & Remote Sensing, vol. 61,
no. 1, pp. 2367808, 2024. DOI: 10.1080/15481603.2024.2367808.

Y. Wang, Q. Zhang, F. Yu, N. Zhang, X. Zhang, Y. Li, M. Wang, and
J. Zhang, Progress in Research on Deep Learning-Based Crop Yield

[7

—

[8

=

[9]

[10]

[11]

[12]

[13]

[14]

Prediction, Agronomy, vol. 14, no. 10, article 2264, pp. 1-26, 2024.
doi:10.3390/agronomy 14102264.

J. Ansarifar, L. Wang, and S. V. Archontoulis, An Interaction Regression
Model for Crop Yield Prediction, Scientific Reports, vol. 11, article
17754, 2021. doi:10.1038/s41598-021-97221-7.

M. Rashid, B. S. Bari, Y. Yusup, M. A. Kamaruddin, and N. Khan, A
Comprehensive Review of Crop Yield Prediction Using Machine Learn-
ing Approaches With Special Emphasis on Palm Oil Yield Prediction,
IEEE Access, vol. 9, pp. 63406-63439, 2021.

M. H. Al-Adhaileh and T. H. H. Aldhyani, Artificial Intelligence
Framework for Modeling and Predicting Crop Yield to Enhance Food
Security in Saudi Arabia, Peer] Computer Science, vol. 8, article e1104,
2022. doi:10.7717/peerj-cs.1104.

F. M. Talaat, Crop Yield Prediction Algorithm (CYPA) in Precision
Agriculture Based on Internet of Things (IoT) Techniques and Climate
Changes, Neural Computing and Applications, vol. 35, pp. 17281-
17292, 2023. doi:10.1007/s00521-023-08619-5.

M. S. Rao, A. Singh, N. V. S. Reddy, and D. U. Acharya, Crop
Prediction Using Machine Learning, Journal of Physics: Conference
Series, vol. 2161, 012033, 2022. doi:10.1088/1742-6596/2161/1/012033.
H. F. Assous, H. AL-Najjar, N. Al-Rousan, and D. AL-Najjar, Devel-
oping a Sustainable Machine Learning Model to Predict Crop Yield in
the Gulf Countries, Sustainability, vol. 15, no. 12, article 9392, 2023.
doi:10.3390/su15129392.

K. Palanivel and C. Surianarayanan, An Approach for Prediction of Crop
Yield Using Machine Learning and Big Data Techniques, International
Journal of Computer Engineering and Technology (IJCET), vol. 10, no.
3, pp. 110-118, 2019.

M. M. Islam, M. Alharthi, R. S. Alkadi, R. Islam, and A. K. M.
Masum, Crop Yield Prediction through Machine Learning: A Path
Towards Sustainable Agriculture and Climate Resilience in Saudi Ara-



RAYA ALDAWOUD, ZOHRA SBAI: MULTI-LEVEL OPTIMIZATION-BASED ENSEMBLE MACHINE LEARNING

R? Score

R? Score

Learning Curves for Models on Pulses, Total

1.0

0.8

0.6

0.4

— Random Forest (Train)

=== Random Forest (CV)

—— Bagged Decision Tree (Train)

—=- Bagged Decision Tree (CV)

—— AdaBoost (Train)

——-- AdaBoost (CV)

—— Gradient Boosting (Train)
Gradient Boosting (CV)

—— Stochastic Gradient Boosting (Train)
Stochastic Gradient Boosting (CV)
~— XGBoost (Train)

XGBoost (CV)

—— CatBoost (Train)

=== CatBoost (CV)

0.2

0.0

10

0.8

0.6

0.4

0.2

0.0

—— Random Forest (Train)

=== Random Forest (CV)

—— Bagged Decision Tree (Train)

—=- Bagged Decision Tree (CV}

— AdaBoost (Train)

=== AdaBoost (CV)

—— Gradient Boosting (Train)

—=- Gradient Boosting (CV)

—— Stochastic Gradient Boosting (Train)
—=- Stochastic Gradient Boosting (CV)
~— XGBoost (Train)

XGBoost (CV)

—— CatBoost (Train)

- CatBoost (CV)

5 10 15
Training Examples
Fig. 4. Learning Curves for models on the crop: "Pulses, Total”
Learning Curves for Models on Dates
——\\___—J

P

"
I i

5 10 15

Training Examples

Fig. 5. Learning Curves for models on the crop: "Dates”

439



440 PROCEEDINGS OF THE FEDCSIS. KRAKOW, POLAND, 2025
TABLE VI
R? SCORE FOR EACH MODEL PER CROP
Model Cereals, Dates Fruit Other Pulses, Sorghum Wheat Pumpkins,
primary Primary fruits, Total squash and

n.e.c. gourds
AdaBoost (Baseline) 0.829 0.826 0.915 0.873 0.976 0.889 0.852 0.865
AdaBoost (Hypertuned) 0.775 0.951 0.961 0.943 0.983 0.807 0.816 0.893
AdaBoost (OR) 0.908 0.919 0.899 0.825 0.975 0.767 0.889 0.915
AdaBoost (BayesSearchCV) 0.827 0.947 0.962 0.947 0.982 0.828 0.827 0.893
Bagged Decision Tree (Baseline) 0.745 0.672 0.803 0.644 0.909 0.865 0.838 0.852
Bagged Decision Tree (Hypertuned) 0.804 0.915 0.940 0.890 0.951 0.883 0.828 0.932
Bagged Decision Tree (OR) 0.897 0.885 0.900 0.891 0.971 0.906 0.885 0.946
Bagged Decision Tree (BayesSearchCV) 0.823 0.926 0.931 0.866 0.928 0.861 0.853 0.930
CatBoost (Baseline) 0.811 0.744 0.865 0.873 0.910 0.856 0.831 0.872
CatBoost (Hypertuned) 0.705 0.896 0.923 0.963 0.971 0.863 0.906 0911
CatBoost (OR) 0.846 0.735 0.825 0.885 0.949 0.905 0.841 0.959
CatBoost (BayesSearchCV) 0.692 0.866 0.921 0.963 0.963 0.849 0.914 0.931
Gradient Boosting (Baseline) 0.789 0.861 0.915 0.918 0.963 0.865 0.847 0.848
Gradient Boosting (Hypertuned) 0.767 0.956 0.981 0.930 0.980 0.830 0.889 0.881
Gradient Boosting (OR) 0.852 0.895 0.956 0.953 0.981 0.829 0.865 0.919
Gradient Boosting (BayesSearchCV) 0.747 0.952 0.967 0.834 0.983 0.847 0.621 0.892
Random Forest (Baseline) 0.813 0.743 0.889 0.841 0.968 0.891 0.862 0.880
Random Forest (Hypertuned) 0.773 0.906 0.941 0.891 0.953 0.846 0.869 0.948
Random Forest (OR) 0.904 0.866 0.879 0.919 0.974 0.913 0.880 0.953
Random Forest (BayesSearchCV) 0.829 0.927 0.946 0.892 0.974 0.873 0.868 0.930
Stochastic GB (Hypertuned) 0.694 0.958 0.983 0.936 0.993 0.856 0.907 0.887
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Stochastic GB (BayesSearchCV) 0.799 0.960 0.977 0.949 0.985 0.821 0.898 0.804
XGBoost (Baseline) 0.793 0.634 0.793 0.610 0.933 0.811 0.862 0.831
XGBoost (Hypertuned) 0.784 0.933 0.860 0.833 0.961 0.845 0.802 0911
XGBoost (OR) 0.875 0.886 0.872 0.638 0.959 0.920 0.828 0.980
XGBoost (BayesSearchCV) 0.696 0.814 0.821 0.767 0.959 0.839 0.927 0.896
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