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Abstract—Recent advancements in Internet protocols, includ-
ing DNS over HTTPS (DoH) and Encrypted Service Name Indica-
tors (ESNI), are making traditional Deep Packet Inspection (DPI)
engines obsolete. Consequently, there is a growing need for next-
generation traffic classification using artificial intelligence (AI).
While DPI automatically categorizes unknown traffic as ’other,’
AI-based models cannot automatically handle unknown or Out-
of-Distribution (OOD) traffic. AI models must effectively detect
and classify OOD traffic to ensure robustness, reliability, and
accuracy in real-world applications; however, current research
often fails to address the challenges of OOD detection.

In this paper, we evaluate various state-of-the-art OOD detec-
tion techniques for internet traffic classification and explore the
drawbacks and advantages of using different threshold levels for
the model’s tolerance for OOD. Our findings reveal that varying
rejection rates have distinct effects on OOD techniques, leading
to a change in the optimal strategy for achieving dependable and
precise detection across diverse OOD scenarios. We demonstrate
that adjusting rejection rates from 10% to 30% can significantly
improve the True Detection Rate (TDR) by up to 50%, while
the False Detection Rate (FDR) may increase by less than 10%.
Moreover, we emphasize that rejection-rate-based evaluation
is pivotal for next-generation flow classification, promising a
substantial reduction in FDR through rigorous methodological
assessment.

Index Terms—Out of Distribution, Traffic Classification, Mal-
ware Detection

I. INTRODUCTION

T
RAFFIC Classification (TC) is a critical process that

automatically categorizes Internet network traffic into

distinct classes, such as traffic attribution, application type,

or benign/malicious traffic. Regardless of the task, traffic

classification plays a crucial role in cybersecurity, Quality

of Experience (QoE), and Quality of Service (QoS), as it

enables the implementation of predetermined policies to treat

traffic classes differently, optimizing network performance and

reliability. Traditional traffic classification techniques have

relied on classifying applications or services based on fixed

port numbers [1]. While these techniques offer advantages

such as user privacy preservation, speed, and wide device

coverage, they are limited by their reliance on fixed ports and

susceptibility to cheating via packet editing. These limitations

have prompted the development of Deep Packet Inspection

(DPI) classification techniques [2], which involve inspecting

the actual payload of packets and are less vulnerable to cheat-

ing. However, DPI techniques are resource-intensive, slow, and

lack the same privacy guarantees as port-based techniques.

The widespread adoption of encryption protocols like TLS

and DoH has further complicated traffic classification, ren-

dering classical DPI techniques obsolete [3]. Consequently,

researchers have turned to Machine Learning (ML) and later

Deep Learning (DL) techniques for traffic classification. While

ML-based approaches initially required manual feature extrac-

tion by experts, DL techniques have emerged as promising

alternatives for traffic classification [4]. Despite the success

of ML and DL [5], one significant weakness persists: their

inability to classify instances outside of the closed set of

classes in the training data. Network traffic is inherently

dynamic, with new applications continually being introduced.

This dynamic nature makes it challenging for models to accu-

rately classify unseen classes without retraining. Additionally,

acquiring samples for new classes is time-consuming and

often results in limited datasets, leading models to favor older

and more represented classes during training [6]. To address

these challenges and ensure accurate and robust classification

in dynamic settings, models must be able to "reject" the

classification of a sample that does not belong to any of the

learned classes. This capability, known as Out-of-Distribution

(OOD) detection [7], [8], is crucial for effectively handling

samples outside the training set. Previous works evaluate OOD

detection techniques against a well-fit, state-of-the-art model

without considering the implications of using less accurate

models, which are common in real-world settings [9].

In this paper, we assess the impact of OOD methods on

classifier performance in both binary and multiclass traffic
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classification tasks. Our contribution extends existing research

by highlighting the impact of employing OOD techniques on

varying accuracy-level classifiers. Furthermore, we elucidate

the trade-offs associated with employing threshold-based OOD

techniques by introducing a new metric, Rejection Rate (RR).

These trade-offs are frequently overlooked in discussions

surrounding OOD techniques, as they tend not to cater to

specific model requirements. By shedding light on these

trade-offs, we provide valuable insights for practitioners and

researchers, enabling them to make more informed decisions

when selecting OOD detection techniques for their models.

For example, models connected through a pipeline might not

suffer from high rejection rates or data loss if they ensure that

the remaining data is of high quality and reliability. This leads

to a preference for performance and a high rejection rate of

OOD detection techniques.

Lastly, we examine existing OOD techniques on various

tasks and datasets, showing that the performance of "state-

of-the-art" OOD detection methods is contingent on external

factors such as acceptable rejection rates and model perfor-

mance.

II. RELATED WORK

OOD detection has been studied under many different

names, such as zero-day detection, open-set recognition, and

rejection option classifiers [4], [7], [8], [10], [11], [12], [13],

[14]. Shared by all is the classification model’s ability to reject

an input if it detects that it is from a class outside its training

set. Thulasidasan et al. [10] add a rejection class, K+1, trained

on a mix of OOD samples. This method is limited in practice

because it demands extra OOD data—either a Generative

Adversarial Network or by merging some classes—plus an

architectural change and full retraining, with no guarantee that

real-world OOD data will match what was seen in training.

Devries and Taylor [11] instead train the model to output cal-

ibrated confidence scores, using misclassified In-Distribution

(ID) samples as stand-ins for OOD. These are built in parallel

to the original classification model, which does not affect the

model’s accuracy. Nonetheless, this requires knowledge of the

internal workings of the model and retraining.

Another approach uses Siamese Neural Networks (SNN)

as an OOD detection method for network traffic [12]. The

authors use the ability of SNNs to find similarities in input

to detect OOD, but these require clustering, data balancing,

and training. He et al. [13] construct skew data and then

train multiple one-class Random Forest classifiers based on the

skew data. This is an expensive operation and gets increasingly

more complex as the number of classes increases.

Out-of-distribution detector for neural networks (ODIN)

[15] augments any pre-trained model without architectural

changes by pairing temperature scaling with slight input

perturbations. It computes a classifier’s confidence, perturbs

the input proportionally, and recomputes confidence. Because

ID samples are more affected, they generally yield higher

post-perturbation confidences than OOD samples, enabling

Fig. 1. Our Evaluation System

threshold-based rejection. Our work is the first to test ODIN

on encrypted network traffic for OOD detection.

GradBP [4] treats the magnitude of the first back-

propagation gradient, calculated as if training continued, as

an OOD proxy. Novel inputs typically induce larger gradient

magnitudes, allowing a single threshold to suffice for OOD

detection. GradBP is space and time-efficient, works on pre-

trained models, and has already been validated on encrypted

traffic.

To conclude, several solutions to traffic classification exist,

each characterized by its degrees of success and practicality.

However, none of these works explores the influence of

thresholds and their effect on OOD classification. As we

will demonstrate, the influence of the threshold is critical for

adequately evaluating OOD techniques.

Our main goal is to evaluate OOD techniques and compare

their results for traffic classification, then experiment with the

effects of the threshold. We chose a typical 1D-CNN as our

base architecture, and three OOD techniques - ODIN [15],

GradBP [4], and K+1 [16] as a baseline. ODIN and GradBP

are model-agnostic and do not require model modification,

retraining, or generating any additional data. Both ODIN and

GradBP operate on the model output under the same space and

time complexity class and require a threshold. All methods

will be concatenated to our base architecture. Our evaluation

system can be seen in Fig. 1.

III. SYSTEM ARCHITECTURE AND EVALUATION

FRAMEWORK

A. Basic System Components

Input. Each sample is a 100-step sequence of packet direc-

tion (0 = client → server, 1 = server → client) and min–max

scaled size ([0, 1]), a standard low-cost traffic representation

[4], [17] (Fig. 1,(1)).

Output. The classifier predicts a label k ∈ [1,K]; OOD

detections are mapped to k = K + 1.

B. Out-of-Distribution Detectors

ODIN [15]. For a trained network with logits f(x), we (i)

rescale them by a temperature T , (ii) add a small perturbation

ϵ ·sign
(

−∇x logS(x;T )
)

, and (iii) reject any sample whose
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TABLE I
TRAFFIC DATASETS USED IN THIS STUDY. B = BENIGN, M = MALWARE,

TLS = DATASET IS PREDOMINATELY TLS-ENCRYPTED.

Dataset Role Classes Samples TLS Notes

MTAB [21] ID 2 (B/M) 29,000 Mix MTA + benign
TEMU [20] ID 8 (B) 20,000 Yes Browser / misc.
USTCB [21], [22] OOD 5 (M) 58,000 Mix Diverse malware
VNAT [23] OOD 6 (B) 5,500 Mix VPN successor

largest softmax probability S(x;T ) falls below a threshold δ.

The triplet (T, ϵ, δ) is chosen on validation data; rejected

inputs are mapped to label K+1.

GradBP [4]. Keeping weights frozen, we back-propagate

each test point once and measure the ℓ2-norm of the resulting

gradient at the penultimate model layer, ∥δL−1∥2. Points

with ∥δL−1∥2 > ϵGR are considered OOD and likewise

assigned K+1.

K + 1 [16]. The classifier head is expanded to K+1 outputs

and fine-tuned on a small, heterogeneous set of OOD traces

labelled K+1. At inference, any prediction of the extra node

signals an outlier.

All OOD models are under label (3) in Fig. 1.

C. Datasets

To obtain a balanced and realistic evaluation spectrum,

we use MTAB and TEMU as our two ID references and

USTCB and VNAT as the OOD challengers. Together, these

four datasets cover benign and malicious traffic, multiple

application protocols, and both encrypted and plain-text flows,

providing a rigorous test bed for evaluating ID performance

and OOD generalisation. Specifically, MTAB (29 k flows,

2 classes) merges malicious mail-transfer (MTA) traffic with

benign sessions from ISCX2016 [18], StratosphereIPS [19],

and TEMU [20], yielding a mixed TLS/plain corpus labelled

benign or malware. TEMU (20 k flows, 8 benign classes)

contains browser and miscellaneous application traffic, most

of it TLS-encrypted. USTCB (58 k flows, 5 malware classes)

augments the USTC malware set—covering the Cridex, Neris,

Mi-uref, and Htbot families—with the same benign sources

as MTAB, giving a malware-heavy OOD benchmark. Finally,

VNAT (5.5 k flows, 6 benign classes) offers an updated

VPN/no-VPN corpus spanning streaming, chat, file-transfer,

and other activities with a mix of encrypted and clear-text

flows. Table I summarises the core statistics of each dataset,

while the exact pairing of datasets in each experiment is shown

later in Table II.

D. Evaluation Metrics

We report common performance indicators used for OOD

evaluation [12], [13]:

Accuracy – proportion of correct decisions among the

accepted samples.

True Detection Rate (TDR) – sensitivity to OOD inputs

(OOD true positives divided by all OOD cases).

False Detection Rate (FDR) – type-I error on ID data (ID

false positives divided by all ID cases).

Rejection Rate (RR) – The percent of samples rejected.

Recall and Precision – class-label sensitivity and positive

predictive value, both computed on the accepted subset.

IV. EXPERIMENTAL DESIGN

We structured our evaluation around two distinct classifica-

tion tasks: Binary Classification (i.e., distinguishing between

benign and malicious traffic) and Multiclass Classification

(i.e., identifying various well-known applications). Each clas-

sification task was evaluated using three separate experiments:

Experiment 1: This experiment assessed the base model’s

performance without OOD detection and unknown classes. It

simulates a standard scenario where a model is developed and

tested against a predefined dataset of known classes.

Experiment 2: In this experiment, we evaluated the base

model’s performance without OOD detection but with the

introduction of unknown classes. This mimics deploying the

Experiment 1 model in a real-world setting, where data may

include previously unseen classes.

Experiment 3: The final experiment aimed to address the

challenge of unknown classes by evaluating the base model

with OOD detection capabilities.

The structure of our experiments can be seen in Table II.

All OOD detection methods were tested on the same test set

for robust evaluation. For comprehensive insights, including

confusion matrices, tables, and threshold graphs, we have

provided detailed results in our GitHub repository [24].

Lastly, when considering the preferability of one method or

another, we limited the rejection rate to 50%. The limitation

has two reasons: First, we could naively reject nearly all

inputs without limit until few ID samples remain and achieve

perfect accuracy. We do not consider such a result helpful in

evaluating OOD detection performance. Second, there is no

standard rejection rate, and the authors of ODIN and GradBP

do not explain the effects of different rejection rates. It is

standard practice to use FDR=95%TDR, such as in [13], [12],

[4], [25], [26], [15], but this result is not useful for all use

cases. ODIN [15] suggests hyperparameter tuning that will

result in the correct identification of 95% ID samples, but does

not explain the effect on rejection rates. GradBP [4] does not

give any guidelines at all. As we will demonstrate, the optimal

strategy is task-dependent and model-dependent.

V. EXPERIMENTAL RESULTS

A. Experiment 1 - without unknown classes, without OOD

detection

Our first experiment assesses our models’ performance in

both binary and multiclass classification tasks, focusing on

scenarios where unknown classes and OOD data are not con-

sidered. The base models demonstrate remarkable performance

despite utilizing only packet size and direction as time-series

features. As shown in the Base column of Table III, the accu-

racy for both Binary and Multiclass tasks reaches impressive

levels of 98% and 94%, respectively. This underscores the

effectiveness of our models in classifying traffic even without

the need for OOD detection mechanisms.
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TABLE II
COMPARISON OF ARCHITECTURES AND EVALUATION METRICS ACROSS BINARY AND MULTICLASS CLASSIFICATION TASKS. BASE IS WITHOUT

INCLUDING UNKNOWN CLASSES, AND BASE* IS WITH INCLUSION OF UNKNOWN CLASSES.

Exp. Architecture Task Train/Test Unknown Evaluation Metrics

1 Base Binary MTAB – Accuracy, Recall, Precision
Multiclass TEMU – –

2 Base* Binary MTAB USTCB Accuracy, Recall, Precision
Multiclass TEMU VNAT –

3 Base + ODIN Binary MTAB USTCB Accuracy, Recall, Precision, True/False Detection Rate, Rejection Rate
Multiclass TEMU VNAT –

3 Base + GradBP Binary MTAB USTCB Accuracy, Recall, Precision, True/False Detection Rate, Rejection Rate
Multiclass TEMU VNAT –

3 Base’ + (K+1) Binary MTAB+USTCB USTCB Accuracy, Recall, Precision, True/False Detection Rate, Rejection Rate
Multiclass TEMU+VNAT VNAT –

TABLE III
PERFORMANCE COMPARISON OF MODELS WITH (BASE*) AND WITHOUT

(BASE) THE INCLUSION OF UNKNOWN CLASSES IN BINARY AND

MULTICLASS CLASSIFICATION TASKS.

Metric Binary Classification Multiclass Classification

Base Base* Base Base*

Accuracy 0.98 0.73 0.94 0.74
Recall 0.98 0.65 0.88 0.77
Precision 0.98 0.49 0.93 0.64

B. Experiment 2 - with unknown classes, without OOD De-

tection

Next, we introduce previously unseen classes into the clas-

sification tasks, simulating real world deployment in which

the model encounters new classes and no OOD detection is

applied. This setting yields a pronounced drop relative to

Experiment 1 across all metrics, as reported in the Base∗

columns of Table III. The decline exposes the model’s vul-

nerability to novel inputs and underscores the need for robust

OOD detection to mitigate this risk.

C. Experiment 3 - with unknown classes, with OOD detection

Our third experiment evaluates OOD detection performance,

especially the trade-offs of using a threshold-based technique

on the accuracy and overall sample rejection rates. For this

task, we implemented three detection techniques that will be

evaluated: ODIN[15], GradBP[4], K+1[16].

In the following subsections, we demonstrate the model’s

performance across several rejection rates and justify choosing

one threshold over another.

1) Classification Task - Binary, OOD - ODIN: Tables IV

and VI show that as the rejection rate initially increases, nearly

all rejected samples are OOD, as both accuracy and TDR rise.

As the threshold tightens, we observe an exponential increase

in FDR with minimal accuracy gains. This is essential because

there might be a significant increase in the model’s accuracy

by allowing the model to reject slightly more ID samples.

Increasing the rejection rate from 10% to 30% produced

several effects: the TDR increased from 31% to 66%, while the

FDR only increased from 3% to 18%, and accuracy increased

from 79% to 87%. In contrast, going from a rejection rate

of 30% to 50% had exponentially diminishing returns. The

TDR increased from 66% to 75%, while FDR increased from

about 18% to 41%, leaving the accuracy unchanged at 87%.

At that point, accuracy rates began decreasing as the threshold

tightened.

Despite allowing a rejection rate of up to 50%, the best

accuracy figures came from rejecting only 31% of the overall

samples. The accuracy score increased from 72% to 87%, with

an FDR of 18% and a TDR of 67%, as seen in Table VI.

These results demonstrate that despite ODIN being originally

developed for images, it is generic enough to work on network

traffic. However, there are apparent weaknesses as well. ODIN

misses examples that are likely to be misclassified, and nearly

all OOD samples missed were classified as benign. This

weakness is particularly problematic because the purpose of

the model is to detect malicious traffic.

Note that the rejection rate does not influence the K+1

technique; thus, it was not included in this analysis and does

not appear in Table IV.

2) Classification Task - Binary, OOD - GradBP: Similarly

to ODIN, as shown in Tables IV and VI, the FDRs are low

as the threshold decreases, proving that nearly all samples

rejected are OOD. Unlike ODIN, the GradBP results are

much better at the maximum threshold rate of 50% (98%

TDR). Nearly all OOD samples have been rejected, increasing

the model’s accuracy to 99% - higher than the base model

without OOD data. The FDR is 32%, which means most ID

samples are not rejected. The higher accuracy signals, again,

that this method also rejects nearly all misclassified labels.

Out of the missed OOD samples, only 29/31 were classified

as benign by the model, compared to 659/661 in ODIN. We

also compared these values at a 30% rejection rate; 193/362

OOD samples were detected as benign, a significantly better

result than ODIN. As the threshold tightens, GradBP shows

an exponential increase in practical terms. This means we

can significantly increase the likelihood of all passed samples

being ID if data loss is not a significant concern.
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TABLE IV
EXPERIMENT 3: THE INFLUENCE OF REJECTION RATE ON THE PERFORMANCE OF ODIN AND GRADBP METHODS FOR THE BINARY CLASSIFICATION

TASK.

Metric 10% 30% 50% 70% 90%

ODIN GradBP ODIN GradBP ODIN GradBP ODIN GradBP ODIN GradBP

Accuracy 0.79 0.79 0.87 0.93 0.87 0.99 0.83 1.00 – 1.00

Recall 0.66 0.66 0.66 0.66 0.67 0.67 0.67 0.67 – 1.00
Precision 0.54 0.53 0.59 0.62 0.60 0.66 0.59 0.67 – 1.00
FDR 0.03 0.03 0.18 0.12 0.41 0.33 0.65 0.60 – 0.87

TDR 0.31 0.30 0.66 0.82 0.75 0.98 0.80 1.00 – 1.00

TABLE V
EXPERIMENT 3: INFLUENCE OF REJECTION RATE ON MODEL PERFORMANCE FOR MULTICLASS CLASSIFICATION USING ODIN AND GRADBP.

Metric 10% 30% 50% 70% 90%

ODIN GradBP ODIN GradBP ODIN GradBP ODIN GradBP ODIN GradBP

Accuracy 0.79 0.78 0.90 0.87 0.96 0.93 0.98 0.95 – 0.98
Recall 0.82 0.77 0.85 0.76 0.86 0.85 0.83 0.82 – 0.80

Precision 0.70 0.66 0.75 0.64 0.79 0.74 0.75 0.73 – 0.69
FDR 0.07 0.07 0.20 0.22 0.39 0.41 0.63 0.64 – 0.88
TDR 0.21 0.20 0.70 0.59 0.92 0.84 0.97 0.93 – 0.99

TABLE VI
EXPERIMENT 3: PERFORMANCE SUMMARY FOR BINARY CLASSIFICATION

USING ODIN, GRADBP, AND K+1 METHODS.

Metric ODIN GradBP K+1

Accuracy 0.88 0.99 0.94
Recall 0.67 0.67 0.66
Precision 0.59 0.66 0.63
FDR 0.19 0.32 0.02

TDR 0.68 0.98 0.86
Rejection Rate 0.31 0.49 0.23

3) Classification Task - Binary, OOD - K+1: As seen

in Table VI, the results from adding a rejection class were

inconclusive. The accuracy achieved was 93.8%, which is

lower than GradBP and ODIN. In the K+1 technique, there

is no threshold to work with when adding a rejection class, so

the rejection rate is fixed at 23%.

4) Classification Task - Multiclass, OOD - ODIN: As can

be seen from Tables V and VII, there is full utilization of

the rejection rate at about 50%, achieving an accuracy, TDR,

and FDR of 96%, 92%, and 39%, higher than the base model

when tested without OOD data. This ability means that ODIN

rejects OOD samples and misclassifies known applications.

For comparison, at a 30% rejection rate, the model had good

accuracy, TDR, and FDR of 90%, 70%, and 20%. Table V

(30% rejection rate, ODIN). Using the threshold to increase

its effectiveness allows for a greater range of risk management;

if losing most data is not a significant concern, we can increase

the confidence that the samples that do pass are both ID and

correctly classified.

5) Classification Task - Multiclass, OOD - GradBP: The

results seen in Table VII for GradBP were interesting; at a 50%

rejection rate, we observed an accuracy rate of 93%, lower

than ODIN. TDR was 84%, also lower than ODIN, whereas

the FDR was 41% compared to 39% in ODIN. The closest

result was in recall, which has 85% compared to ODIN with

86%. The increase in rejection rate did not contribute much

beyond 30%.

6) Classification Task - Multiclass, OOD - K+1: As shown

in Table VII, the accuracy rate was 84%, with a recall of

78% and a precision of 66%. The rejection rate accounted for

only 12% of the total samples, and the TDR was just 54%.

However, the FDR remained remarkably low at only 1.5%,

similar to the binary model.

TABLE VII
EXPERIMENT 3: PERFORMANCE SUMMARY FOR MULTICLASS

CLASSIFICATION USING ODIN, GRADBP, AND K+1 METHODS.

Metric ODIN GradBP K+1

Accuracy 0.96 0.93 0.84
Recall 0.86 0.85 0.78
Precision 0.79 0.75 0.66
FDR 0.39 0.40 0.02

TDR 0.92 0.84 0.54
Rejection Rate 0.50 0.49 0.12

VI. DISCUSSION AND CONCLUSIONS

Our empirical study of ODIN, GradBP, and K+1 across bi-

nary and multiclass traffic classification tasks paints a nuanced

picture; there is no universally superior OOD method. Each

technique excels only under specific operational conditions, a

finding with immediate consequences for how OOD detection

is benchmarked and deployed. In the multiclass setting, ODIN

achieved the highest overall accuracy, reaching 96% in our

experiments and preserving a favorable balance between true

and false detection rates once the rejection rate exceeded

roughly 30%. ODIN’s temperature-scaled perturbation inter-

acts advantageously with the richer softmax that accompanies

ITAY MEIRI ET AL.: OUT-OF-DISTRIBUTION IS NOT MAGIC 349



multiclass models, yielding robustness as the class cardinality

increases. By contrast, in the binary task, GradBP emerged

as the preferred method whenever practitioners could tolerate

moderate to high rejection rates. Above the 30% rejection

threshold, GradBP drove accuracy toward 99% and pushed

the TDR past 98%, maintaining lower FDR rates than ODIN.

Although often dismissed as a baseline, K+1 demonstrated

excellent precision at very low FDR. However, its practical

value is undercut by the need for explicit OOD samples,

a fixed rejection threshold, the computation costs of model

retraining, and the possible effects on model performance.

Rejection rates surfaced as the governing hyperparameter

in the third experiment. With RR capped at 10%, ODIN

and GradBP were statistically indistinguishable in the binary

task, offering practitioners no basis for preferring one over

the other. Once rejection rates were relaxed into the 30%-

50% regime, the behavior of both methods diverged sharply:

GradBP continued to accrue accuracy and detection gains,

whereas ODIN effectively plateaued. In the multiclass task,

the pattern reversed - a relaxed rejection rate benefited ODIN

and put it significantly ahead of GradBP across all metrics,

while GradBP’s improvements saturated. When rejection rates

were not relaxed, the performances of GradBP and ODIN

were virtually identical. The bidirectional sensitivities con-

firm that rejection rates reshape each detector’s risk-utility

frontier and must be considered when benchmarking OOD

detection methods. The operational consequences could be

applied immediately; in domains where practitioners could

tolerate elevated rejection rates at the price of suppressing

false acceptances, candidate detection methods should be

tested under different rejection rate circumstances to determine

the ideal fit. Our findings show that OOD detection is far

from a "plug-and-play" commodity. Its efficacy is contingent

upon task granularity, traffic type, and tolerance for rejected

samples.

Future research endeavors should explore the impact of

rejection rates across a broader array of OOD detection

methods and classification domains. Specifically, how strongly

rejection rates improve OOD detection and performance across

OOD detection performance and model accuracy. Future in-

vestigations should explore the connection between different

models, domains, and rejection rates, potentially uncovering

novel approaches for improved performance.
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