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Abstract—Recent advancements in Internet protocols, includ-
ing DNS over HTTPS (DoH) and Encrypted Service Name Indica-
tors (ESNI), are making traditional Deep Packet Inspection (DPI)
engines obsolete. Consequently, there is a growing need for next-
generation traffic classification using artificial intelligence (AI).
While DPI automatically categorizes unknown traffic as ’other,
Al-based models cannot automatically handle unknown or Out-
of-Distribution (OOD) traffic. AI models must effectively detect
and classify OOD traffic to ensure robustness, reliability, and
accuracy in real-world applications; however, current research
often fails to address the challenges of OOD detection.

In this paper, we evaluate various state-of-the-art OOD detec-
tion techniques for internet traffic classification and explore the
drawbacks and advantages of using different threshold levels for
the model’s tolerance for OOD. Our findings reveal that varying
rejection rates have distinct effects on OOD techniques, leading
to a change in the optimal strategy for achieving dependable and
precise detection across diverse OOD scenarios. We demonstrate
that adjusting rejection rates from 10% to 30% can significantly
improve the True Detection Rate (TDR) by up to 50%, while
the False Detection Rate (FDR) may increase by less than 10%.
Moreover, we emphasize that rejection-rate-based evaluation
is pivotal for next-generation flow classification, promising a
substantial reduction in FDR through rigorous methodological
assessment.

Index Terms—Out of Distribution, Traffic Classification, Mal-
ware Detection

I. INTRODUCTION

RAFFIC Classification (TC) is a critical process that
Tautomatically categorizes Internet network traffic into
distinct classes, such as traffic attribution, application type,
or benign/malicious traffic. Regardless of the task, traffic
classification plays a crucial role in cybersecurity, Quality
of Experience (QoE), and Quality of Service (QoS), as it
enables the implementation of predetermined policies to treat
traffic classes differently, optimizing network performance and
reliability. Traditional traffic classification techniques have
relied on classifying applications or services based on fixed
port numbers [1]. While these techniques offer advantages
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such as user privacy preservation, speed, and wide device
coverage, they are limited by their reliance on fixed ports and
susceptibility to cheating via packet editing. These limitations
have prompted the development of Deep Packet Inspection
(DPI) classification techniques [2], which involve inspecting
the actual payload of packets and are less vulnerable to cheat-
ing. However, DPI techniques are resource-intensive, slow, and
lack the same privacy guarantees as port-based techniques.

The widespread adoption of encryption protocols like TLS
and DoH has further complicated traffic classification, ren-
dering classical DPI techniques obsolete [3]. Consequently,
researchers have turned to Machine Learning (ML) and later
Deep Learning (DL) techniques for traffic classification. While
ML-based approaches initially required manual feature extrac-
tion by experts, DL techniques have emerged as promising
alternatives for traffic classification [4]. Despite the success
of ML and DL [5], one significant weakness persists: their
inability to classify instances outside of the closed set of
classes in the training data. Network traffic is inherently
dynamic, with new applications continually being introduced.
This dynamic nature makes it challenging for models to accu-
rately classify unseen classes without retraining. Additionally,
acquiring samples for new classes is time-consuming and
often results in limited datasets, leading models to favor older
and more represented classes during training [6]. To address
these challenges and ensure accurate and robust classification
in dynamic settings, models must be able to "reject" the
classification of a sample that does not belong to any of the
learned classes. This capability, known as Out-of-Distribution
(OOD) detection [7], [8], is crucial for effectively handling
samples outside the training set. Previous works evaluate OOD
detection techniques against a well-fit, state-of-the-art model
without considering the implications of using less accurate
models, which are common in real-world settings [9].

In this paper, we assess the impact of OOD methods on
classifier performance in both binary and multiclass traffic
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classification tasks. Our contribution extends existing research
by highlighting the impact of employing OOD techniques on
varying accuracy-level classifiers. Furthermore, we elucidate
the trade-offs associated with employing threshold-based OOD
techniques by introducing a new metric, Rejection Rate (RR).

These trade-offs are frequently overlooked in discussions
surrounding OOD techniques, as they tend not to cater to
specific model requirements. By shedding light on these
trade-offs, we provide valuable insights for practitioners and
researchers, enabling them to make more informed decisions
when selecting OOD detection techniques for their models.
For example, models connected through a pipeline might not
suffer from high rejection rates or data loss if they ensure that
the remaining data is of high quality and reliability. This leads
to a preference for performance and a high rejection rate of
OOD detection techniques.

Lastly, we examine existing OOD techniques on various
tasks and datasets, showing that the performance of "state-
of-the-art" OOD detection methods is contingent on external
factors such as acceptable rejection rates and model perfor-
mance.

II. RELATED WORK

OOD detection has been studied under many different
names, such as zero-day detection, open-set recognition, and
rejection option classifiers [4], [7], [8], [10], [11], [12], [13],
[14]. Shared by all is the classification model’s ability to reject
an input if it detects that it is from a class outside its training
set. Thulasidasan et al. [10] add a rejection class, K+1, trained
on a mix of OOD samples. This method is limited in practice
because it demands extra OOD data—either a Generative
Adversarial Network or by merging some classes—plus an
architectural change and full retraining, with no guarantee that
real-world OOD data will match what was seen in training.
Devries and Taylor [11] instead train the model to output cal-
ibrated confidence scores, using misclassified In-Distribution
(ID) samples as stand-ins for OOD. These are built in parallel
to the original classification model, which does not affect the
model’s accuracy. Nonetheless, this requires knowledge of the
internal workings of the model and retraining.

Another approach uses Siamese Neural Networks (SNN)
as an OOD detection method for network traffic [12]. The
authors use the ability of SNNs to find similarities in input
to detect OOD, but these require clustering, data balancing,
and training. He et al. [13] construct skew data and then
train multiple one-class Random Forest classifiers based on the
skew data. This is an expensive operation and gets increasingly
more complex as the number of classes increases.

Out-of-distribution detector for neural networks (ODIN)
[15] augments any pre-trained model without architectural
changes by pairing temperature scaling with slight input
perturbations. It computes a classifier’s confidence, perturbs
the input proportionally, and recomputes confidence. Because
ID samples are more affected, they generally yield higher
post-perturbation confidences than OOD samples, enabling
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Fig. 1. Our Evaluation System

threshold-based rejection. Our work is the first to test ODIN
on encrypted network traffic for OOD detection.

GradBP [4] treats the magnitude of the first back-
propagation gradient, calculated as if training continued, as
an OOD proxy. Novel inputs typically induce larger gradient
magnitudes, allowing a single threshold to suffice for OOD
detection. GradBP is space and time-efficient, works on pre-
trained models, and has already been validated on encrypted
traffic.

To conclude, several solutions to traffic classification exist,
each characterized by its degrees of success and practicality.
However, none of these works explores the influence of
thresholds and their effect on OOD classification. As we
will demonstrate, the influence of the threshold is critical for
adequately evaluating OOD techniques.

Our main goal is to evaluate OOD techniques and compare
their results for traffic classification, then experiment with the
effects of the threshold. We chose a typical 1D-CNN as our
base architecture, and three OOD techniques - ODIN [15],
GradBP [4], and K+1 [16] as a baseline. ODIN and GradBP
are model-agnostic and do not require model modification,
retraining, or generating any additional data. Both ODIN and
GradBP operate on the model output under the same space and
time complexity class and require a threshold. All methods
will be concatenated to our base architecture. Our evaluation
system can be seen in Fig. 1.

III. SYSTEM ARCHITECTURE AND EVALUATION
FRAMEWORK

A. Basic System Components
Input. Each sample is a 100-step sequence of packet direc-
tion (0 = client — server, 1 = server — client) and min—-max

scaled size ([0, 1]), a standard low-cost traffic representation

(4], [17] (Fig. 1,(1).
Output. The classifier predicts a label k& € [1, K]; OOD
detections are mapped to k = K + 1.

B. Out-of-Distribution Detectors

ODIN [15]. For a trained network with logits f(x), we (i)
rescale them by a temperature 7', (ii) add a small perturbation
e-sign(—Vz log S(x;T)), and (iii) reject any sample whose
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TABLE 1
TRAFFIC DATASETS USED IN THIS STUDY. B = BENIGN, M = MALWARE,
TLS = DATASET IS PREDOMINATELY TLS-ENCRYPTED.

Dataset Role  Classes Samples TLS Notes

MTAB [21] 1D 2 (B/M) 29,000 Mix MTA + benign
TEMU [20] ID 8 (B) 20,000 Yes  Browser / misc.
USTCB [21], [22] OOD 5 (M) 58,000 Mix Diverse malware
VNAT [23] OO0D 6 (B) 5,500 Mix VPN successor

largest softmax probability S(z;T) falls below a threshold 4.
The triplet (T,€,0) is chosen on validation data; rejected
inputs are mapped to label K +1.

GradBP [4]. Keeping weights frozen, we back-propagate
each test point once and measure the ¢2-norm of the resulting
gradient at the penultimate model layer, ||0%~!||5. Points
with |[627 ]2 > ecr are considered OOD and likewise
assigned K +1.

K +1 [16]. The classifier head is expanded to K+1 outputs
and fine-tuned on a small, heterogeneous set of OOD traces
labelled K +1. At inference, any prediction of the extra node
signals an outlier.

All OOD models are under label (3) in Fig. 1.

C. Datasets

To obtain a balanced and realistic evaluation spectrum,
we use MTAB and TEMU as our two ID references and
USTCB and VNAT as the OOD challengers. Together, these
four datasets cover benign and malicious traffic, multiple
application protocols, and both encrypted and plain-text flows,
providing a rigorous test bed for evaluating ID performance
and OOD generalisation. Specifically, MTAB (29 k flows,
2 classes) merges malicious mail-transfer (MTA) traffic with
benign sessions from ISCX2016 [18], StratosphereIPS [19],
and TEMU [20], yielding a mixed TLS/plain corpus labelled
benign or malware. TEMU (20 k flows, 8 benign classes)
contains browser and miscellaneous application traffic, most
of it TLS-encrypted. USTCB (58 k flows, 5 malware classes)
augments the USTC malware set—covering the Cridex, Neris,
Mi-uref, and Htbot families—with the same benign sources
as MTAB, giving a malware-heavy OOD benchmark. Finally,
VNAT (5.5 k flows, 6 benign classes) offers an updated
VPN/no-VPN corpus spanning streaming, chat, file-transfer,
and other activities with a mix of encrypted and clear-text
flows. Table I summarises the core statistics of each dataset,
while the exact pairing of datasets in each experiment is shown
later in Table II.

D. Evaluation Metrics

We report common performance indicators used for OOD
evaluation [12], [13]:

Accuracy — proportion of correct decisions among the
accepted samples.

True Detection Rate (TDR) — sensitivity to OOD inputs
(OOD true positives divided by all OOD cases).

False Detection Rate (FDR) — type-I error on ID data (ID
false positives divided by all ID cases).

Rejection Rate (RR) — The percent of samples rejected.
Recall and Precision — class-label sensitivity and positive
predictive value, both computed on the accepted subset.

IV. EXPERIMENTAL DESIGN

We structured our evaluation around two distinct classifica-
tion tasks: Binary Classification (i.e., distinguishing between
benign and malicious traffic) and Multiclass Classification
(i.e., identifying various well-known applications). Each clas-
sification task was evaluated using three separate experiments:

Experiment 1: This experiment assessed the base model’s
performance without OOD detection and unknown classes. It
simulates a standard scenario where a model is developed and
tested against a predefined dataset of known classes.

Experiment 2: In this experiment, we evaluated the base
model’s performance without OOD detection but with the
introduction of unknown classes. This mimics deploying the
Experiment 1 model in a real-world setting, where data may
include previously unseen classes.

Experiment 3: The final experiment aimed to address the
challenge of unknown classes by evaluating the base model
with OOD detection capabilities.

The structure of our experiments can be seen in Table II.
All OOD detection methods were tested on the same test set
for robust evaluation. For comprehensive insights, including
confusion matrices, tables, and threshold graphs, we have
provided detailed results in our GitHub repository [24].

Lastly, when considering the preferability of one method or
another, we limited the rejection rate to 50%. The limitation
has two reasons: First, we could naively reject nearly all
inputs without limit until few ID samples remain and achieve
perfect accuracy. We do not consider such a result helpful in
evaluating OOD detection performance. Second, there is no
standard rejection rate, and the authors of ODIN and GradBP
do not explain the effects of different rejection rates. It is
standard practice to use FDR=95%TDR, such as in [13], [12],
[4], [25], [26], [15], but this result is not useful for all use
cases. ODIN [15] suggests hyperparameter tuning that will
result in the correct identification of 95% ID samples, but does
not explain the effect on rejection rates. GradBP [4] does not
give any guidelines at all. As we will demonstrate, the optimal
strategy is task-dependent and model-dependent.

V. EXPERIMENTAL RESULTS

A. Experiment 1 - without unknown classes, without OOD
detection

Our first experiment assesses our models’ performance in
both binary and multiclass classification tasks, focusing on
scenarios where unknown classes and OOD data are not con-
sidered. The base models demonstrate remarkable performance
despite utilizing only packet size and direction as time-series
features. As shown in the Base column of Table III, the accu-
racy for both Binary and Multiclass tasks reaches impressive
levels of 98% and 94%, respectively. This underscores the
effectiveness of our models in classifying traffic even without
the need for OOD detection mechanisms.
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TABLE II
COMPARISON OF ARCHITECTURES AND EVALUATION METRICS ACROSS BINARY AND MULTICLASS CLASSIFICATION TASKS. BASE IS WITHOUT
INCLUDING UNKNOWN CLASSES, AND BASE* IS WITH INCLUSION OF UNKNOWN CLASSES.

Exp. Architecture Task Train/Test Unknown Evaluation Metrics

1 Base Binary MTAB - Accuracy, Recall, Precision
Multiclass TEMU - -

2 Base* Binary MTAB USTCB Accuracy, Recall, Precision
Multiclass TEMU VNAT -

3 Base + ODIN Binary MTAB USTCB Accuracy, Recall, Precision, True/False Detection Rate, Rejection Rate
Multiclass TEMU VNAT -

3 Base + GradBP  Binary MTAB USTCB Accuracy, Recall, Precision, True/False Detection Rate, Rejection Rate
Multiclass TEMU VNAT -

3 Base’ + (K+1) Binary MTAB+USTCB USTCB Accuracy, Recall, Precision, True/False Detection Rate, Rejection Rate
Multiclass TEMU+VNAT VNAT -

TABLE III FDR only increased from 3% to 18%, and accuracy increased

PERFORMANCE COMPARISON OF MODELS WITH (BASE*) AND WITHOUT
(BASE) THE INCLUSION OF UNKNOWN CLASSES IN BINARY AND
MULTICLASS CLASSIFICATION TASKS.

Metric Binary Classification | Multiclass Classification
Base Base* Base Base*
Accuracy  0.98 0.73 0.94 0.74
Recall 0.98 0.65 0.88 0.77
Precision 0.98 0.49 0.93 0.64

B. Experiment 2 - with unknown classes, without OOD De-
tection

Next, we introduce previously unseen classes into the clas-
sification tasks, simulating real world deployment in which
the model encounters new classes and no OOD detection is
applied. This setting yields a pronounced drop relative to
Experiment 1 across all metrics, as reported in the Base*
columns of Table IIl. The decline exposes the model’s vul-
nerability to novel inputs and underscores the need for robust
OOD detection to mitigate this risk.

C. Experiment 3 - with unknown classes, with OOD detection

Our third experiment evaluates OOD detection performance,
especially the trade-offs of using a threshold-based technique
on the accuracy and overall sample rejection rates. For this
task, we implemented three detection techniques that will be
evaluated: ODIN][15], GradBP[4], K+1[16].

In the following subsections, we demonstrate the model’s
performance across several rejection rates and justify choosing
one threshold over another.

1) Classification Task - Binary, OOD - ODIN: Tables IV
and VI show that as the rejection rate initially increases, nearly
all rejected samples are OOD, as both accuracy and TDR rise.
As the threshold tightens, we observe an exponential increase
in FDR with minimal accuracy gains. This is essential because
there might be a significant increase in the model’s accuracy
by allowing the model to reject slightly more ID samples.
Increasing the rejection rate from 10% to 30% produced
several effects: the TDR increased from 31% to 66%, while the

from 79% to 87%. In contrast, going from a rejection rate
of 30% to 50% had exponentially diminishing returns. The
TDR increased from 66% to 75%, while FDR increased from
about 18% to 41%, leaving the accuracy unchanged at 87%.
At that point, accuracy rates began decreasing as the threshold
tightened.

Despite allowing a rejection rate of up to 50%, the best
accuracy figures came from rejecting only 31% of the overall
samples. The accuracy score increased from 72% to 87%, with
an FDR of 18% and a TDR of 67%, as seen in Table VI.
These results demonstrate that despite ODIN being originally
developed for images, it is generic enough to work on network
traffic. However, there are apparent weaknesses as well. ODIN
misses examples that are likely to be misclassified, and nearly
all OOD samples missed were classified as benign. This
weakness is particularly problematic because the purpose of
the model is to detect malicious traffic.

Note that the rejection rate does not influence the K+1
technique; thus, it was not included in this analysis and does
not appear in Table IV.

2) Classification Task - Binary, OOD - GradBP: Similarly
to ODIN, as shown in Tables IV and VI, the FDRs are low
as the threshold decreases, proving that nearly all samples
rejected are OOD. Unlike ODIN, the GradBP results are
much better at the maximum threshold rate of 50% (98%
TDR). Nearly all OOD samples have been rejected, increasing
the model’s accuracy to 99% - higher than the base model
without OOD data. The FDR is 32%, which means most ID
samples are not rejected. The higher accuracy signals, again,
that this method also rejects nearly all misclassified labels.
Out of the missed OOD samples, only 29/31 were classified
as benign by the model, compared to 659/661 in ODIN. We
also compared these values at a 30% rejection rate; 193/362
OOD samples were detected as benign, a significantly better
result than ODIN. As the threshold tightens, GradBP shows
an exponential increase in practical terms. This means we
can significantly increase the likelihood of all passed samples
being ID if data loss is not a significant concern.
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TABLE IV
EXPERIMENT 3: THE INFLUENCE OF REJECTION RATE ON THE PERFORMANCE OF ODIN AND GRADBP METHODS FOR THE BINARY CLASSIFICATION
TASK.

Metric 10% 30% 50% 70% 90%

ODIN GradBP ODIN GradBP ODIN GradBP ODIN GradBP ODIN  GradBP
Accuracy  0.79 0.79 0.87 0.93 0.87 0.99 0.83 1.00 - 1.00
Recall 0.66 0.66 0.66 0.66 0.67 0.67 0.67 0.67 - 1.00
Precision  0.54 0.53 0.59 0.62 0.60 0.66 0.59 0.67 - 1.00
FDR 0.03 0.03 0.18 0.12 0.41 0.33 0.65 0.60 - 0.87
TDR 031 030 0.66 0.82 0.75 0.98 0.80 1.00 - 1.00
TABLE V

EXPERIMENT 3: INFLUENCE OF REJECTION RATE ON MODEL PERFORMANCE FOR MULTICLASS CLASSIFICATION USING ODIN AND GRADBP.

Metric 10% 30% 50% 70% 90 %
ODIN GradBP ODIN GradBP ODIN GradBP ODIN GradBP ODIN GradBP
Accuracy 0.79 0.78 0.90 0.87 0.96 0.93 0.98 0.95 - 0.98
Recall 0.82 0.77 0.85 0.76 0.86 0.85 0.83 0.82 - 0.80
Precision 0.70 0.66 0.75 0.64 0.79 0.74 0.75 0.73 - 0.69
FDR 0.07 0.07 0.20 0.22 0.39 0.41 0.63 0.64 - 0.88
TDR 0.21 0.20 0.70 0.59 0.92 0.84 0.97 0.93 - 0.99
TABLE VI the FDR was 41% compared to 39% in ODIN. The closest

EXPERIMENT 3: PERFORMANCE SUMMARY FOR BINARY CLASSIFICATION
USING ODIN, GRADBP, AND K+1 METHODS.

Metric ODIN GradBP K+l
Accuracy 0.88 0.99 0.94
Recall 0.67 0.67 0.66
Precision 0.59 0.66 0.63
FDR 0.19 0.32  0.02
TDR 0.68 098 0.86
Rejection Rate 0.31 049 0.23

3) Classification Task - Binary, OOD - K+1: As seen
in Table VI, the results from adding a rejection class were
inconclusive. The accuracy achieved was 93.8%, which is
lower than GradBP and ODIN. In the K+1 technique, there
is no threshold to work with when adding a rejection class, so
the rejection rate is fixed at 23%.

4) Classtification Task - Multiclass, OOD - ODIN: As can
be seen from Tables V and VII, there is full utilization of
the rejection rate at about 50%, achieving an accuracy, TDR,
and FDR of 96%, 92%, and 39%, higher than the base model
when tested without OOD data. This ability means that ODIN
rejects OOD samples and misclassifies known applications.
For comparison, at a 30% rejection rate, the model had good
accuracy, TDR, and FDR of 90%, 70%, and 20%. Table V
(30% rejection rate, ODIN). Using the threshold to increase
its effectiveness allows for a greater range of risk management;
if losing most data is not a significant concern, we can increase
the confidence that the samples that do pass are both ID and
correctly classified.

5) Classification Task - Multiclass, OOD - GradBP: The
results seen in Table VII for GradBP were interesting; at a 50%
rejection rate, we observed an accuracy rate of 93%, lower
than ODIN. TDR was 84%, also lower than ODIN, whereas

result was in recall, which has 85% compared to ODIN with
86%. The increase in rejection rate did not contribute much
beyond 30%.

6) Classification Task - Multiclass, OOD - K+1: As shown
in Table VII, the accuracy rate was 84%, with a recall of
78% and a precision of 66%. The rejection rate accounted for
only 12% of the total samples, and the TDR was just 54%.
However, the FDR remained remarkably low at only 1.5%,
similar to the binary model.

TABLE VII
EXPERIMENT 3: PERFORMANCE SUMMARY FOR MULTICLASS
CLASSIFICATION USING ODIN, GRADBP, AND K+1 METHODS.

Metric ODIN GradBP K+1
Accuracy 0.96 0.93 0.84
Recall 0.86 0.85 0.78
Precision 0.79 0.75 0.66
FDR 0.39 0.40 0.02
TDR 0.92 0.84 0.54
Rejection Rate 0.50 0.49 0.12

VI. DISCUSSION AND CONCLUSIONS

Our empirical study of ODIN, GradBP, and K+1 across bi-
nary and multiclass traffic classification tasks paints a nuanced
picture; there is no universally superior OOD method. Each
technique excels only under specific operational conditions, a
finding with immediate consequences for how OOD detection
is benchmarked and deployed. In the multiclass setting, ODIN
achieved the highest overall accuracy, reaching 96% in our
experiments and preserving a favorable balance between true
and false detection rates once the rejection rate exceeded
roughly 30%. ODIN’s temperature-scaled perturbation inter-
acts advantageously with the richer softmax that accompanies
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multiclass models, yielding robustness as the class cardinality
increases. By contrast, in the binary task, GradBP emerged
as the preferred method whenever practitioners could tolerate
moderate to high rejection rates. Above the 30% rejection
threshold, GradBP drove accuracy toward 99% and pushed
the TDR past 98%, maintaining lower FDR rates than ODIN.

Although often dismissed as a baseline, K+1 demonstrated
excellent precision at very low FDR. However, its practical
value is undercut by the need for explicit OOD samples,
a fixed rejection threshold, the computation costs of model
retraining, and the possible effects on model performance.
Rejection rates surfaced as the governing hyperparameter
in the third experiment. With RR capped at 10%, ODIN
and GradBP were statistically indistinguishable in the binary
task, offering practitioners no basis for preferring one over
the other. Once rejection rates were relaxed into the 30%-
50% regime, the behavior of both methods diverged sharply:
GradBP continued to accrue accuracy and detection gains,
whereas ODIN effectively plateaued. In the multiclass task,
the pattern reversed - a relaxed rejection rate benefited ODIN
and put it significantly ahead of GradBP across all metrics,
while GradBP’s improvements saturated. When rejection rates
were not relaxed, the performances of GradBP and ODIN
were virtually identical. The bidirectional sensitivities con-
firm that rejection rates reshape each detector’s risk-utility
frontier and must be considered when benchmarking OOD
detection methods. The operational consequences could be
applied immediately; in domains where practitioners could
tolerate elevated rejection rates at the price of suppressing
false acceptances, candidate detection methods should be
tested under different rejection rate circumstances to determine
the ideal fit. Our findings show that OOD detection is far
from a "plug-and-play" commodity. Its efficacy is contingent
upon task granularity, traffic type, and tolerance for rejected
samples.

Future research endeavors should explore the impact of
rejection rates across a broader array of OOD detection
methods and classification domains. Specifically, how strongly
rejection rates improve OOD detection and performance across
OOD detection performance and model accuracy. Future in-
vestigations should explore the connection between different
models, domains, and rejection rates, potentially uncovering
novel approaches for improved performance.
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