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Abstract—We summarize the results of the FedCSIS 2025
machine learning competition organized on the knowledgepit.ai
online platform. We recall the competition’s goals corresponding
to estimations of the chess puzzle difficulty levels, we refer
to the winning solutions, and we also compare the scope of
this year’s competition (and particularly the data available to
competition participants) with its previous edition associated
with the IEEE BigData 2024 conference. Finally, we discuss
the new functionality of the knowledgepit.ai platform, which
enables competition participants to submit additional uncertainty
masks reflecting their assessment of test cases that are mostly
problematic for their machine learning models.

Index Terms—Human-Computer Interaction, Chess, Machine
Learning Competitions, Uncertainty in Machine Learning

I. INTRODUCTION

T
HE FedCSIS 2025 machine learning competition con-

tinues the successful blueprint established in the IEEE

BigData 2024 edition [1], held at the knowledgepit.ai platform

as well, addressing the challenge of predicting chess puzzle

difficulty ratings from board configurations and solution se-

quences. While the core task remains unchanged – estimat-

ing Glicko-2 ratings that reflect human-perceived difficulty

rather than engine-optimal evaluations – this second edition

introduces significant enhancements in both data quality and

modeling capabilities. The competition attracted 42 teams

who collectively submitted 1185 solutions, with eight of the

top ten teams contributing technical papers describing their

approaches.

The primary innovations in this edition address key limita-

tions of the previous competition. First, we integrated 22 pre-

computed success probability features generated by the Maia-2

model [2], providing participants with standardized human-

aligned difficulty indicators across multiple rating bands and

time controls. Second, we substantially improved test set

quality through expanded data collection and a novel fairness

algorithm that ensured balanced solving attempts across all

puzzles, eliminating the rating convergence issues that plagued

the first edition, where many puzzles remained clustered

around the 1500 initialization value. These improvements

resulted in more reliable ground truth labels and enabled more

sophisticated modeling approaches, as evidenced by the win-

ning solutions’ creative use of ensemble methods, transformer

architectures, and domain-specific feature engineering.

Beyond the core regression task, this competition pioneers

a new dimension in machine learning competitions through

the introduction of uncertainty masks – an extra challenge

where participants identify the 10% of test cases their models

find most problematic. This extension represents a step toward

more interpretable and reliable machine learning systems,

addressing the growing need for models that can communicate

their (un)certainty levels alongside predictions.

The next sections describe the related work (Section II), the

dataset (Section III), and the competition setup (Section IV).

Further, we analyze the submitted solutions (Section V),

discuss prediction errors and masking strategies of the top

teams (Section VI), and conclude with implications for future

competitions and research directions (Section VII).

II. RELATED WORK

The challenges of the assessment of chess puzzle difficulty

were discussed in our paper related to the first edition of this

competition [1]. We also refer to [3]–[5] where the Top 3

solutions submitted to the first edition were reported.

The importance of machine learning competitions was also

discussed in our previous papers [6]–[10]. In particular, we

investigated possibilities of utilizing such competitions to build

a platform for automatic evaluation of skills of data scientists

[11]. As already mentioned, the new idea of extending the for-

mat of knowledgepit.ai competitions with uncertainty masks

corresponds to that aspect of our research as well.

This new aspect of our competitions corresponds to an

important topic in machine learning [12]. Although the most

problematic cases for machine learning models are not neces-

sarily the most “uncertain” ones, measures of uncertainty are

often used, e.g., in active learning [13] and model diagnostics

[14]. In our research, we estimate a given object’s uncertainty

using a neighborhood of cases having the same or similar

values over subsets of attributes that are significant to the given

model or decision problem [15]. The attribute selection mech-
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anism described in [15] was also applied to build a benchmark

machine learning model for this particular competition.

III. NEW CHESS PUZZLE DATASET

This competition builds upon the dataset foundation estab-

lished in the previous IEEE BigData 2024 edition [1], while

introducing a more robust test set and a significant enhance-

ment to support more sophisticated modeling approaches.

A. Core Dataset Structure

Similarly to the previous edition, the dataset consists of

chess puzzles with basic fields including PuzzleId, FEN (board

position), Moves (puzzle solution), and the target Rating to be

predicted. The training dataset retains the extra metadata fields

from the original competition: RatingDeviation, Popularity,

NbPlays, Themes, GameUrl, and OpeningTags.

B. Success Probability Features

The primary innovation in this edition is the addition of 22

success probability features generated using the Maia-2 model.

Unlike the original Maia models that required separate trained

models for each rating group [16], Maia-2 employs a unified

architecture that jointly models success probabilities across all

skill levels [2]. This model takes as input the chess position,

player rating, and game type (rapid or blitz), outputting pre-

dicted success probabilities for solving the puzzle. Specifically,

the Success_prob fields represent the estimated probability that

a player of a given rating level and game type would correctly

solve each puzzle. These 22 fields cover different rating ranges

and both rapid and blitz time controls, providing participants

with rich, model-generated features that capture human solving

patterns across the skill spectrum.

Inspired by the innovative approaches observed in the

top solutions from the previous competition [3]–[5], this

enhancement aimed to provide participants with features that

better capture the human element of puzzle-solving difficulty.

Rather than requiring each team to independently extract

chess engine evaluations for millions of puzzles, the Maia-

2-generated success probabilities offer a standardized set of

features that encode human-like assessment of puzzle difficulty

across different skill levels.

C. Improved Test Set Quality

A significant improvement over the previous competition

relates to the quality and distribution of puzzle attempt data.

The IEEE BigData 2024 competition suffered from insufficient

rating convergence in the test set, with many puzzles remaining

near their initialized rating of 1500 due to limited solving

attempts [1]. To address this limitation, the FedCSIS 2025

edition implemented two key enhancements:

• Expanded data collection: A larger pool of chess players

was recruited to solve puzzles, resulting in substantially

more solving attempts across the test set.

• Fairness algorithm: A novel algorithm was integrated into

our lichess fork that prioritized presenting puzzles with

fewer total attempts (regardless of correctness) to users.

Fig. 1: Distribution of puzzle ratings in test sets: First com-

petition (IEEE BigData 2024, blue) vs. Second competition

(FedCSIS 2025, red). The first edition shows a pronounced

spike at 1500 (the initialization value), while the second

edition exhibits a more natural distribution with better rating

convergence across the full spectrum.

This ensured a more balanced distribution of solving

attempts across all puzzles, leading to better rating con-

vergence and more reliable ground truth labels.

Figure 1 illustrates the dramatic improvement in rating

distribution quality. The first competition’s test set (blue)

exhibits a sharp peak around 1500—the default initialization

value—indicating that many puzzles received insufficient solv-

ing attempts to converge to their true difficulty. In contrast,

the FedCSIS 2025 test set (red) displays a smoother, more

naturally distributed profile spanning from approximately 800

to 3000, demonstrating successful rating convergence. This

improvement directly translates to more reliable ground truth

labels for model evaluation.

IV. COMPETITION TASK

The core regression task of the FedCSIS 2025 Challenge

remained fundamentally the same as in the first edition [1],

requiring participants to predict difficulty ratings for chess

puzzles based on their FEN board states and PGN solution

sequences. The primary difference was the dataset size, which

contained 2283 puzzles after removing those with fewer than

10 solving attempts during data annotation. As before, pre-

dictions were evaluated using Mean Squared Error (MSE)

between predicted ratings ŷi and ground-truth ratings yi,

computed as:

MSE =
1

n

n∑

i=1

(yi − ŷi)
2, (1)

where n denotes the number of test samples.

A novel extension to this edition introduced an uncertainty

estimation task, whereby participants were invited to submit

binary masks identifying the 10% of test puzzles for which

their predictions were most likely to be erroneous. The mask

M ∈ {0, 1}N required each participant to flag exactly 10% of

the test set as uncertain, with Mi = 1 indicating high uncer-

tainty for puzzle i and the constraint
∑

N

i=1
Mi = N×0.1. The
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TABLE I: Top 10 submissions in the FedCSIS 2025 knowledgepit.ai competition. The evaluation metric was the mean squared

error – the lower Final (and preliminary, Pre.) score, the better. The Subs column reflects the total number of submissions. The

Mask column reports the uncertainty ratio – again, the lower, the better (the best score bolded). Eight out of Top 10 teams

submitted conference papers describing their solutions. Nine teams participated in the additional uncertainty mask contest.

Rank Team Paper Final Pre. Subs Mask Approach

1 ousou [17] 52.3k 55.4k 89 1.64
Fine-tuned Maia-2 embeddings combined with other features
through LightGBM, ensembled via CatBoost with linear scaling.

2 bread emoji [18] 54.4k 58.2k 240 1.71
Two-stage approach with ensembled neural chessboard embedders,
pre-RNN board pooling, and logarithmic rescaling.

3 transformer_enjoyer [19] 55.9k 58.9k 117 1.43
Spatial transformer with masked-square reconstruction and
solution policy prediction, rescaling borrowed from [3].

4 ToDoFindATeamName – 57.5k 61.5k 136 – –

5 Cyan [20] 61.0k 67.1k 93 1.59
Multi-variant ensemble of Maia embeddings, solution sequences,
and engine success probabilities with nonlinear calibration.

6 neuro [21] 62.6k 66.5k 81 1.68
Four-stage pipeline with Elo-banded base models, gradient boosting,
structural calibration via failure distributions, and ensemble averaging.

7 xyz [22] 62.7k 66.6k 25 1.70
Three-stage pipeline with four Elo-banded MLP base models,
stacking ensemble, and structure-aware residual correction.

8 DML [23] 63.0k 66.7k 73 1.65
Three-stage pipeline combining GB models, multi-modal CNN with
EfficientNetB3-rendered board images, and XGB residue stacking.

9 Ru [24] 67.5k 70.4k 53 1.62
Three-stage pipeline with MobileNetV2 board images, LightGBM
residual refinement, and adjustments based on failure distribution.

10 Feiwyth – 68.1k 70.7k 17 1.58 –

rationale was that by replacing the predicted ratings at these

masked positions with their ground-truths, the evaluation could

assess a model’s ability to identify its own confidence.

The uncertainty masks were evaluated using the Uncertainty

Ratio metric, defined as:

UR =
N

P
, (2)

where N represents the New Score (MSE after replacing

masked predictions with ground truth) and P represents the

Perfect Score (the minimum achievable MSE if the 10%

highest-error samples were perfectly identified and masked).

An optimal uncertainty ratio approaches 1.0, indicating perfect

identification of the most erroneous predictions. For example,

a ratio of 1.2 would indicate that the submitted mask captured

errors that, when corrected, achieved 83.3% (1/1.2) of the theo-

retically optimal improvement, demonstrating reasonably good

uncertainty estimation while leaving room for improvement in

identifying the truly most difficult cases.

V. COMPETITION OVERVIEW

Table I presents the top 10 submissions in the FedCSIS

2025 knowledgepit.ai competition, where teams competed to

predict chess puzzle difficulty using mean squared error as

the evaluation metric. Nine of the top 10 teams submitted

conference papers describing their solutions and participated

in the additional uncertainty mask contest.

We refer to Table I and papers [17]–[24] for detailed

descriptions of particular competition solutions. In general,

the best-performing models leveraged pretrained neural chess

embeddings – particularly from the Maia family of models de-

signed to mimic human play at various skill levels – combined

with ensemble methods and gradient boosting techniques. The

winning team achieved an MSE of 52.3k by fine-tuning Maia-

2 embeddings and combining them with other features through

LightGBM, followed by CatBoost ensembling with linear

scaling. The second-place team (54.4k MSE) employed a two-

stage approach with ensembled neural chessboard embedders

and pre-RNN board pooling, while the third-place team (55.9k

MSE) utilized spatial transformers with masked-square re-

construction. A common pattern across successful approaches

was the use of multi-stage pipelines: initial feature extraction

via neural board embeddings (Maia-1, Maia-2, or Leela),

intermediate refinement through gradient boosting methods

(LightGBM, XGBoost, or CatBoost), and final calibration via

post-processing techniques addressing distributional shifts.

For uncertainty estimation, most teams developed mask

prediction strategies that identified the least reliable predic-

tions, achieving uncertainty ratios between 1.43 and 1.71. The

transformer_enjoyer team achieved the best uncertainty ratio

of 1.43 despite placing third overall, suggesting that model

confidence estimation and raw prediction accuracy represent

distinct challenges. Several approaches also incorporated the

competition-provided Maia-2 success probabilities – precom-

puted estimates of puzzle completion likelihood for players

at different skill levels – as auxiliary features, though their

integration strategies varied considerably across teams.

VI. ERROR ANALYSIS AND MASKING STRATEGIES

A. Analysis of Prediction Errors

We conducted several post-hoc analyses of the rating pre-

diction task. Figure 2 shows prediction errors by puzzle

difficulty. A U-shaped pattern is visible: models perform worse

on very easy (< 1000) and very hard (> 2400) puzzles,

while medium-difficulty puzzles are predicted more accurately.

This behavior is consistent with the MSE objective, which

emphasizes outliers at both ends of the scale.

We then analyzed performance as a function of rating uncer-

tainty (Figure 3). Prediction errors increase monotonically with

the Glicko rating deviation of puzzles, indicating that puzzles

with higher inherent rating uncertainty are systematically
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Fig. 2: Prediction errors by puzzle difficulty.

Fig. 3: Prediction errors by rating uncertainty.

Fig. 4: Prediction errors by the number of attempts during data

annotation phase.

harder to model. This suggests that rating deviation, rather than

the number of attempts, is a more reliable signal for deciding

how well a puzzle’s difficulty has been established.

Finally, we investigated whether the number of puzzle

attempts during tagging correlates with error (Figure 4). We

found no significant trend: puzzles with 10–15 attempts yield

error levels comparable to those with 30 or more attempts.

Taken together, these findings imply that once a puzzle’s

Glicko deviation has stabilized, additional attempts provide

little benefit. Thus, rating deviation should guide tagging

efforts more directly than attempt count.

Fig. 5: Jaccard similarity matrix showing overlap between

teams’ masking strategies.

Fig. 6: Puzzle characteristics grouped by masking frequency

across teams.

B. Masking Strategy Analysis

We next examined the masking strategies employed by

teams, focusing both on the convergence of approaches and

the characteristics of commonly excluded puzzles. Figure 5

shows the Jaccard similarity between teams’ masking choices.

Several teams converged on remarkably similar strategies, with

DML, neuro, Ru, and xyz achieving similarity scores of 0.87–

0.98. This suggests that these teams independently identified a

common set of problematic puzzles. By contrast, teams such as

bread emoji and transformer_enjoyer pursued more distinctive

approaches, showing consistently lower overlap with others.

Beyond team overlap, we analyzed which puzzles were most

frequently masked (Figure 6). A clear trend emerges: puzzles

targeted by many teams tend to be significantly more difficult

(≈ 2200) than those rarely masked (≈ 1600). This indicates
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that masking was not random but systematically biased toward

high-difficulty puzzles, which teams collectively judged as less

reliable or harder to model.

VII. CONCLUSIONS

The FedCSIS 2025 knowledgepit.ai competition highlighted

the effectiveness of combining neural chess embeddings with

ensemble methods and calibration strategies for predicting

puzzle difficulty. The top-performing teams consistently em-

ployed multi-stage pipelines in which pretrained embeddings

such as Maia-2 served as the foundation for downstream

boosting models and refined scaling. Despite differences in

architecture, a recurring theme was the integration of multiple

feature sources – ranging from engine success probabilities

to solution policy predictions – followed by systematic post-

processing. The additional mask contest further demonstrated

that raw predictive accuracy and confidence estimation are dis-

tinct goals – while the winning team achieved the lowest MSE

overall, the strongest uncertainty modeling was achieved by a

different team. This emphasizes the importance of addressing

not only point prediction but also model reliability.

Post-hoc analyses of prediction errors revealed consistent

patterns across submissions. Errors followed a U-shaped trend

with respect to puzzle difficulty, increasing at both extremes

of the scale, while rating deviation emerged as a more reliable

indicator of prediction uncertainty than attempt count. These

findings suggest that puzzle ambiguity, as quantified by Glicko

deviation, poses a fundamental barrier to modeling accuracy

and that additional attempts beyond stabilization yield limited

benefit. Overall, the competition illustrates the dual challenges

of modeling puzzle difficulty and quantifying uncertainty,

pointing to promising directions for future research in hybrid

modeling and calibrated confidence estimation.

In the future, we intend to embed the mechanism of uncer-

tainty masks into all challenges held at the knowledgepit.ai

platform – not only as additional tasks but as the main

competition objectives. This is because the ability to identify

the hardest cases in the data is the key element of advanced

machine learning processes [13], and therefore, we need to

develop tools for measuring whether the competition partici-

pants possess the appropriate skills in this regard [11]. While

doing this, however, we need to remember that uncertainty

measures are not necessarily the only way to identify those

most problematic cases for machine learning models.

As another future topic, encouraged by the aforementioned

fact that most of the successful teams relied heavily on non-

trivial feature engineering, we are going to further improve our

benchmark competition model, this time taking into account

also the attributes gathered from papers [17]–[24], organizing

them within semantically meaningful groups, and deriving

ensembles of their subsets as proposed in [15].
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