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Abstract—We summarize the results of the FedCSIS 2025
machine learning competition organized on the knowledgepit.ai
online platform. We recall the competition’s goals corresponding
to estimations of the chess puzzle difficulty levels, we refer
to the winning solutions, and we also compare the scope of
this year’s competition (and particularly the data available to
competition participants) with its previous edition associated
with the IEEE BigData 2024 conference. Finally, we discuss
the new functionality of the knowledgepit.ai platform, which
enables competition participants to submit additional uncertainty
masks reflecting their assessment of test cases that are mostly
problematic for their machine learning models.

Index Terms—Human-Computer Interaction, Chess, Machine
Learning Competitions, Uncertainty in Machine Learning

1. INTRODUCTION

HE FedCSIS 2025 machine learning competition con-
Ttinues the successful blueprint established in the IEEE
BigData 2024 edition [1], held at the knowledgepit.ai platform
as well, addressing the challenge of predicting chess puzzle
difficulty ratings from board configurations and solution se-
quences. While the core task remains unchanged — estimat-
ing Glicko-2 ratings that reflect human-perceived difficulty
rather than engine-optimal evaluations — this second edition
introduces significant enhancements in both data quality and
modeling capabilities. The competition attracted 42 teams
who collectively submitted 1185 solutions, with eight of the
top ten teams contributing technical papers describing their
approaches.

The primary innovations in this edition address key limita-
tions of the previous competition. First, we integrated 22 pre-
computed success probability features generated by the Maia-2
model [2], providing participants with standardized human-
aligned difficulty indicators across multiple rating bands and
time controls. Second, we substantially improved test set
quality through expanded data collection and a novel fairness
algorithm that ensured balanced solving attempts across all
puzzles, eliminating the rating convergence issues that plagued
the first edition, where many puzzles remained clustered
around the 1500 initialization value. These improvements
resulted in more reliable ground truth labels and enabled more
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sophisticated modeling approaches, as evidenced by the win-
ning solutions’ creative use of ensemble methods, transformer
architectures, and domain-specific feature engineering.

Beyond the core regression task, this competition pioneers
a new dimension in machine learning competitions through
the introduction of uncertainty masks — an extra challenge
where participants identify the 10% of test cases their models
find most problematic. This extension represents a step toward
more interpretable and reliable machine learning systems,
addressing the growing need for models that can communicate
their (un)certainty levels alongside predictions.

The next sections describe the related work (Section II), the
dataset (Section III), and the competition setup (Section IV).
Further, we analyze the submitted solutions (Section V),
discuss prediction errors and masking strategies of the top
teams (Section VI), and conclude with implications for future
competitions and research directions (Section VII).

II. RELATED WORK

The challenges of the assessment of chess puzzle difficulty
were discussed in our paper related to the first edition of this
competition [1]. We also refer to [3]-[5] where the Top 3
solutions submitted to the first edition were reported.

The importance of machine learning competitions was also
discussed in our previous papers [6]-[10]. In particular, we
investigated possibilities of utilizing such competitions to build
a platform for automatic evaluation of skills of data scientists
[11]. As already mentioned, the new idea of extending the for-
mat of knowledgepit.ai competitions with uncertainty masks
corresponds to that aspect of our research as well.

This new aspect of our competitions corresponds to an
important topic in machine learning [12]. Although the most
problematic cases for machine learning models are not neces-
sarily the most “uncertain” ones, measures of uncertainty are
often used, e.g., in active learning [13] and model diagnostics
[14]. In our research, we estimate a given object’s uncertainty
using a neighborhood of cases having the same or similar
values over subsets of attributes that are significant to the given
model or decision problem [15]. The attribute selection mech-
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anism described in [15] was also applied to build a benchmark
machine learning model for this particular competition.

III. NEW CHESS PUZZLE DATASET

This competition builds upon the dataset foundation estab-
lished in the previous IEEE BigData 2024 edition [1], while
introducing a more robust test set and a significant enhance-
ment to support more sophisticated modeling approaches.

A. Core Dataset Structure

Similarly to the previous edition, the dataset consists of
chess puzzles with basic fields including Puzzleld, FEN (board
position), Moves (puzzle solution), and the target Rating to be
predicted. The training dataset retains the extra metadata fields
from the original competition: RatingDeviation, Popularity,
NbPlays, Themes, GameUrl, and OpeningTags.

B. Success Probability Features

The primary innovation in this edition is the addition of 22
success probability features generated using the Maia-2 model.
Unlike the original Maia models that required separate trained
models for each rating group [16], Maia-2 employs a unified
architecture that jointly models success probabilities across all
skill levels [2]. This model takes as input the chess position,
player rating, and game type (rapid or blitz), outputting pre-
dicted success probabilities for solving the puzzle. Specifically,
the Success_prob fields represent the estimated probability that
a player of a given rating level and game type would correctly
solve each puzzle. These 22 fields cover different rating ranges
and both rapid and blitz time controls, providing participants
with rich, model-generated features that capture human solving
patterns across the skill spectrum.

Inspired by the innovative approaches observed in the
top solutions from the previous competition [3]-[5], this
enhancement aimed to provide participants with features that
better capture the human element of puzzle-solving difficulty.
Rather than requiring each team to independently extract
chess engine evaluations for millions of puzzles, the Maia-
2-generated success probabilities offer a standardized set of
features that encode human-like assessment of puzzle difficulty
across different skill levels.

C. Improved Test Set Quality

A significant improvement over the previous competition
relates to the quality and distribution of puzzle attempt data.
The IEEE BigData 2024 competition suffered from insufficient
rating convergence in the test set, with many puzzles remaining
near their initialized rating of 1500 due to limited solving
attempts [1]. To address this limitation, the FedCSIS 2025
edition implemented two key enhancements:

« Expanded data collection: A larger pool of chess players
was recruited to solve puzzles, resulting in substantially
more solving attempts across the test set.

o Fairness algorithm: A novel algorithm was integrated into
our lichess fork that prioritized presenting puzzles with
fewer total attempts (regardless of correctness) to users.
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Fig. 1: Distribution of puzzle ratings in test sets: First com-
petition (IEEE BigData 2024, blue) vs. Second competition
(FedCSIS 2025, red). The first edition shows a pronounced
spike at 1500 (the initialization value), while the second
edition exhibits a more natural distribution with better rating
convergence across the full spectrum.

This ensured a more balanced distribution of solving
attempts across all puzzles, leading to better rating con-
vergence and more reliable ground truth labels.

Figure 1 illustrates the dramatic improvement in rating
distribution quality. The first competition’s test set (blue)
exhibits a sharp peak around 1500—the default initialization
value—indicating that many puzzles received insufficient solv-
ing attempts to converge to their true difficulty. In contrast,
the FedCSIS 2025 test set (red) displays a smoother, more
naturally distributed profile spanning from approximately 800
to 3000, demonstrating successful rating convergence. This
improvement directly translates to more reliable ground truth
labels for model evaluation.

IV. COMPETITION TASK

The core regression task of the FedCSIS 2025 Challenge
remained fundamentally the same as in the first edition [1],
requiring participants to predict difficulty ratings for chess
puzzles based on their FEN board states and PGN solution
sequences. The primary difference was the dataset size, which
contained 2283 puzzles after removing those with fewer than
10 solving attempts during data annotation. As before, pre-
dictions were evaluated using Mean Squared Error (MSE)
between predicted ratings ¢; and ground-truth ratings y;,

computed as:
n

1
MSE =~} (yi — )% M
- ;( )
where n denotes the number of test samples.

A novel extension to this edition introduced an uncertainty
estimation task, whereby participants were invited to submit
binary masks identifying the 10% of test puzzles for which
their predictions were most likely to be erroneous. The mask
M € {0,1}¥ required each participant to flag exactly 10% of
the test set as uncertain, with M; = 1 indicating high uncer-
tainty for puzzle ¢ and the constraint vazl M; = N x0.1. The
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TABLE I: Top 10 submissions in the FedCSIS 2025 knowledgepit.ai competition. The evaluation metric was the mean squared
error — the lower Final (and preliminary, Pre.) score, the better. The Subs column reflects the total number of submissions. The
Mask column reports the uncertainty ratio — again, the lower, the better (the best score bolded). Eight out of Top 10 teams
submitted conference papers describing their solutions. Nine teams participated in the additional uncertainty mask contest.

Rank Team Paper | Final Pre. Subs | Mask | Approach

Fine-tuned Maia-2 embeddings combined with other features

! ousou (17 523k | 554k 8 1.64 through LightGBM, ensembled via CatBoost with linear scaling.

. Two-stage approach with ensembled neural chessboard embedders,

2 bread emoji (18] 44k | 58.2K 240 171 pre-RNN board pooling, and logarithmic rescaling.

3 transformer_enjoyer [19] 550k | 58.9k 17 1.43 Spatl'al trans.tormer }Vlth masked—'square reconstruction and
solution policy prediction, rescaling borrowed from [3].

4 ToDoFindATeamName — 57.5k | 61.5k 136 -

5 Cyan [20] 61.0k 671k 93 159 Multl-va}rlant ensemble of .I\/‘[a‘ua err_)beddmgs, solutlpn sequences,
and engine success probabilities with nonlinear calibration.

6 neuro 21] 62.6k | 665k 81 1.68 Four—stage plpelme w1t'h l?lf)—banded .bas?, models, gradient boostmg,
structural calibration via failure distributions, and ensemble averaging.

7 xyz (22] 627k | 66.6k 25 170 Threg—stage pipeline with four Elo-banded .MLP base Ir_10dels,
stacking ensemble, and structure-aware residual correction.
Three-stage pipeline combining GB models, multi-modal CNN with

8 DML (23] 63.0k | 66.7k 73 1.65 EfficientNetB3-rendered board images, and XGB residue stacking.
Three-stage pipeline with MobileNetV2 board images, LightGBM

9 Ru (24] 67.5k | 704k 53 1.62 residual refinement, and adjustments based on failure distribution.

10 Feiwyth - 68.1k | 70.7k 17 1.58 —

rationale was that by replacing the predicted ratings at these
masked positions with their ground-truths, the evaluation could
assess a model’s ability to identify its own confidence.

The uncertainty masks were evaluated using the Uncertainty
Ratio metric, defined as:

N
UR =5, )

where N represents the New Score (MSE after replacing
masked predictions with ground truth) and P represents the
Perfect Score (the minimum achievable MSE if the 10%
highest-error samples were perfectly identified and masked).
An optimal uncertainty ratio approaches 1.0, indicating perfect
identification of the most erroneous predictions. For example,
a ratio of 1.2 would indicate that the submitted mask captured
errors that, when corrected, achieved 83.3% (1/1.2) of the theo-
retically optimal improvement, demonstrating reasonably good
uncertainty estimation while leaving room for improvement in
identifying the truly most difficult cases.

V. COMPETITION OVERVIEW

Table I presents the top 10 submissions in the FedCSIS
2025 knowledgepit.ai competition, where teams competed to
predict chess puzzle difficulty using mean squared error as
the evaluation metric. Nine of the top 10 teams submitted
conference papers describing their solutions and participated
in the additional uncertainty mask contest.

We refer to Table I and papers [17]-[24] for detailed
descriptions of particular competition solutions. In general,
the best-performing models leveraged pretrained neural chess
embeddings — particularly from the Maia family of models de-
signed to mimic human play at various skill levels — combined
with ensemble methods and gradient boosting techniques. The
winning team achieved an MSE of 52.3k by fine-tuning Maia-
2 embeddings and combining them with other features through
LightGBM, followed by CatBoost ensembling with linear

scaling. The second-place team (54.4k MSE) employed a two-
stage approach with ensembled neural chessboard embedders
and pre-RNN board pooling, while the third-place team (55.9k
MSE) utilized spatial transformers with masked-square re-
construction. A common pattern across successful approaches
was the use of multi-stage pipelines: initial feature extraction
via neural board embeddings (Maia-1, Maia-2, or Leela),
intermediate refinement through gradient boosting methods
(LightGBM, XGBoost, or CatBoost), and final calibration via
post-processing techniques addressing distributional shifts.
For uncertainty estimation, most teams developed mask
prediction strategies that identified the least reliable predic-
tions, achieving uncertainty ratios between 1.43 and 1.71. The
transformer_enjoyer team achieved the best uncertainty ratio
of 1.43 despite placing third overall, suggesting that model
confidence estimation and raw prediction accuracy represent
distinct challenges. Several approaches also incorporated the
competition-provided Maia-2 success probabilities — precom-
puted estimates of puzzle completion likelihood for players
at different skill levels — as auxiliary features, though their
integration strategies varied considerably across teams.

VI. ERROR ANALYSIS AND MASKING STRATEGIES
A. Analysis of Prediction Errors

We conducted several post-hoc analyses of the rating pre-
diction task. Figure 2 shows prediction errors by puzzle
difficulty. A U-shaped pattern is visible: models perform worse
on very easy (< 1000) and very hard (> 2400) puzzles,
while medium-difficulty puzzles are predicted more accurately.
This behavior is consistent with the MSE objective, which
emphasizes outliers at both ends of the scale.

We then analyzed performance as a function of rating uncer-
tainty (Figure 3). Prediction errors increase monotonically with
the Glicko rating deviation of puzzles, indicating that puzzles
with higher inherent rating uncertainty are systematically
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Fig. 2: Prediction errors by puzzle difficulty.
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Fig. 3: Prediction errors by rating uncertainty.

Prediction Errors by Puzzle Attempt Count
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Fig. 4: Prediction errors by the number of attempts during data
annotation phase.

harder to model. This suggests that rating deviation, rather than
the number of attempts, is a more reliable signal for deciding
how well a puzzle’s difficulty has been established.

Finally, we investigated whether the number of puzzle
attempts during tagging correlates with error (Figure 4). We
found no significant trend: puzzles with 10-15 attempts yield
error levels comparable to those with 30 or more attempts.
Taken together, these findings imply that once a puzzle’s
Glicko deviation has stabilized, additional attempts provide
little benefit. Thus, rating deviation should guide tagging
efforts more directly than attempt count.
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Fig. 5: Jaccard similarity matrix showing overlap between
teams’ masking strategies.
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Fig. 6: Puzzle characteristics grouped by masking frequency
across teams.

B. Masking Strategy Analysis

We next examined the masking strategies employed by
teams, focusing both on the convergence of approaches and
the characteristics of commonly excluded puzzles. Figure 5
shows the Jaccard similarity between teams’ masking choices.
Several teams converged on remarkably similar strategies, with
DML, neuro, Ru, and xyz achieving similarity scores of 0.87—
0.98. This suggests that these teams independently identified a
common set of problematic puzzles. By contrast, teams such as
bread emoji and transformer_enjoyer pursued more distinctive
approaches, showing consistently lower overlap with others.

Beyond team overlap, we analyzed which puzzles were most
frequently masked (Figure 6). A clear trend emerges: puzzles
targeted by many teams tend to be significantly more difficult
(= 2200) than those rarely masked (= 1600). This indicates
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that masking was not random but systematically biased toward
high-difficulty puzzles, which teams collectively judged as less
reliable or harder to model.

VII. CONCLUSIONS

The FedCSIS 2025 knowledgepit.ai competition highlighted
the effectiveness of combining neural chess embeddings with
ensemble methods and calibration strategies for predicting
puzzle difficulty. The top-performing teams consistently em-
ployed multi-stage pipelines in which pretrained embeddings
such as Maia-2 served as the foundation for downstream
boosting models and refined scaling. Despite differences in
architecture, a recurring theme was the integration of multiple
feature sources — ranging from engine success probabilities
to solution policy predictions — followed by systematic post-
processing. The additional mask contest further demonstrated
that raw predictive accuracy and confidence estimation are dis-
tinct goals — while the winning team achieved the lowest MSE
overall, the strongest uncertainty modeling was achieved by a
different team. This emphasizes the importance of addressing
not only point prediction but also model reliability.

Post-hoc analyses of prediction errors revealed consistent
patterns across submissions. Errors followed a U-shaped trend
with respect to puzzle difficulty, increasing at both extremes
of the scale, while rating deviation emerged as a more reliable
indicator of prediction uncertainty than attempt count. These
findings suggest that puzzle ambiguity, as quantified by Glicko
deviation, poses a fundamental barrier to modeling accuracy
and that additional attempts beyond stabilization yield limited
benefit. Overall, the competition illustrates the dual challenges
of modeling puzzle difficulty and quantifying uncertainty,
pointing to promising directions for future research in hybrid
modeling and calibrated confidence estimation.

In the future, we intend to embed the mechanism of uncer-
tainty masks into all challenges held at the knowledgepit.ai
platform — not only as additional tasks but as the main
competition objectives. This is because the ability to identify
the hardest cases in the data is the key element of advanced
machine learning processes [13], and therefore, we need to
develop tools for measuring whether the competition partici-
pants possess the appropriate skills in this regard [11]. While
doing this, however, we need to remember that uncertainty
measures are not necessarily the only way to identify those
most problematic cases for machine learning models.

As another future topic, encouraged by the aforementioned
fact that most of the successful teams relied heavily on non-
trivial feature engineering, we are going to further improve our
benchmark competition model, this time taking into account
also the attributes gathered from papers [17]-[24], organizing
them within semantically meaningful groups, and deriving
ensembles of their subsets as proposed in [15].
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