
A New Perspective of Associative Memories for

Partial Patterns

Soma Dutta

0000-0002-7670-3154

University of Warmia and Mazury

in Olsztyn

ul. Słoneczna 54, 10-710 Olsztyn, Poland

Email: soma.dutta@matman.uwm.edu.pl

Jaewon Shin

0009-0005-5284-295X

University of Warmia and Mazury

in Olsztyn

ul. Słoneczna 54, 10-710 Olsztyn, Poland

Email: jaewon.shin@student.uwm.edu.pl

Abstract—This study aims to present a new perspective for
creating associative memories using incomplete data and project
them into artificial neural networks to retrieve complete data
from incomplete data. In previous studies, various approaches
to construct associative memories and retrieval of stored data
have been proposed. This paper attempts to pin point some of
the limitations observed in the existing approaches and propose
a way to get rid of that. In particular, a different perspective
of comparing two incomplete patterns is proposed and based on
that a flexible way of constructing associative patterns of a given
input (partial) pattern is developed. Finally, the respective neural
network architecture is proposed following similar construction
reported in the existing research.

I. INTRODUCTION

P
ATTERN recognition is a natural cognitive process that

attempts to match an encountered instance of a pattern

with the already stored patterns in the memory and thereby

retrieve (plausibly) relevant information about the new pat-

tern. Learning from patterns, extracting association among

patterns and then applying that knowledge in recognizing

useful patterns in different contexts of decision making char-

acterize different important features of human intelligence

[1]. The emergence of artificial neural network (ANN) [2]

as a prototypical model of human brain, or more specifically

biological neural network, is already well known. From its

inception ANN has been considered as an effective tool in

pattern recognition, signal processing, symbol processing etc

[3], [4], [5]. The task of pattern association generally aims

at storing different patterns similar to a given input pattern

so that a concept related to the given input pattern can be

recalled when a new pattern appears to be similar or a member

of the stored patterns. Variations of a given input pattern is

a common phenomenon, often caused by noise incorporated

while collecting data or partial specification of data due to

incomplete information. Content-Addressable Memory (CAM)

or Associative memory (AM) [5], [6], [7] is the research

domain of ANN which concerns about associating similar

patterns of a given input data to create a memory and recalling

the concepts associated to the input data for those stored

patterns and implement the idea in the context of ANN.

In [3] the authors described that “The term associative

memory (AM) or content-addressed memory refers to a mem-

ory system where recall of a stored pattern is accomplished

by providing a noisy or partially specified input pattern.". A

mathematical representation of the problem is as follows.

Given a data containing a set of input-output pairs (u⃗1, v⃗1),

(u⃗2, v⃗2), . . . , (u⃗k, v⃗k) where each input vector u⃗i of dimension

n is connected to an output vector v⃗i of dimension m, the

task of learning the relation between input-output patterns is

realized through standard perceptron model with different ac-

tivation functions. However, the additional point of associating

any pattern from the associative memory of a given input

pattern u⃗i with its output v⃗i is done by creating the notion

of associative memory of each input vector u⃗i, denoted as

AM(u⃗i), and then projecting the association of (AM(u⃗i), v⃗i)
through a binary mapping module. The AM(u⃗i) for a given

input pattern u⃗i is created based on the standard notion of

Hamming distance by counting number of bits that differ

between two binary vectors. Further setting a desired precision

level ρi, a limit for allowing number of mismatch of bits with

u⃗i, the AMρi
(u⃗i) is created by accepting vectors differing

from u⃗i within the range of the pre-fixed precision level ρi.
On the other hand, a binary mapping is simply a function

fI : U −→ V from the domain U = {u⃗i : 1 ≤ i ≤ k} to the

range set V = {v⃗i : 1 ≤ i ≤ k} such that fI(u⃗i) = v⃗i. In order

to make fI be able to recall v⃗i for any pattern from AMρi
(u⃗i)

it is extended to fA where the domain UA = ∪k
i=1AMρi

(u⃗i).
So, once through the binary mapping module fI is extended

to fA by defining fA(u⃗) = v⃗i if u⃗ ∈ AMρi
(u⃗i) the next

task leads towards tuning the perceptron model recognizing

fI in a way that it can recognize the extended function fA.

Here, the precision level ρi chosen for each input vector u⃗i in

creating AMρi
(u⃗i) plays a crucial role as in order to ensure

unambiguous recall of a particular output v⃗i for a noisy input

pattern u⃗ the condition AMρi
(u⃗i) ∩ AMρj

(u⃗j) = ∅ for any

i ̸= j, 1 ≤ i, j ≤ k is needed [3], [8].

Here a few points to be noticed. One is, by allowing a

mismatch in the bits of u⃗i within a specified precision level

ρi the point of noisy data, as mentioned in the above quote,

is addressed. However, the aspect of recalling associative

memory in the context of incomplete patterns of a given

pattern is not paid a due attention to as according to their

proposal two partial vectors only can be comparable using

Proceedings of the 20th Conference on Computer
Science and Intelligence Systems (FedCSIS) pp. 133–143

DOI: 10.15439/2025F6266
ISSN 2300-5963 ACSIS, Vol. 43

IEEE Catalog Number: CFP2585N-ART ©2025, PTI 133 Topical area: Advanced Artificial
Intelligence in Applications

standard Hamming distance when the positions of missing

data of both the vectors are the same. More specifically,

two partial binary vectors ⟨1, ?, 1, 0, 1⟩ and ⟨1, 1, ?, 0, 1⟩,
where ? denotes missing value, cannot be compared follow-

ing [3]. However, as on the known bits positions {1, 4, 5}
both the vectors match, potentially they could represent the

same pattern. The second issue is related to the condition

AMρi
(u⃗i) ∩ AMρj

(u⃗j) = ∅ for any i ̸= j, 1 ≤ i, j ≤ k
which is imposed in [3] in order to avoid multiple associative

recall possibility for a noisy vector. For example following [3],

both the above vectors are considered to be partial patterns

of ⟨1, 1, 1, 0, 1⟩ which means ⟨1, ?, 1, 0, 1⟩ ⊙ ⟨1, 1, 1, 0, 1⟩ and

⟨1, 1, ?, 0, 1⟩ ⊙ ⟨1, 1, 1, 0, 1⟩ hold. So, both can belong to

AM(⟨1, 1, 1, 0, 1⟩) with precision level 1 although they are

not comparable with each other following standard Hamming

distance. For reference the readers are referred to Figure 1

considered in [3] where the Hamming distance, denoted as

HD, could not be computed for half-pattern. This seems a

bit counter-intuitive as if we consider two partial patterns are

equally potential to represent some fragments of a full image

they might have some common fragments matching with

each other. Thus, without having a possibility of comparing

how two such partial patterns match to each other may lead

to significant information gap. Moreover, the same partial

pattern ⟨1, ?, 1, 0, 1⟩ could be considered as a partial pattern

of a full image ⟨1, 0, 1, 0, 1⟩ and thus considering the lowest

precision level 1, we would not manage to avoid the conflict

⟨1, ?, 1, 0, 1⟩ ∈ AM(⟨1, 1, 1, 0, 1⟩) ∩ AM(⟨1, 0, 1, 0, 1⟩). In

[3], the non-overlap of associative memories of two input

vectors is achieved by imposing specific precision levels

ρi and ρj of two input vectors u⃗i and u⃗j in a way that

dH(u⃗i, u⃗j) > ρi + ρj . However, as dH itself has some

limitation in calculating distance between two partial vectors

we opt for departure from the idea presented in [3]. The third

point is concerning the method of preprocessing incomplete

patterns before projecting them to a perceptron model. In [3]

the authors did not account for incomplete patterns in the

training sample. However, while extending the relation fI from

the input-output pairs (u⃗1, v⃗1) . . . , (u⃗k, v⃗k) of the training

sample over the sets of associative patterns for the inputs

u⃗1, . . . , u⃗k, associative patterns are allowed to be incomplete.

But before creating the perceptron model corresponding to

fA, the extension of fI on incomplete patterns, the missing

parts are imputed just by setting them to 0’s. As mentioned in

several papers [9], [10] setting missing parts of a partial pattern

by 0’s indicates ignoring the missing part while analyzing the

data and thus leads to flaws in classification accuracy.

So, in this paper our aim is to address all these above

mentioned conditions by some more general perspectives.

Specifically, our first proposal is to define a distance function

which can compare any two partial (possibly full) binary

vectors resolving the first problem. The second consideration

is to generalize the notion of ‘partial pattern of a vector’,

denoted by ⊙ by a more general notion and thus allowing

the precision level for the associative memory of an input

vector u⃗i to be selected keeping an eye on the whole data

of input vectors u⃗1, u⃗2, . . . , u⃗k. In regard to the third point, in

our approach, firstly we allow incomplete patterns in the input

training sample. Moreover, considering that data collected in

a particular context might have a reconciliation possibility

within themselves, we propose a way of matching partial input

patterns within themselves in order to visualize if they reflect

any possibility of reconciling full pattern(s) (see Section VI).

The idea comes from the way of reconciling content of a full

image from several of its parts as is done in jigsaw puzzles.

Projection of the extended function fA, in our context, in a

perceptron model can be realized in the same way as in [3],

[11].

The content of the paper is organized as follows. Section

II reviews the basic details and mathematical model of asso-

ciative memory proposed in [3], [8] and discusses about some

limitations of the considered approach. Section III introduces

a new perspective of measuring distance between two partial

vectors following Hamming distance as well as presents a new

notion of potential extension of partial Patterns. Moreover, it

points out the departure from the similar notions proposed in

[3], [8]. Section IV presents the essential conditions and results

that a dataset needs to be satisfied for creating associative

memory. Section V describes the data processing conditions,

methods and iterations for creating associative memories of

a given input set of partial vectors keeping the standard

condition of avoiding multiple recall [3] in mind. Section

VI sketches an idea for retrieving associative memories in

the context of perceptron model. Section VII presents some

concluding remarks.

II. REVIEW OF RELATED RESEARCH

To make the paper self-contained in this section let us

present a summary of basic relevant details. As mentioned

in Introduction the starting point is a data set containing

a set of input-output pairs such as (u⃗1, v⃗1), (u⃗2, v⃗2), . . . ,

(u⃗k, v⃗k). Neural memories are generally of two kinds, namely

auto-associative memories and hetero-associative memories.

The aim of the auto-associative memories is to reconstruct

a pattern from a noisy or partially specified pattern; that is

here output vector corresponding to each input vector u⃗i is

the same and target is to reconstruct u⃗i from AM(u⃗i). On

the other hand, hetero-associative memory aims to retrieve

information concerning an input vector u⃗i given any instance

from its AM(u⃗i). The relation between k pairs of input-output

vectors of dimension n and m respectively is realized through

a 2-layer perceptron having the input layer comprising of n
neurons, each of which connected to each of the k neurons

lying in the hidden layer, and each of these k neurons are

then connected to m output neurons. Clearly, n neurons at the

input layer represent n-components of an input vector, say u⃗i,

m neurons at the output layer represent m components of an

output vector, and each of the k neurons at the hidden layer

represents k different input-output pairs. For more details the

readers are referred to [3], [11].

134 PROCEEDINGS OF THE FEDCSIS. KRAKÓW, POLAND, 2025

A. Associative Memory

Now as described in Introduction to extend fI from U to

the sets of associative memories for each input vector of U ,

first AM(u⃗i) is defined in the following manner.

For any u⃗i ∈ U and respective precision level ρi, AMρi
(u⃗i)

={u⃗|u⃗ ∈ Bn&dH(u⃗, u⃗i) ≤ ρi}
1 where Bn represents the set

of all n-dimensional binary vectors and dH represents the

Hamming distance. Then fI is extended over ∪k
i=1AMρi

(u⃗i)
in the following manner.

fA : ∪k
i=1AMρi

(u⃗i) → V , fA(u⃗) = v⃗i; if u⃗ ∈ AMρi
(u⃗i),

1 ≤ i ≤ k. As mentioned before, the precision level ρi for

each u⃗i is chosen such that AMρi
(u⃗i) ∩ AMρj

(u⃗j) = ∅ for

any i ̸= j, 1 ≤ i, j ≤ k.

As clearly visible that the above context of associative

memory does not represent the possibility for including partial

vectors with missing values at some of the components. In

[3], [8] the idea of constructing associative memories for

partially specified patterns is developed in the context of

bipolar vectors where components of a vector may assume

values from {−1, 0, 1}. However, 0 is used only as the marker

for missing positions and any partial vector is supposed to

assume values from only {1,−1}. Given any partial input

vector u⃗i the missing positions of the vector are first padded

with 0 so that the Hamming distance between two vectors can

be computed. Then for two u⃗ and v⃗ the notion, viz., u⃗ is a

partial pattern of v⃗ is defined in the following way.

Definition II.1 ([3], [8]). Given a partial bipolar vector u⃗,

u⃗ is said to be a partial pattern of v⃗, denoted as u⃗ ⊙ v⃗, if

the available components of u⃗ are the same as that of the

corresponding components of v⃗.

The Hamming distance between two partial bipolar patterns

is computed using the standard definition as dH(u⃗, v⃗) is

defined with the constraint that the unknown positions of u⃗
and v⃗ are the same. As a consequence after padding with

0’s only the available positions with 1 and -1 would matter in

counting mismatches between pad0(u⃗) and pad0(v⃗). Then the

notion of associative memory in the context of partial vectors

is defined in the following way.

Definition II.2 ([3], [8]). (i) Given any input pattern u⃗i, the

set of all partial patterns of u⃗i with j-bits is given by

U j
i = {u⃗ : bits(u⃗) = j & u⃗⊙ u⃗i}.

(ii) Further given a specified precision level ρi for u⃗i, the

associative memory for u⃗i with precision level ρi is defined

as AM j
ρi

= {pad0(u⃗′) : ∃u⃗ ∈ U j
i & dH(u⃗′, u⃗) ≤ ⌊j/n⌋×ρi}.

However, here a few points to be noted. The restrictions

imposed above regarding only counting 1, -1 for the bit

positions indicates that the purpose could have been served by

binary vectors as well. Moreover, two vectors ⟨1,−1, ?,−1, 1⟩
and ⟨1, ?, 1,−1, 1⟩ intuitively may represent the same content

as on the known positions they have the same values. As

presented in [3], it seems that to claim u⃗ ⊙ u⃗i the vector u⃗i

1Here to be noted that in [3] for this notion a different notation, namely
Un

i
(ρi) is used.

Figure 1. Computing Hamming distance(HD) for noisy patterns [3]

must be a full vector. Thus, firstly for an input pattern u⃗i with

missing values we cannot create AM j
ρi
(u⃗i). Secondly, consid-

ering u⃗i = ⟨1,−1, 1,−1, 1⟩ we see both ⟨1,−1, ?,−1, 1⟩ ⊙
⟨1,−1, 1,−1, 1⟩ and ⟨1, ?, 1,−1, 1⟩ ⊙ ⟨1,−1, 1,−1, 1⟩ hold.

Thus, ⟨1,−1, ?,−1, 1⟩, ⟨1, ?, 1,−1, 1⟩ ∈ U4
i ; but as,

dH(⟨1, ?, 1,−1, 1⟩, ⟨1,−1, ?,−1, 1⟩) is not defined both to-

gether cannot be considered in AM4
ρi
(⟨1,−1, 1,−1, 1⟩), the

set of associative patterns of ⟨1,−1, 1,−1, 1⟩.
Keeping these limitations in mind our proposal, presented

in the following sections, departs from a few aspects.

III. HAMMING DISTANCE AND POTENTIAL EXTENSIONS

OF PARTIAL PATTERNS

The aim of this section is to develop step-by-step the basic

notions, departing from the respective notions proposed in

[3], [8], so that the limitations discussed in Section II can

be overcome. Our first target is to modify the definition for

computing distance between two partial patterns in a way that

instead of ignoring it would account for different unknown

parts of the input patterns. In this regard, let us first present

some notational details below.

Let u⃗ be any n-dimensional partial binary vector with

some unknown components, denoted as Unp(u⃗); the set of

known positions of u⃗ is denoted by Bits(u⃗), and |Bits(u⃗)|
determines the number of bits in the vector, alternatively

denoted by bits(u⃗). For example, for u⃗ = ⟨?, 1, 0, ?, 1, 0⟩ the

bits(u⃗) = 4, Bits(u⃗) = {2, 3, 5, 6}, and Unp(u⃗) = {1, 4}.

A. Hamming distance for partial patterns

Let u⃗ and u⃗′ be two n-dimensional partial vectors having

(possibly) some unknown components, denoted by Unp(u⃗)
and Unp(u⃗′) respectively.

Definition III.1. Given two partial binary vectors u⃗ and

u⃗′ the Hamming distance between the vectors is defined as

DH(u⃗, u⃗′) = dH(u⃗t, u⃗t
′
) + l, where u⃗t and u⃗t

′
are obtained

by dropping all positions of Unp(u⃗)∪Unp(u⃗′) from u⃗ and u⃗′

respectively, and l = |Unp(u⃗) ∪ Unp(u⃗′)|.

It is clear from Definition III.1 that the modified notion of

Hamming distance between two partial patterns considers a

SOMA DUTTA, JAEWON SHIN: A NEW PERSPECTIVE OF ASSOCIATIVE MEMORIES FOR PARTIAL PATTERNS 135

pessimistic perspective by admitting the possibility that the

missing positions of the vectors might have different content.

The results below present in what sense it could be considered

as a metric.

Proposition III.2. DH(u⃗, v⃗) ≤ DH(u⃗, w⃗)+DH(w⃗, v⃗) for any

u⃗, v⃗, w⃗

Based on Definition III.1, the proof relies on meticulously

checking all different possibilities of unknown positions and

their interrelations for three vectors u⃗, v⃗, w⃗.

Proposition III.3. DH satisfies the following properties of a

metric.

1) DH(u⃗, v⃗) ≥ 0 for any u⃗, v⃗.

2) DH(u⃗, v⃗) = k if and only if u⃗t = v⃗t,
|Unp(u⃗) ∪ Unp(v⃗)| = k.

3) DH(u⃗, v⃗) = DH(v⃗, u⃗) for any u⃗, v⃗.

The proof of Proposition III.3 is straightforward from Def-

inition III.1. From the property (2) of Proposition III.3, we

can notice that DH(u⃗, u⃗) = k given |Unp(u⃗)| = k > 0. So,

in contrary to standard metrics DH is not reflexive. However,

in the context of partial patterns it is quite intuitive that two

partial patterns even may look the same on the known parts but

there might be some mismatch in content in the undisclosed

parts. Moreover, if we stick to the condition that Unp(u⃗) =

Unp(u⃗′), then dH can be considered as a lower estimation

of DH , and thus provides a more general perspective of

calculating distance between two partial patterns.

Proposition III.4. Given Unp(u⃗) = Unp(u⃗′), DH(u⃗, u⃗′) ≥
dH(u⃗, u⃗′) + l where |Unp(u⃗)| = l.

From Proposition III.4 it can be noticed that as the number

of bits of u⃗ and u⃗′ increase DH will be more close to the

estimation proposed by dH .

B. Potential extension for partial patterns

In this section we present a new perspective for the notion

associative patterns by considering a modification of the same

notion proposed in [3] from two aspects. Firstly, unlike ⊙
we would introduce a new predicate ⊗ which incorporate the

possibility of u⃗ ⊗ v⃗ to hold for a partial vector v⃗. Secondly,

the notion of associative patterns developed based on ⊗ would

allow two partial patterns u⃗ and u⃗′ as associative patterns

of a given input pattern u⃗i even they do not share the same

unknown parts.

Definition III.5. Given a partial binary vectors u⃗ and any

(partial) binary vector v⃗, u⃗ is said to be potentially extended

to v⃗, denoted by u⃗ ⊗ v⃗, if Unp(u⃗) ⊇ Unp(v⃗) and values of

all the known components of u⃗ match to that of the respective

known components of v⃗.

The Theorem below shows that ⊗ generalizes the notion of

⊙.

Theorem III.6. For a full vector v⃗, u⃗⊙ v⃗ is a special case of

u⃗⊗ v⃗.

Proof. Let consider n-dimensional vectors u⃗, v⃗,. Let u⃗ ⊗ v⃗
where Unp(v⃗) = ∅ (The condition Unp(u⃗) ⊇ Unp(v⃗) for

having u⃗⊗ v⃗ is trivially satisfied.) Now as u⃗⊗ v⃗, dH(u⃗t, v⃗t) =

0, where u⃗t, v⃗t are the vectors obtained by truncating Unp(u⃗)
from both the vectors. Thus v⃗ is a full vector and u⃗ is a partial

vector, s.t. ∀l ∈ Bits(u⃗), the l-th components of u⃗ and v⃗ are

the same. ∴ u⃗⊙ v⃗

Now, analogous to U j
ρi

presented in Section II in our context

for an input vector u⃗i we construct the following set.

U
bits(u⃗i)
i = {u⃗ ∈ B

n|0 < bits(u⃗), u⃗⊗ u⃗i}, 1 ≤ i ≤ k.

Considering |Unp(u⃗i)| = pi we can write U
bits(u⃗i)
i = Un−pi

i .

It is to be worth noticing that in Un−pi

i we do not allow

vectors with full unknown parts or in other words a vector

with empty Bits.

IV. DATA RESTRICTION IN CHOOSING PRECISION LEVEL

FOR ASSOCIATIVE MEMORY

In [3], while developing binary mapping and respectively

perceptron model for a set of input vectors the authors main-

tained the constraint of mutually disjoint associative memories

for a set of input vectors by tuning the precision level ρi for

the associative memory constructed for each input vector u⃗i.

In our work, as the notion of U j
ρi

is replaced by the notion

of Un−pi

i where |Unp(u⃗i)| = pi to ensure mutually non-

overlapping associative patterns for a given input set of vectors

we propose to consider non-overlapping unknown components

for each pair of vectors u⃗i and u⃗j in the input set of vectors.

Apart from the technical point of view of imposing

Unp(u⃗i) ∩ Unp(u⃗j) = ∅ for any i ̸= j and 1 ≤ i, j ≤ k
there is an intuitive perspective of imposing this constraint

as well. Often while solving a puzzle related to creating a

known image, nowadays prevalently known as jigsaw puzzle2,

we are given a number of pieces each having different known

fragments of the image visible. Usually, we aim to fit the

unknown and known fragments of two pair of pieces in a

way that some part of the whole image can be retrieved. For

instance, given two partial input vectors u⃗i = ⟨1, 0, ?, 0, 1⟩
and u⃗j = ⟨1, ?, 1, ?, 1⟩, in one hand, merging them by re-

placing one’s unknown components with others respective

known components may help to visualize a complete pattern

⟨1, 0, 1, 0, 1⟩. On the other hand, following the notion of ⊗
neither u⃗i⊗ u⃗j nor u⃗j⊗ u⃗i holds. That is, all the input vectors

are considered to be independently indispensable to recover

the full content of the actual image as neither of them can

be potentially extended to the other following the notion of

⊗. Moreover, it would be clear in the latter sequels that the

impact of this condition is not limited to the above discussed

perspectives only.

A. Imposition of Restriction on Data

We start with imposing a few constraint on a data set of

n-dimensional input vectors u⃗1, u⃗2, . . . , u⃗k.

2https://en.wikipedia.org/wiki/Jigsaw_puzzle

136 PROCEEDINGS OF THE FEDCSIS. KRAKÓW, POLAND, 2025

Definition IV.1 (Dset). A set of n-dimensional input vectors

u⃗1, u⃗2, . . . , u⃗k satisfying the following conditions is called a

Dset.

1) 0 ≤ |Unp(u⃗i)| ≤ ⌊n/2⌋
2) Unp(u⃗i) ∪Bits(u⃗i) = {1, 2, . . . , n}
3) Unp(u⃗i) ∩ Unp(u⃗j) = ∅ for 1 ≤ i, j ≤ k, i ̸= j

The condition (1) imposes a restriction, may be called as

Maximum Half Uncovered Pattern (MHUP). The condition

(2) imposes that unknown and known part of each vector

must exhaust the full pattern, may be called Exhaustive Pattern

(EP). The condition (3) may be named as Mutually Disjoint

Unknown Parts (MDUP).

A series of results below would clarify how the condition

(MDUP) may determine the choice of precision level for

a given input vector in the context of creating associative

memory.

Proposition IV.2. If u⃗ ∈ Un−pi

i ∩ U
n−pj

j then Unp(u⃗) ⊇

Unp(u⃗i)∪Unp(u⃗j) and dH(u⃗t
i, u⃗

t
j) = 0 where u⃗t

i and u⃗t
j are

obtained by dropping all positions of Unp(u⃗) from u⃗i and u⃗j

respectively.

Proof. u⃗ ∈ Un−pi

i and u⃗ ∈ U
n−pj

j ; that is, u⃗⊗ u⃗i and u⃗⊗ u⃗j .

Let u⃗t
i and u⃗t be the vectors obtained by dropping the positions

of Unp(u⃗) from both u⃗i and u⃗. So Unp(u⃗i) ⊆ Unp(u⃗)

and dH(u⃗t
i, u⃗

t) = 0 as well as Unp(u⃗j) ⊆ Unp(u⃗) and

dH(u⃗t
j , u⃗

t) = 0.

The above proposition leads to the following corollary.

Corollary IV.3. If u⃗ ∈ Un−pi

i ∩ U
n−pj

j , then pi + pj ≤ p.

Proof. As Unp(u⃗i)∩Unp(u⃗j) = ∅, then by Proposition IV.2,

Unp(u⃗i)∪Unp(u⃗j) ⊆ Unp(u⃗) which implies pi+pj ≤ p.

Combining Proposition IV.2 and Corollary IV.3 using con-

traposition we can say that if for a vector u⃗ with |Unp(u⃗)| = p,

p < pi+pj or dH(u⃗t
i, u⃗

t
j) ̸= 0, then u⃗ /∈ Un−pi

i ∩U
n−pj

j , where

u⃗i
t
, u⃗j

t
are obtained from u⃗i, u⃗j respectively by truncating

respective positions of Unp(u⃗).
So, from Corollary IV.3 it is clear that if two input vectors

are not having common unknown parts then that suffices to

choose a precision level for a vector u⃗ and ensure that u⃗ cannot

be regarded as a common associative pattern for both the input

vectors. However, this is not a necessary condition ensuring

Un−pi

i ∩U
n−pj

j = ∅. The sequel below will throw some light

in this regard.

Proposition IV.4. If Unp(u⃗i)∩Unp(u⃗j) = ∅, then Un−pi

i ̸=
U

n−pj

j given pi ≥ 2 or pj ≥ 2.

Proof. Let Unp(u⃗i) = {r1, r2, . . . , rpi
}, Unp(u⃗j) =

{t1, t2, . . . , tpj
} where Unp(u⃗i) ∩ Unp(u⃗j) = ∅ and pj ≥ 2.

Now, consider u⃗ with Unp(u⃗) = {r1, r2, . . . , rpi
} ∪ {tl}

where tl ∈ Unp(u⃗j) and DH(u⃗i
t, u⃗t) = 0 where u⃗i

t
, u⃗t

are obtained by truncating all the positions of Unp(u⃗) from

both the vectors. Clearly, u⃗⊗ u⃗i and thus u⃗ ∈ Un−pi

i . But as

Unp(u⃗) ⊉ Unp(u⃗j), u⃗ /∈ U
n−pj

j .

In the similar fashion, for pi ≥ 2 we can create a vector u⃗′

such that u⃗′ ∈ U
n−pj

j but u⃗′ /∈ Un−pi

i . Thus, we can claim

that Un−pi

i ̸= U
n−pj

j .

Proposition IV.4 indicates that by considering non-

overlapping unknown parts in the input data and putting the

restriction that at most one input vector in the input data may

have exactly one unknown component, we will be able to

ensure that the set of associative patterns for each input vector

will be distinct. However, the condition does not ensure that

Un−pi

i ∩U
n−pj

j ̸= ∅. The example below illustrates the claim.

Example IV.1. Let us consider Unp(u⃗i) and Unp(u⃗j) as the

same as in Proposition IV.4 with an additional condition that

Unp(u⃗i) ∪ Unp(u⃗j) ̸= {1, 2, . . . , n}. Now consider a vector

u⃗ with Unp(u⃗) ⊇ Unp(u⃗i) ∪ Unp(u⃗j) and DH(u⃗t, u⃗i
t) =

DH(u⃗t, u⃗j
t) = 0 where u⃗t, u⃗i

t, u⃗j
t

are obtained respectively

from the original vectors after removing the components of

Unp(u⃗). This clearly indicates that u⃗ ⊗ u⃗i and u⃗ ⊗ u⃗j and

thus u⃗ ∈ Un−pi

i ∩ U
n−pj

j .

In [3], the associative patterns for the set of input vectors

are imposed to be non-overlapping. The reason behind such

consideration is already explained in Section II. The above

results indicate that, in our context, in order to avoid overlap

in the respective associative patterns for the input vectors we

may need a further pre-processing phase for data.

Based on Corollary IV.3, we can notice that given any two

input vectors u⃗i and u⃗j if we choose a vector u⃗ with Unp(u⃗)

= p such that p < pi + pj then u⃗ /∈ Un−pi

i ∩ U
n−pj

j . That is,

to avoid overlap in the respective associative patterns of any

two input vectors of a data set u⃗1, u⃗2, . . . , u⃗k we can impose

the following condition.

Condition IV.5. Given a data set of input vectors

u⃗1, u⃗2, . . . , u⃗k, for any u⃗i, 1 ≤ i ≤ k, the precision level ρi
for the set of associative patterns of u⃗i, denoted by AM(u⃗i),
must satisfy pi < ρi < pi + pj for any j ̸= i.

Here a natural question arises that whether given an input

data we will always have a situation to choose a precision

level for an arbitrary input vector following Condition IV.5.

Following proposition would clarify the issue further.

Proposition IV.6. Given the input data u⃗1, u⃗2, ..., u⃗k if for a

vector u⃗i, 1 ≤ i ≤ k, there is no ρi ∈ Z+ s.t. pi < ρi < pi+pj
for any i ̸= j, then there is at least one j ̸= i for which pj = 1.

Proof. From the assumption that there is no ρi ∈ Z+, s.t.

pi < ρi < pi + pj for all i ̸= j it is clear that pi + pj must be

equal to pi + 1 for some j ∴ pj = 1 for some j.

Proposition IV.7. If pj = 1 for some j ̸= i, then there is no

ρi ∈ Z+ satisfying pi < ρi < pi + pj for i ̸= j.

Proof. Let pj = 1 for some j ̸= i, and there exist a ρi ∈ Z+

satisfying pi < ρi < pi + pj for i ̸= j. As pj = 1 for some

j ̸= i, we can write pi < ρi < pi+1 and 0 < ρi−pi < 1. This

is a contradiction as pi, ρi ∈ Z+. Hence there is no ρi ∈ Z+

satisfying pi < ρi < pi + pj for i ̸= j.

SOMA DUTTA, JAEWON SHIN: A NEW PERSPECTIVE OF ASSOCIATIVE MEMORIES FOR PARTIAL PATTERNS 137

Clearly, if we have a data set of input vectors u⃗1, u⃗2, . . . , u⃗k

such that |Unp(u⃗i)| = pi > 1 for each i ∈ {1, 2, . . . , k}, then

following Condition IV.5 finding a precision level ρi ∈ Z+

for each input vector u⃗i is possible. This result also goes in

accordance with our observation from Proposition IV.4. So,

allowing only input vectors with more than one unknown

components may help to create a unique precision level for

the set of associative patterns for each input vectors following

Condition IV.5. However, we need to dig further to check how

such a condition would impact on the availability of sufficient

amount of input data.

B. Impact of data restriction on availability of data

Given the restriction on data imposed in Definition IV.1 and

the additional restriction mentioned in Condition IV.5 it is now

important to check how much data we may have to train a

required perceptron model. In this regard, let us first consider

the context of a data set satisfying the conditions (MHUP)

bits(u⃗i) ≥ ⌈n/2⌉ and (EP) (Bits(u⃗i), Unp(u⃗i)) forms a

partition of {1, 2, . . . n}, mentioned in Definition IV.1. Before

presenting the result let us define some useful notations.

Notation IV.8. (i) Sn(bits) = {X ⊆ {1, 2, ..., n} : |X| ≥
⌈n/2⌉}.

(ii) Si(Y) = {X ⊆ Y : 0 ≤ |X| < i}

Given the above notations we can notice that Sn(bits) =
P ({1, 2, ..., n})− S⌈n/2⌉({1, 2, ..., n}).

Proposition IV.9. |Sn(bits)| = 2n −
∑m−1

i=0
nCi, where n =

2m or n = 2m− 1,m ≥ 1.3

Proof. We know |P ({1, 2, ..., n})| = 2n . Now for

S⌈n/2⌉({1, 2, ..., n}), we have two cases (1) n = 2m and (2)

n = 2m− 1
(1) If n = 2m, ⌈n/2⌉ = m, then Sm({1, 2, ..., n}) =∑m−1

i=0
2mCi

(2) If n = 2m − 1, ⌈n/2⌉ = m, then Sm({1, 2, ..., n}) =∑m−1
i=0

2m−1Ci

Therefore, clearly from (1) and (2), |P ({1, 2, ..., n})| −
|S⌈n/2⌉({1, 2, ..., n})| = 2n −

∑m−1
i=0

nCi, where n =
2m or n = 2m− 1, m ≥ 1.

Proposition IV.10. 2n −
∑m−1

i=0
nCi =

∑⌊n/2⌋
i=0

nCi, where

n = 2m or n = 2m− 1, m ≥ 1

Proof. It is well known 2n =
∑n

i=0
nCi. Now we need to

show
∑n

i=0
nCi =

∑m−1
i=0

nCi +
∑⌊n/2⌋

i=0
nCi

(1) when n = 2m, ⌈n/2⌉ = m and ⌊n/2⌋ = m
LHS = 2mC0 +

2mC1 +
2mC2 + ...+ 2mC2m

RHS4 = 2mC0+
2mC1+ ...+ 2mCm−2+

2mCm−1+
2mC0+

2mC1 + ...+ 2mCm−1 +
2mCm

= 2mC0 + 2mC1 + ... + 2mCm−2 + 2mCm−1 + 2mCm +
2mCm+1 + ...+ 2mC2m−1 +

2mC2m

∴ LHS=RHS

3n = 2m or n = 2m+ 1, is also possible.
4LHS and RHS are respectively the abbreviations for Left Hand Side and

Right Hand Side of a relational equation.

(2) when n = 2m− 1, ⌈n/2⌉ = m and ⌊n/2⌋ = m− 1
LHS = 2m−1C0 +

2m−1C1 +
2m−1C2 + ...+ 2m−1C2m−1

RHS = 2m−1C0+
2m−1C1+ ...+ 2m−1Cm−2+

2m−1Cm−1+
2m−1C0 +

2m−1C1 + ...+ 2m−1Cm−1 +
2m−1Cm

= 2m−1C0 + 2m−1C1 + ... + 2m−1Cm−2 + 2m−1Cm−1 +
2m−1Cm + 2m−1Cm+1 + ...+ 2m−1C2m−2 +

2m−1C2m−1

∴ LHS=RHS

So, combining Propositions IV.9, IV.10 we can say that

|Sn(bits)| =
∑⌊n/2⌋

i=0
nCi. That is, for 10-dimensional vectors

there can be maximum 638 vectors satisfying (MHUP) and

(EP) mentioned in Definition IV.1. So, the next question arises

that how many vectors out of |Sn(bits)| number of possible

vectors can have non-overlapping unknown parts. In this

regard, let us consider any input vector u⃗i with bits(u⃗i) = r
where ⌈n/2⌉ ≤ r ≤ n.

Proposition IV.11. Given an input vector u⃗i with bits(u⃗i) =

r, where ⌈n/2⌉ ≤ r ≤ n, the maximum number of vectors in

B
n having disjoint unknown parts with Unp(u⃗i) is rCn−r.

Proof. Let u⃗i be a vector with Bits(u⃗i) = {s1, s2, . . . , sr}
where ⌈n/2⌉ ≤ r ≤ n and |Unp(u⃗i)| = n− r. Following our

condition r ≥ n−r. Then in order to have other r-bits vectors

with non-overlapping unknown components we can consider a

vector u⃗i
′ whose Unp(u⃗i

′) is obtained by exchanging all n−r
positions of Unp(u⃗i) with positions from {s1, s2, . . . , sr} of

u⃗i. This allows us to create rCn−r number of different vectors

with r-bits having disjoint unknown parts with u⃗i.

Example IV.2. Following Proposition IV.11, for n = 10, we

can allow input vectors with number of bits ranging from 5

to 10. Given an input vector u⃗1 with |Unp(u⃗1)| = 5 there

can be exactly 1 possible 5-bit vector, say u⃗11, having non-

overlapping unknown parts with u⃗1. For an input vector u⃗2

with |Unp(u⃗2)| = 4 there can be exactly 15 possible 6-

bit vectors having non-overlapping unknown parts with u⃗2.

However, these 15 vectors may have common unknown parts

within themselves. Thus, at each turn we can select exactly

one vector, say u⃗21, from these 15 possible cases satisfying

the condition of non-overlapping unknown components with

u⃗2. For an input vector u⃗3 with |Unp(u⃗3)| = 3 there can

be exactly 35 possible 7-bit vectors having non-overlapping

unknown parts with u⃗3. So, in one round of selection out of 35

possibilities we can select a pair of vectors, say u⃗31, u⃗32, such

that u⃗3 and these two vectors satisfy mutually disjoint unknown

parts. For an input vector u⃗4 with |Unp(u⃗4)| = 2 there can

be exactly 28 possible 8-bit vectors having non-overlapping

unknown parts with u⃗4. In this case, out of 28 possibilities

we can select 4 vectors, say u⃗41, u⃗42, u⃗43, u⃗44 such that along

with u⃗4 they satisfy mutually disjoint unknown parts. For an

input vector u⃗5 with |Unp(u⃗5)| = 1 there can be exactly 9

possible 9-bit vectors having non-overlapping unknown parts

with u⃗5 and all of them can be considered together in one

round of selection as they satisfy mutually disjoint unknown

parts.

138 PROCEEDINGS OF THE FEDCSIS. KRAKÓW, POLAND, 2025

From the above clarification, two important aspects are

surfacing out. One is the chosen number of unknown com-

ponents for the vectors of a particular dimension. If half of

the components are unknown the number of different vectors

with non-overlapping unknown parts is very less, and when

the number of unknown components is decreasing possible

number of different vectors satisfying (MHUP) and (EP) is

increasing. However, as it is visible from the example that

there seems to be a threshold value for number of unknown

components, which is here 3, after which the number of possi-

ble vectors with a specified number of unknown components

is decreasing. On the other hand, even for a vector u⃗i with

n − r (≤ ⌊n/2⌋) number of unknown components not all of

the rCn−r number of possible vectors having non-overlapping

unknown parts with u⃗i can be considered together as they

would not satisfy (MDUP). So, in order to train a perceptron

model if we wish to use the available data as much as possible

satisfying the conditions of a Dset, we may need to split the

data over several iterations and learn separately the perceptron

model generated in each iteration.

V. CONSTRUCTING ASSOCIATIVE MEMORY AND

SPLITTING DATA OVER ITERATIONS

Given the above analysis about the number of possible input

vectors of dimension n satisfying the conditions of Definition

IV.1 and the condition concerning precision level of each input

vector (see Proposition IV.6) let us introduce the following

method ensuring non-overlapping sets of associative patterns

for a given Dset.

Definition V.1 (M-AM). Let a Dset containing k number

of n-dimensional input vectors u⃗1, u⃗2, . . . , u⃗k be given. The

method, called as M-AM, of creating the associative memory

for each input vector is described as follows.

1) For each i, if the precision level ρi is s.t. pi < ρi <
pi + pj for any j ̸= i holds, then consider Uρi

= {u⃗ ∈
Un−pi

i : |Unp(u⃗)| ≤ ρi} as AM(u⃗i).
2) If for a vector u⃗i there is no ρi satisfying Condition IV.5,

then follow the following process of modifying Uρi
.

a) Find Oi = {l | pi + pl = minj pi + pj , j ̸= i}
b) Consider ρi = pi + pl
c) Umod

ρi
= {u⃗ ∈ Uρi

: Unp(u⃗) ⊉ Unp(u⃗l), l ∈ Oi}
and consider Umod

ρi
as AM(u⃗i).

The method M-AM describes an algorithm for determining

a precision level for each input vector keeping an eye on the

whole input data and accordingly creating an associative mem-

ory for each input vector of a given data set u⃗1, u⃗2, . . . , u⃗k.

However, at this stage our next concern is to check what

amount of associative patterns can be generated for each input

vector following the method M-AM.

Proposition V.2. Given input vectors u⃗1, u⃗2, ..., u⃗k, for an

arbitrary u⃗i, if the precision level ρi is s.t. pi < ρi < pi + pj
for any j ̸= i holds, then |Uρi

| = n−piCρi−pi

Proof. According to M-AM for any u⃗ ∈ Uρi
, Unp(u⃗) ⊇

Unp(u⃗i), |Unp(u⃗)| ≤ ρi where pi < ρi < pi + pj , any

i ̸= j. So, for any u⃗ ∈ Uρi
Unp(u⃗) contains Unp(u⃗i)

and any |Unp(u⃗) − Unp(u⃗i)| = ρi - pi positions out of

|{1, 2, . . . , n}−Unp(u⃗i)| = n-pi positions of Bits(u⃗i). Thus,

|Uρi
| = n−piCρi−pi

.

Proposition V.3. Given input vectors u⃗1, u⃗2, ..., u⃗k, if for an

arbitrary u⃗i, there is no ρi s.t. pi < ρi < pi+pj for any j ̸= i,
then |Umod

ρi
| = n−(pi+|Oi|)C1 where Oi = {L : pi + pL =

minj pi + pj , j ̸= i}

Proof. Clearly, Umod
ρi

⊆ Uρi
and as there is some j ̸= i for

which pj = 1, ρi = pi+1. So, following Proposition V.2 ρi−
pi = 1. Moreover, while creating Umod

ρi
as we are considering

that for any u ∈ Umod
ρi

if l ∈ Oi then l /∈ Unp(u⃗), we also

need to remove from {1, 2, . . . , n} all unknown positions of

the vectors u⃗l such that l ∈ Oi. So, in contrary to Proposition

V.2 here we have n − (pi + |Oi|) remaining positions from

where ρi − pi that is 1 position can be chosen to be included

in Unp(u⃗). So, we have n−(pi+|Oi|)C1 many ways to create

Unp(u⃗) by adding one additional position to Unp(u⃗i). Hence

|Umod
ρi

| = n−(pi+|Oi|)C1.

Following Proposition V.3, we can see that the more input

vectors with unknown components equal to 1, i.e., |Oi| in-

creases, the number of vectors belonging to Umod
ρi

decreases.

For this reason, we should avoid having a large number of

input data consisting of just one unknown component vector.

A. Stepwise Unknown Full Cover Input Data

Following Proposition V.3, we should avoid a set of input

vectors such that each has only one unknown component. The

sequel below will make the point more precise.

Proposition V.4. Following M-AM for any n number of n-

dimensional vectors u⃗1, u⃗2, . . . , u⃗n, if AM(u⃗i) ⊋ {u⃗i} then it

can not be the case that p1 = p2 = · · · = pn = 1.

Proof. Contrapositively, if for a data set satisfying conditions

of M-AM we assume p1 = p2 = · · · = pn = 1, then for any u⃗i

by Proposition IV.7 there is no ρi such that pi < ρi < pi+ pj
for any j ̸= i, i, j ∈ {1, 2, . . . , n}. Thus,AM(u⃗i) = Umod

ρi
.

But Oi = ∅. Hence, AM(u⃗i) = {u⃗i}.

Definition V.5 (SUFC). Given a set of n-dimensional input

vectors u⃗1, u⃗2, . . . , u⃗k with |Unp(u⃗i)| = pi for 1 ≤ i ≤ k,

and p1 = p2 = · · · = pk = 1 if ∪k
i=1Unp(u⃗i) = {1, 2, . . . , n}

and Unp(u⃗i)∩Unp(u⃗j) = ∅ for any i ̸= j, then we call such

data set as Stepwise Unknown Full Cover (SUFC).

Thus, along with conditions mentioned in Definition IV.1

let us add another additional condition on the Dset.

Condition V.6. A Dset of input vectors u⃗1, u⃗2, . . . , u⃗k should

not satisfy SUFC.

Based on the above discussion it is clear that apart from the

conditions mentioned in Definition IV.1 we need some other

conditions to be imposed in order to follow method M-AM in

the process of creating associative memory for a Dset. Thus,

below we present a modified notion of Dset.

SOMA DUTTA, JAEWON SHIN: A NEW PERSPECTIVE OF ASSOCIATIVE MEMORIES FOR PARTIAL PATTERNS 139

Definition V.7 (DsetAM). Given a set of input vectors

u⃗1, u⃗2, . . . , u⃗k we say it as a DsetAM , if it is a Dset and

satisfies Condition V.6.

B. Processing Input Data Through Iterations

Based on the results and discussion presented in the above

sections, we can notice a few important aspects for effectively

using a given data in the process of creating associative

patterns and then learning perceptron models based on them.

The first is that, given a Dset of n-dimensional input vectors

to apply method M-AM for creating associative memories for

input vectors we may need to split the Dset over different

iterations. Secondly, in order to avoid overlapping sets of as-

sociative patterns for all the vectors considered in a particular

iteration the input vectors considered in each iteration should

form a DsetAM . Thirdly, based on Proposition IV.11 and

Example IV.2 we recognize a need for selecting a DsetAM for

each iteration satisfying a top down decomposition ordering,

described below, by allowing gradually less unknown parts (or

gradually more known parts) in the selection of input vectors.

C. Top-down Decomposition Ordering

We propose a method for ordering the input data to be

selected in a DsetAM in such a way that it considers vec-

tors with gradually increasing order of unknown parts while

selecting for a DsetAM from a given data.

Definition V.8 (TDDO). Let us consider a set of input vectors,

In = {u⃗1, u⃗2, . . . , u⃗k} of dimension n, where n > 3. 5 A Top-

Down Decomposition Ordering of input vectors is composed

of the following steps.

1) Select a vector u⃗j (1 ≤ j ≤ k) such that |Unp(u⃗j)| is

minimum. Call the vector u⃗j1.

2) Select the next vector from In \ {u⃗j} such that the

number of unknown components of the selected vector is

|Unp(u⃗j)|+1 and the unknown components of the new

vector does not have common overlap with Unp(u⃗j).
Call the new vector u⃗j2.

3) Continue the process as long as there is no vector from

the remaining set of In satisfying condition (2).

Example V.1. Given a input data In = {u⃗1, u⃗2, . . . , u⃗k} for

n = 10. Following Definition V.8 consider input vectors from

In such that u⃗j1 with |Unp(u⃗j1)| = 1, u⃗j2 with |Unp(u⃗j2)| =
2, u⃗j3 with |Unp(u⃗j3)| = 3 and u⃗j4 with |Unp(u⃗j4)| = 4, and

they satisfy (MDUP). Clearly, for n = 10, there are no more

than 4 vectors that have no common overlapping unknown

components covering {1, 2, . . . , 10}. Thus, an iteration consist

of this set of vectors {u⃗1, u⃗2, u⃗3, u⃗4}.

From Example V.1 we can see that following TDDO if we

select input vectors, starting from lowest number of unknown

components, in a strict increasing manner depending on the

5Following the condition that for a n-dimensional vector maximum number
unknown components can be ⌊n/2⌋, for a vector of dimension one would not
have any unknown component, and for a vector of dimension 2 or dimension
3 can have exactly one unknown component. So, TDDO does not apply to
the vectors with dimension n ≤ 3.

dimension of the vector there seems to be a threshold value for

the number of unknown components. For instance, in case of

Example V.1 for 10 dimensional vectors this threshold value

is 4. The sequel below throws light on this.

Definition V.9 (Threshold and cardinality value for TDDO).

Let a set of input vectors of n-dimension (n > 3) be given.

To create a DsetAM for one iteration we first select a vector

with exactly one unknown component and continue selecting

a sequence of vectors following TDDO. When the process

reaches to stage 3 of TDDO (see Definition V.8) the maximum

number of unknown components of the last selected vector in

DsetAM is considered to be the threshold value for TDDO for

dimension n, denoted by Tn, and the cardinality of the Dset

thus constructed is called the cardinality value for DsetAM ,

denoted as |DsetAM |.

Following Definition V.9 it is clear that for an n-dimensional

input vectors once we reach to the stage (3) of TDDO and get

hold of a vector reaching threshold Tn we cannot include any

vector in the respective DsetAM having more than Tn number

of unknown components. So, one important question is how

to determine the threshold Tn for any arbitrary dimension n.

Theorem V.10. Given a set of input vectors of dimension n
let Tn and |DsetAM | be respectively the threshold value and

cardinality value of the DsetAM obtained following TDDO

corresponding to an iteration. Then considering |DsetAM | =

i the following relations hold between Tn and i.

1) If n = 2, 3, Tn = 1.

2) For any n > 3 and i ≥ 2,
i(i+1)

2 ≤ n ≤ i(i+1)
2 + i holds

and for all such n, Tn = i.

Proof. For n = 2, 3 the case is straightforward.

For any n (n > 3) the increasing order of unknown

components of the vectors selected in Dset are 1, 2, . . .Tn. So,

|Dsetn| = Tn = i. Following TDDO, n− (1+2+ · · ·+ i) ≤ i.

∴ n ≤ i(i+1)
2 + i and clearly for n > 3, the value i must

satisfy i ≥ 2.

Moreover, total number of positions covered by the unknown

parts of the vectors of Dsetn cannot exceed n. ∴
i(i+1)

2 ≤ n

∴
i(i+1)

2 ≤ n ≤ i(i+1)
2 + i, for all n > 3 and i ≥ 2.

Moreover, as for any n ∈ [i(i+1)
2 , i(i+1)

2 + i] after covering

gradually 1, 2, . . . , i number of unknown positions, i.e., total
i(i+1)

2 positions out of n dimension, there can be at most i
positions remaining to be considered as unknown part of a

vector. Thus, the threshold value Tn for all such n would be

the same as i.

Example V.2. Following Theorem V.10, let us consider that

u⃗1, u⃗2, . . . , u⃗k be a set of input vectors of dimension n > 3.

For i = 2 we see that 4, 5 ∈ [i(i+1)
2 , i(i+1)

2 + i] and Tn = 2;

that is following TDDO there cannot be any vector of more

than 2 unknown parts in a DsetAM . For i = 3, n ∈ [6, 9]
and for any n lying in this interval Tn = 3 as the gradual

increasing order of the number of unknown components of

any vector entitled to enter in a DsetAM of an iteration are

1, 2, 3. Similarly, for i = 4, [i(i+1)
2 , i(i+1)

2 + i] = [10, 14] and

140 PROCEEDINGS OF THE FEDCSIS. KRAKÓW, POLAND, 2025

for any n ∈ [10, 14] the threshold value for maximum unknown

part following TDDO is Tn = 4.

D. Splitting data over iterations

As it is clear from previous sections, for n-dimensional

vectors satisfying first two conditions mentioned in Definition

IV.1 we may have
∑⌊n/2⌋

i=0
nCi of vectors in the input data

In. However, following method M-AM in one iteration we

can use only one small fragment of of data from In using

TDDO. So, below we propose a complete procedure for using

the data of In over some iterations.

Definition V.11 (SDOI). For a input data In containing n-

dimensional vectors u⃗1, u⃗2, . . . , u⃗k by Splitting Data Over

Iterations (SDOI) we mean the following procedure. In the

first iteration, say I0, we choose the vectors for DSet0AM as

follows.

(i) Select the first appeared vector u⃗j ∈ In with minimum

|Unp(u⃗j)| (≤ Tn) and rename it u⃗j1

(ii) Following TDDO select vectors from In \ {u⃗j} with

gradually increasing order of unknown components (con-

sidering first such appeared in input data) and continue

till it reaches the threshold value Tn

(iii) Step (ii) ends when at most Tn vectors, say

u⃗j1, u⃗j2 . . . , ⃗ujTn
∈ Dset0AM . For the remaining

n− Tn(Tn+1)
2 positions select vectors from In \Dset0AM

such that the gradual selection of the vectors satisfy

monotonically decreasing order of unknown parts

(satisfying Definition IV.1) as long as ∪u⃗∈Dset0
AM

Unp(u⃗)
= {1, 2, . . . , n}.

(iv) Once Step (iii) ends, a new iteration of creating next

DsetAM starts from step (i) over the remaining data

In \Dset0AM .

(v) Step (iv) continues as long as it is possible to create a

new DsetAM following steps (i)-(iii).

Example V.3. For n = 14, in the iteration I0 we may have

DsetAM = {u⃗1, u⃗2, u⃗3, u⃗4, u⃗5, u⃗6} where |Unp(u⃗i)| = i for

1 ≤ i ≤ 4, and after reaching T14 = 4, |Unp(u⃗5)| = 3
and |Unp(u⃗6)| = 1. There can be several possibilities of

constructing such a DsetAM . For instance, one such is

Unp(u⃗1) = {1}, Unp(u⃗2) = {2, 3}, Unp(u⃗3) = {4, 5, 6},

Unp(u⃗4) = {7, 8, 9, 10}, Unp(u⃗5) = {11, 12, 13}, and

Unp(u⃗6) = {14}.

Now let us present another example in order to understand

how the associative memories for a given set of input vectors

of a specific dimension n can be constructed following M-AM

method and the data selection method described in Definition

V.11.

Example V.4. Given a input data In containing 8-

dimensional vectors u⃗1, u⃗2, . . . , u⃗k. Following Definitions V.1,

V.8, V.9 V.11 consider the input vectors from In such that u⃗1

with Unp(u⃗1) = {1}, u⃗2 with Unp(u⃗2) = {2, 3}, u⃗3 with

Unp(u⃗3) = {4, 5, 6}, 6 u⃗4 with Unp(u⃗4) = {7, 8}, that is,

6Following Theorem V.10, the threshold value Tn = 3 for n = 8.

I0 = {u⃗1, u⃗2, u⃗3, u⃗4}. We can check that the precision level

for u⃗1 is obtained following the first condition of Definition

V.1. Since ρ1 = 2 satisfying Condition IV.5, we can consider

u⃗ ∈ Uρ1
, s.t. Unp(u⃗) = {1, i} where i ̸= 1, i ≤ 8. That

is Uρ1
= {⟨?, u12, u13, . . . , u18⟩ : exactly one of u1j =

? for j ̸= 1 and u1k = u⃗ik, k ̸= j, 1}. To illustrate more

precisely, let us assume u⃗1 = ⟨?, 0, 1, 0, 1, 0, 1, 0⟩. Then Uρ1
=

{⟨?, ?, 1, 0, 1, 0, 1, 0⟩, ⟨?, 0, ?, 0, 1, 0, 1, 0⟩, ⟨?, 0, 1, ?, 1, 0, 1, 0⟩,
. . . , ⟨?, 0, 1, 0, 1, 0, 1, ?⟩}. For the other vectors u⃗i, i = 2, 3, 4,

the precision levels cannot be obtained following the

first condition of Definition V.1 (see Proposition IV.7).

Therefore, we follow the process of modifying Uρi
. According

to Proposition IV.7, Oi = {1}, ρi = pi + p1 for any

i ̸= 1, 1 < i ≤ 4. 7 Therefore we should consider

u⃗ ∈ Umod
ρi

, s.t. Unp(u⃗) = Unp(u⃗i) ∪ {j} where 1 < i ≤ 4,

j ̸= 1, j ≤ 8, Unp(u⃗i) ∩ {j} = ∅. That is Umod
ρ2

=
{⟨u21, ?, ?, u24, . . . , u28⟩ : exactly one of u2j =? for j ̸=
1, 2, 3 and u2k = u⃗ik, k ̸= j, 2, 3}. To illustrate this, let us

say a given vector u⃗2 = ⟨1, ?, ?, 0, 1, 0, 1, 0⟩. Then Umod
ρ2

=
{⟨1, ?, ?, ?, 1, 0, 1, 0⟩, ⟨1, ?, ?, 0, ?, 0, 1, 0⟩, ⟨1, ?, ?, 0, 1, ?, 1, 0⟩,
⟨1, ?, ?, 0, 1, 0, ?, 0⟩ ⟨1, ?, ?, 0, 1, 0, 1, ?⟩}.

Similarly, Umod
ρ3

= {⟨u31, u32, u33, ?, ?, ?, u37, u38⟩ :
exactly one of u3j =? for j ̸= 1, 4, 5, 6 and u3k =
u⃗ik, k ̸= j, 4, 5, 6} and Umod

ρ4
= {⟨u41, . . . , u46, ?, ?⟩ :

exactly one of u4j =? for j ̸= 1, 7, 8 and u4k = u⃗ik, k ̸=
j, 7, 8}.

VI. INFORMATION RETRIEVAL FROM ASSOCIATIVE

MEMORY USING PERCEPTRON

In this section, we attempt to sketch the idea of projecting a

2-layer perceptron from a DsetAM generated by an iteration

following SDOI. In contrary to [3], in our case a DsetAM

contains input data with unknown components. Following [9],

[10], if the perceptron is trained on samples with incomplete

feature vectors, i.e., partial input data, significant propagation

errors may occur during the inference process. In addition, if

important features are frequently missing, the learned decision

boundaries may become biased or suboptimal, which can

degrade the model’s prediction performance. To get rid of

this problem, it is essential to implement a process to replace

missing data before training. This allows the perceptron to

learn from partially known data, thereby outputting incomplete

input data as complete data. So, below we propose a way to

replace the partial input vectors with a potential full vector.

A. Replacing Partial Vectors By Full Vectors

The DsetAM generated by an iteration of SDOI contains

vectors satisfying (MDUP). That is, the unknown parts of any

pair of vectors do not have common overlap with each others.

This feature can be utilized to reconstruct full vectors before

training the perceptron model. We replace each vector from a

DsetAM as follows.

1) Given u⃗i, u⃗j ∈ DsetAM for any i ̸= j, 1 ≤ i, j ≤ Tn the

unknown component of the vector u⃗i is replaced with the

7We only consider the given vectors u⃗1, u⃗2, u⃗3, u⃗4.

SOMA DUTTA, JAEWON SHIN: A NEW PERSPECTIVE OF ASSOCIATIVE MEMORIES FOR PARTIAL PATTERNS 141

known components of the vector u⃗j . For vector u⃗i only

the positions from Unp(u⃗i)∩Bits(u⃗j) are replaced with

that of u⃗j . The new vector created in this way is called

u⃗ij . Following similar process u⃗ji is also obtained.

2) Check Hamming distance between u⃗ij and u⃗ji, for any

i ̸= j
3) Among the vectors u⃗ij j ̸= i obtained by exchanging

parts with u⃗i the one with minimum Hamming distance,

would determine the full vector that can be selected

to replace u⃗i considering as the most plausible ideal

representation of u⃗i.

Following the above method, we can expect that the recon-

structed input vector will match more closely the ideal input

data set without noise and unknown parts. Using the Hamming

distance as a similarity measure, we can systematically select

the most reasonable candidate from the pool of potential com-

plete vectors, obtaining an input data set that better matches

the intended representation of the original set of partial input

vectors.

Example VI.1. For n = 10, in an iteration I0 we may

have Dset0AM = {u⃗1, u⃗2, u⃗3, u⃗4}, where |Unp(u⃗i)| = i, for

1 ≤ i ≤ 4, Tn = 4.

Let the vectors be u⃗1 = ⟨0, 1, 0, 0, ?, 1, 1, 1, 0, 0⟩, u⃗2 =
⟨1, 1, 0, 0, 0, 1, 0, ?, 0, ?⟩, u⃗3 = ⟨1, 0, 0, 0, 0, ?, ?, 1, ?, 0⟩, u⃗4 =
⟨?, ?, ?, ?, 0, 1, 1, 1, 0, 0⟩, where ? denotes missing value in a

vector.

Replacing Unp(u⃗1) with Bits(u⃗2), Bits(u⃗3) and Bits(u⃗4),
we respectively have u⃗12 = ⟨0, 1, 0, 0, 0, 1, 1, 1, 0, 0⟩, u⃗13 =
⟨0, 1, 0, 0, 0, 1, 1, 1, 0, 0⟩, u⃗14 = ⟨0, 1, 0, 0, 0, 1, 1, 1, 0, 0⟩.
Similarly, replacing the unknown components u⃗2 with the

known components of other vectors we have, u⃗21 =
⟨1, 1, 0, 0, 0, 1, 0, 1, 0, 1⟩, u⃗23 = ⟨1, 1, 0, 0, 0, 1, 0, 1, 0, 1⟩,
u⃗24 = ⟨1, 1, 0, 0, 0, 1, 0, 1, 0, 0⟩. For u⃗3 we have u⃗31 =
⟨1, 0, 0, 0, 0, 1, 1, 1, 0, 0⟩, u⃗32 = ⟨1, 0, 0, 0, 0, 1, 0, 1, 0, 0⟩,
u⃗34 = ⟨1, 0, 0, 0, 0, 1, 1, 1, 0, 0⟩, and for u⃗4 we have u⃗41 =
⟨0, 1, 0, 0, 0, 1, 1, 1, 0, 0⟩, u⃗42 = ⟨1, 1, 0, 0, 0, 1, 1, 1, 0, 0⟩,
u⃗43 = ⟨1, 0, 0, 0, 0, 1, 1, 1, 0, 0⟩.
Next, we check the Hamming distance between each pair of

exchanged vectors. DH(u⃗12, u⃗21) = 3, DH(u⃗13, u⃗31) = 2,

DH(u⃗14, u⃗41) = 0, DH(u⃗23, u⃗32) = 2, DH(u⃗24, u⃗42) = 1,

DH(u⃗34, u⃗43) = 0. 8

From the above calculation we see, the minimum Ham-

ming distance of DH(u⃗1j , u⃗j1) where j ∈ {2, 3, 4}, is

DH(u⃗14, u⃗41). So partial vectors u⃗1 and u⃗4 are exchanged

the parts within themselves the newly obtained full vectors

u⃗14 appears to be most closely fitting. Thus, u⃗1 can be

substituted with full vector u⃗14. Similarly, partial vector u⃗2

can be substituted with full vector u⃗24, partial vector u⃗3 can

be substituted with full vector u⃗34 and partial vector u⃗4 can

be substituted with full vector u⃗41 or u⃗43.

8Since Hamming metric, i.e., DH(u⃗12, u⃗21) = DH(u⃗21, u⃗12), there are
only six results left in this case excluding duplicate results.

B. Perceptron model

As described in Section II, creating perceptron model

following [3] solely depends on two facts; one is choosing

precision levels for the input patterns in a way that their

associative memories do not overlap and the second is to

convert partial associative patterns of a given input (full)

pattern to full patterns. The first point is important in es-

tablishing the claim that the set of input-outputs pairs in the

extended function fA are linearly separable and it is required

to develop the perceptron model for fA. In our case, we opt

to depart from several aspects considered in [3], and these are

mentioned in Introduction as well as in Section II. However,

from the development and results presented in the sections

above, starting from Section III, it is clear that both the

contexts responsible for smooth projection of the function fA
in a perceptron model are guaranteed. Thus, in our case the

same strategy as in [3] of creating perceptron model can be

followed.

VII. CONCLUSION

The paper presents some limitations of the approach to

creating associative memory in the context of retrieving infor-

mation from partial patterns using perceptron model presented

in [3] and proposes a few more general perspectives of

different notions used in [3], [8]. First of all, unlike [3] we

propose incomplete information in the input data by allowing

partial vectors in the input data. Secondly, the paper proposes

a new perspective of measuring distance between two partial

vectors using the notion of Hamming distance. According

to [3] two partial vectors with different unknown fragments

cannot be comparable. Following our approach this limitation

is overcome. Thirdly, our proposal for creating associative

patterns for an input (partial) vector u⃗i depends on a notion of

‘u⃗ is a potential extension of u⃗i’, denoted by u⃗⊗ u⃗i. The idea

is developed generalizing the notion of ⊙ presented in [3].

Moreover, in the process of converting incomplete or partial

patterns by some plausible full patterns in [3] a random process

of replacing unknown parts by 0’s is followed. Whereas in

our context, we consider an approach of finding plausible full

pattern of an input partial pattern by exchanging content of

the given pattern with other input vectors of the training data.

The idea is similar to solving a puzzle related to constructing

a full image of a desired object from several available pieces

where different fragments of the full image are visible.

From theoretical perspective, though we manage to resolve

the limitations mentioned before, following our proposal a

given data set of n-dimensional input vectors cannot be used

together in one iteration to train a perceptron model. However,

there seems to be a possibility of creating perceptron model

from aggregating data from different iterations. In [12], the

authors proposed different models for generalizing Hamming

associative memory. In particular, they introduced a notion

of local Hamming memory which is based on splitting the

input vectors (input data) into smaller clusters and learn-

ing the dependence of all the input vectors in that cluster

with their respective outputs. Modifying the idea of local

142 PROCEEDINGS OF THE FEDCSIS. KRAKÓW, POLAND, 2025

Hamming memory the authors [12] also defined a notion of

decoupled Hamming associative memory which considers non-

overlapping windows (clusters) of input vectors. Though there

is a similarity of their considered idea of non-overlapping

windows of input vectors [12] with our idea of splitting the

input vectors over iterations, there is a difference in basic

consideration. In our case, the input vectors can be partial and

in [12] the input vectors are full binary vectors. Following

[3] non-overlapping associative memories of the input vectors

allows a direct projection of the extended function fA into a

multilayered perceptron model. In our context, though we have

departed from [3] on many aspects, we stick to the technical

advantage of non-overlapping associative memories of the

input vectors. However, following the notion of Distributed

Associative Memory (DAM), in [13], the authors envisaged

a possibility of representing multiple association of an input

data with different sets of patterns. This idea can be worth

investigating further in our context by allowing associative

patterns of two input vectors to have common intersection.

But this needs additional research and experiments in order to

optimize the performance of the proposed method and check

the changes needed to develop the set-up based on DAM.

REFERENCES

[1] P. M. Churchland, Plato’s camera: How the physical

brain captures a landscape of abstract universals. MIT

press, 2012. DOI: 10 .1080 /10848770 .2016 .1139356.

[Online]. Available: https://doi.org/10.7551/mitpress/

9116.001.0001.

[2] T. M. Mitchell, Machine Learning, 1st ed. USA:

McGraw-Hill, Inc., 1997, ISBN: 0070428077. [Online].

Available: https://dl.acm.org/doi/10.5555/541177.

[3] C.-H. Chen and V. Honavar, “A neural architecture for

content as well as address-based storage and recall: The-

ory and applications,” Connection Science, vol. 7, no. 3,

pp. 281–300, 1995. DOI: 10.1080/09540099509696194.

[4] J. J. Hopfield, “Neural networks and physical systems

with emergent collective computational abilities.,” Pro-

ceedings of the national academy of sciences, vol. 79,

no. 8, pp. 2554–2558, 1982. DOI: 10.1073/pnas.79.8.

2554.

[5] B. Prasad, K. Prasad, S. Yeruva, P. Murty, and S. Rama,

“A study on associative neural memories,” International

Journal of Advanced Computer Science and Applica-

tions (IJACSA), vol. 1, no. 6, pp. 124–133, 2010. DOI:

10.14569/IJACSA.2010.010619.

[6] G. R. Barker and E. C. Warburton, “Multi-level analyses

of associative recognition memory: The whole is greater

than the sum of its parts,” Current opinion in behavioral

sciences, vol. 32, pp. 80–87, 2020. DOI: 10 . 1016 / j .

cobeha.2020.02.004.

[7] J. Steinberg and H. Sompolinsky, “Associative memory

of structured knowledge,” Scientific Reports, vol. 12,

no. 1, p. 21 808, 2022. DOI: 10 . 1038 / s41598 - 022 -

25708-y.

[8] C. H. Chen and V. Honavar, “Neural network ar-

chitecture for high-speed database query processing,”

Microcomputer Applications, vol. 15, no. 1, pp. 7–13,

1996, ISSN: 0820-0750. [Online]. Available: https://dr.

lib.iastate.edu/handle/20.500.12876/20228.

[9] C. F. Caiafa, Z. Wang, J. Solé-Casals, and Q. Zhao,

“Learning from incomplete data by simultaneous train-

ing of neural networks and sparse coding,” arXiv

preprint arXiv:2011.14047, 2020. DOI: 10.48550/arXiv.

2011.14047.

[10] W.-D. Chang, J. Shin, M.-Y. Song, and T.-S. Chon,

“Enhanced back propagation algorithm for estimating

ecological data with missing values,” WSEAS Transac-

tions on Computers, vol. 5, no. 9, pp. 2043–2048, Sep.

2006.

[11] C. Chen and V. Honavar, “Neural network automata,”

in Proc. of World Congress on Neural Networks, vol. 4,

1994, pp. 470–477.

[12] P. Watta and M. H. Hassoun, “Generalizations of the

hamming associative memory,” Neural processing let-

ters, vol. 13, no. 2, pp. 183–194, 2001. DOI: 10.1023/A:

1011384407294.

[13] T. Park, I. Choi, and M. Lee, “Distributed associative

memory network with memory refreshing loss,” Neural

Networks, vol. 144, pp. 33–48, 2021. DOI: 10.1016/j.

neunet.2021.07.030.

SOMA DUTTA, JAEWON SHIN: A NEW PERSPECTIVE OF ASSOCIATIVE MEMORIES FOR PARTIAL PATTERNS 143

