& s

Proceedings of the 20" Conference on Computer
Science and Intelligence Systems (FedCSIS) pp. 133-143 ISSN 2300-5963 ACSIS, Vol. 43

DOI: 10.15439/2025F6266

A New Perspective of Associative Memories for
Partial Patterns

Soma Dutta
0000-0002-7670-3154
University of Warmia and Mazury
in Olsztyn
ul. Stoneczna 54, 10-710 Olsztyn, Poland
Email: soma.dutta@matman.uwm.edu.pl

Abstract—This study aims to present a new perspective for
creating associative memories using incomplete data and project
them into artificial neural networks to retrieve complete data
from incomplete data. In previous studies, various approaches
to construct associative memories and retrieval of stored data
have been proposed. This paper attempts to pin point some of
the limitations observed in the existing approaches and propose
a way to get rid of that. In particular, a different perspective
of comparing two incomplete patterns is proposed and based on
that a flexible way of constructing associative patterns of a given
input (partial) pattern is developed. Finally, the respective neural
network architecture is proposed following similar construction
reported in the existing research.

I. INTRODUCTION

ATTERN recognition is a natural cognitive process that
Pattempts to match an encountered instance of a pattern
with the already stored patterns in the memory and thereby
retrieve (plausibly) relevant information about the new pat-
tern. Learning from patterns, extracting association among
patterns and then applying that knowledge in recognizing
useful patterns in different contexts of decision making char-
acterize different important features of human intelligence
[1]. The emergence of artificial neural network (ANN) [2]
as a prototypical model of human brain, or more specifically
biological neural network, is already well known. From its
inception ANN has been considered as an effective tool in
pattern recognition, signal processing, symbol processing etc
[3], [4], [5]. The task of pattern association generally aims
at storing different patterns similar to a given input pattern
so that a concept related to the given input pattern can be
recalled when a new pattern appears to be similar or a member
of the stored patterns. Variations of a given input pattern is
a common phenomenon, often caused by noise incorporated
while collecting data or partial specification of data due to
incomplete information. Content-Addressable Memory (CAM)
or Associative memory (AM) [5], [6], [7] is the research
domain of ANN which concerns about associating similar
patterns of a given input data to create a memory and recalling
the concepts associated to the input data for those stored
patterns and implement the idea in the context of ANN.

In [3] the authors described that “The term associative
memory (AM) or content-addressed memory refers to a mem-

IEEE Catalog Number: CFP2585N-ART ©2025, PTI

133

Jaewon Shin
0009-0005-5284-295X
University of Warmia and Mazury
in Olsztyn
ul. Stoneczna 54, 10-710 Olsztyn, Poland
Email: jaewon.shin @student.uwm.edu.pl

ory system where recall of a stored pattern is accomplished
by providing a noisy or partially specified input pattern.". A
mathematical representation of the problem is as follows.

Given a data containing a set of input-output pairs (], v1),
(U3, v3), ..., (U, vf) where each input vector u; of dimension
n is connected to an output vector v; of dimension m, the
task of learning the relation between input-output patterns is
realized through standard perceptron model with different ac-
tivation functions. However, the additional point of associating
any pattern from the associative memory of a given input
pattern u; with its output v; is done by creating the notion
of associative memory of each input vector u;, denoted as
AM (u;), and then projecting the association of (AM (u;), 0;)
through a binary mapping module. The AM (u;) for a given
input pattern wu; is created based on the standard notion of
Hamming distance by counting number of bits that differ
between two binary vectors. Further setting a desired precision
level p;, a limit for allowing number of mismatch of bits with
uj, the AM,,(u;) is created by accepting vectors differing
from u; within the range of the pre-fixed precision level p;.

On the other hand, a binary mapping is simply a function
fr: U — V from the domain U = {u; : 1 < i < k} to the
range set V = {v; : 1 < i < k} such that f;(u;) = v;. In order
to make f; be able to recall o; for any pattern from AM,,, (u;)
it is extended to f4 where the domain Ug = U¥_; AM,,, (4;).
So, once through the binary mapping module f; is extended
to fa by defining fa(d) = v; if @ € AM,,(&;) the next
task leads towards tuning the perceptron model recognizing
fr in a way that it can recognize the extended function f4.
Here, the precision level p; chosen for each input vector w; in
creating AM,, (u;) plays a crucial role as in order to ensure
unambiguous recall of a particular output ¥; for a noisy input
pattern @ the condition AM,, (u;) N AM,, (u;) = () for any
1# 74,1 <1i,7 <k is needed [3], [8].

Here a few points to be noticed. One is, by allowing a
mismatch in the bits of u; within a specified precision level
p; the point of noisy data, as mentioned in the above quote,
is addressed. However, the aspect of recalling associative
memory in the context of incomplete patterns of a given
pattern is not paid a due attention to as according to their
proposal two partial vectors only can be comparable using

Topical area: Advanced Artificial
Intelligence in Applications

134

standard Hamming distance when the positions of missing
data of both the vectors are the same. More specifically,
two partial binary vectors (1,7,1,0,1) and (1,1,7,0,1),
where 7 denotes missing value, cannot be compared follow-
ing [3]. However, as on the known bits positions {1,4,5}
both the vectors match, potentially they could represent the
same pattern. The second issue is related to the condition
AM,, (u;) N AM, (u;) = O for any i # j, 1 < 4,5 < k
which is imposed in [3] in order to avoid multiple associative
recall possibility for a noisy vector. For example following [3],
both the above vectors are considered to be partial patterns
of (1,1,1,0,1) which means (1,7,1,0,1) ®(1,1,1,0,1) and
(1,1,7,0,1) ® (1,1,1,0,1) hold. So, both can belong to
AM((1,1,1,0,1)) with precision level 1 although they are
not comparable with each other following standard Hamming
distance. For reference the readers are referred to Figure 1
considered in [3] where the Hamming distance, denoted as
HD, could not be computed for half-pattern. This seems a
bit counter-intuitive as if we consider two partial patterns are
equally potential to represent some fragments of a full image
they might have some common fragments matching with
each other. Thus, without having a possibility of comparing
how two such partial patterns match to each other may lead
to significant information gap. Moreover, the same partial
pattern (1,7,1,0,1) could be considered as a partial pattern
of a full image (1,0, 1,0,1) and thus considering the lowest
precision level 1, we would not manage to avoid the conflict
(1,7,1,0,1) ¢ AM((1,1,1,0,1)) N AM((1,0,1,0,1)). In
[3], the non-overlap of associative memories of two input
vectors is achieved by imposing specific precision levels
pi and p; of two input vectors u; and uj in a way that
dm(u;,uj) > p; + p;. However, as dpy itself has some
limitation in calculating distance between two partial vectors
we opt for departure from the idea presented in [3]. The third
point is concerning the method of preprocessing incomplete
patterns before projecting them to a perceptron model. In [3]
the authors did not account for incomplete patterns in the
training sample. However, while extending the relation f; from
the input-output pairs (ui,v1) ..., (u,v;) of the training
sample over the sets of associative patterns for the inputs
uy, - .., Uj, associative patterns are allowed to be incomplete.
But before creating the perceptron model corresponding to
fa, the extension of f; on incomplete patterns, the missing
parts are imputed just by setting them to 0’s. As mentioned in
several papers [9], [10] setting missing parts of a partial pattern
by 0’s indicates ignoring the missing part while analyzing the
data and thus leads to flaws in classification accuracy.

So, in this paper our aim is to address all these above
mentioned conditions by some more general perspectives.
Specifically, our first proposal is to define a distance function
which can compare any two partial (possibly full) binary
vectors resolving the first problem. The second consideration
is to generalize the notion of ‘partial pattern of a vector’,
denoted by © by a more general notion and thus allowing
the precision level for the associative memory of an input
vector u; to be selected keeping an eye on the whole data

PROCEEDINGS OF THE FEDCSIS. KRAKOW, POLAND, 2025

of input vectors ui, u3, .. ., uk. In regard to the third point, in
our approach, firstly we allow incomplete patterns in the input
training sample. Moreover, considering that data collected in
a particular context might have a reconciliation possibility
within themselves, we propose a way of matching partial input
patterns within themselves in order to visualize if they reflect
any possibility of reconciling full pattern(s) (see Section VI).
The idea comes from the way of reconciling content of a full
image from several of its parts as is done in jigsaw puzzles.
Projection of the extended function f4, in our context, in a
perceptron model can be realized in the same way as in [3],
[11].

The content of the paper is organized as follows. Section
II reviews the basic details and mathematical model of asso-
ciative memory proposed in [3], [8] and discusses about some
limitations of the considered approach. Section III introduces
a new perspective of measuring distance between two partial
vectors following Hamming distance as well as presents a new
notion of potential extension of partial Patterns. Moreover, it
points out the departure from the similar notions proposed in
[3], [8]. Section IV presents the essential conditions and results
that a dataset needs to be satisfied for creating associative
memory. Section V describes the data processing conditions,
methods and iterations for creating associative memories of
a given input set of partial vectors keeping the standard
condition of avoiding multiple recall [3] in mind. Section
VI sketches an idea for retrieving associative memories in
the context of perceptron model. Section VII presents some
concluding remarks.

II. REVIEW OF RELATED RESEARCH

To make the paper self-contained in this section let us
present a summary of basic relevant details. As mentioned
in Introduction the starting point is a data set containing
a set of input-output pairs such as (uj,v1), (u3,v3), ...,
(u}, vi). Neural memories are generally of two kinds, namely
auto-associative memories and hetero-associative memories.
The aim of the auto-associative memories is to reconstruct
a pattern from a noisy or partially specified pattern; that is
here output vector corresponding to each input vector u; is
the same and target is to reconstruct u; from AM (u;). On
the other hand, hetero-associative memory aims to retrieve
information concerning an input vector w; given any instance
from its AM (u;). The relation between k pairs of input-output
vectors of dimension n and m respectively is realized through
a 2-layer perceptron having the input layer comprising of n
neurons, each of which connected to each of the & neurons
lying in the hidden layer, and each of these k neurons are
then connected to m output neurons. Clearly, n neurons at the
input layer represent n-components of an input vector, say u;,
m neurons at the output layer represent m components of an
output vector, and each of the k neurons at the hidden layer
represents k different input-output pairs. For more details the
readers are referred to [3], [11].

SOMA DUTTA, JAEWON SHIN: A NEW PERSPECTIVE OF ASSOCIATIVE MEMORIES FOR PARTIAL PATTERNS

A. Associative Memory

Now as described in Introduction to extend f; from U to
the sets of associative memories for each input vector of U,
first AM (u;) is defined in the following manner.

For any u; € U and respective precision level p;, AM,,, (1;)
={i|u € B"&dp (i, u;) < p;}' where B” represents the set
of all n-dimensional binary vectors and dy represents the
Hamming distance. Then f; is extended over UF_ AM,, (u;)
in the following manner.

fa U AM,, (@) — V, fa(@) = v3; if @ € AM,, (i),
1 < ¢ < k. As mentioned before, the precision level p; for
each 4 is chosen such that AM,, (u;) N AM,, (uj) = O for
any ¢t # 7, 1 < 4,5 < k.

As clearly visible that the above context of associative
memory does not represent the possibility for including partial
vectors with missing values at some of the components. In
[3], [8] the idea of constructing associative memories for
partially specified patterns is developed in the context of
bipolar vectors where components of a vector may assume
values from {—1,0,1}. However, 0 is used only as the marker
for missing positions and any partial vector is supposed to
assume values from only {1,—1}. Given any partial input
vector u; the missing positions of the vector are first padded
with 0 so that the Hamming distance between two vectors can
be computed. Then for two @ and ¢ the notion, viz., @ is a
partial pattern of v is defined in the following way.

Definition IL1 ([3], [8]). Given a partial bipolar vector 1,
i is said to be a partial pattern of U, denoted as U © U, if
the available components of i are the same as that of the
corresponding components of v.

The Hamming distance between two partial bipolar patterns
is computed using the standard definition as dg(@,v) is
defined with the constraint that the unknown positions of
and ¢ are the same. As a consequence after padding with
0’s only the available positions with 1 and -1 would matter in
counting mismatches between pad0(@) and pad0(¥). Then the
notion of associative memory in the context of partial vectors
is defined in the following way.

Definition IL2 ([3], [8]). (i) Given any input pattern w;, the
set of all partial patterns of u; with j-bits is given by

= {@: bits(d) = j & 4O u;}.
(ii) Further given a specified precision level p; for w;, the
associative memory for w; with precision level p; is defined

as AMJI, = {padO(u’) : 3@ € U} & dy (v, @) < |j/n) x pi}.

However, here a few points to be noted. The restrictions
imposed above regarding only counting 1, -1 for the bit
positions indicates that the purpose could have been served by
binary vectors as well. Moreover, two vectors (1, —1,7, —1,1)
and (1,7,1,—1,1) intuitively may represent the same content
as on the known positions they have the same values. As
presented in [3], it seems that to claim @ ® u; the vector u;

'Here to be noted that in [3] for this notion a different notation, namely
U (p;) is used.

noisy pattern noisy pattern

i

memory pattern

1

partial pattern

T

half pattern

noisy pattern

Figure 1. Computing Hamming distance(HD) for noisy patterns [3]

must be a full vector. Thus, firstly for an input pattern «; with
missing values we cannot create AM} (u;). Secondly, consid-

ering w; = (1,—1,1,—1,1) we see both (1,—1,?,—1,1) ®
(1,-1,1,—1,1) and (1,2,1,—1,1) ® (1,—1,1,—1,1) hold.
Thus, <1 ~1,7,-1,1),(1,7,1,-1,1) € U} but as,
dr({1,7,1,-1,1),(1,-1,7,—1,1)) is not defined both to-

gether cannot be considered in AM ((1,-1,1,—1,1)), the
set of associative patterns of (1,—1,1,—1,1).
Keeping these limitations in mind our proposal, presented

in the following sections, departs from a few aspects.

1II. HAMMING DISTANCE AND POTENTIAL EXTENSIONS
OF PARTIAL PATTERNS

The aim of this section is to develop step-by-step the basic
notions, departing from the respective notions proposed in
[3], [8], so that the limitations discussed in Section II can
be overcome. Our first target is to modify the definition for
computing distance between two partial patterns in a way that
instead of ignoring it would account for different unknown
parts of the input patterns. In this regard, let us first present
some notational details below.

Let ¥ be any n-dimensional partial binary vector with
some unknown components, denoted as Unp(i); the set of
known positions of @ is denoted by Bits(), and |Bits(i)|
determines the number of bits in the vector, alternatively
denoted by bits(@). For example, for @ = (?,1,0,7,1,0) the
bits(w) = 4, Bits(uw) = {2,3,5,6}, and Unp(d) = {1,4}.
A. Hamming distance for partial patterns

Let @ and @ be two n-dimensional partial vectors having

(possibly) some unknown components, denoted by U np(i)
and Unp(u’) respectively.

Deﬁnition III.1. Given two partial binary vectors U and

" the Hamming dlstance between the vectors is defined as
DH(_' @) = dg (ut,ul) + 1, where ut and ut are obtained
by dropping all positions of Unp(@) U Unp(u)from @ and o/
respectively, and | = |Unp(@) U Unp(d’)|.

It is clear from Definition III.1 that the modified notion of
Hamming distance between two partial patterns considers a

135

136

pessimistic perspective by admitting the possibility that the
missing positions of the vectors might have different content.
The results below present in what sense it could be considered
as a metric.
Proposition IIL.2. Dy (@, 7) < Dy (i, W)+ Dy (W, V) for any
U, U, W

Based on Definition III.1, the proof relies on meticulously
checking all different possibilities of unknown positions and
their interrelations for three vectors , U, .

Proposition II1.3. Dy satisfies the following properties of a
metric.
1) Dy (@,) > 0 for any i, 7.
2) Dy(@,7) = k if and only if ut = vt
|Unp(@) U Unp(7)| = k.
3) Dy (u,v) = Dy (v,4) for any u,v.

The proof of Proposition II1.3 is straightforward from Def-
inition III.1. From the property (2) of Proposition IIL.3, we
can notice that Dy (4, @) = k given |[Unp(@)| = k& > 0. So,
in contrary to standard metrics Dy is not reflexive. However,
in the context of partial patterns it is quite intuitive that two
partial patterns even may look the same on the known parts but
there might be some mismatch in content in the undisclosed
parts. Moreover, if we stick to the condition that Unp(u) =
Unp(117), then dp can be considered as a lower estimation
of Dy, and thus provides a more general perspective of
calculating distance between two partial patterns.

-

Proposition IIL.4. Given Unp(ii) = Unp(d'r), Dy (i) >
dp (@, u') + 1 where |Unp(d)| = 1.

From Proposition II1.4 it can be noticed that as the number
of bits of # and u’ increase Dy will be more close to the
estimation proposed by d.

B. Potential extension for partial patterns

In this section we present a new perspective for the notion
associative patterns by considering a modification of the same
notion proposed in [3] from two aspects. Firstly, unlike ©
we would introduce a new predicate ® which incorporate the
possibility of @ ® v to hold for a partial vector ¢’. Secondly,
the notion of associative patterns developed based on ® would
allow two partial patterns @ and u as associative patterns
of a given input pattern u; even they do not share the same

unknown parts.

Definition IIL5. Given a partial binary vectors U and any
(partial) binary vector v, U is said to be potentially extended
to U, denoted by 4 ® U, if Unp(@) 2 Unp(¥) and values of
all the known components of U match to that of the respective
known components of v.

The Theorem below shows that @ generalizes the notion of
©.

Theorem IIL.6. For a full vector v, i ® v is a special case of
U® .

PROCEEDINGS OF THE FEDCSIS. KRAKOW, POLAND, 2025

Proof. Let consider n-dimensional vectors ,v,. Let 4 ® U
where Unp(¥) = 0 (The condition Unp(d@) 2 Unp(¥) for
having @® is trivially satisfied.) Now as @® ¥, dy (ut, vt) =
0, where ut, vt are the vectors obtained by truncating U np(x)
from both the vectors. Thus ¢ is a full vector and % is a partial
vector, s.t. VI € Bits(i), the [-th components of @ and ¥ are
the same. .. 4 © ¥ O

Now, analogous to U g presented in Section II in our context
for an input vector «; we construct the following set.
Uit < (i e B0 < bits(il), i @}, 1 < i < k.

bits(u;) _ rrn—p;
U =U;" "

Considering |Unp(4;)| = p; we can write U,
It is to be worth noticing that in U;"" " we do not allow
vectors with full unknown parts or in other words a vector

with empty Bits.

IV. DATA RESTRICTION IN CHOOSING PRECISION LEVEL
FOR ASSOCIATIVE MEMORY

In [3], while developing binary mapping and respectively
perceptron model for a set of input vectors the authors main-
tained the constraint of mutually disjoint associative memories
for a set of input vectors by tuning the precision level p; for
the associative memory constructed for each input vector ;.
In our work, as the notion of Ug’ is replaced by the notion
of U ?" where |Unp(u;)] = p; to ensure mutually non-
overlapping associative patterns for a given input set of vectors
we propose to consider non-overlapping unknown components
for each pair of vectors «; and 4j in the input set of vectors.

Apart from the technical point of view of imposing
Unp(@;) N Unp(uj) = 0 for any ¢ # j and 1 < 4,5 < k
there is an intuitive perspective of imposing this constraint
as well. Often while solving a puzzle related to creating a
known image, nowadays prevalently known as jigsaw puzzle?,
we are given a number of pieces each having different known
fragments of the image visible. Usually, we aim to fit the
unknown and known fragments of two pair of pieces in a
way that some part of the whole image can be retrieved. For
instance, given two partial input vectors u; = (1,0,7,0,1)
and uj = (1,7,1,7,1), in one hand, merging them by re-
placing one’s unknown components with others respective
known components may help to visualize a complete pattern
(1,0,1,0,1). On the other hand, following the notion of ®
neither u; ®u; nor w; ®u; holds. That is, all the input vectors
are considered to be independently indispensable to recover
the full content of the actual image as neither of them can
be potentially extended to the other following the notion of
®. Moreover, it would be clear in the latter sequels that the
impact of this condition is not limited to the above discussed
perspectives only.

A. Imposition of Restriction on Data

We start with imposing a few constraint on a data set of
n-dimensional input vectors i, U3, .. ., Uk.

Zhttps://en.wikipedia.org/wiki/Jigsaw_puzzle

SOMA DUTTA, JAEWON SHIN: A NEW PERSPECTIVE OF ASSOCIATIVE MEMORIES FOR PARTIAL PATTERNS

Definition IV.1 (Dset). A set of n-dimensional input vectors
uy, Uz, . .., Uy satisfying the following conditions is called a
Dset.

D) 0 < |Unp(adi)| < [n/2]

2) Unp(u;) U Bits(w;) = {1,2,...,n}

3) Unp(u;) NUnp(u;) =0 for 1 <i4,5 <k,i#j

The condition (1) imposes a restriction, may be called as
Maximum Half Uncovered Pattern (MHUP). The condition
(2) imposes that unknown and known part of each vector
must exhaust the full pattern, may be called Exhaustive Pattern
(EP). The condition (3) may be named as Mutually Disjoint
Unknown Parts (MDUP).

A series of results below would clarify how the condition
(MDUP) may determine the choice of precision level for
a given input vector in the context of creating associative
memory.

Proposition IV.2. If @ € U " NU;™" then Unp(ud) 2
Unp(u;) UUnp(uj) and dp(uj, uf) = 0 where uf and uf; are
obtained by dropping all positions of Unp(t@) from ; and
respectively.

Proof. @€ U] P and 4 € U;L_pj; that is, ¥®w; and € ® ;.
Let u} and u® be the vectors obtained by dropping the positions
of Unp(d) from both @; and @. So Unp(w;) C Unp(d)
and dy(ul,u’) = 0 as well as Unp(u;) C Unp(@) and
dpr(ub, ut) = 0. O

The above proposition leads to the following corollary.
Corollary IV.3. If i € U "' N U;Lipj, then p; + p; < p.

Proof. As Unp(u;) NUnp(uj) = 0, then by Proposition IV.2,
Unp(a;)UUnp(u;) C Unp(@) which implies p;+p; < p. O

Combining Proposition IV.2 and Corollary IV.3 using con-
traposition we can say that if for a vector @ with [Unp(4)| = p,
p < pitpjordy (uf,ul) # 0, then @ ¢ U "' NU;™", where
ot u”jt are obtained from u;, u; respectively by truncating
respective positions of Unp(@).

So, from Corollary IV.3 it is clear that if two input vectors
are not having common unknown parts then that suffices to
choose a precision level for a vector % and ensure that « cannot
be regarded as a common associative pattern for both the input
vectors. However, this is not a necessary condition ensuring
U P"nU;™" = 0. The sequel below will throw some light
in this regard.

Proposition IV.4. If Unp(a;) N Unp(uj) = 0, then U] " #

U;L_pj given p; > 2 or p; > 2.
Proof. Let Unp(u;) = {ri,72,...,7p,}, Unp(u;) =
{t1,t2,...,tp,} where Unp(u;) N Unp(uj) = 0 and p; > 2.

Now, consider @ with Unp(@) = {ri,r2,...,7p,} U {t;}
where t; € Unp(uj) and Dy (', @) = 0 where ', @t
are obtained by truncating all the positions of Unp(%) from
both the vectors. Clearly, @ ® u; and thus @ € U;" ", But as

Unp(@) 2 Unp(u}), @ ¢ U;-%pj.

In the similar fashion, for p; > 2 we can create a vector o
such that v/ € U;fpj but u’ ¢ U, "". Thus, we can claim
that U] # U™, O

Proposition IV.4 indicates that by considering non-
overlapping unknown parts in the input data and putting the
restriction that at most one input vector in the input data may
have exactly one unknown component, we will be able to
ensure that the set of associative patterns for each input vector
will be distinct. However, the condition does not ensure that
U P"NU;™" # (). The example below illustrates the claim.

Example IV.1. Let us consider Unp(u;) and Unp(u};) as the
same as in Proposition 1V.4 with an additional condition that
Unp(a;) UUnp(uj) # {1,2,...,n}. Now consider a vector
@ with Unp(id) 2 Unp(d;) U Unp(a}) and Dy(at,a;') =
Dy (it,a;") = 0 where ', ;"' are obtained respectively
from the original vectors after removing the components of
Unp(@). This clearly indicates that @ ® u; and @ @ u; and
thus @ € U " nU; ™.

In [3], the associative patterns for the set of input vectors
are imposed to be non-overlapping. The reason behind such
consideration is already explained in Section II. The above
results indicate that, in our context, in order to avoid overlap
in the respective associative patterns for the input vectors we
may need a further pre-processing phase for data.

Based on Corollary IV.3, we can notice that given any two
input vectors u; and uj if we choose a vector @ with Unp()
= p such that p < p; + p; then @ ¢ U " N U} That is,
to avoid overlap in the respective associative patterns of any
two input vectors of a data set uj,u3,..., U, we can impose
the following condition.

Condition IV.5. Given a data set of input vectors
UL, U, - - -, Uk, for any w;, 1 < i < k, the precision level p;
for the set of associative patterns of w;, denoted by AM (u;),
must satisfy p; < p; < p; + p; for any j #i.

Here a natural question arises that whether given an input
data we will always have a situation to choose a precision
level for an arbitrary input vector following Condition IV.5.
Following proposition would clarify the issue further.

Proposition IV.6. Given the input data ui,us, ..., uy, if for a
vector w;, 1 <1i <k, there isno p; € Z" s.t. p; < p; < pi+p;
for any i # j, then there is at least one j # 1 for which p; = 1.

Proof. From the assumption that there is no p; € Z*, s.t.
p; < pi < p; +p; for all 7 # j it is clear that p; + p; must be
equal to p; + 1 for some j .". p; = 1 for some j.]

Proposition IV.7. If p; = 1 for some j # i, then there is no
pi € L satisfying p; < p; < p; + pj for i # j.

Proof. Let p; = 1 for some j # i, and there exist a p; € Z™"
satisfying p; < p; < p; +p; for i # j. As p; = 1 for some
j # 1, wecan write p; < p; < p;+1and 0 < p;—p; < 1. This
is a contradiction as p;, p; € Z*. Hence there is no p; € Z*
satisfying p; < p; < p; + p; for i # j. O

137

138

Clearly, if we have a data set of input vectors ui, u3, . . . , Uk
such that |Unp(u;)| = p; > 1 for each i € {1,2,...,k}, then
following Condition IV.5 finding a precision level p; € ZT
for each input vector u; is possible. This result also goes in
accordance with our observation from Proposition IV.4. So,
allowing only input vectors with more than one unknown
components may help to create a unique precision level for
the set of associative patterns for each input vectors following
Condition IV.5. However, we need to dig further to check how
such a condition would impact on the availability of sufficient
amount of input data.

B. Impact of data restriction on availability of data

Given the restriction on data imposed in Definition I'V.1 and
the additional restriction mentioned in Condition IV.5 it is now
important to check how much data we may have to train a
required perceptron model. In this regard, let us first consider
the context of a data set satisfying the conditions (MHUP)
bits(w;) > [n/2] and (EP) (Bits(w;), Unp(u;)) forms a
partition of {1,2,...n}, mentioned in Definition IV.1. Before
presenting the result let us define some useful notations.

Notation IV.8. (i) S,(bits) = {X C {1,2,....,n} : |X| >
[n/21}.
(i) SI(YV)={XCY:0<|X|<il
Given the above notations we can notice that S, (bits) =
P({1,2,...,n}) — SI"/21({1,2,....,n}).

Proposition IV.9. |S, (bits)| = 2" — S "Cy, where n =
2morn=2m —1 le3

Proof. We know |P({1,2,...,n})] = 2" Now for
5‘("/2]({1,27 ...,n}), we have two cases (1) n = 2m and (2)
n=2m-—1

(1) If n = 2m,[n/2] = m, then S™({1,2,...,n}) =
me QmC

(2) If n = 2m — 1,[n/2] = m, then S™({1,2,....,n}) =
Zm 12m— 1C

Therefore, clearly from (1) and (2), |P({1,2,....,n})| —
|ST"/21({1,2,...,n})| = 2" — Z:’LB "C, where n =
2morn=2m—1, m > 1. O

Proposition IV.10. 2" — S L, = S0, where
n=2morn=2m—1,m>1

n

Proof. 1t is well known 2" = """ /"C;. Now we need to
show S "y = S, + 2 ngy

(1) when n =2m, [n/2] =m and |[n/2] =m
LHS = 2mCO 4 2m01 4 2m02 o+ ZmCQm
RHS4 = 2mC’O + 2’mC1 + ...+ 2m0m—2 + 2mcvm—l + 2mC’O +
2mc«1 4o +2mcm71 +2mcm
_ 2mCO + 2mC1 + o+ 2mcm_2 + 2mcm_1 + QmCm +
2mcm+1 4. _’_2m612m71 +2m02m
. LHS=RHS

3pn=2mor n=2m+1,is also possible.

4LHS and RHS are respectively the abbreviations for Left Hand Side and
Right Hand Side of a relational equation.

PROCEEDINGS OF THE FEDCSIS. KRAKOW, POLAND, 2025

(2 whenn=2m—1,[n/2] =m and [n/2]=m—1
LHS = 2m—100 + 2m_101 + 2m—102 N Qm_ICmel
RHS = 27100+ 210 + . 4271 C 0 + 271 Cpg +
Qm—ICO +2m—1cl T +2m—10m71 + 2m—1Cm
ey GO O et T Oz P Cly

Cm + Cog1 + ...+ Com—2 + Com—1
. LHS=RHS
O

So, combining Propositions IV.9, IV.10 we can say that
|Sn (bits)] = ZZLZ{]QJ "C,;. That is, for 10-dimensional vectors
there can be maximum 638 vectors satisfying (MHUP) and
(EP) mentioned in Definition IV.1. So, the next question arises
that how many vectors out of |S,,(bits)| number of possible
vectors can have non-overlapping unknown parts. In this
regard, let us consider any input vector «; with bits(u;) = r
where [n/2] <r <n.

Proposition IV.11. Given an input vector w; with bits(u;) =
r, where [n/2] < r <n, the maximum number of vectors in
B" having disjoint unknown parts with Unp(u;) is "Cy—p.

Proof. Let u; be a vector with Bits(u;) = {s1,82,...,8:}
where [n/2] <r <n and |Unp(w;)| = n — r. Following our
condition r > n—r. Then in order to have other r-bits vectors
with non-overlapping unknown components we can consider a
vector ;" whose Unp(w;') is obtained by exchanging all n—r
positions of Unp(u;) with positions from {s1, s2,...,,} of
;. This allows us to create "C,,_,- number of different vectors
with r-bits having disjoint unknown parts with ;. O

Example IV.2. Following Proposition IV.11, for n = 10, we
can allow input vectors with number of bits ranging from 5
to 10. Given an input vector wy with [Unp(uy)| = 5 there
can be exactly 1 possible 5-bit vector, say ui1, having non-
overlapping unknown parts with uy. For an input vector i
with |Unp(u3)| = 4 there can be exactly 15 possible 6-
bit vectors having non-overlapping unknown parts with us.
However, these 15 vectors may have common unknown parts
within themselves. Thus, at each turn we can select exactly
one vector, say usy, from these 15 possible cases satisfying
the condition of non-overlapping unknown components with
us. For an input vector uz with |Unp(us)| = 3 there can
be exactly 35 possible 7-bit vectors having non-overlapping
unknown parts with u3. So, in one round of selection out of 35
possibilities we can select a pair of vectors, say usy, uzs, such
that u3 and these two vectors satisfy mutually disjoint unknown
parts. For an input vector i}y with |Unp(uy)| = 2 there can
be exactly 28 possible 8-bit vectors having non-overlapping
unknown parts with uy. In this case, out of 28 possibilities
we can select 4 vectors, say u41, U4z, U4s, uiq such that along
with uy they satisfy mutually disjoint unknown parts. For an
input vector uy with [Unp(us)| = I there can be exactly 9
possible 9-bit vectors having non-overlapping unknown parts
with uy and all of them can be considered together in one
round of selection as they satisfy mutually disjoint unknown
parts.

SOMA DUTTA, JAEWON SHIN: A NEW PERSPECTIVE OF ASSOCIATIVE MEMORIES FOR PARTIAL PATTERNS

From the above clarification, two important aspects are
surfacing out. One is the chosen number of unknown com-
ponents for the vectors of a particular dimension. If half of
the components are unknown the number of different vectors
with non-overlapping unknown parts is very less, and when
the number of unknown components is decreasing possible
number of different vectors satisfying (MHUP) and (EP) is
increasing. However, as it is visible from the example that
there seems to be a threshold value for number of unknown
components, which is here 3, after which the number of possi-
ble vectors with a specified number of unknown components
is decreasing. On the other hand, even for a vector u; with
n —r (< |n/2]) number of unknown components not all of
the "C,_, number of possible vectors having non-overlapping
unknown parts with u; can be considered together as they
would not satisfy (MDUP). So, in order to train a perceptron
model if we wish to use the available data as much as possible
satisfying the conditions of a Dset, we may need to split the
data over several iterations and learn separately the perceptron
model generated in each iteration.

V. CONSTRUCTING ASSOCIATIVE MEMORY AND
SPLITTING DATA OVER ITERATIONS

Given the above analysis about the number of possible input
vectors of dimension n satisfying the conditions of Definition
IV.1 and the condition concerning precision level of each input
vector (see Proposition IV.6) let us introduce the following
method ensuring non-overlapping sets of associative patterns
for a given Dset.

Definition V.1 (M-AM). Let a Dset containing k number
of n-dimensional input vectors ui,us,...,u be given. The
method, called as M-AM, of creating the associative memory
for each input vector is described as follows.

1) For each i, if the precision level p; is s.t. p; < p; <
pi + pj for any j # i holds, then consider U,, = {u €
U |Unp()] < pi} as AM(u3).

2) If for a vector w; there is no p; satisfying Condition IV.5,
then follow the following process of modifying U,,,.

a) Find O; = {l | pi + pi = min; p; +pj, j # i}

b) Consider p; = p; + pi

c) U;’i“’d ={d e U,, : Unp(d) 2 Unp(uy), | € O;}
and consider U;';“’d as AM (u3).

The method M-AM describes an algorithm for determining
a precision level for each input vector keeping an eye on the
whole input data and accordingly creating an associative mem-
ory for each input vector of a given data set uj,u3, ..., Uk.
However, at this stage our next concern is to check what
amount of associative patterns can be generated for each input
vector following the method M-AM.

Proposition V.2. Given input vectors uy,us, ..., uj, for an
arbitrary 1, if the precision level p; is s.t. p; < p; < p; +p;
for any j # i holds, then |U,,| =""P'C,,_,

Proof. According to M-AM for any @ € U,,, Unp(@) 2
Unp(d;i), |Unp(@)| < pi where p; < p; < p; + pj, any

i # j. So, for any @ € U,, Unp(&) contains Unp(u;)
and any |Unp(@) — Unp(a;)| = p; - p; positions out of
{1,2,...,n} —Unp(q;)| = n-p; positions of Bits(w;). Thus,

|Uﬂi ‘ = n_picﬂi*m' O

Proposition V.3. Given input vectors uj,us, ..., uy, if for an
arbitrary u;, there is no p; s.t. p; < p; < p;+p; forany j # 1,
then |U;’ZOd = "=@HONC where O; = {L:pi+pL=
min; p; +pj,j # i}

Proof. Clearly, U;’Z"d C U,, and as there is some j # 7 for
which p; = 1, p; = p; + 1. So, following Proposition V.2 p; —
p; = 1. Moreover, while creating U;}Od as we are considering
that for any u € U;’iwd if l € O; then I ¢ Unp(@), we also
need to remove from {1,2,...,n} all unknown positions of
the vectors u; such that [€ O;. So, in contrary to Proposition
V.2 here we have n — (p; + |O;|) remaining positions from
where p; — p; that is 1 position can be chosen to be included
in Unp(@). So, we have "~®+19DC, many ways to create
Unp(@) by adding one additional position to Unp(w;). Hence
|U;riwd — n*(piJrIOil)Cl’ 0

Following Proposition V.3, we can see that the more input
vectors with unknown components equal to 1, i.e., |O;] in-
creases, the number of vectors belonging to U;:“’d decreases.
For this reason, we should avoid having a large number of
input data consisting of just one unknown component vector.

A. Stepwise Unknown Full Cover Input Data

Following Proposition V.3, we should avoid a set of input
vectors such that each has only one unknown component. The
sequel below will make the point more precise.

Proposition V.4. Following M-AM for any n number of n-
dimensional vectors Uy, us, . . . , Uy, if AM(u;) 2 {u;} then it
can not be the case that py = ps = -+ =pp, = 1.

Proof. Contrapositively, if for a data set satisfying conditions
of M-AM we assume p; = ps = - -+ = p, = 1, then for any w;
by Proposition IV.7 there is no p; such that p; < p; < p; +p;
for any j # ¢, i, € {1,2,...,n}. Thus,AM(u;) = U/?:Od.
But O; = 0. Hence, AM (u;) = {u;}.

Definition V.5 (SUFC). Given a set of n-dimensional input
vectors uy, us, . .., uy with |[Unp(u;)| = p; for 1 < i < k,
and py =py =+ =p, = Lif Us_ Unp(u;) = {1,2,...,n}
and Unp(u;) N\Unp(uj) = O for any i # j, then we call such
data set as Stepwise Unknown Full Cover (SUFC).

Thus, along with conditions mentioned in Definition IV.1
let us add another additional condition on the Dset.

Condition V.6. A Dset of input vectors ui,uz, . .
not satisfy SUFC.

., U should

Based on the above discussion it is clear that apart from the
conditions mentioned in Definition IV.1 we need some other
conditions to be imposed in order to follow method M-AM in
the process of creating associative memory for a Dset. Thus,
below we present a modified notion of Dset.

139

140

Definition V.7 (Dsetay;). Given a set of input vectors
Uy, U, ..., U, we say it as a Dsetayy, if it is a Dset and
satisfies Condition V.6.

B. Processing Input Data Through Iterations

Based on the results and discussion presented in the above
sections, we can notice a few important aspects for effectively
using a given data in the process of creating associative
patterns and then learning perceptron models based on them.
The first is that, given a Dset of n-dimensional input vectors
to apply method M-AM for creating associative memories for
input vectors we may need to split the Dset over different
iterations. Secondly, in order to avoid overlapping sets of as-
sociative patterns for all the vectors considered in a particular
iteration the input vectors considered in each iteration should
form a Dsetqps. Thirdly, based on Proposition IV.11 and
Example IV.2 we recognize a need for selecting a Dset 4, for
each iteration satisfying a top down decomposition ordering,
described below, by allowing gradually less unknown parts (or
gradually more known parts) in the selection of input vectors.

C. Top-down Decomposition Ordering

We propose a method for ordering the input data to be
selected in a Dset s in such a way that it considers vec-
tors with gradually increasing order of unknown parts while
selecting for a Dset 4); from a given data.

Definition V.8 (TDDO). Let us consider a set of input vectors,
In = {u}, 3, ..., Ui} of dimension n, where n. > 3. 5 A Top-
Down Decomposition Ordering of input vectors is composed
of the following steps.

1) Select a vector w; (1 < j < k) such that |Unp(uj)| is
minimum. Call the vector uj;.

2) Select the next vector from In \ {uj} such that the
number of unknown components of the selected vector is
|Unp(uj)|+1 and the unknown components of the new
vector does not have common overlap with Unp(uj).
Call the new vector ujs.

3) Continue the process as long as there is no vector from
the remaining set of In satisfying condition (2).

Example V.1. Given a input data In = {ui,us, ..., u} for
n = 10. Following Definition V.8 consider input vectors from
In such that w;jy with [Unp(uj1)| = 1, uja with [Unp(uj2)| =
2, ujz with |Unp(uj3)| = 3 and ujq with |Unp(ujs)| = 4, and
they satisfy (MDUP). Clearly, for n = 10, there are no more
than 4 vectors that have no common overlapping unknown
components covering {1,2,...,10}. Thus, an iteration consist
of this set of vectors {uy, us, u3, U} }.

From Example V.1 we can see that following TDDO if we
select input vectors, starting from lowest number of unknown
components, in a strict increasing manner depending on the

SFollowing the condition that for a n-dimensional vector maximum number
unknown components can be |n/2], for a vector of dimension one would not
have any unknown component, and for a vector of dimension 2 or dimension
3 can have exactly one unknown component. So, TDDO does not apply to
the vectors with dimension n < 3.

PROCEEDINGS OF THE FEDCSIS. KRAKOW, POLAND, 2025

dimension of the vector there seems to be a threshold value for
the number of unknown components. For instance, in case of
Example V.1 for 10 dimensional vectors this threshold value
is 4. The sequel below throws light on this.

Definition V.9 (Threshold and cardinality value for TDDO).
Let a set of input vectors of n-dimension (n > 3) be given.
To create a Dset o)y for one iteration we first select a vector
with exactly one unknown component and continue selecting
a sequence of vectors following TDDO. When the process
reaches to stage 3 of TDDO (see Definition V.8) the maximum
number of unknown components of the last selected vector in
Dset s is considered to be the threshold value for TDDO for
dimension n, denoted by T, and the cardinality of the Dset
thus constructed is called the cardinality value for Dset sy,
denoted as |Dset g |-

Following Definition V.9 it is clear that for an n-dimensional
input vectors once we reach to the stage (3) of TDDO and get
hold of a vector reaching threshold 7, we cannot include any
vector in the respective Dset 4, having more than 7}, number
of unknown components. So, one important question is how
to determine the threshold 7}, for any arbitrary dimension n.

Theorem V.10. Given a set of input vectors of dimension n
let T,, and |Dset apr| be respectively the threshold value and
cardinality value of the Dset) obtained following TDDO
corresponding to an iteration. Then considering |Dset ap| =
i the following relations hold between T,, and i.

) Ifn=23 1T, =1

2) Foranyn > 3 and i > 2, w <n< @—l—iholds

and for all such n, T,, = 1.

Proof. For n = 2,3 the case is straightforward.

For any n (n > 3) the increasing order of unknown
components of the vectors selected in Dset are 1, 2, ...T,. So,
|Dsety,| =T, = i. Following TDDO, n— (1+2+---+1) <.

on < w + ¢ and clearly for n > 3, the value ¢ must
satisfy ¢ > 2.

Moreover, total number of positions covered by the unknown
parts of the vectors of Dset,, cannot exceed n. .. w <n

',@§n§@+i,foralln>3andi22.
Moreover, as for any n € [i(i;1)7 i(igl) + 7] after covering
gradually 1,2, ..., number of unknown positions, i.e., total
@ positions out of n dimension, there can be at most
positions remaining to be considered as unknown part of a
vector. Thus, the threshold value 7, for all such n would be
the same as 1. O

Example V.2. Following Theorem V.10, let us consider that
Uy, Us, ..., ur be a set of input vectors of dimension n > 3.
For i = 2 we see that 4, 5 € [i(i;n,w +i] and T,, = 2;
that is following TDDO there cannot be any vector of more
than 2 unknown parts in a Dsetap. For i = 3, n € [6,9]
and for any n lying in this interval T,, = 3 as the gradual
increasing order of the number of unknown components of
any vector entitled to enter in a Dset opr of an iteration are

1, 2, 3. Similarly, for i = 4, [\ 90D 441 — 110, 14] and

SOMA DUTTA, JAEWON SHIN: A NEW PERSPECTIVE OF ASSOCIATIVE MEMORIES FOR PARTIAL PATTERNS

Sor any n € [10, 14] the threshold value for maximum unknown
part following TDDO is T,, = 4.

D. Splitting data over iterations

As it is clear from previous sections, for n-dimensional
vectors satisfying first two conditions mentioned in Definition
IV.l1 we may have ZZLZ(/)QJ "(C; of vectors in the input data
In. However, following method M-AM in one iteration we
can use only one small fragment of of data from In using
TDDO. So, below we propose a complete procedure for using
the data of In over some iterations.

Definition V.11 (SDOI). For a input data In containing n-
dimensional vectors Ui, uy,...,uj by Splitting Data Over
Iterations (SDOI) we mean the following procedure. In the
first iteration, say Iy, we choose the vectors for DSet%,, as
follows.

(i) Select the first appeared vector uj € In with minimum
|Unp(uj)| (< Ty) and rename it wjy

Following TDDO select vectors from In \ {u;} with
gradually increasing order of unknown components (con-
sidering first such appeared in input data) and continue
till it reaches the threshold value T,

Step (ii) ends when at most T, vectors, say
uj, gj%T . ,)uan € Dset%,,. For the remaining
n — =5 positions select vectors from In'\ DsetYy
such that the gradual selection of the vectors satisfy
monotonically decreasing order of unknown parts
(satisfying Definition IV.1) as long as Uge psers, . Unp(@)
={1,2,...,n}.

Once Step (iii) ends, a new iteration of creating next
Dset ang starts from step (i) over the remaining data
In\ Dset%,,.

Step (iv) continues as long as it is possible to create a
new Dset ans following steps (i)-(iii).

(ii)

(iii)

(iv)

)

Example V.3. For n = 14, in the iteration Iy we may have
Dsetapy = {uy, us, u3, uy, us, ug} where |Unp(w;)| = i for
1 < i < 4, and after reaching Tyy = 4, (us)
and |Unp(ug)| = 1. There can be several possibilities of
constructing such a Dsetans. For instance, one such is
Unp(ii) = {1}, Unplu) = {2,3}, Unp(ais) = {4,5,6},
Unp(u}) {7,8,9,10}, Unp(us) {11,12,13}, and
Unp(ia) = {14}

Now let us present another example in order to understand
how the associative memories for a given set of input vectors
of a specific dimension n can be constructed following M-AM
method and the data selection method described in Definition
V.11.

Example V4. Given a input data In containing 8-
dimensional vectors 1, us, . . ., uj. Following Definitions V.1,
V.8, V.9 V.11 consider the input vectors from In such that uy
with Unp(ui) = {1}, uh with Unp(uz) = {2,3}, u3 with
Unp(uz) = {4,5,6}, © uy with Unp(uy) = {7,8}, that is,

Following Theorem V.10, the threshold value T}, = 3 for n = 8.

Iy = {u1,us,u3,us}t. We can check that the precision level
for uy is obtained following the first condition of Definition
V.1. Since p1 = 2 satisfying Condition 1V.5, we can consider
@ € Uy, st. Unp(d) = {1,i} where i # 1, i < 8 That
is Uy, = {(?,ui2,u1s, ..., u1s) exactly one of u1; =
?forj # 1land uy = wix, k # j,1}. To illustrate more
precisely, let us assume ui = (?,0,1,0,1,0,1,0). Then U,, =
{(2,2,1,0,1,0,1,0),(?,0,2,0,1,0,1,0), (?,0,1,?,1,0, 1,0),
,(7,0,1,0,1,0,1,7)}. For the other vectors u;, i = 2,3, 4,
the precision levels cannot be obtained following the
first condition of Definition V.I (see Proposition IV.7).
Therefore, we follow the process of modifying U,,. According
to Proposition 1V.7, O {1}, pi = pi + p1 for any
i # 1, 1 < i < 4. 7 Therefore we should consider
@ € Uped, s.t. Unp(@) = Unp(u;) U {j} where 1 < i < 4,
j# 1, 5 <8 Unp(u;) N{j} = 0. That is U,Z“’d =
{(u21,?,?,u4,...,usg) : exactly one of ua; =7 for j #
1,2,3 and uor = wik, k # j,2,3}. To illustrate this, let us
say a given vector up = (1 ,7,7,0,1,0 1,0). Then U;’;Od =
{(1,7,2,7,1,0,1,0), < ?,2,0,2,0,1,0), (1,2,2,0,1,7.1,0),
(1,7,2,0,1,0,2,0) (1,7,7,0,1,0,1,7)}.
Similarly, Umet = {<U31,U327u33,7,7,7,u37,u38>
exactly one of uz; =7 forj # 1,4,5,6 and ug, =
uik, k # j,4,5,6} and U;’Z"d = {{war,...,u46,7,7)
exactly one of ug; =7 for j # 1,7,8 and ua, = ujk, k #
J,7,8%.

VI. INFORMATION RETRIEVAL FROM ASSOCIATIVE
MEMORY USING PERCEPTRON

In this section, we attempt to sketch the idea of projecting a
2-layer perceptron from a Dset 45s generated by an iteration
following SDOI. In contrary to [3], in our case a Dsetans
contains input data with unknown components. Following [9],
[10], if the perceptron is trained on samples with incomplete
feature vectors, i.e., partial input data, significant propagation
errors may occur during the inference process. In addition, if
important features are frequently missing, the learned decision
boundaries may become biased or suboptimal, which can
degrade the model’s prediction performance. To get rid of
this problem, it is essential to implement a process to replace
missing data before training. This allows the perceptron to
learn from partially known data, thereby outputting incomplete
input data as complete data. So, below we propose a way to
replace the partial input vectors with a potential full vector.

A. Replacing Partial Vectors By Full Vectors

The Dset aps generated by an iteration of SDOI contains
vectors satisfying (MDUP). That is, the unknown parts of any
pair of vectors do not have common overlap with each others.
This feature can be utilized to reconstruct full vectors before
training the perceptron model. We replace each vector from a
Dset ops as follows.

1) Given u;,uj € Dsetgp foranyi # 5,1 <1i,5 < T, the

unknown component of the vector u; is replaced with the

7We only consider the given vectors 1, 13, U3, 1.

141

142

known components of the vector u. For vector u; only
the positions from Unp(u;)N Bits(u;) are replaced with
that of ;. The new vector created in this way is called
u;;. Following similar process u;; is also obtained.

2) Check Hamming distance between u;; and uj;, for any
i 7]

3) Among the vectors u;; j # ¢ obtained by exchanging
parts with u; the one with minimum Hamming distance,
would determine the full vector that can be selected
to replace u; considering as the most plausible ideal
representation of ;.

Following the above method, we can expect that the recon-
structed input vector will match more closely the ideal input
data set without noise and unknown parts. Using the Hamming
distance as a similarity measure, we can systematically select
the most reasonable candidate from the pool of potential com-
plete vectors, obtaining an input data set that better matches
the intended representation of the original set of partial input
vectors.

Example VI.1. For n = 10, in an iteration Iy we may
have Dset’,, = {u1,us,u3,us}, where |Unp(w;)| = i, for
1<i<4T,=4

Let the vectors be uy = (0,1,0,0,7,1,1,1,0,0), vy =
(1,1,0,0,0,1,0,7,0,7), u3 = (1,0,0,0,0,7,7,1,7,0), uy =
(7,7,7,7,0,1,1,1,0,0), where ? denotes missing value in a
vector.

Replacing Unp(ui) with Bits(uj), Bits(us) and Bits(ul),
we respectively have ui, = (0,1,0,0,0,1,1,1,0,0), uys =
(0,1,0,0,0,1,1,1,0,0),u74 = (0,1,0,0,0,1,1,1,0,0).
Similarly, replacing the unknown components u3 with the
known components of other vectors we have, uz; =
(1,1,0,0,0,1,0,1,0,1), wz3 = (1,1,0,0,0,1,0,1,0,1),
uzqa = (1,1,0,0,0,1,0,1,0,0). For u3 we have uz; =
(1,0,0,0,0,1,1,1,0,0), uz2 = (1,0,0,0,0,1,0,1,0,0),
uzs = (1,0,0,0,0,1,1,1,0,0), and for uy we have ug; =
(0,1,0,0,0,1,1,1,0,0), ui = (1,1,0,0,0,1,1,1,0,0),
ugs = (1,0,0,0,0,1,1,1,0,0).

Next, we check the Hamming distance between each pair of
exchanged vectors. Dy (uj2,us1) = 3, Du(uls,uz1) = 2,
Dy (uis,us1) = 0, Dy (uz3,us2) = 2, Dy(uzs,ugz) = 1,
Dy (u3s,uzz) = 0. 8

From the above calculation we see, the minimum Ham-
ming distance of Dy (ui;,u;1) where j € {2,3,4}, is
Dy (uia,ud1). So partial vectors Wi and 1y are exchanged
the parts within themselves the newly obtained full vectors
uis appears to be most closely fitting. Thus, uy can be
substituted with full vector uiy. Similarly, partial vector u3
can be substituted with full vector us4, partial vector uz can
be substituted with full vector usy and partial vector uy can
be substituted with full vector ugy or uys.

8Since Hamming metric, i.e., Dy (uT2,u31) = Dy (u31,ul2), there are
only six results left in this case excluding duplicate results.

PROCEEDINGS OF THE FEDCSIS. KRAKOW, POLAND, 2025

B. Perceptron model

As described in Section II, creating perceptron model
following [3] solely depends on two facts; one is choosing
precision levels for the input patterns in a way that their
associative memories do not overlap and the second is to
convert partial associative patterns of a given input (full)
pattern to full patterns. The first point is important in es-
tablishing the claim that the set of input-outputs pairs in the
extended function f4 are linearly separable and it is required
to develop the perceptron model for f4. In our case, we opt
to depart from several aspects considered in [3], and these are
mentioned in Introduction as well as in Section II. However,
from the development and results presented in the sections
above, starting from Section III, it is clear that both the
contexts responsible for smooth projection of the function f4
in a perceptron model are guaranteed. Thus, in our case the
same strategy as in [3] of creating perceptron model can be
followed.

VII. CONCLUSION

The paper presents some limitations of the approach to
creating associative memory in the context of retrieving infor-
mation from partial patterns using perceptron model presented
in [3] and proposes a few more general perspectives of
different notions used in [3], [8]. First of all, unlike [3] we
propose incomplete information in the input data by allowing
partial vectors in the input data. Secondly, the paper proposes
a new perspective of measuring distance between two partial
vectors using the notion of Hamming distance. According
to [3] two partial vectors with different unknown fragments
cannot be comparable. Following our approach this limitation
is overcome. Thirdly, our proposal for creating associative
patterns for an input (partial) vector wu; depends on a notion of
‘il is a potential extension of w;’, denoted by @ ® u;. The idea
is developed generalizing the notion of ® presented in [3].
Moreover, in the process of converting incomplete or partial
patterns by some plausible full patterns in [3] a random process
of replacing unknown parts by 0’s is followed. Whereas in
our context, we consider an approach of finding plausible full
pattern of an input partial pattern by exchanging content of
the given pattern with other input vectors of the training data.
The idea is similar to solving a puzzle related to constructing
a full image of a desired object from several available pieces
where different fragments of the full image are visible.

From theoretical perspective, though we manage to resolve
the limitations mentioned before, following our proposal a
given data set of n-dimensional input vectors cannot be used
together in one iteration to train a perceptron model. However,
there seems to be a possibility of creating perceptron model
from aggregating data from different iterations. In [12], the
authors proposed different models for generalizing Hamming
associative memory. In particular, they introduced a notion
of local Hamming memory which is based on splitting the
input vectors (input data) into smaller clusters and learn-
ing the dependence of all the input vectors in that cluster
with their respective outputs. Modifying the idea of local

SOMA DUTTA, JAEWON SHIN: A NEW PERSPECTIVE OF ASSOCIATIVE MEMORIES FOR PARTIAL PATTERNS

Hamming memory the authors [12] also defined a notion of
decoupled Hamming associative memory which considers non-
overlapping windows (clusters) of input vectors. Though there
is a similarity of their considered idea of non-overlapping
windows of input vectors [12] with our idea of splitting the
input vectors over iterations, there is a difference in basic
consideration. In our case, the input vectors can be partial and
in [12] the input vectors are full binary vectors. Following
[3] non-overlapping associative memories of the input vectors
allows a direct projection of the extended function f4 into a
multilayered perceptron model. In our context, though we have
departed from [3] on many aspects, we stick to the technical
advantage of non-overlapping associative memories of the
input vectors. However, following the notion of Distributed
Associative Memory (DAM), in [13], the authors envisaged
a possibility of representing multiple association of an input
data with different sets of patterns. This idea can be worth
investigating further in our context by allowing associative
patterns of two input vectors to have common intersection.
But this needs additional research and experiments in order to
optimize the performance of the proposed method and check
the changes needed to develop the set-up based on DAM.

REFERENCES

[1] P. M. Churchland, Plato’s camera: How the physical
brain captures a landscape of abstract universals. MIT
press, 2012. por: 10.1080/10848770.2016.1139356.
[Online]. Available: https://doi.org/10.7551/mitpress/
9116.001.0001.

[2] T. M. Mitchell, Machine Learning, 1st ed. USA:
McGraw-Hill, Inc., 1997, 1SBN: 0070428077. [Online].
Available: https://dl.acm.org/doi/10.5555/541177.

[3] C.-H. Chen and V. Honavar, “A neural architecture for
content as well as address-based storage and recall: The-
ory and applications,” Connection Science, vol. 7, no. 3,
pp. 281-300, 1995. por: 10.1080/09540099509696194.

[4] 7. J. Hopfield, “Neural networks and physical systems
with emergent collective computational abilities.,” Pro-
ceedings of the national academy of sciences, vol. 79,
no. 8, pp. 2554-2558, 1982. po1: 10.1073/pnas.79.8.
2554.

(6]

(7]

(8]

B. Prasad, K. Prasad, S. Yeruva, P. Murty, and S. Rama,
“A study on associative neural memories,” International
Journal of Advanced Computer Science and Applica-
tions (IJACSA), vol. 1, no. 6, pp. 124-133, 2010. DOT:
10.14569/TJACSA.2010.010619.

G. R. Barker and E. C. Warburton, “Multi-level analyses
of associative recognition memory: The whole is greater
than the sum of its parts,” Current opinion in behavioral
sciences, vol. 32, pp. 80-87, 2020. por: 10.1016/j.
cobeha.2020.02.004.

J. Steinberg and H. Sompolinsky, “Associative memory
of structured knowledge,” Scientific Reports, vol. 12,
no. 1, p. 21808, 2022. po1: 10.1038/541598- 022 -
25708-y.

C. H. Chen and V. Honavar, “Neural network ar-
chitecture for high-speed database query processing,”
Microcomputer Applications, vol. 15, no. 1, pp. 7-13,
1996, 1SSN: 0820-0750. [Online]. Available: https://dr.
lib.iastate.edu/handle/20.500.12876/20228.

C. F. Caiafa, Z. Wang, J. Solé-Casals, and Q. Zhao,
“Learning from incomplete data by simultaneous train-
ing of neural networks and sparse coding,” arXiv
preprint arXiv:2011.14047, 2020. DOI: 10.48550/arXiv.
2011.14047.

W.-D. Chang, J. Shin, M.-Y. Song, and T.-S. Chon,
“Enhanced back propagation algorithm for estimating
ecological data with missing values,” WSEAS Transac-
tions on Computers, vol. 5, no. 9, pp. 2043-2048, Sep.
2006.

C. Chen and V. Honavar, “Neural network automata,”
in Proc. of World Congress on Neural Networks, vol. 4,
1994, pp. 470-477.

P. Watta and M. H. Hassoun, “Generalizations of the
hamming associative memory,” Neural processing let-
ters, vol. 13, no. 2, pp. 183-194, 2001. po1: 10.1023/A:
1011384407294.

T. Park, I. Choi, and M. Lee, “Distributed associative
memory network with memory refreshing loss,” Neural
Networks, vol. 144, pp. 33-48, 2021. por: 10.1016/j.
neunet.2021.07.030.

143

