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Abstract—Survival analysis focuses on modeling the time until
a specific event occurs, often in the presence of censored obser-
vations. While classical methods like the Cox model are widely
used, modern machine learning (ML) approaches offer greater
flexibility and predictive power. This paper compares classical
and ML-based survival models on both real-world and simulated
datasets. We demonstrate that techniques like CoxBoost and
penalized Cox regression outperform tree-based models like
Random Survival Forests in most settings. Explainable Artificial
Intelligence (AI) tools are applied to improve the transparency
and interpretability of model predictions.

Index Terms—Survival analysis, machine learning, Cox pro-
portional hazards model, random survival forests, CoxBoost,
penalized Cox model, ICU patients, explainable artificial intelli-
gence

1. INTRODUCTION

URVIVAL analysis is a branch of statistics concerned with
the time until an event of interest occurs. The event of
interest can be, for example, the death of a patient or the time
until the failure of a machine. In this situation, a phenomenon
called data censoring is often present, as typically, not all units
experienced an event of interest during the monitoring period.
The most widely used model in survival analysis is the
Cox model, introduced in 1972 by [1]. The Cox model
does not make assumptions regarding the hazard function,
which provides necessary flexibility, but makes parametric
assumptions about the effect of the covariates on the hazard
function. The assumptions of the model are relatively strict and
may lead to biased results if violated. This is often pointed out
as a potential drawback.
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Machine learning is a subfield of artificial intelligence that
leverages knowledge from statistics and computer science. In
the last decades, it has established itself as a highly flexible and
powerful tool capable of solving a wide variety of problems. In
general, machine learning requires little to no assumption to be
made and is able to discover complex relations in the data. This
raises an important question: How can survival analysis benefit
from incorporating machine learning methods. Addressing this
question is the primary focus of this work.

This paper presents a comprehensive evaluation of six
models: Cox proportional hazard model, Cox model with
elastic net regularization, CoxBoost, Random Survival Forests
(RSF), Conditional Inference Forests (CIF), and Oblique RSF.
We evaluated their performance on a real-world Intensive Care
Unit (ICU) dataset as well as on simulated datasets with known
ground truth.

II. RELATED WORK

The use of machine learning and statistical methods for
survival analysis has been attracting a lot of attention in recent
years. Survival clustering analysis for time-to-event data was
proposed in [2], robust nonparametric survival curves com-
parison in [3], [4], while support vector machines in [5], [6],
together with implementation in R. All the above mentioned
approaches offer rather a methodological framework on usage
the ML in survival analysis.

Another approach how to utilize machine learning in sur-
vival analysis appeared in a publication [7], where the authors
decomposed the dependent two-dimensional time-event vari-
able into two components. Thereafter, the authors separated
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the analysis into two parts, the occurrence of the event
being a classification task and time-to-event estimation being
a regression task. This approach was later improved and used
for the prediction of a COVID-19 blood antibody decrease,
which could help to identify individuals who should receive
boosting vaccination when a new variant of COVID-19 would
appear [8].

Furthermore, the use of deep learning techniques in the field
of survival analysis started to seem promising and become one
of the main topics for research. In an article [9], the authors
utilized neural networks in order to create a personalized
treatment recommender system. Authors in an article [10]
employed deep learning techniques for competing risk analy-
sis. A comprehensive review about deep learning algorithms
used in survival analysis was lately given by [11], which
also discusses deep learning algorithms capable of handling
time-dependent covariates. Additionally, the review outlines
how deep learning can be used to integrate multimodal data
— including image, text, and tabular inputs — into survival
modeling.

III. METHODOLOGY

This section outlines the analytical framework used in
our study. We detail the specific traditional and machine
learning survival models evaluated, the metrics employed for
assessing their predictive performance, and the explainable Al
techniques used to interpret their behaviour.

A. Survival and ML Models

We evaluated six survival analysis models from both tradi-

tional and machine learning families:

o Cox Proportional Hazards (Cox PH): The most popular
model for the analysis of survival data is the Cox propor-
tional hazards model (in literature, it often appears as the
Cox PH model or simply the Cox model). The Cox model
is a semiparametric model, it makes no assumptions about
the hazard function but makes a parametric assumption
regarding the effect of the covariates on the hazard
function. The fact that the hazard function is not needed
provides a significant advantage, as in many situations
the true form of the hazard function might be unknown
or too complex [12].

The Cox model is most often stated in the following form,
h(tlx) = ho(t) exp(xB), (1
where
— h(t|x) is the hazard function at time ¢ given covari-
ates X,
— ho(t) is the baseline hazard function at time ¢,
— x is the vector of covariate (i.e., it is eventually
a matrix),
— (3 is the vector of regression coefficients.

e Random Survival Forests (RSF): Random survival
forests (RSF) is a method introduced in article [13], and
it presents modification for analysis of right-censored
survival data of the popular random forest algorithm. The
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authors argue that extending the random forest algorithm
for the purpose of analyzing survival data is of great
value as with traditional methods, nonlinear effects of
variables must be modeled by transformations, and ad hoc
approaches are often needed. On the other hand, random

forests handle these difficulties automatically.

The RSF algorithm, as described in [13] is as follows:

(i) Draw B bootstrap samples from the original data. Each bootstrap
sample excludes, on average, 37% of the data, these data are called
out-of-bag data (OOB data).

(i) Grow a survival tree for each bootstrap sample. At each node of the

tree, randomly select p variables as candidates for the splitting. The
node is split using the variable that maximizes the survival difference
between the child nodes.

(iii) Grow the tree under the constraint that each terminal node should

contain at least one unique event of interest.

(iv) Calculate a cumulative hazard function (CHF) for each tree. Obtain

the ensemble cumulative hazard function by averaging across all
trees.

(v) Use the OOB data to compute the prediction error for the ensemble
CHE.

e« CoxBoost: CoxBoost is an extension of the Cox model

that incorporates boosting algorithm introduced in [14].
Boosting is a popular, iterative ensemble method that
builds a strong predictive model by sequentially combin-
ing multiple weak models. The boosting algorithm ini-
tially sets equal weights to all observations, then for each
successive (m-th) iteration, where m € {2,3,..., M},
the weights for each observation are modified. At each
(m-th) step, the misclassified observations have their
weights increased, whereas correctly classified observa-
tions have their weights decreased. As the algorithm pro-
ceeds, observations that are difficult to classify correctly
gain greater influence [15].

Penalized Cox (Elastic Net): As the amount of col-
lected data rapidly grows, supported by advancements
in detection techniques, high-dimensional settings are
becoming increasingly common across most domains. For
classical cases, with significantly more observations than
predictors, the Cox model tends to work well. However,
in situations where the number of predictors is close to or
even exceeds the number of observations, the Cox model
tends to output degenerate behavior, as all parameters 3;
are converging towards oo, [16].

To address this challenge, Simon et al. [16] proposed an
algorithm that incorporates the elastic net penalty as

p 1 p
Mead lBl+50-a)) 5], a1, @
i=1 =1

which is to be minimized by the algorithm and is a mix-
ture of the L; (LASSO) and L, (ridge regression) penal-
ties. LASSO tends to work well for sparsity problems,
as it tends to choose only a few nonzero coefficients. On
the other hand, in the presence of correlations between
the predictors, ridge regression tends to perform better,
but sets no coefficients to exactly zero. The elastic net
combines the strength of both approaches and as «
changes between 0 and 1, the approach is changing to
be more ridge-like or more LASSO-like [16].
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o Conditional Inference Forests (CIF): Conditional infer-

ence trees were introduced in [17]. The authors argue that
the majority of recursive partitioning algorithms, such
as CART [18], have fundamental problems in overfitting
and selection bias towards covariates with many possible
splits [17].
To address these concerns, conditional inference trees
adopt a more statistically principled approach that takes
into account the distributional properties of the data. The
core of this approach lies in determining the association
between covariates and the response, which allows for an
unbiased selection of variables, irrespective of their scale
or the number of categories they might have [17].

o Oblique Random Survival Forests (ORSF): A potential
modification of the random survival forests described
above is extending the splits to allow a linear combination
of the predictors instead of using only a single predictor.
This extension is applied in oblique random survival
forests, as described in [19]. Authors argue that the
described approach might improve the random survival
forests especially when the predictors are correlated and
some are irrelevant to the survival outcome, which is
often the case when working, for example, with large
medical databases.

B. Model Evaluation

In order to assess model performance, there is a need
for metrics that can quantify the prediction performance of
the survival models. A commonly used measure is Harrell’s
concordance index [20], which measures how well the model
ranks two random individuals in terms of survival time. It is
defined as a ratio of concordant pairs (correctly ordered pairs)
to all comparable pairs. In order for the random pair ¢ and j
to be comparable, the sample with lower observed time y had
to experience an event, i.e., y; > y; and d; = 1, where J; is
a binary event indicator. A pair is concordant if the estimated
risk predicted by the survival model is higher for observations
with lower survival time (in other words, if the survival time
is in general low, the risk had to be high because it shortened
the survival time). Otherwise the pair is called discordant. The
concordance index is then computed as

C— number of concordant pairs 3)

number of all comparable pairs’

C. Explainability

With the introduction of machine learning methods into
survival analysis, there emerged a need to deepen our under-
standing of these algorithms. As stated in [21], the successful
adoption of machine learning in healthcare critically depends
on techniques that enhance our ability to interpret model
outputs.

In response to this challenge, an entire subfield has de-
veloped, commonly known as Explainable AI (XAI). This
subfield focuses on creating techniques that make machine
learning and artificial intelligence solutions more transparent

and provide better understanding of the process behind deci-
sion making of the model [22].

However, until recently, these techniques were not designed
to handle censoring and provide explanations for survival
models. To fill this gap, [23] proposed a survex framework
implemented into R, with the goal of empowering stakeholders
with model understanding and building trust in machine learn-
ing models. The survex framework is designed to be model
agnostic and, hence, can be applied to any survival model that
returns predictions in the form of survival or cumulative hazard
function [23].

Furthermore, methods dedicated to explain survival models
such as SurvSHAP(t) [24] or SurvLIME [25] are also incorpo-
rated in the survex package along with explanations tailored
to incorporate the time dimension. Moreover, local explana-
tions that refers to prediction as well as global explanations
regarding the whole model are provided [23].

D. Real-world data

Real-world dataset chosen for the purpose of the practical
application of survival analysis methods, was MIMIC-III [26].
MIMIC-IIT is a large relational database consisting of 26
tables containing information about 38,597 adult patients and
7,870 neonates that were admitted to critical care units (ICU)
to the Beth Israel Deaconess Medical Center in Boston,
Massachusetts, between 2001 and 2012. Information about
patients’ demographics, diagnoses, laboratory tests, physiolog-
ical measurements, drug codes, and many more are collected.
Different types of information are kept separately in different
tables [26].

The dataset underwent extensive preprocessing, the details
of which are beyond the scope of this paper but are repro-
ducible and available upon request. The final dataset contained
11,435 unique patients out of which 5,036 experienced an
event of interest (i.e., death resulting from a severe health
condition). This equals to a censoring level of roughly 56 %.

E. Simulated data

The goal of the analysis in the simulated dataset was to
further assess the qualities of the individual algorithms in
simulation settings that represent different scenarios. Another
objective was to examine how well the models were able to
recognize variables that have a real impact on the outcome
and which models are more likely to get confused by variables
representing only random noise. This can be done only under
the simulation study, where these variables are known ahead.

The simulated dataset was created using standard Weibull
distribution, which incorporates time-dependent effects of the
variables. For simplification, a formula of how such a gen-
erating model can look for one covariate is illustrated in
equation (4). In this example, it is assumed that the time-
dependent effect of the covariate is induced by interaction with
log time [27],

hi(t) = YA exp(BoXi; + B1Xi, - log(t)),  (4)

where

649



650

o h;(t) is the hazard function for the i-th individual at time
t,

e 7 is the shape parameter of the Weibull distribution,

o A is the scale parameter of the Weibull distribution,

e X ; is the j-th covariate value for i-th individual,

o (o is log hazard ratio for the j-th covariate,

e [31 specifies the amount by which the log hazard ratio
changes for the j-th covariate, for every unit increase in
log(t).

To test model robustness in noisy environments, a dataset
containing 32 variables was created, with only 8 of these
variables having a real impact on the outcome. The values
of each variable were simulated from common probability
distributions such as normal, log-normal or Bernoulli.

IV. RESULTS AND DISCUSSION
A. Real-world data

For the analysis of real-world data, 80/20 train/test split was
conducted and patient’s diagnosis and demographics were used
as predictors.

On the test set, RSF performed slightly better initially, but
Cox-based models (especially CoxBoost and Cox with elastic
net regularization) showed better or equal performance over
the long term. Overall, performance was very similar.

Fig. 1 display comparison of the performance, using con-
cordance index, over all used models. We observe that per-
formance stability, particularly at later time points (when only
a smaller number of individuals who have not experienced the
event of interest remain, making prediction more difficult), is
achieved by the CoxBoost and Penalized Cox models, whereas
the traditional Cox proportional hazards model demonstrates
poorer predictive performance.

Traditional Cox model found age, gender (males having
11.5% higher risk), admission type (emergency/urgent in-
creasing risk), and diagnosis (sepsis being most dangerous,
increasing risk by 33.8 % vs. Altered Mental Status (AMS))
to be significant predictors.

Concordance index over time

C-Index
°

0 1000 2000 3000 4000
Time
Cox =e= CIF - Cox_Elastic

Model

- RSF CoxBoost e~ ORSF

Fig. 1. Concordance index over time for all models.
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Random Survival Forest identified age, diagnosis, and ad-
mission type as most important, but ranked ethnicity/insurance
higher than gender, unlike Cox model.

For better understanding of the model’s behaviour, we used
the R package survex [23] and displayed the predicted
survival function for a new patient for different values of the
variable of our interest (diagnosis). In this case, we identified
the most typical patient who experienced the event of interest
(death) as a 73-year-old female who, in reality, was diagnosed
with congestive heart failure and died 71 days after the
first admission. The practical implications of this explainable
finding are straightforward — a newly admitted patient who is
a 73-year-old female should be treated with maximum care,
as she is at the highest risk of death given this diagnosis.

This demonstrates how powerful the machine learning algo-
rithms could be in understanding complex relationships, which
are often present in real-world data.

As was mentioned in the methodology section, the Cox
model is constrained by strong assumptions — one of which
being the proportional hazard ratios. This constraint is evident
in Fig. 2, where the survival curves for individual diagnoses
do not intersect. In contrast, the Random Survival Forest
(RSF) model imposes no such assumption, enabling more
flexible modeling of time-dependent effects. This flexibility is
illustrated in Fig. 3 — for example, pneumonia initially presents
lower risk compared to seizure or intracranial hemorrhage, but
its predicted risk eventually exceeds both over time.

B. Simulated data

The algorithms used in the simulation part were the same
as the algorithms used in real-world data analysis. Model
performance was evaluated by concordance index on the test
set after splitting 80 % of the data for training and 20 % for
testing, can be seen in Table I. The size of the dataset before
splitting is denoted by n. The best performance under each
setting is bolded.

Initially, a dataset with only 100 observations was created,
leaving only about 80 for training and 20 observations for

Ceteris paribus survival profile
created for the coxph model

— ALTERED MENTAL STATUS —— CONGESTIVE HEART FAILURE — INTRACRANIAL HEMORRHAGE — SEIZURE
CORONARY ARTERY DISEASE

STROKE;TELEMETRY;

CHEST PAIN PNEUMONIA — SEPSIS

DIAGNOSIS
1.00

survival function value
o
o
3

LA T
0 1000 2000 3000 4000
time

Fig. 2. Predictions for patient 16680 under different diagnoses — Cox PH
model.
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Ceteris paribus survival profile
created for the rfsrc model

— ALTERED MENTAL STATUS —— CONGESTIVE HEART FAILURE — INTRACRANIAL HEMORRHAGE — SEIZURE
CCORONARY ARTERY DISEASE
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g
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time

Fig. 3. Predictions for patient 16680 under different diagnoses — RSF.

testing. Under the Weibull distribution with scale 0.025 and
shape 1.0, the Cox model with elastic net regularization
performed the best on the test set. However, as the Weibull
distribution was changed, presenting more risky environments
with less censoring, the traditional Cox model surpassed the
Cox model with regularization. Moreover, it is interesting to
note that under the Weibull distribution with a parameter of
scale 0.070 and shape 1.1, the conditional inference forests,
the CoxBoost and the oblique random survival forest all had
concordance index below 0.5, meaning that it was worse than
random guessing (!).

Subsequently, the number of instances was increased to
2500 in order to see how a bigger dataset would influence the
performances of each algorithm and also to see if the level of
censoring would still be as influential as it was with the small

TABLE I
CONCORDANCE INDEX FOR EACH OF THE ALGORITHM UNDER EACH
SETTING
Weibull parameters ~ W(1.0, 0.025)  W(1.0, 0.060)  W(l.1, 0.070)
n=100
Cox 0.788 0.701 0.625
RSF 0.765 0.591 0.554
CIF 0.671 0.468 0.391
CoxBoost 0.782 0.552 0.489
Cox_elastic 0.882 0.701 0.620
ORSF 0.647 0.565 0.467
n=2500
Cox 0.619 0.641 0.647
RSF 0.623 0.641 0.635
CIF 0.608 0.628 0.632
CoxBoost 0.633 0.634 0.654
Cox_elastic 0.620 0.642 0.649
ORSF 0.621 0.638 0.640
n=5000
Cox 0.638 0.627 0.626
RSF 0.629 0.618 0.614
CIF 0.636 0.625 0.619
CoxBoost 0.640 0.633 0.627
Cox_elastic 0.641 0.634 0.630
ORSF 0.628 0.627 0.622

dataset. First of all, from Table I, it is visible that once the size
of the dataset is significantly increased, the influence of the
censoring is decreased, and the performances of the algorithms
do not tend to differ that much among different distribution
settings. The best performing models, under this size of the
dataset, were the CoxBoost and the Cox model with elastic
net regularization.

Finally, the size of the dataset was even more increased
to 5000 observations. This was done in order to see whether
adding more instances would result in better model perfor-
mance. In comparison with the setting, where only 2500
observations were generated, the performances improved only
a little and, in some cases, got even a little bit worse. From
that we can conclude that beyond a certain point, adding
additional observations, which come from the same distri-
bution, is bringing smaller and smaller value. The Penalized
Cox model appears to be the best-performing model for large
datasets, which aligns with our expectations, as penalization
can effectively address the imbalance between the number of
observations and covariates.

Additionally, we assessed each model’s ability to distin-
guish between informative variables and random noise under
different simulation settings. Under the settings of only 100
observations, algorithms like the RSF or the traditional Cox
model tended to struggle in recognizing important variables
and were only able to do better once the number of observa-
tions was significantly increased. On the other hand, the Cox
model with elastic net regularization was able to recognize
the majority of important variables even under the setting of
only 100 observations. This likely contributed to its superior
performance under that setting.

V. CONCLUSION AND FUTURE RESEARCH IDEAS

Overall, machine learning approaches demonstrated promis-
ing performance that was at least competitive with the tra-
ditional Cox model on both real-world and simulated data.
Moreover, machine learning models offer valuable flexibility
in capturing complex, non-linear relationships between co-
variates and survival outcomes. Applying techniques such as
elastic net regularization combined with the Cox model under
a penalized framework proved especially effective in scenarios
with limited data availability or an imbalance between obser-
vations and covariates.

Future research could explore deep learning and multimodal
data integration, which may enhance performance by provid-
ing richer patient information. Additionally, leveraging time-
dependent covariates could reveal important patterns from
measurements collected during a patient’s stay. Moreover,
future work should incorporate formal statistical testing (e.g.,
bootstrapped confidence intervals for the concordance index)
to enable more rigorous model comparisons. While this study
focused on a single ICU dataset, evaluating models across
multiple real-world datasets would help assess generalizability
across healthcare settings.
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