
Implementation of random number generator
service with IoT device

Rafał Wojszczyk, Aneta Hapka, Kacper Akdağ-Ochnik
0000-0003-4305-7253, 0000-0003-4613-2570

Koszalin University of Technology
ul. §niadeckich 2, 75-453 Koszalin, Poland

Email: {rafal.wojszczyk, aneta.hapka, u18898}@tu.koszalin.pl

Abstract—The paper focuses on the problem of generating
random numbers, which on the surface appears to be a very
simple problem. However, Most software tools used for this
purpose produce pseudorandom numbers. This means that, if
certain conditions are met, it is possible to reproduce successive
sequences of generated numbers. This paper addresses the
problem by developing an IoT device to generate true random
numbers based on selected physical properties. The device
communicates with a server that provides a web service and
an API for generating random values in multiple variations.

I. INTRODUCTION

I
N THE DIGITAL AGE, randomness plays a crucial role
in a wide array of applications, ranging from cryptography

and secure communications [4] to simulations of unexpected
events [3], gaming, art and GUID or UUID [5]. The quality
of randomness directly impacts the performance and reliabil-
ity of these applications. True Random Number Generators
(TRNGs) are particularly valuable in this context, as it derive
their randomness from physical processes, ensuring a higher
degree of unpredictability compared to pseudo-random number
generators (PRNGs), which rely on deterministic algorithms.

Randomness, as a concept, has intrigued researchers and
practitioners due to its wide-ranging utility in fields such as
mentioned simulations, gaming, and also statistical sampling,
and experimental design. While randomness is often associated
with cryptographic applications, this project focuses on non-
cryptographic use cases, where high-quality random numbers
are equally essential but do not require the stringent security
guarantees of cryptographic systems. This distinction allows
for the exploration of randomness in a broader context, em-
phasizing accessibility, scalability, and ease of use.

Existing solutions for generating random numbers often
come with limitations, such as high costs, restricted access, or
reliance on pseudo-random number generators, which, while
sufficient for many applications, lack the inherent unpre-
dictability of true randomness derived from physical processes.
This paper seeks to bridge this gap by developing a scalable,
cost-effective, and user-friendly web service that leverages
true random number generators to deliver high-quality random
numbers for non-cryptographic purposes. By focusing on ap-
plications such as simulations, Monte Carlo methods, random
sampling, and artistic content generation, the service aims to

Fig. 1. Classification of random number generators.

provide a reliable and accessible source of randomness for
a global audience, fostering innovation and experimentation
across diverse domains.

Section II discusses how to generate random numbers.
Section III describes the most important elements from the
construction of the software and the device. Section IV
presents and validates the system operation of the whole
system and possible applications. The V section provides a
summary of the work.

II. GENERATING RANDOM NUMBERS

A. Classification

Random number generators can be divided into two major
groups: Mathematical (pseudo random) and Physical. Pseudo
random generators can be further divided into several cat-
egories based on the type of algorithm used, and physical
random number generators are divided into 4 categories: noise
based RNGs, free running oscillator (FRO) RNGs, chaos
RNGs and quantum RNGs based on the entropy source [7].

B. Pseudo-random numbers

Pseudo-random number generators are algorithms that pro-
duce sequences of numbers approximating randomness using
deterministic mathematical formulas. They rely on an initial
state called a seed, which is processed into a longer sequence
of values. PRNG output typically follows a uniform distri-
bution, enabling transformations to other distributions (e.g.,
Gaussian) [6]. While not truly random, PRNGs are sufficient
for applications like simulations, gaming, and randomized
algorithms. Cryptographically secure PRNGs (CSPRNGs) en-
hance security by ensuring outputs are computationally indis-

Proceedings of the 20th Conference on Computer
Science and Intelligence Systems (FedCSIS) pp. 615–624

DOI: 10.15439/2025F6466
ISSN 2300-5963 ACSIS, Vol. 43

IEEE Catalog Number: CFP2585N-ART ©2025, PTI 615 Thematic Session: Cyber Security, Privacy and Trust

tinguishable from true randomness, making them essential for
cryptographic protocols [7], [8].

PRNGs excel in speed, generating millions of random num-
bers per second, far surpassing true random number generators
limited by physical entropy sources. Their period, the length
of the sequence before repetition, varies by algorithm. For in-
stance, the Mersenne Twister has a period of 219937−1, making
it suitable for large-scale simulations, while simpler PRNGs
like linear congruential generators (LCGs) have shorter pe-
riods. CSPRNGs feature periods so large that repetition is
practically impossible, ensuring long-term reliability [7].

The advantages of PRNGs include low computational cost,
ease of implementation, and reproducibility. By using fixed
seeds, PRNGs enable consistent results for debugging and
verification, making them indispensable in scientific and en-
gineering applications [6], where repeatability is important.

There are a large number of PRNG algorithms implemented.
The most popular are

1) Middle-square method [9]
One of the earliest methods, presented by J. von Neu-

mann in 1949 at a conference. Highly flawed, with very
short period. The numbers are created by squaring the
n-digit initial value, adding leading zeroes if the result
has fewer than 2n digits and extracting middle n digits.
The process can be repeated to generate more numbers.

2) Linear Congruential Generator (LCG) [10] One of
the oldest and most widely used PRNGs, based on
the Lehmer generator and published in 1958 by W.

E. Thomson and A. Rotenberg. It is defined by the
recurrence relation:

Xn+1 = (aXn + c) mod m (1)

where:

• X is the sequence of random values;
• m, 0 < m is the modulus;
• a, 0 < a < m is the multiplier;
• c, 0 ≤ c < m is the increment;
• X0, 0 ≤ X0 < m is the seed.

LCGs are simple and efficient but suffer from lattice
structures in higher dimensions, limiting their use in
modern applications.

3) Mersenne Twister [11] Developed in 1997 by Makoto

Matsumoto and Takuji Nishimura, this PRNG is
renowned for its high-quality output and long period.
Named after the Mersenne prime 219937 − 1, which
defines its period length, the Mersenne Twister is widely
used in simulations and statistical applications. It bal-
ances speed and statistical robustness, though its large
state size can be a drawback in memory-constrained
environments.

4) Xorshift [12] Created by George Marsaglia, a pioneer
in random number generation, Xorshift is an extremely
fast PRNG that produces sequences of 232 − 1 integers.
It relies on repeated XOR operations with shifted ver-
sions of its state, making it lightweight and efficient.

Variants like Xorshift+ and Xorshift* improve statistical
properties while maintaining speed.

5) WELL (Well Equidistributed Long-period Linear)

[13] An improvement over the Mersenne Twister, WELL
generators offer better equidistribution and faster re-
covery from zero states. Developed by F. Panneton, P.

L’Ecuyer, and M. Matsumoto, WELL variants are suit-
able for applications requiring high-quality randomness
and long periods.

6) PCG (Permuted Congruential Generator) [14] A
modern family of PRNGs designed by M. E. O’Neill,
PCG combines linear congruential generators with per-
mutation functions to enhance output quality. PCG vari-
ants are compact, fast, and statistically robust, making
them popular in gaming and procedural generation.

7) WELLDOC [15] Aperiodic PRNGs based on infinite
words techniques, developed by L. Balkova, M. Bucci, A.

de Luca, J. Hladky, and S. Puzynina in 2013. These gen-
erators are theoretically interesting but less commonly
used in practice due to their complexity.

8) Blum Blum Shub [16] A cryptographically secure
PRNG based on quadratic residues modulo a product
of two large primes. While highly secure, it is computa-
tionally intensive and rarely used outside cryptographic
applications.

9) Multiply-with-Carry (MWC) [17] Developed by
George Marsaglia, MWC generators combine multi-
plication and carry operations to produce long-period
sequences. They are simple to implement and perform
well in statistical tests.

10) Philox and Threefry [18] Counter-based PRNGs de-
signed for parallel computing environments. They use
cryptographic primitives to ensure high-quality random-
ness and are optimized for GPU and multi-core CPU
architectures.

C. Physical random numbers generators

Random Number Generators that rely on physical phenom-
ena generate inherently unpredictable and provably random
outcomes. These hardware-based RNGs, often referred to as
true random number generators, operate by exploiting natu-
rally occurring random processes, such as electronic noise,
quantum effects, or chaotic systems. Unlike pseudo-random
number generators, which use deterministic algorithms to
produce sequences that only appear random, physical RNGs
are typically standalone devices connected to a computer via
interfaces like USB or PCI. However, physical RNGs are not
without limitations; they often exhibit bias and short-range
correlations, meaning the output may not always be uniformly
distributed. Bias, defined as the deviation in the probabilities
of generating ones and zeros, is quantified by the equation:

b =
p(1)− p(0)

2
(2)

where p(1) and p(0) represent the probabilities of generating
a one and a zero, respectively. To mitigate these issues, post-
processing techniques, such as von Neumann debiasing or

616 PROCEEDINGS OF THE FEDCSIS. KRAKÓW, POLAND, 2025

Fig. 2. The diagram shows a basic noise-based RNG comprising a noise
source (e.g., thermal noise), a level comparator (with threshold Vthreshold),
and a D flip-flop (DFF) to sample and digitize the noise signal into random
bits. This design leverages stochastic physical phenomena to generate true
randomness.

cryptographic hash functions, are often applied to the raw
output of physical RNGs. These methods help ensure the
final output is both unbiased and suitable for applications
requiring high-quality randomness, such as cryptography or
secure communications.

Noise-based random number generators exploit stochastic
physical phenomena to extract entropy for true randomness.
These systems sample analog noise signals — unpredictable
fluctuations inherent to electronic, optical, or quantum pro-
cesses — and convert them into statistically independent bit
sequences. Common noise sources include thermal agitation,
quantum tunneling effects, and chaotic dynamics, each offer-
ing distinct advantages in entropy density and sampling rates
[19], [7].

Thermal noise (Johnson-Nyquist Noise) arises from the
random motion of electrons in conductive materials at equilib-
rium, as described by the fluctuation-dissipation theorem. Its
power spectral density is given by:

SV (f) = 4kBTR (V2/Hz), (3)

where kB is Boltzmann’s constant, T is the absolute tempera-
ture (K), and R is the resistance (Ω). This white noise exhibits
a Gaussian amplitude distribution, making it a robust entropy
source. Practical implementations sample thermal noise via
high-gain amplifiers and analog-to-digital converters (ADCs),
though challenges include mitigating 1/f noise at low fre-
quencies and temperature-induced drift [7].

Zener noise (Avalanche Breakdown Noise) originates from
quantum tunneling and impact ionization in reverse-biased
Zener diodes operating near the avalanche breakdown regime.
Individual electron-hole pair generation events produce dis-
crete current spikes, yielding a shot noise process with Pois-
sonian statistics. The noise current In follows:

⟨I2
n
⟩ = 2qIDC∆f, (4)

where q is the electron charge, IDC is the bias current, and
∆f is the bandwidth. Zener-based RNGs achieve high bitrates
(>100 Mbps) but require precise voltage regulation to stabilize
the breakdown region and avoid deterministic oscillations [7].

Chaos-based random number generators leverage nonlinear
dynamical systems governed by chaos theory to harvest en-
tropy. These systems exhibit deterministic yet unpredictable

behavior due to their sensitivity to initial conditions (the "but-
terfly effect") and topological mixing. Common implementa-
tions exploit chaotic phenomena in optical, electronic, opto-
electronic, or mechanical domains, where small perturbations
amplify exponentially over time, yielding outputs that are sta-
tistically indistinguishable from true randomness [21]. Other
example of optical chaos-based RNGs employs distributed
feedback (DFB) lasers with self-feedback mechanisms.

Free-Running Oscillators [7] (FROs) are a class of
hardware-based random number generators that exploit the in-
herent jitter and metastability in electronic circuits to produce
randomness. An FRO is a simple yet effective circuit that
consists of a logical inverter whose output is fed back into
its input, creating an unstable oscillatory state. The oscillation
frequency is determined by the internal propagation delays
of the inverter and the stray capacitances in the circuit. This
unpredictability makes FROs a popular choice for generating
random numbers in embedded systems and hardware security
applications. The randomness in an FRO-based RNG is ex-
tracted by sampling the oscillating signal at irregular intervals
or by comparing the phases of multiple FROs. One common
approach is to use a pair of FROs with slightly different
frequencies. The phase difference between the two oscillators
drifts over time due to jitter, and this drift is sampled to
produce random bits.

Quantum Random Number Generators (QRNGs) [8], [20]
leverage the inherent unpredictability of quantum mechanics
to generate true randomness. Unlike classical random number
generators, which rely on deterministic algorithms or physical
processes that may be predictable in principle, QRNGs exploit
the fundamental indeterminism of quantum systems. This
makes them ideal for applications requiring high levels of
security, such as cryptography and secure communications.
QRNGs operate by measuring quantum phenomena that are
intrinsically random. One of the most common implementa-
tions uses photons, the elementary particles of light, and their
quantum properties. For example, a photon in a superposition
of states will collapse randomly into one of two possible states
when measured. This randomness is used to generate binary
bits (0s and 1s) [7], [8].

Spatial QRNGs [8], [7] rely on the physical path a photon
takes after passing through a beam splitter. These systems use
two detectors, one for each output port of the beam splitter.
While conceptually simple, spatial QRNGs require careful
calibration to ensure that the detectors are equally sensitive
and that the beam splitter is perfectly aligned. Any imbalance
in the system can introduce bias into the output, requiring
post-processing to correct.

Temporal QRNGs [8], [7], on the other hand, exploit
the randomness in the timing of photon arrivals. Instead of
measuring the path a photon takes, these systems measure
the time intervals between successive photon detections. For
example, the system might compare two consecutive time
intervals. This approach has the advantage of requiring only a
single detector, simplifying the hardware design and reducing
calibration requirements.

RAFAŁ WOJSZCZYK ET AL.: IMPLEMENTATION OF RANDOM NUMBER GENERATOR SERVICE WITH IOT DEVICE 617

Another class of QRNGs exploits the randomness of ra-
dioactive decay [8]. In these systems, a radioactive source
emits particles (e.g., alpha or beta particles) at random in-
tervals. A detector registers the arrival of these particles, and
the timing of the detections is used to generate random bits.

D. TRNG Type Comparison

The development and evaluation of TRNGs have been
extensively studied in the literature. Quantum-based TRNGs,
in particular, have gained significant attention due to their
provable security based on the laws of quantum mechanics.
Herrero-Collantes and Garcia-Escartin [8] provide a com-
prehensive review of quantum random number generators
(QRNGs), highlighting their theoretical foundations and prac-
tical implementations. They emphasize the role of quantum
phenomena, such as photon detection and vacuum fluctuations,
in generating true randomness.

Cirauqui et al. [20] further explore the challenges and
benchmarking of QRNGs, discussing the trade-offs between
speed, security, and resource requirements. Their work under-
scores the importance of device-independent QRNGs, which
offer enhanced security by minimizing assumptions about the
underlying hardware.

Stipčević and Koç [7] provide a broader perspective on
TRNGs, covering chaos-based, noise-based, and FRO-based
designs. They discuss the sources of entropy, post-processing
techniques, and security considerations for each type. Their
work highlights the importance of environmental robustness
and cost-effectiveness in practical TRNG implementations.

True Random Number Generators vary in design and ap-
plication. Chaos-based TRNGs use nonlinear systems for high
entropy but require complex calibration, making them suitable
for cryptography. FRO-based TRNGs, leveraging electronic
jitter, are simple and fast but require post-processing, which is
ideal for IoT and FPGAs. Noise-based TRNGs rely on thermal
or shot noise, offering reliability but requiring analog com-
ponents, often used in hardware security modules (HMS) and
military systems. Quantum-based TRNGs, exploiting quantum
phenomena, provide ultimate security but are costly and sen-
sitive, limiting their use to high-security applications. Each
TRNG type balances performance, cost, and complexity for
specific needs.

The choice of TRNG type depends on the specific applica-
tion requirements:

• Chaos-based TRNGs are well-suited for cryptographic
applications due to their high entropy and nonlinear
dynamics. However, they are sensitive to environmental
conditions and require careful calibration.

• FRO-based TRNGs are ideal for resource-constrained
environments, such as IoT devices and FPGAs, due to
their simplicity and low power consumption. However,
they often require post-processing to improve randomness
quality.

• Noise-based TRNGs offer a balance between reliability
and security, making them suitable for hardware security

modules and military systems. Their reliance on analog
components increases the complexity of the design.

• Quantum-based TRNGs provide unparalleled security,
making them ideal for high-stakes applications such
as quantum communication and cryptography. However,
their high cost and sensitivity to environmental factors
limit their widespread adoption.

III. IMPLEMENTATION

A. Motivation

Randomness is seemingly underestimated, but it plays a
key role in many areas: from simulations and Monte Carlo
methods, through computer games, to statistical sampling and
the generation of unique identifiers. The quality of random
numbers directly affects the reliability of calculation results
and system security, which is why generators based on real
physical processes, rather than solely on deterministic algo-
rithms, are increasingly being used. There is no common belief
among programmers that it is necessary to use truly ran-
dom generators. Popular libraries offer good-quality pseudo-
random generators, but their deterministic nature makes it
possible to reproduce the sequence if the initial state is known.
True random generators, using the previously described ther-
mal noise, quantum phenomena, or oscillator jitter, provide a
higher degree of unpredictability. Building your own TRNG
allows you to eliminate dependence on external services and
gives you full control over the quality and availability of the
entropy source.

The implementation of the true random number generator
tool described below is a response to the needs of program-
mers. The basic access layer for this type of user is WebAPI,
hence a lot of attention was paid to the preparation of the API
and documentation when developing the solution. On the other
hand, it is valuable to be able to test the solution in advance
without having to use typical developer tools. In order to meet
this requirement, a web interface was developed.

B. System architecture

The system must accommodate a moderate volume of
simultaneous requests while maintaining low latency, high
reliability, and scalability, ensuring robust performance under
variable operational conditions. Additionally, the implemen-
tation will incorporate cryptographic protocols to secure data
transmission and prevent adversarial manipulation during dis-
tribution.

Components presented in Fig. 3 work together in order to
generate random numbers and serve them on the internet. The
web app acts as a graphical interface for users. It displays
the services available on the website as interactive forms
that users use to send requests to the API and presents
the results - the generated random numbers. The Hardware
Random Number Generator is the source of random numbers.
It generates random 32 bit words as quickly as possible and
sends them over a WebSocket connection to the web API.
The web API in pair with the database performs the back-end
duties: converting random bits into numbers, processing user

618 PROCEEDINGS OF THE FEDCSIS. KRAKÓW, POLAND, 2025

Fig. 3. The web service is a containerized application deployed in the cloud.
The TRNG is a physical module connected to the internet. Users access the
app through the internet.

requests, handling authorization, authentication and sending
the results to users. The app, API and database components
are deployed in a containerized environment in the cloud.

The development of the system utilizes a diverse set of tools
and technologies tailored to each component. For the Web
App, HTML structures web content, CSS handles styling, and
JavaScript adds interactivity, while JQuery simplifies DOM
manipulation and Bootstrap ensures responsive design. The
Web API relies on Python and Django, with Django Rest
Framework enabling RESTful API development, Open API
providing standardization, and ASGI with Daphne supporting
asynchronous communication. HTTP and WebSocket proto-
cols facilitate seamless data exchange between the server and
clients. The Database uses SQLite for its lightweight, high-
reliability SQL engine, with SQL managing data manipulation
and retrieval. For the TRNG, it use an IoT device [2], it means
the ESP32 microcontroller with an embedded TRNG is pro-
grammed using the Arduino IDE and C++, ensuring efficient
and secure random number generation. Together, these tools
and technologies provide a robust foundation for the system’s
development. The ESP32 microcontroller was chosen because
of its built-in Wi-Fi module (which simplified communication
implementation), low purchase cost, and ease of programming
in the Arduino environment. The IoT device can also be built
on other microcontrollers that support Arduino programming,
such as those from the AVR and NRF families.

C. Software

The web application’s front end, which serves as the graph-
ical interface accessible via a web browser, is integrated into
the Python Django application using the Django templating
engine. While the front end is primarily written using HTML,
CSS, JavaScript and the Django Template Language (DTL),
the Django templating engine dynamically renders the pages
based on the context provided by the backend. This integration
allows the front end to seamlessly interact with the Django
framework.

The Web API is a distributed system designed to pro-
vide secure, scalable, and efficient access to random number
generation services. It is composed of three interconnected
applications, each responsible for a distinct functional domain.
These applications work in concert to handle user authentica-

tion, random number generation and data delivery, ensuring a
robust, modular architecture.

The Web API is organized into the following components:
1) API (Application Programming Interface): The core

application responsible for handling user requests and
delivering random number generation services. It im-
plements the following modules:

• Views and Models: Defines the endpoints and
data structures for random tools, such as integer
sequences, floating-point numbers, and custom dis-
tributions.

• Random Tool Functions: Implements algorithms
for transforming raw random bits into user-
requested formats.

• OpenAPI Documentation: Provides a standard-
ized, machine readable specification of the API end-
points, request/response formats, and authentication
mechanisms. This documentation is automatically
generated using Redoc, ensuring clarity and con-
sistency for developers integrating with the API.
Available at https://trng.kacperochnik.eu/api/

2) Auth (Authorization and Authentication Module): A
dedicated service for managing user identities, access
control, and resource quotas. Key features include:

• User Authentication: Implements Session and
JWT-based authentication to verify user credentials
and issue access tokens.

• Authorization: Enforces role-based access control
(RBAC) to restrict access to sensitive endpoints
(e.g., administrative tools).

• Points System: Tracks and deducts user points for
each random number generation request, ensuring
fair usage and preventing abuse.

3) Trng (True Random Number Generator Interface):

A WebSocket-based service that interfaces with physical
TRNG hardware to harvest entropy and deliver it to the
API. Its components include:

• WebSocket Consumer: Manages real-time connec-
tions with TRNG devices, enabling low-latency data
transfer.

• Circular Buffer: Stores incoming random bits in
a fixed-size, ring-shaped buffer to ensure continu-
ous availability and prevent data loss during high-
throughput operations.

• Bit Disposal Interface: Provides a standardized
interface for delivering random bits to the API’s
random tool functions, ensuring compatibility with
diverse TRNG hardware.

The system employs SQLite as its relational database
management system (RDBMS), leveraging Django’s Object-
Relational Mapping (ORM) layer for data persistence op-
erations. SQLite was selected for its minimal configuration
requirements, serverless architecture, and atomic transaction
support - characteristics that align with the application’s need
for simplicity and rapid development iteration.

RAFAŁ WOJSZCZYK ET AL.: IMPLEMENTATION OF RANDOM NUMBER GENERATOR SERVICE WITH IOT DEVICE 619

D. Hardware

The Hardware Random Number Generator (HRNG) sub-
system comprises an ESP32-WROOM-32D microcontroller
configured as a dedicated entropy source. This IoT-enabled
device leverages the chip’s native True Random Number Gen-
erator peripheral to harvest physical noise, transmitting raw
random data to the web API via secure WebSocket protocol.
The complete design files and firmware are available in the
project repository.1

The ESP32 incorporates a True Random Number Generator
that generates 32-bit random numbers suitable for crypto-
graphic operations [23]. The TRNG relies on physical entropy
sources so that no number within the specified range is more
or less likely to appear than any other. In terms of key
characteristics, the generator obtains its entropy from thermal
noise produced by the high-speed ADC and SAR ADC, as
well as from an asynchronous clock mismatch provided by
the RC_FAST_CLK (8 MHz internal RC oscillator). Its output
rate can theoretically reach up to 5.2 Mbps, however, to
ensure optimal performance, the recommended read rate is
500 kHz when using SAR ADC noise and 5 MHz when
using high-speed ADC noise. The TRNG is accessed via the
‘RNG_DATA_REG‘ memory-mapped I/O (MMIO) register at
the address ‘0x3FF75144‘, and it incorporates built-in Von
Neumann debiasing with a 2:1 bit compression ratio to remove
bias from the raw entropy stream.

Functionally, the TRNG generates true random numbers
based on two primary sources of entropy. The first source,
Thermal Noise, is generated by both the high-speed ADC
and the SAR ADC, when enabled, these ADCs produce
bit streams that serve as random seeds for the TRNG. The
second source, Asynchronous Clock Mismatch, is derived
from the RC_FAST_CLK (8 MHz internal RC oscillator),
which introduces timing jitter and clock drift. These sources
are combined using XOR logic, as expressed in the following
equation:

bout =
n⊕

i=0

(si ⊕ ti) (5)

where:

• si represents sampled oscillator states (e.g., from the SAR
ADC or high-speed ADC).

• ti represents timing jitter measurements (e.g., from the
RC_FAST_CLK).

Regarding the entropy feed mechanism, the TRNG uses two
distinct noise sources. SAR ADC Noise provides 2 bits of
entropy per clock cycle of the RC_FAST_CLK (8 MHz), with
a maximum recommended read rate of 500 kHz to ensure
maximum entropy. In contrast, High-Speed ADC Noise offers
2 bits of entropy per APB clock cycle (typically 80 MHz) and
has a maximum recommended read rate of 5 MHz to similarly
ensure optimal entropy extraction.

The Arduino program is fairly simple, it sends generated
32 bit random words, over WebSocket, as fast as possible, in

1Repository: https://github.com/TeriyakiGod/esp-arduino-trng

Example 3.1 (C++):

void loop() {

webSocket.loop();// Maintain WebSocket conn.

// Check if WiFi is still connected

if (WiFi.status() != WL_CONNECTED) {

Serial.println("WiFi lost connection");

connectToWiFi();

}

// Gen. rnd. number and send over websocket

uint32_t randomValue = esp_random();

webSocket.sendBIN((uint8_t*)&randomValue(),

sizeof(randomValue));

}

a loop. It uses esp32 random API function - esp_random()

to retrieve random bits from the register. Source code are
presented in example 3.1.

E. Security

The developed solution belongs to the class of IoT devices
and is constantly connected to the Internet, so adequate
security is required [2]. The Web API incorporates several
integrated mechanisms to ensure both security and scalability.
It encrypts all communications between clients and the API
using TLS 1.3, which protects against eavesdropping and man-
in-the-middle attacks. In addition, the API employs rate limit-
ing with token bucket algorithms to throttle excessive requests,
thereby preventing denial-of-service (DoS) [4] attacks and
ensuring fair distribution of resources. Load balancing is also
applied, as incoming requests are distributed across multiple
API instances via round-robin or least-connections strategies
to maintain high availability and fault tolerance. Complement-
ing these measures, robust authentication is achieved through
the use of session cookies (maintained via a ‘sessionid‘)
and API tokens supplied in the ‘Authorization‘ header, while
standard error responses—such as ‘403 Forbidden‘ for insuffi-
cient points or privileges, ‘503 Service Unavailable‘ when the
TRNG is offline, and ‘429 Too Many Requests‘ when the rate
limit is exceeded—provide clear feedback to users.

The device further implements a custom binary protocol
over WebSocket Secure (WSS) that is optimized for both
efficiency and security. This protocol defines its frame format
using 32-bit little-endian unsigned integers and supports a
transmission rate of around 20 KB/s. Error handling is ad-
dressed by incorporating an exponential backoff strategy for
connection failures, and security is reinforced by using TLS
1.3 in conjunction with the ESP32’s root certificate bundle.
Moreover, additional security considerations include physi-
cal isolation through a Faraday-shielded enclosure, runtime
protection ensured by secure boot with flash encryption, and
enhanced transport security via Perfect Forward Secrecy (PFS)
using ECDHE-RSA. Together, these strategies result in an
implementation that achieves 128-bit security under the Dolev-
Yao threat model, provided that there is no physical access to
the TRNG unit.

620 PROCEEDINGS OF THE FEDCSIS. KRAKÓW, POLAND, 2025

Fig. 4. Homepage with the Integer Generator button highlighted

Fig. 5. Integer generator form filled with values.

IV. VERIFICATION

A. Access via GUI and API

Users begin by visiting the web service through a browser,
where the homepage presents a selection of random number
generators. To generate random integers, the user navigates
to the integer generator using a button on the homepage, as
shown in Fig. 4. Once on the integer generator page, the
user can configure the tool to their preferences. For example,
to generate 35 integers in the range from 0 to 10, the user
sets N (the number of random integers) to 35, the minimum
value to 0, and the maximum value to 10, as illustrated in
Fig. 5. After submitting the form, the application returns the
generated random integers. The distribution of these integers is
visualized in a histogram in Fig. 6, showing a roughly uniform
spread of random values across the specified range.

For programmatic access, users can send a GET request
to the API endpoint2. The API responds with a JSON object
containing the generated random integers, a timestamp, and
the number of bits used, as shown in the code listing 4.1. The
histogram in Fig. 7 visualizes the distribution of the integers
generated via the API.

2https://serveraddess/api/rand/int?n=35&min=0&max=10&repeat=True

Example 4.1 (JSON):

"values":

[4, 8, 2, 9, 8, 9, 10, 10, 5, 3, 1, 0,

10, 6, 10, 3, 6, 10, 7, 1, 10, 3, 4,

2, 10, 6, 8, 5, 3, 0, 9, 0, 0, 6, 7],

"timestamp": "2025-03-20T17:14:12.492409",

"bits": 1120

Fig. 6. Histogram of the first result

The application provides a seamless experience for gen-
erating random numbers, whether through the intuitive UI
or the programmatic API. The histograms in Figs. 6 and 7
demonstrate that the generated integers are roughly uniformly
distributed and random each time, validating the effectiveness
and reliability of the random number generator. This ensures
that users can trust the application to produce unbiased and
balanced results for their needs. All functions are listed in the
V appendix section.

B. Statistical Testing with Dieharder

The randomness of the TRNG output was evaluated us-
ing the Dieharder test suite, a comprehensive collection of
statistical tests designed to assess the quality of random
number generators. Dieharder analyzes the output for patterns,

Fig. 7. Histogram of the second result

RAFAŁ WOJSZCZYK ET AL.: IMPLEMENTATION OF RANDOM NUMBER GENERATOR SERVICE WITH IOT DEVICE 621

TABLE I
DIEHARDER TEST RESULTS. ALL OF THE TESTS PASSED, ONLY 2 WEAK

RESULTS: RGB_BITDIST AND RGB_LAGGED_SUM.

Test Name ntup tsamples
psam-
ple

p-value

diehard_birthdays 0 100 100 0.01192945
diehard_operm5 0 1000000 100 0.67160533
diehard_rank_32x32 0 40000 100 0.88503575
diehard_rank_6x8 0 100000 100 0.44944912
diehard_bitstream 0 2097152 100 0.07796698
diehard_opso 0 2097152 100 0.75986760
diehard_oqso 0 2097152 100 0.52389989
diehard_dna 0 2097152 100 0.63689771
diehard_count_1s_str 0 256000 100 0.64745948
diehard_count_1s_byt 0 256000 100 0.48743869
diehard_parking_lot 0 12000 100 0.06943192
diehard_2dsphere 2 8000 100 0.33036560
diehard_3dsphere 3 4000 100 0.69729265
diehard_squeeze 0 100000 100 0.41006273
diehard_sums 0 100 100 0.22268815
diehard_runs 0 100000 100 0.87899505
diehard_craps 0 200000 100 0.01235318
marsaglia_tsang_gcd 0 10000000 100 0.47170575
sts_monobit 1 100000 100 0.72827629
sts_runs 2 100000 100 0.52336996
sts_serial 1 100000 100 0.03008230
rgb_bitdist 6 100000 100 0.00048266
rgb_min_distance 2 10000 1000 0.16471595
rgb_permutations 2 100000 100 0.26856586
rgb_lagged_sum 24 1000000 100 0.99977196
rgb_kstest_test 0 10000 1000 0.27646420
dab_bytedistrib 0 51200000 1 0.52014772
dab_dct 256 50000 1 0.83006246
dab_filltree 32 15000000 1 0.79259371
dab_monobit2 12 65000000 1 0.12926929

biases, and correlations that could indicate deviations from true
randomness. The TRNG output was subjected to a variety of
tests, and the results are presented in table I.

The Dieharder test results confirm that the TRNG output
behaves as expected for a high-quality random sequence. Most
tests passed with p-values within acceptable confidence inter-
vals, indicating no significant biases or correlations. However,
a few tests, such as rgb_bitdist (for bit distances 4 and 6) and
rgb_lagged_sum (for lag 24), returned weak results. The weak
result of the two tests is caused by insufficient variability in
the sequences of consecutively generated zeros or ones. This
may be due to suboptimal threshold alignment in the thermal
noise signal digitization circuit, leading to correlation between
consecutive samples.

C. Possible applications

The proposed self-hosted true random number generation
system addresses diverse applications requiring high-quality,
statistically robust, and verifiably unbiased randomness. The
scientific field can make use of the web service in many ways,
eg. Monte Carlo Simulations, Diffusion Models and Statistical
Research.

Large-scale computational models in fields such as quantum
chemistry, particle physics, and financial mathematics rely
on entropy-rich seeds to minimize correlation artifacts. For
instance, lattice Boltzmann simulations of fluid dynamics
and option pricing models in quantitative finance demand
randomness with certified uniformity to ensure convergence
accuracy. The system’s post-processing algorithms, which
suppress residual biases in raw entropy sources, enhance
the reproducibility of results across distributed computational
clusters.

Modern generative artificial intelligence frameworks, in-
cluding stochastic differential equation (SDE)-based diffusion
models, utilize random noise sequences to synthesize high-
fidelity images or molecular structures. A TRNG-backed ser-
vice guarantees that the latent space sampling process remains
free from deterministic patterns, which could otherwise in-
troduce perceptual biases or reduce generative diversity in
outputs.

Randomized controlled trials (RCTs), bootstrap sampling,
and permutation tests require auditable randomness to pre-
serve methodological integrity. By providing cryptographically
signed random streams, the system enables researchers to ver-
ify the provenance of experimental data, mitigating concerns
about inadvertent selection biases or adversarial tampering in
peer-reviewed studies.

There are multiple applications in the field of gaming.
1) Multiplayer Games: Massively multiplayer online

(MMO) platforms and blockchain-based play-to-earn
ecosystems necessitate transparent randomness for pro-
cedural content generation, loot box mechanics, and
non-fungible token (NFT) attribute assignment. Cen-
tralized pseudorandom number generators often face
skepticism from users; outsourcing to an independently
audited TRNG service enhances player trust and regu-
latory compliance.

2) Lotteries and Raffles: Public or decentralized systems
conducting randomized prize allocations require algo-
rithmic transparency to demonstrate impartiality. Inte-
grating the TRNG system with blockchain-based smart
contracts or verifiable computation frameworks ensures
that draw outcomes derive from non-deterministic phys-
ical entropy, enabling participants to independently au-
dit the randomness generation process. This eliminates
skepticism toward algorithmic fairness, particularly in
decentralized or distributed systems where trust in cen-
tralized authorities is limited.

3) Casino Gaming: Digital gaming platforms depend on
unpredictability for mechanics such as shuffling virtual
decks, generating roulette ball trajectories, or deter-
mining slot machine payouts. Hardware-backed TRNGs
mitigate vulnerabilities inherent to algorithmic pseu-
dorandomness—such as state reconstruction or seed
manipulation—by anchoring outcomes to physically ir-
reproducible entropy sources. This ensures that game
mechanics cannot be reverse-engineered or biased, even
by privileged insiders with access to the software stack.

622 PROCEEDINGS OF THE FEDCSIS. KRAKÓW, POLAND, 2025

The web service can be applied to create art.
1) Generative Art: Algorithmic art platforms (e.g., Art

Blocks) and fractal geometry engines depend on en-
tropy to drive procedural variations. High-dimensional
randomness ensures that procedurally generated art-
works—such as those minted as NFTs—exhibit unique
traits without deterministic repetition, thereby preserving
artistic value and collector interest.

2) Algorithmic Music: Stochastic composition tools, such
as Markov chain-based melody generators or granu-
lar synthesis systems, leverage random parameters to
explore unconventional harmonic structures. TRNG-
derived sequences facilitate organic, non-repetitive
soundscapes, distinguishing outputs from those pro-
duced by conventional PRNGs with limited cycle
lengths.

3) Interactive Installations: Immersive environments and
augmented reality (AR) experiences use real-time ran-
domness to adapt narrative pathways or visual elements
based on user interactions. A low-latency TRNG ser-
vice enables dynamic, audience-responsive installations
while maintaining statistical unpredictability across pro-
longed exhibitions.

While the system is unsuitable for high-throughput cryp-
tographic operations like TLS handshakes (handling a single
request takes almost 380 ms, for example from section IVa), it
may supplement key derivation for non-real-time applications,
such as creating master keys for offline data vaults and random
vectors [1]. However, dedicated hardware security modules
remain preferable for latency-sensitive tasks.

However, in production use, the scalability issue can be
solved by duplicating instances through containerization and
implementing a load balancer. Compared to competing solu-
tions, it is worth highlighting the open-source approach and
documentation of all endpoints. In addition, the proposed
solution meets functional security requirements, including TLS
and JWC.

V. SUMMARY

Generating true random numbers is often underestimated by
programmers. However, it turns out that a great deal depends
on it, and it should be as random as possible. The paper
demonstrates a software and hardware solution for generating
such numbers. The IoT device developed uses noise, which
serves as the basis for the generation. The generator’s functions
are then accessed via an API and GUI on a website.

The randomness of the generated numbers was verified us-
ing automatic tests, manual tests (histograms presented earlier)
and a dedicated randomness verification solution, Dieharder.
The results obtained show that the whole in the sense as
a system generates data with a high level of randomness.
Functional tests confirm that the system as a whole generates
and provides numbers in accordance with user requirements
and handles errors correctly. Performance tests show that the
selected architecture (cloud containers, WebSocket, rate limit-
ing) ensures low latency and high scalability. Statistical tests

show that bit strings from TRNG do not exhibit significant
deviations from randomness: no bias, appropriate distribution,
no autocorrelation. As a result, they can be considered “truly
random.”

Obtaining a high level of randomness makes it possible to
excavate the solution in many areas of IT. However, it should
be pointed that the speed of data generation is average (less
than 3 requests per second), so it cannot be used in real time.
The solution to this problem is to multiply the IoT device,
which, thanks to the use of ESP32, will not be expensive.
Other risks arise from the analog circuit and the analog-to-
digital converter. There is a risk that after generating a strong
and steady signal, the system will receive the same grain
all the time, hence work on improving the analog part is
being considered. Other developments are related to expanding
the software layer to generate random data for sharpening in
artificial intelligence tools. Future work also could involve
testing larger datasets to ensure the TRNG’s performance
scales appropriately. Additionally, other statistical test suites,
such as the NIST Statistical Test Suite [22] or TestU01, could
be used to further validate the TRNG’s randomness.

APPENDIX

The system performs following functions:

1) Generating random numbers:

a) Generating n random integers in range [a, b].
b) Generating n random floating point numbers in

range [0, 1] with p precision.
c) Generating n random bytes represented in selected

positional numeral system:

i) Binary
ii) Octal

iii) Hexadecimal
iv) Decimal

d) Generating n random strings m long, with options:

i) With repeating characters.
ii) Without repeating characters.

iii) With character set selection:

A) Letters
B) Digits
C) Special characters

e) Generating a random permutation of integers in
range [a, b]

f) Generating n coin tosses.
g) Generating n, m sided dice throws.
h) Generating n lottery tickets.
i) Generating a random bitmap with dimensions x by

y in PNG format, with the following types:

i) Monochrome (1 bit per pixel)
ii) Grayscale (8 bits per pixel)

iii) Color (24 bits per pixel)

j) Generating n random HEX color codes.

2) Ability to communicate with True Random Number
Generator Modules using WebSocket protocol.

RAFAŁ WOJSZCZYK ET AL.: IMPLEMENTATION OF RANDOM NUMBER GENERATOR SERVICE WITH IOT DEVICE 623

3) Ability to exchange data with users using HTTP proto-
col.

4) Encrypted connections using SSL/TLS.
5) Access to the service through the Web App or Web API.
6) Access control.
7) Anonymous user access with IP registry.
8) Web API keys for registered users.
9) Credit system allowing users to exchange points for

random numbers.

REFERENCES

[1] Rak, Tomasz, and Dariusz Rzońca. 2024. "Security and Privacy
in Networks and Multimedia" Electronics 13, no. 15: 2887. doi:
https://doi.org/10.3390/electronics13152887

[2] Felkner, Anna, Jan Adamski, Jakub Koman, Marcin Rytel, Marek
Janiszewski, Piotr Lewandowski, Rafał Pachnia, and Wojciech
Nowakowski. 2024. "Vulnerability and Attack Repository for IoT:
Addressing Challenges and Opportunities in Internet of Things
Vulnerability Databases" Applied Sciences 14, no. 22: 10513. doi:
https://doi.org/10.3390/app142210513

[3] Łukasz Sobaszek and Arkadiusz Gola and Edward Kozłowski, Applica-
tion of survival function in robust scheduling of production jobs, editors
M. Ganzha and L. Maciaszek and M. Paprzycki, Proceedings of the 2017
Federated Conference on Computer Science and Information Systems,
vol. 11, 2017, doi: 10.15439/2017F276

[4] Daniel Czyczyn-Egird, Rafał Wojszczyk, “The effectiveness of data
mining techniques in the detection of DDoS attacks”. In: Omatu, S., Ro-
dríguez, S., Villarrubia, G., Faria, P., Sitek, P., Prieto, J. (eds) Distributed
Computing and Artificial Intelligence, 14th International Conference.
DCAI 2017. Advances in Intelligent Systems and Computing, vol 620.
Springer, Cham. doi: https://doi.org/10.1007/978-3-319-62410-5_7

[5] T. Nowicki, K. Chlebicki, D. Pierzchała, R. Waszkowski and K. Worwa,
"Simulation method of reliability evaluation for RFID based restricted
access administrative office," 2017 IEEE International Conference on
RFID Technology & Application (RFID-TA), Warsaw, Poland, 2017, pp.
89-94, doi: 10.1109/RFID-TA.2017.8098877.

[6] Wolfgang Hörmann, Josef Leydold, and Gerhard Derflinger. Automatic
nonuniform random variate generation. Springer Science & Business
Media, 2013.

[7] Mario Stipčević and Çetin Koç. “True Random Number Generators”. In:
Nov. 2014, pp. 275–315. isbn: 978-3-319-10682-3. doi: 10.1007/978-3-
31910683-0_12.

[8] Miguel Herrero-Collantes and Juan Carlos Garcia-Escartin. “Quantum
random number generators”. In: Reviews of Modern Physics 89.1
(Feb. 2017). issn: 1539-0756. doi: 10.1103/revmodphys.89.015004. url:
http://dx.doi.org/10.1103/RevModPhys.89.015004

[9] John von Neumann. “Various techniques used in connection with random
digits”. In: Monte Carlo Method. Ed. by A. S. Householder, G. E.
Forsythe, and H. H. Germond. Vol. 12. National Bureau of Standards
Applied Mathematics Series. Washington, D.C.: U.S. Government Print-
ing Office, 1951, pp. 36–38

[10] Derrick H. Lehmer. “Mathematical methods in large-scale computing
units”. In: Proceedings of 2nd Symposium on Large-Scale Digital Cal-
culating Machinery. 1951, pp. 141–146.

[11] Makoto Matsumoto and Takuji Nishimura. “Mersenne twister: a 623-
dimensionally equidistributed uniform pseudo-random number genera-
tor”. In: ACM Trans. Model. Comput. Simul. 8.1 (Jan. 1998), pp. 3–30.
issn: 1049-3301. doi: 10.1145/272991.272995..

[12] George Marsaglia. “Xorshift RNGs”. In: Journal of Statistical Software
8.14 (2003), pp. 1–6. doi: 10.18637/jss.v008.i14.

[13] François O Panneton, Pierre l’Ecuyer, and Makoto Matsumoto. “Im-
proved long-period generators based on linear recurrences modulo 2”. In:
ACM Transactions on Mathematical Software 32.1 (2006), pp. 1–16. doi:
10.1145/1132973.1132974.

[14] Melissa E. O’Neill. PCG: A Family of Simple Fast Space-Efficient
Statistically Good Algorithms for Random Number Generation. Technical
Report HMCCS-2014-0905. Harvey Mudd College, Sept. 2014.

[15] L’ubomíra Balková et al. “Aperiodic pseudorandom number generators
based on infinite words”. In: Theoretical Computer Science 647 (Sept.
2016), pp. 85 - 100. issn: 0304-3975. doi: 10.1016/j.tcs.2016.07.042.

[16] Lenore Blum, Manuel Blum, and Michael Shub. “A Simple Unpre-
dictable Pseudo-Random Number Generator”. In: SIAM Journal on
Computing 15.2 (1986), pp. 364–383. doi: 10.1137/0215025.

[17] George Marsaglia. “Random number generators”. In: Journal of Mod-
ern Applied Statistical Methods 2.1 (May 2003), pp. 2–13. doi:
10.22237/jmasm/1051747320.

[18] John Salmon et al. “Parallel random numbers: as easy as 1, 2, 3”.
In: Proceedings of 2011 International Conference for High Performance
Computing, Networking, Storage and Analysis. 2011, Article No. 16. doi:
10.1145/2063384.2063405.

[19] C. D. Motchenbacher and J. A. Connelly. Low-noise electronic system
design. Wiley Interscience, 1993. isbn: 0-471-57742-1.

[20] David Cirauqui and Miguel Ángel García-March and Guillem Guigó
Corominas and Tobias Graß and Przemysław R. Grzybowski and Gorka
Muñoz-Gil and J. R. M. Saavedra and Maciej Lewenstein. Quantum
Random Number Generators : Benchmarking and Challenges. 2022.

[21] X. Li et al. “Scalable parallel physical random number generator based
on a superluminescent LED”. In: Opt. Lett. 36 (2011), pp. 1020–1022.

[22] Darren Hurley-Smith, Julio Hernandez-CastroJ, ulio Hernandez-Castro,
Bias in the TRNG of the Mifare DESFire EV1, RFIDSec 2016

[23] Espressif Systems. ESP32 Technical Reference Manual. Accessed:
2023-10-01. 2023. url: https://www.espressif.com/sites/default/files/
documentation/esp32_technical_reference_manual_en.pdf\#rng.

624 PROCEEDINGS OF THE FEDCSIS. KRAKÓW, POLAND, 2025

