
The Power of Preemptions in Scheduling on

Shareable Resources

Omer Lapidot, Tami Tamir

0009-0002-8688-7687

0000-0002-8409-562X

School of Computer Science

Reichman University, Herzliya, Israel

Email: omer2372@gmail.com, tami@runi.ac.il

Abstract—Many combinatorial optimization problems arise in

the context of resource allocation. In this paper, we study the

problem of allocating shareable resources of different types to

jobs, where each job consists of multiple tasks, and each task

has a demand of a given duration to a single resource type. All

resources are available over a common time interval. Several

copies from each resource may be allocated. In a valid solution,

at any given time, each job may be processed by at most one

resource, and each resource may process at most one job. The

objective is to complete all jobs while minimizing the total cost

of the allocated resources.

We focus on the power of preemptions in this model, analyzing

how much the total cost can be reduced when jobs are allowed

to be preempted — that is, when the processing of tasks can be

split into multiple intervals.

We present both theoretical and experimental results, distin-

guishing between environments where jobs may be preempted but

all intervals of a task must be processed on the same resource

copy (weak preemptions), and environments where jobs may split

the processing of a task among different resource copies (strong

preemptions). Without preemptions, the problem is clearly NP-

hard, as it generalizes the classical Bin Packing problem. We

provide an optimal polynomial-time algorithm for the strong-

preemption model, as well as a polynomial-time algorithm for the

non-preemption model under a restricted class of task durations.

Our empirical evaluation investigates the performance of several

greedy heuristics, showing that even simple methods can achieve

near-optimal results.

I. INTRODUCTION

S
USTAINABILITY plays a crucial role in various aspects

of our future on Earth. Growing awareness of the need to

protect the environment, combined with the ability to commu-

nicate easily, has led to new trends in resource consumption.

Users have become more flexible about consumption and are

willing and able to share resources in new ways. The new ways

to consume resources give rise to new combinatorial problems

related to allocation and utilization of shareable resources. In

this work, we define and study problem of this kind.

We consider a resource sharing model, where each resource

is capable of being used or leased for any duration within its

availability window. For example, consider Amazon drivers

who perform deliveries in their assigned regions, using trucks

of different sizes tailored to specific delivery needs. A similar

setting arises in large organizations, where departments might

share meeting rooms of various capacities, or in workplaces

where part-time or hybrid employees share desks, cubicles, or

workstations. Likewise, in residential communities, neighbors

may collaboratively use equipment such as electric vehicle

charging stations [18], lawn mowers or other landscaping

tools.

In our resource sharing problem, every user (job) is asso-

ciated with a demand for several resources. For every user

and resource, it is known for how long the user needs the

resource. Without sharing, every user is allocated one copy

from each resource. However, different users can share the

same resource if they use it at different times. Assume that

every copy of a resource is associated with a given cost.

The goal is to schedule the users on different copies of the

resources such that the total cost of allocated resources is

minimal. In the basic setting of this model, every user is

using each resource consequently and with no interruptions.

When preemptions are allowed, a user may split the use of

a resource into several segments. It is well known that in

many scheduling problems, preemptions significantly affect

the objective function value and the computational complexity

of the problem. For example, the classical load balancing

problem of minimizing the completion time of a schedule (the

makespan) is NP-hard if preemptions are not allowed [5] and

is solved by a linear-time algorithm if preemptions are allowed

Proceedings of the 20th Conference on Computer
Science and Intelligence Systems (FedCSIS) pp. 553–563

DOI: 10.15439/2025F6496
ISSN 2300-5963 ACSIS, Vol. 43

IEEE Catalog Number: CFP2585N-ART ©2025, PTI 553 Thematic Session: Computational Optimization

Fig. 1. Possible schedules of four jobs on two copies of resource type a.

[11]. In this work, we study the power of preemption in the

resource sharing model. Practically, the power of preemption

measures how the flexibility of users in the way they are ready

to use the resource affects the total cost.

The resource sharing problem is dual to open-shop schedul-

ing, in which we have one copy of each resource type, and

the goal is to minimize the schedule’s completion time (the

makespan). For a single resource type, our problem is identical

to the well-known NP-hard bin-packing problem in which

items of different sizes need to be packed in a minimal number

of identical bins. In the bin-packing problem, if items can

split among several bins, the problem becomes trivial. In our

setting, such splits correspond to job-preemptions. Thus, our

problem can be viewed as a generalization of bin-packing. In

this generalization with several resource types, the power of

preemption has not been studied in the past.

In our analysis we distinguish between four types of re-

source consumption: (i) no resource sharing, (ii) resource

sharing without preemptions, (iii) resource sharing with weak

preemptions, where the processing of a task can be paused and

resumed on the same resource copy, and (iv) resource sharing

with strong preemptions, where tasks may pause and resume,

and also migrate across different resource copies. We present

an optimal algorithm for the problem with strong preemptions

allowed, and analyze theoretically and by experiments the

performance of some natural greedy heuristics, in general and

for restricted classes of instances. As we show, even simple

heuristics can achieve near-optimal performance.

A. Notation and Problem Statement

An instance of the resource sharing problem is given by a

tuple ⟨J ,M, (pij)i∈M,j∈J , (ci)i∈M , T ⟩, where J is a set of

n ≥ 1 jobs, M is a set of m ≥ 1 resource-types, p is an

n × m matrix of processing requests, ci > 0, is the cost of

each copy of resource i, and [0, T] is the availability interval

of each of the resource copies. We use the term resource i

to denote resource-type i. Each job j ∈ J consists of several

tasks. Formally, each job is associated with a set of resource

types Sj ⊆ M corresponding to the tasks composing it (for

which pij > 0). For each i ∈ Sj , job j should be processed

on a resource of type i for pij time units. In a valid instance
∑

i pij ≤ T . Let Ji = |{j ∈ J | i ∈ Sj}| be the number of

jobs that need resource i.

The idea in the sharing model is that several jobs can share

a single copy of a resource, as long as each copy services

at most one job in each time slot. Therefore, the number of

copies required from resource i may be lower than Ji. It is

easy to see that the actual number of copies required from

resource i is between
⌈

∑

j pij/T
⌉

and Ji.

A non-preemptive schedule of an instance is denoted by

σ = (σj)j∈J . For every job j, σj = (σji)i∈Sj
is the schedule

of job j, given by the set of intervals in which j uses the

resources it needs. Specifically, σji = [start(σji), end(σji))

is the interval in which job j uses resource i in σ. In a feasible

solution, end(σji)−start(σji) = pij ; that is, job j is assigned

to the resource for pij time units. The intervals in which a job

uses different resources must be disjoint; that is, for all j and

any i1, i2, it holds that σji1 ∩ σji2 = ∅.

For a given schedule σ, for any time 0 ≤ t ≤ T , let

Ni(σ, t) = |{j ∈ J | t ∈ σji}| be the number of jobs j ∈ J

that use resource i at time t. Let Ni(σ) = max0≤t<T Ni(σ, t).

That is, Ni(σ) is the maximal number of jobs who simulta-

neously use resource i throughout the schedule. It holds that

Ni(σ) is the number of copies of resource i needed to satisfy

all job requirements. The cost of a schedule σ is the total cost

of the resources used in σ, given by cost(σ) =
∑m

i=1 Ni(σ)·ci.

The goal is to satisfy all job requirements at a minimum total

resource cost, i.e., find a schedule σ such that cost(σ) is

minimal.

When preemptions are allowed, the processing of a task

on one resource may split into several disjoint intervals. We

distinguish between two types of preemptions (see Figure 1).

1) Weak Preemptions - for every job j and type i ∈ Sj ,

the processing of the task of type i of job j may split

into several intervals, all of them are on the same copy

of a resource of type i.

2) Strong Preemptions - for every job j and type i ∈ Sj , the

processing of the task of type i of job j may split into

several intervals, which can be processed on different

copies of resources of type i.

554 PROCEEDINGS OF THE FEDCSIS. KRAKÓW, POLAND, 2025

For an instance I , let OPTnopmtn(I), OPTWpmtn(I),

OPTSpmtn(I) denote the minimal cost of a feasible schedule

of I without preemptions, with weak preemptions, and with

strong preemptions, respectively.

Definition 1.1: Let I be an instance of a resource sharing

problem. The power of weak preemption for I is PoWP(I) =
OPTnopmtn(I)
OPTWpmtn(I)

. The power of strong preemption for I is

PoSP(I) =
OPTnopmtn(I)
OPTSpmtn(I)

.

Definition 1.2: For a class I of instances, let PoWP(I) =

maxI∈I PoWP(I), and PoSP(I) = maxI∈I PoSP(I).

When weak preemptions are allowed, a job may split its

processing but must remain in the same copy of a resource.

The next definition, of the power of migration, isolates the

benefit from allowing jobs to split a task among several

different copies of a resources.

Definition 1.3: Let I be an instance of a Resource Sharing

problem and I a class of instances. The power of migration

for I is PoM(I) = PoWP(I)
PoSP(I) , and the power of migration for

I is PoM(I) = maxI∈I
PoWP(I)
PoSP(I) .

We conclude the introduction with an example, demonstrat-

ing the power of preemption. Consider an instance I with

n = 6 jobs and m = 5 resource types. The jobs’ demands

are given in the table in Figure 2. Assume that all resources

have the same unit cost per copy. Assume also that T = 5.

Figure 2 presents two possible schedules. The left schedule is

an optimal schedule with weak preemptions. In this schedule

exactly one copy of each resource is allocated, therefore

OPTWpmtn(I) = 5. The right schedule is an optimal non-

preemptive schedule. It holds that OPTnopmtn(I) = 8. We

can see that the left schedule uses exactly
⌈

∑

j pij/T
⌉

copies

of each resource type i, which is clearly the minimal possible.

We conclude that PoWP(I) = PoSP(I) = 8
5 = 1.6.

The above example can be generalized to show that for

every n ≥ 2, there exists an instance In with n jobs and

m = n+1 resource types of unit cost such that PoWP(In) =

PoSP(In) = 2n
n+1 = 2 − 2

n+1 . In this construction, one job

needs all m resources for a short duration ε, while each of

the remaining n− 1 jobs needs a distinct resource for T − ε

time units. In the non-preemptive schedule, the first and last

resources can be shared and require a single copy each, while

each of the remaining m − 2 resources requires two copies,

yielding a total cost of 2(n − 1) + 2 = 2n. In contrast, a

preemptive schedule allows all jobs to be assigned efficiently

with only one copy per resource, giving a cost of m = n+1,

and thus the claimed ratio.

T = 5 J1 J2 J3 J4 J5 J6

a 1 4 0 0 0 0

b 1 0 4 0 0 0

c 1 0 0 4 0 0

d 1 0 0 0 4 0

e 1 0 0 0 0 4

Fig. 2. An example of an instance I for which PoP(I) = 8

5
.

B. Related Work

There is an extensive body of literature dedicated to job

scheduling on parallel machines of various types. As previ-

ously mentioned, the resource sharing problem is dual to the

well-studied open-shop problem. An instance of open-shop

scheduling consists of m ≥ 1 machines (or processors). Each

of these machines is capable to perform a single task type.

The machines are available at time t = 0, and, unlike our

model, do not have limited active time, that is, T =∞. In the

problem O||Cmax the goal is to minimize the makespan of the

schedule, given by the last completion time of a job. When

preemptions are allowed, the problem O|pmtn|Cmax can be

solved in linear-time [6], [10] for any number of machines. In

contrast, for the non-preemptive variant, a poly-time algorithm

is known only for m ≤ 2.

For m ≥ 3, O||Cmax is NP-complete [6]. A known approx-

imation algorithm guarantees an approximation to the optimal

solution that is dependent on the ratio between the maximal

total demand for a single machine and the maximal demand

of a single job on a single machine [4]. The hardness of the

approximation for O||Cmax has also been studied. It is known

that, unless P=NP, there does not exist a polynomial-time

approximation algorithm that constructs a schedule with length

guaranteed to be strictly less than 5
4 times the optimal length

[17]. When m is fixed, there exists a (1 + ϵ)-approximation

scheme for the problem that is polynomial in the size of the

instance, but exponential in m and 1
ϵ

[14]. Optimal algorithm

OMER LAPIDOT, TAMI TAMIR: THE POWER OF PREEMPTIONS IN SCHEDULING ON SHAREABLE RESOURCES 555

or better approximal factors were given for restricted classes,

such as unit-length jobs [12], [1], or limited number of jobs

or machines [3].

The Power-of-Preemption (PoP) has been analyzed mainly

for the problem R||Cmax of minimizing the makespan on

unrelated parallel machines. In [7] it is shown that the PoP

is exactly 4, by showing a lower bound to the PoP, after an

upper bound as well as approximation algorithms for restricted

classes were given in [2], [13], [15]. The paper [16] studies

the PoP and the power of limited preemptions (where only

a limited number of preemptions is allowed) for multiple

variants of machine environments, job characteristics and

objective functions.

Besides the resemblance to the shop-scheduling models, our

resource sharing problem with m = 1 is identical to the Bin-

Packing problem (BP). An instance of BP is given by n items,

each has a size in (0,1], and the objective is to pack the items

into a minimum number of bins, subject to the constraint that

the total item sizes in each bin is at most 1. The bin-packing

problem has been studied extensively. It is known to be NP-

hard and has an FPTAS whose approximation ratio is (1+ ϵ),

with a run time of O(n
4

ϵ2
+1) [8], [9].

C. Our Results

In this work, we make several contributions that address

the scheduling of shared resources under preemptive and

non-preemptive settings, and examine how preemptions may

reduce the total resource cost. Our results are listed below.

a) Optimal Algorithm with Strong Preemptions: We

present a polynomial-time optimal algorithm for the resource

sharing problem when strong preemptions are allowed. Our

solution is based on a reduction to open-shop scheduling with

preemptions (O|pmtn|Cmax), and reveals that, under strong

preemptions, a minimal-cost schedule, in which for all i, there

are exactly
⌈

∑

j pij/T
⌉

copies of resource i, can be computed

efficiently.

b) Power of Preemption in the Class pij ∈ {0, p}: For

the restricted class of instances in which every task is either

of length p or zero, we showed that both non-preemptive and

strong-preemptive scheduling can be computed in polynomial

time. Yet, the benefit from preemptions may be significant.

We prove that the Power of Strong Preemption (PoSP) for

this class is bounded by 2, and this is tight.

c) Greedy Heuristics and Empirical Evaluation: Since

non-preemptive resource sharing is NP-hard in the general

case, we design and evaluate several heuristic algorithms. Our

experiments measure how these heuristics perform as problem

parameters (number of jobs, resource costs, variation of pro-

cessing times) vary, and quantify the benefit of preemptions

in practice.

Together, these results offer both theoretical and empirical

insights into the power of preemptions in shared resource

scheduling. We identify tractable cases, establish tight bounds

on preemption benefits, and demonstrate through experiments

how simple heuristics behave across realistic settings. Our

work highlights the fundamental trade-offs between scheduling

flexibility, computational complexity, and solution cost.

II. RESOURCE SHARING WITH STRONG PREEMPTIONS

ALLOWED

In this section we consider settings with strong preemption

allowed. We first present and analyze natural greedy algo-

rithms. Similar greedy algorithms are known to be optimal

for makespan minimization and for the Bin Packing problem

[11]. However, as we show, the greedy approach fails in

the resource sharing problem. We then present an optimal,

yet more elaborate, polynomial-time optimal algorithm for

resource sharing with strong preemptions allowed.

Greedy Algorithm: Algorithm 1 considers the resources

one after the other. For every resource i, it assigns the jobs

for which i ∈ Sj one after the other. Every task of length pij is

assigned to the earliest set of disjoint intervals of total length

pij available on open copies of resource i, or on a new copy

of resource i if required. The interval must be disjoint with

intervals already allocated to previous tasks of job j. Figure 3

presents an execution of Algorithm 1, and demonstrates that

it is sub-optimal.

Algorithm 1 - A greedy algorithm for computing a schedule

with strong preemptions.

1: All jobs are initially unassigned.

2: for i = 1 to m do

3: for j = 1 to n do

4: if i ∈ Sj then: then

5: Assign task i of job j on the earliest feasible

disjoint intervals of total length pij on copies of

resource i. Open a new copy of resource i if

needed.

6: end if

7: end for

8: end for

It is easy to see that additional greedy heuristics, which

apply a different assignment order (e.g., the outer loop con-

siders the jobs one after the other), are sub-optimal as well,

556 PROCEEDINGS OF THE FEDCSIS. KRAKÓW, POLAND, 2025

T = 5 J1 J2 J3

a 3 3 3

b 2 1 2

Resource demand table

Fig. 3. An example of an instance I with unit-cost resources, demonstrating the suboptimality of a greedy strong-preemptive algorithm. Left: demand table.

Center: greedy schedule σalg with cost 4. Right: optimal schedule σ⋆ with cost 3.

hinting that an optimal algorithm for resource sharing with

strong preemptions, should be more involved.

Optimal Algorithm: Our algorithm for scheduling with

strong preemptions allowed employs an optimal algorithm for

the problem O|pmtn|Cmax as a black box [6]. Recall that in

an Open-Shop O|pmtn|Cmax problem, we are given a set of

n jobs, a set of m machines, and the processing time, pij of

task i of job j. The jobs should be assigned to the machines (a

single copy of each machine) such that different tasks of job j

are processed in disjoint time intervals. The goal is to minimize

the makespan – defined as the last completion time of a job.

Let Aj =
∑

i pij be the total length of job j’s tasks. Let

Li =
∑

j pij be the length of tasks that need to be performed

on machine i.

The optimal algorithm for O|pmtn|Cmax presented in

[6] computes a schedule whose makespan is α =

max(maxj Aj ,maxi Li). Since each of these values is a lower

bound for the optimal makespan, the algorithm is clearly

optimal.

Given an instance of resource sharing, we construct an

instance of an open-shop problem as follows:

For every 1 ≤ i ≤ m, we define and allocate ⌈Li/T ⌉

machines that will process the tasks of type i. Denote by Mi

the set of machines of type i. For every 1 ≤ j ≤ n, there

is a single job, whose tasks are determined as described in

Algorithm 2. The tasks are defined such that for all i ∈ Sj ,

the total length of tasks on machines in Mi is pij , and for

every machine in Mi, the total length of tasks that need to be

processed on Mi is at most T . An example of our reduction

is given in Figure 4.

Algorithm 2 - An optimal algorithm with strong preemptions

allowed.

1: Given a set J of n ≥ 1 jobs and a set M of m ≥ 1

resource types, pij , ∀i, j, and T .

2: For 1 ≤ i ≤ m, allocate a set Mi of ⌈Li/T ⌉ machines.

3: Let m′ =
∑

1≤i≤m |Mi|.

4: Construct an instance of O|pmtn|Cmax with n jobs and

m′ machines.

5: for i = 1 to m do

6: for j = 1 to n do

7: while pij > 0 do

8: Let i⋆ be the lowest index of a machine in Mi with

total load l⋆i < T .

9: Let pi⋆j = min(pij , T − l⋆i).

10: l⋆i = l⋆i + pi⋆j

11: pij = pij − pi⋆j

12: end while

13: end for

14: end for

15: Solve O|pmtn|Cmax on the resulting instance.

T = 5 J1 J2 J3

a 3 3 3

b 2 1 2

(a)

J1 J2 J3

a1 3 2 0

a2 0 1 3

b1 2 1 2

(b)

Fig. 4. An example of our reduction. (a) Resource sharing demand table. (b)

Corresponding open-shop instance with Ma = {a1, a2} and Mb = {b1}.

Theorem 2.1: Algorithm 2 computes in polynomial time an

optimal solution to the resource sharing problem with strong

preemptions allowed.

Proof: Let σ⋆ be the schedule produced by Algorithm 2. The

algorithm reduces the resource sharing instance to an instance

of the open-shop problem O|pmtn|Cmax by allocating, for

each resource i, exactly ⌈Li/T ⌉ machines, and distributing

the tasks of each job j across these machines such that the

OMER LAPIDOT, TAMI TAMIR: THE POWER OF PREEMPTIONS IN SCHEDULING ON SHAREABLE RESOURCES 557

total processing time per resource equals pij . This guarantees

that the constructed open-shop instance satisfies the time

constraints of resource sharing and respects the job-resource

requirements.

The schedule σ⋆ is computed using the optimal algorithm

for O|pmtn|Cmax from [6], which produces a schedule of

makespan α = max(maxj Aj ,maxi Bi), where Aj =
∑

i pij

and Bi =
∑

j pij . Our construction guarantees (steps 8-9) that

in the open-shop instance, each machine is allocated at most

T time units, that is ∀i, Bi ≤ T . In addition, by definition of

the resource rental problem, the total length of each job is at

most T , that is, ∀j, Aj ≤ T . This implies that α ≤ T , and the

resulting makespan is at most T .

Since each machine in the open-shop solution corresponds

to one copy of a resource in resource sharing, and all jobs are

scheduled such that their tasks are disjoint on each machine,

the resulting schedule is feasible in resource sharing under

strong preemptions. Furthermore, the number of machines

used for each resource is the minimal possible given the total

load and capacity T , meaning the total cost (i.e., number

of machines) is minimized. Hence, σ⋆ is a feasible resource

sharing schedule with minimal cost. The time complexity of

the algorithm is clearly polynomial and is dominated by the

time complexity of the algorithm for O|pmtn|Cmax [6],

which is O(r2), where r is the number of non-zero tasks -

typically smaller than O(n2).

III. THE CLASS I0,p: INSTANCES IN WHICH pij ∈ {0, p}

In this section we analyze the class I0,p of resource sharing

instances with pij ∈ {0, p}. That is, all the non-empty tasks

have the same length p. As a restricted class of the general

problem, our optimal algorithm for strong-preemptive applies

for this class as well, making the strong-preemptive problem

polynomially solvable.

We show that this class is polynomially solvable even when

preemptions are not allowed. Given an instance in I0,p, let

ri denote the number of the non-zero tasks which require

resource i. Thus, the total demand for resource i is p · ri. Our

optimal solution reduces the problem to O|pij ∈ {0, 1}|Cmax,

that is, minimum makespan in an open-shop environment with

unit processing times. An optimal poly-time solution for this

problem, based on a reduction to minimum edge coloring in

a bipartite graph, is presented in [17].

Overview of our algorithm: In the first step, we determine

how many copies are required from each resource type. It

is easy to see that for all 1 ≤ i ≤ m, ⌈ri/ ⌊T/p⌋⌉ is

a lower bound for this number. We define an instance of

O|pij ∈ {0, 1}|Cmax with ⌈ri/⌊T/p⌋⌉ machines of type i. We

then use the algorithm in [17] to get an optimal schedule for

the resulting O|pij ∈ {0, 1}|Cmax problem, and conclude an

optimal solution to our resource rental problem. Formally:

Theorem 3.1: Computing an optimal solution for a resource

sharing problem in I0,p can be done in polynomial time.

Proof: Let I be an instance of resource sharing in I0,p,

with availability time T . For each resource i, let ri denote the

number of jobs j for which pij = p. Since each job requires

either 0 or p units on each resource, and each copy of i can

process at most ⌊T/p⌋ tasks of length p, it follows that at least

⌈ri/⌊T/p⌋⌉ copies of resource i are required.

We reduce this instance to an instance of open-shop schedul-

ing O|pij ∈ {0, 1}|Cmax with unit-length tasks. Note that

since pij ∈ {0, 1}, such an instance is defined by determining

a set of machines, a set of jobs, and the subset of machines

required by each job. For each resource i in the resource rental

problem, we introduce ⌈ri/⌊T/p⌋⌉ machines of type i, and for

every job j with pij = p, we add one of these machines to the

subset of machines required by job j. This assignment is done

such that each machine is required by at most ⌊T/p⌋ jobs. In

this way, we guarantee that the load on every machine in the

resulting open-shop instance is at most ⌊T/p⌋.

The constructed instance is a valid O|pij ∈ {0, 1}|Cmax

problem, which is known to admit a polynomial-time optimal

solution via a reduction to minimum edge coloring in bipartite

graphs [17]. The solution is the maximum between the load

on a single machine and the total demand of a job. Our

construction guarantees that this value is at most ⌊T/p⌋.

The resulting open-shop schedule induces a feasible resource

sharing schedule by stretching each unit-length task to a length

p. The resulting makespan is T - that fits the availability time

of the resources.

Since our construction uses the minimal number of ma-

chines per resource (matching the lower bound), and produces

a feasible schedule, it is optimal. We conclude that resource

sharing with pij ∈ {0, p} can be solved optimally in polyno-

mial time.

Next, we bound the power of strong preemption for this

class. It is interesting to note that PoSP > 1 even though the

problem is polynomially solvable in both the preemptive and

the non-preemptive models. Thus, preemptions do not affect

the computational complexity of the problem but reduce the

cost of an optimal solution.

Theorem 3.2: PoSP(I0,p) = 2.

Proof: Let I ∈ I0,p be a resource sharing instance with

pij ∈ {0, p}, time T , and resource costs ci. Let ri denote

558 PROCEEDINGS OF THE FEDCSIS. KRAKÓW, POLAND, 2025

the number of jobs that require resource i. The total load on

resource i is therefore ri · p.

As discussed in Section II, the cost of an optimal solution

with strong preemptions allowed is

costpre(I) =
∑

i

⌈

∑

j pij

T

⌉

ci =
∑

i

⌈ri · p

T

⌉

ci =
∑

i

⌈

ri
T/p

⌉

ci,

and the cost of an optimal solution without preemptions is:

costnon-pre(I) =
∑

i

⌈

ri
⌊T/p⌋

⌉

ci.

We first note that if p divides T , then an optimal solution

with preemptions allowed, does not use any preemptions,

implying that PoSP (I) = 1. If p does not divide T , then

since p ≤ T , it holds that T
p
≥ 1, implying (T/p)/ ⌊T/p⌋ < 2.

Therefore,

PoSP (I) =

∑

i⌈ri/⌊
T
p
⌋⌉ci

∑

i

⌈

ri/
T
p

⌉

ci
< 2.

We show that the above analysis is tight, that is, we can get

arbitrarily close to a PoSP of 2. Specifically, given 0 < δ ≤
1
2 , we present an instance I such that PoSP (I) ≥ 2− δ. As

we show, a tight example exists already for instances with a

single resource type.

Given 0 < δ ≤ 1
2 , let ϵ ≤ δ such that 2−ϵ

ϵ
and 1

ϵ
are

integers. Let T = 1, m = 1, n = 2−ϵ
ϵ

, p = 1
2−ϵ

and p1,j = p

for any 1 ≤ j ≤ n.

Since 1
2 < p ≤ 1, without preemptions no two jobs can

share a copy of the resource, therefore, n copies of resource

i are required, implying that the cost on any solution without

preemptions is exactly n = 2−ϵ
ϵ

= 2
ϵ
− 1.

On the other hand, the number of copies required with

preemptions allowed is
⌈

r1
T
p

⌉

=

⌈

n
T
p

⌉

=

⌈

(2− ϵ)/ϵ

1/ 1
2−ϵ

⌉

=

⌈

(2− ϵ)/ϵ

2− ϵ

⌉

=

⌈

1

ϵ

⌉

=
1

ϵ
.

Therefore,

PoSP (I) =
2/ϵ− 1

1/ϵ
=

2/ϵ

1/ϵ
−

1

1/ϵ
= 2− ϵ ≥ 2− δ.

IV. GREEDY HEURISTICS AND EMPIRICAL EVALUATION

EXPERIMENT

A. Key Questions

In our experiments, we addressed the following questions

regarding the performance of some natural greedy heuristics

and the impact of preemptions in the resource sharing setting:

1) Evaluate the performance of natural greedy algo-

rithms

Since non-preemptive resource sharing is NP-hard, we

rely on greedy heuristics as approximate solutions. Our

goal is to test whether even simple heuristics produce

significant cut down in resource costs.

2) Investigate how parameter variations influence the

efficiency of allocations with no preemptions, weak,

and strong preemptions.

We systematically vary the number of jobs (n), the

number of resources (m) and the variance of distribu-

tions of job lengths (pij). Our goal is to see how these

changes amplify or diminish the empirical advantages of

preemptions compared to non-preemptive allocations.

3) Estimating the Power of Preemption. For the restricted

class pij ∈ {0, p}, we proved that PoSP cannot exceed 2

(see Section III). For general instances, we lack a theo-

retical upper bound for either PoSP or PoWP. To explore

them, we compare the performance of our three algo-

rithms (non-preemptive, weak-preemptive, and strong-

preemptive). Even while not optimal, these heuristics

provide a practical view of preemption benefits across

diverse instances.

B. Experiment Design

In order to address the key questions outlined in Sec-

tion IV-A, we built a simulator that generates a variety of

resource sharing instances and evaluated the schedules pro-

duced for these instances by several greedy heuristics under

different preemptive settings.

We measured the performance of each heuristic by compar-

ing the total cost of its resulting schedule against two baseline

values:

• The optimal cost, achieved when strong preemptions are

allowed, and given by

Copt(I) =
∑

i∈M

ci ·

⌈

∑

j∈J pij

T

⌉

.

• The no-sharing cost, which assumes that each non-empty

task pij > 0 is assigned its own dedicated copy. This cost

represents a naive allocation strategy and is given by:

Cno-share(I) =
∑

i∈M

ci · |{j ∈ J | pij > 0}| .

When evaluating the efficiency of various heuristics, we used

the no-sharing cost as a normalization baseline.

For simplicity, all instances used in our experiments assume

unit resource costs; that is, ci = 1 for all i ∈ M . This

OMER LAPIDOT, TAMI TAMIR: THE POWER OF PREEMPTIONS IN SCHEDULING ON SHAREABLE RESOURCES 559

allows us to focus solely on the structural differences between

scheduling strategies without the added complexity of cost

heterogeneity.

1) Heuristics: We implemented three heuristics to resource

sharing, corresponding to non-preemptive, weak-preemptive,

and strong-preemptive scheduling. All three heuristics share

the same core idea: iteratively assign each job’s tasks to

available resource copies using a first-fit strategy.

For scheduling with strong-preemptions we have used Al-

gorithm 1, augmented with the following resource-sorting

step: Before assigning a job, we sort its required resources

in descending order of task duration. That is, for each job

j, we reorder its set of required resources Sj according to

pij , scheduling longer tasks first. This helps accommodating

shorter tasks in the remaining gaps, and by that improving

success rate of sharing the resources. For scheduling with

weak-preemptions we used the same algorithm; however, in

Step 5, we only considered assignments on a single copy.

Algorithm 3 below describes our heuristic for non-

preemptive scheduling. In the non-preemptive setting, partial

assignments may block later tasks of the same job and prevent

any feasible solution. For example, if T = 6 and a job consists

of two tasks of length 3, then the second task cannot be

performed non-preemptively if the first task is not processed

in [0, 3) or in [3, 6). To address this, we keep for each job a

variable leftj that stores the leftmost time-point in [0, T] in

which it is assigned. We schedule the job using a left-aligned

strategy: tasks are scheduled one after the other, with each

task placed as early as possible (starting at a leftmost time)

and within a carefully restricted interval to ensure that it ends

early enough -enabling the remaining tasks to be assigned such

that the job completes by time T . If no such interval exists

on an already-open copy of the corresponding resource, then

a new copy is activated.

All three algorithms share the same Python implementation

framework, managing available time segments in each ma-

chine’s schedule and placing tasks accordingly. The final cost

is computed by summing up the number of machines used for

each resource.

2) Dataset Generation: Our method for creating bench-

mark instances generates task durations for each job in a con-

sistent, yet randomized manner. Every instance is characterized

by four parameters: number of jobs, n; number of resources,

m; task-length variance 0 ≤ variance ≤ 1; and job length

as a fraction of T , span ≤ 1.

For a given set of parameters, we construct a set of n

jobs each consisting of m tasks, such that (i) for each job

Algorithm 3 Greedy Algorithms for Non-Preemptive Schedul-

ing

1: for each job j ∈ J do

2: Sort Sj (the required resources of j) by non-increasing

order of pij

3: Let leftj ← 0, pj ←
∑

i∈Sj
pij , scheduled← 0

4: for each i ∈ Sj where pij > 0 do

5: Let remaining ← pj − scheduled

6: Let latest_end← T − (remaining − pij)

7: Assign task (i, j) as a single interval of length pij on

an existing copy, or a new copy of resource i within

[leftj , latest_end]

8: Let leftj ← end time of assigned interval

9: Let scheduled← scheduled+ pij

10: Update current solution and resource state

11: end for

12: end for

1 ≤ j ≤ n and resource 1 ≤ i ≤ m, with probability 0.2

the task of job j corresponding to resource i is empty, that is,

pij = 0. (ii) Each of the remaining tasks has a length drawn

uniformly from the range [1−variance, 1+variance],

and then scaled such that the total tasks length is span. We

assume that T = 1. This is w.l.o.g. since in the last step,

the task durations are scaled such that the total job length is

span · T .

To evaluate how different structural parameters affect

scheduling performance, we generated four large sets of in-

stances, each containing 1000 samples. In each set, we fixed

three parameters and systematically varied the fourth: number

of jobs, number of resources, variance, or span. This design

isolates the influence of each factor on the heuristics’ relative

performance. When fixed, we used the following parameters:

n = 10 jobs, m = 3 resources, variance 0.9, and span

1. Our experiments show that these values best capture the

characteristics of each heuristic.

V. EXPERIMENTAL RESULTS

We begin by presenting the raw results of our experiments.

Figures 5- 8 summarize the efficiency of each of the heuristics

with respect to four parameters: number of jobs, number

of resources, variance, and span. For each experiment (of

1000 samples) we calculated the average solution cost of

the three heuristics, as well as the optimal cost. These costs

are normalized relative to the no-sharing baseline, giving the

efficiency of each heuristic, which is depicted in the figures.

560 PROCEEDINGS OF THE FEDCSIS. KRAKÓW, POLAND, 2025

Fig. 5. Efficiency for variable the number of jobs.

Fig. 6. Efficiency for variable number of resources.

Fig. 7. Efficiency for variable variance.

Fig. 8. Efficiency for variable span (total job length as a fraction of T).

We now turn to interpreting these results in light of the three

research questions introduced earlier.

A. (Q1) How well do the greedy algorithms approximate

optimal schedules?

Our results show that all greedy algorithms remain within

a constant factor of the optimal strong-preemptive sched-

ule across all tested parameters. In favorable cases, greedy

schedules approximate the optimum within ratio 1.1. In more

constrained scenarios (e.g., with many resources), the gap may

increase, but none of the heuristics exceeded a factor of 2.

This empirical observation supports the practical use of these

heuristics even in the absence of theoretical guarantees.

B. (Q2) What is the effect of parameter variations on preemp-

tion benefits?

We observed how each structural parameter shaped the cost

gap between non-preemptive, weak-preemptive, and strong-

preemptive settings:

a) Number of Jobs (n): As n increases, all algorithms

achieve improved efficiency relative to the no-sharing baseline.

The strong-preemptive heuristic continues to closely approxi-

mate the optimal cost. Meanwhile, the non-preemptive heuris-

tic gets increasingly closer to the weak-preemptive approach,

and both converge to approximately 1.25 times the cost of the

optimal solution.

Fig. 9. Relative cost over no-sharing cost as number of jobs increases.

b) Number of Resources (m): As m increases, all of

our algorithms achieve improved efficiency relative to the no-

sharing baseline. The strong-preemptive heuristic continues to

produce near-optimal results, and the weak-preemptive algo-

rithm closely follows it, with the gap between them narrowing

as m grows. The non-preemptive heuristic also benefits from

increased resources, but to a lesser extent - its relative cost

remains around 1.5 times the optimal.

OMER LAPIDOT, TAMI TAMIR: THE POWER OF PREEMPTIONS IN SCHEDULING ON SHAREABLE RESOURCES 561

Fig. 10. Relative cost over no-sharing cost as number of resources increases.

c) Variance of Task Durations: Our results indicate that

variance in task durations significantly impacts scheduling

performance when it first appears (transitioning from zero

variance to some positive value). However, beyond this initial

effect, the magnitude of variance has minimal influence on the

algorithm performance. Once some level of variance exists,

increasing it further does not substantially change the gap

between the heuristics, suggesting that it is the presence of

variance, rather than its magnitude, that defines the difficulty

of the instances.

d) Span: Recall that the span determines the total length

of the jobs’ tasks. As expected, decreasing the span consis-

tently makes the problem easier, since tasks can be more flex-

ibly scheduled without conflicts, leading to lower overall costs.

Our results show that beyond a certain point, the problem

becomes nearly trivial, with all algorithms, in particular the

non-preemptive one, achieving near-optimal results.

C. (Q3) Estimating the Power of Preemption in General Cases

In the general case, across a wide range of tested in-

stances with relatively low values of n and m, the three

approaches—non-preemptive, weak-preemptive, and strong-

preemptive - are relatively comparable. In those values, we

find that non-preemptive schedules cost on average approxi-

mately 50% more than strong-preemptive ones, while weak-

preemptive schedules cost about 25% more than strong-

preemptive schedules. Thus, on average, the power of strong

preemption is PoSP (I) = 1.5, and the power of migration is

PoM(I) = 1.25. While these results are based on smaller

parameter settings, the trends observed in earlier sections

indicate similar or even stronger effects for larger instances. In

particular, as the number of jobs increases, the non-preemptive

and weak-preemptive heuristics converges toward a relative

cost of approximately 1.25 compared to the optimal. While

as the number of resources increases, the weak-preemptive

algorithm achieves near-optimal performance, closing the gap

with the strong-preemptive approach.

VI. SUMMARY AND FUTURE WORK

In this paper we analyzed a scheduling problem arising in

environments in which resources may be shared by several

users. The goal is to minimize the total cost of allocated

resources. We summarize below our contribution and the main

takeaways from our theoretical and empirical study of the

resource sharing problem.

a) Optimal Algorithm for Scheduling with Preemptions

Allowed: We developed an algorithm for solving the problem

optimally when strong preemptions are allowed. Our optimal

algorithm is suitable for all classes of instances, and achieves

the lowest possible cost, given by

Copt(I) =
∑

i∈M

ci ·

⌈

∑

j∈J pij

T

⌉

.

b) Tight analysis of the class I0,p: For the class I0,p,

we developed an optimal algorithm for scheduling without

preemptions and established a tight bound of 2 for the power

of strong preemptions. We conjecture that this bound is valid

for additional classes.

c) Greedy Approaches and Approximation: We devel-

oped three greedy heuristics for resource sharing: non-

preemptive, weak-preemptive, and strong-preemptive, and

found that all provide efficient approximations. As expected,

the weak and strong preemptive variants consistently outper-

form the non-preemptive approach. In all parameter regimes,

the heuristics remained within a constant factor of the optimal

cost.

Our work leaves open several directions for future work:

1) Theoretical analysis of the general case: A deeper

understanding of the general case is still needed. Two

specific directions stand out:

• Determining tight upper bounds for the power of

weak and strong preemptions (PoWP and PoSP),

as well as the power of migration (PoM).

• Deriving theoretical worst-case approximation guar-

antees for the proposed heuristics, complementing

the observed empirical performance.

2) Analysis of additional restricted classes of instances:

Beyond the I0,p class, it would be interesting to analyze

additional classes of instances, arising in real-world

applications.

562 PROCEEDINGS OF THE FEDCSIS. KRAKÓW, POLAND, 2025

• Instances with a constant number of job types,

where all jobs of the same type have the same

resource requirements.

• Instances with job-dependent or resource-dependent

processing times, e.g., pij = pj or pij = pi.

• Instances in which each job consists of a bounded

number of tasks (e.g., |Sj | = 2 for all j).

For each such class, future work should aim to determine

whether an optimal solution can be computed in polyno-

mial time, or alternatively prove hardness and develop

approximation algorithms.

3) Modeling costs for preemptions and migrations: Our

model assumes that preemptions and migrations are not

associated with a cost. In real-world settings, however,

splitting or migrating tasks may involve setup or tran-

sition costs. Extending the model to incorporate these

costs may yield richer structural insights and lead to new

trade-offs between flexibility and efficiency. Analyzing

the effect of such costs on both the complexity and the

power of preemptions is a promising direction for future

work.

REFERENCES

[1] H. Bräsel, D. Kluge, and F. Werner, A polynomial algorithm for the

[n/m/0, tij = 1, tree/Cmax] open shop problem, European Journal

of Operational Research, 72(1):125–134, 1994.

[2] R. Canetti and S. Irani. Bounding the power of preemption in random-

ized scheduling. SIAM Journal on Computing, 27(4):993–1015, 1998.

[3] I. G. Drobouchevitch. Three-machine open shop with a bottleneck

machine revisited. Journal of Scheduling, 24(2):197–208, 2021.

[4] T. Fiala. An algorithm for the open-shop problem. Mathematics of

Operations Research, 8(1):100–109, 1983.

[5] M.R. Garey and D.S. Johnson. Computers and Intractability: A Guide

to the Theory of NP-Completeness, 1979.

[6] T. Gonzalez and S. Sahni. Open shop scheduling to minimize finish

time. J. ACM, 23(4):665–679, 1976.

[7] J.R.Correa, M.Skutella, and J.Verschae. The power of preemption on

unrelated machines and applications to scheduling orders. Mathematics

of Operations Research, 37(2):379–398, 2012.

[8] N. Karmakar and R. Karp. An efficient approximation scheme for the

one-dimensional bin packing problem. In Proc. 23rd IEEE Symp. on

Foundations of Computer Science, pages 312–320, 1982.

[9] A. Levin. Approximation schemes for the generalized extensible bin

packing problem. Algorithmica, 84(2):325–343, 2022.

[10] C. Liu and R. Bulfin. Scheduling open shops with unit execution times to

minimize functions of due dates. Operations Research, 36(4):553–559,

1988.

[11] R. McNaughton. Scheduling with deadlines and loss functions. Manage.

Sci., 6:1–12, 1959.

[12] B. Naderi, M. Zandieh, and M. Yazdani. Polynomial time approxima-

tion algorithms for proportionate open-shop scheduling. International

Transactions in Operational Research, 21(6):1031–1044, 2014.

[13] A. S. Schulz and M. Skutella. Scheduling unrelated machines by ran-

domized rounding. SIAM Journal on Discrete Mathematics, 15(4):450–

469, 2002.

[14] S. Sevastyanov and G. Woeginger. Makespan minimization in open

shops: A polynomial time approximation scheme. Math. Program.,

82:191–198, 1998.

[15] H. Shachnai and T. Tamir. Multiprocessor scheduling with machine

allotment and parallelism constraints. Algorithmica, 32(4):651–678,

2002.

[16] B. Takand. Towards power of preemption on parallel machines. MPhil

thesis, University of Greenwich, 2016.

[17] D. P. Williamson, L. A. Hall, J. A. Hoogeveen, C. A. J. Hurkens,

J. K. Lenstra, S. V. Sevast’janov, and D. B. Shmoys. Short shop

schedules. Operations Research, 45(2):288–294, 1997.

[18] R. Zhang, N. Horesh, E. Kontou, and Y, Zhou, Electric vehicle com-

munity charging hubs in multi-unit dwellings: Scheduling and techno-

economic assessment, Transportation Research Part D: Transport and

Environment, Vol. 120, 2023.

OMER LAPIDOT, TAMI TAMIR: THE POWER OF PREEMPTIONS IN SCHEDULING ON SHAREABLE RESOURCES 563

