&l

Proceedings of the 20" Conference on Computer

DOI: 10.15439/2025F6496

Science and Intelligence Systems (FedCSIS) pp. 553-563 ISSN 2300-5963 ACSIS, Vol. 43

The Power of Preemptions in Scheduling on

Shareable Resources

Omer Lapidot, Tami Tamir
0009-0002-8688-7687
0000-0002-8409-562X

School of Computer Science

Reichman University, Herzliya, Israel

Email: omer2372 @gmail.com, tami@runi.ac.il

Abstract—Many combinatorial optimization problems arise in
the context of resource allocation. In this paper, we study the
problem of allocating shareable resources of different types to
jobs, where each job consists of multiple tasks, and each task
has a demand of a given duration to a single resource type. All
resources are available over a common time interval. Several
copies from each resource may be allocated. In a valid solution,
at any given time, each job may be processed by at most one
resource, and each resource may process at most one job. The
objective is to complete all jobs while minimizing the total cost
of the allocated resources.

We focus on the power of preemptions in this model, analyzing
how much the total cost can be reduced when jobs are allowed
to be preempted — that is, when the processing of tasks can be
split into multiple intervals.

We present both theoretical and experimental results, distin-
guishing between environments where jobs may be preempted but
all intervals of a task must be processed on the same resource
copy (weak preemptions), and environments where jobs may split
the processing of a task among different resource copies (strong
preemptions). Without preemptions, the problem is clearly NP-
hard, as it generalizes the classical Bin Packing problem. We
provide an optimal polynomial-time algorithm for the strong-
preemption model, as well as a polynomial-time algorithm for the
non-preemption model under a restricted class of task durations.
Our empirical evaluation investigates the performance of several
greedy heuristics, showing that even simple methods can achieve
near-optimal results.

I. INTRODUCTION

USTAINABILITY plays a crucial role in various aspects
S of our future on Earth. Growing awareness of the need to
protect the environment, combined with the ability to commu-
nicate easily, has led to new trends in resource consumption.
Users have become more flexible about consumption and are
willing and able to share resources in new ways. The new ways

to consume resources give rise to new combinatorial problems

IEEE Catalog Number: CFP2585N-ART ©2025, PTI

553

related to allocation and utilization of shareable resources. In
this work, we define and study problem of this kind.

We consider a resource sharing model, where each resource
is capable of being used or leased for any duration within its
availability window. For example, consider Amazon drivers
who perform deliveries in their assigned regions, using trucks
of different sizes tailored to specific delivery needs. A similar
setting arises in large organizations, where departments might
share meeting rooms of various capacities, or in workplaces
where part-time or hybrid employees share desks, cubicles, or
workstations. Likewise, in residential communities, neighbors
may collaboratively use equipment such as electric vehicle
charging stations [18], lawn mowers or other landscaping
tools.

In our resource sharing problem, every user (job) is asso-
ciated with a demand for several resources. For every user
and resource, it is known for how long the user needs the
resource. Without sharing, every user is allocated one copy
from each resource. However, different users can share the
same resource if they use it at different times. Assume that
every copy of a resource is associated with a given cost.
The goal is to schedule the users on different copies of the
resources such that the total cost of allocated resources is
minimal. In the basic setting of this model, every user is
using each resource consequently and with no interruptions.
When preemptions are allowed, a user may split the use of
a resource into several segments. It is well known that in
many scheduling problems, preemptions significantly affect
the objective function value and the computational complexity
of the problem. For example, the classical load balancing
problem of minimizing the completion time of a schedule (the
makespan) is NP-hard if preemptions are not allowed [5] and
is solved by a linear-time algorithm if preemptions are allowed

Thematic Session: Computational Optimization

554

PROCEEDINGS OF THE FEDCSIS. KRAKOW, POLAND, 2025

a1| N

a1| I | 5 |

e lh 1)]

al’ A | n |]2 |

a| Jz |

a3 | g |

Jo U] @ 5 L Ll

No preemptions

Weak preemptions

Strong preemptions

Fig. 1. Possible schedules of four jobs on two copies of resource type a.

[11]. In this work, we study the power of preemption in the
resource sharing model. Practically, the power of preemption
measures how the flexibility of users in the way they are ready
to use the resource affects the total cost.

The resource sharing problem is dual to open-shop schedul-
ing, in which we have one copy of each resource type, and
the goal is to minimize the schedule’s completion time (the
makespan). For a single resource type, our problem is identical
to the well-known NP-hard bin-packing problem in which
items of different sizes need to be packed in a minimal number
of identical bins. In the bin-packing problem, if items can
split among several bins, the problem becomes trivial. In our
setting, such splits correspond to job-preemptions. Thus, our
problem can be viewed as a generalization of bin-packing. In
this generalization with several resource types, the power of
preemption has not been studied in the past.

In our analysis we distinguish between four types of re-
source consumption: (¢) no resource sharing, (i7) resource
sharing without preemptions, (7i7) resource sharing with weak
preemptions, where the processing of a task can be paused and
resumed on the same resource copy, and (7v) resource sharing
with strong preemptions, where tasks may pause and resume,
and also migrate across different resource copies. We present
an optimal algorithm for the problem with strong preemptions
allowed, and analyze theoretically and by experiments the
performance of some natural greedy heuristics, in general and
for restricted classes of instances. As we show, even simple
heuristics can achieve near-optimal performance.

A. Notation and Problem Statement

An instance of the resource sharing problem is given by a
tuple (J, M, (pij)iem jes, (¢i)iem, T, where J is a set of
n > 1 jobs, M is a set of m > 1 resource-types, p is an
n X m matrix of processing requests, ¢; > 0, is the cost of
each copy of resource ¢, and [0, 7] is the availability interval
of each of the resource copies. We use the term resource ¢
to denote resource-type . Each job j € J consists of several
tasks. Formally, each job is associated with a set of resource
types S; € M corresponding to the tasks composing it (for
which p;; > 0). For each i € S}, job j should be processed

on a resource of type 7 for p;; time units. In a valid instance
Youpij <T.Let J; =1|{j € J|ie€S;} be the number of
jobs that need resource 1.

The idea in the sharing model is that several jobs can share
a single copy of a resource, as long as each copy services
at most one job in each time slot. Therefore, the number of
copies required from resource ¢ may be lower than J;. It is
easy to see that the actual number of copies required from
resource i is between {EJ Dij /T—‘ and J;.

A non-preemptive schedule of an instance is denoted by
o = (0j)jeg. For every job j, 0; = (0i)ies, is the schedule
of job j, given by the set of intervals in which j uses the
resources it needs. Specifically, oj; = [start(oj;), end(0;;))
is the interval in which job j uses resource ¢ in ¢. In a feasible
solution, end(c;;) —start(o;;) = pi;; that is, job j is assigned
to the resource for p;; time units. The intervals in which a job
uses different resources must be disjoint; that is, for all j and
any i1, io, it holds that oj;, Noji, = 0.

For a given schedule o, for any time 0 < ¢t < 7T, let
Ni(o,t) =|{j € T |t € 0j;}| be the number of jobs j € J
that use resource ¢ at time ¢. Let N;(0) = maxo<i<1 N;(0,1).
That is, N;(o) is the maximal number of jobs who simulta-
neously use resource ¢ throughout the schedule. It holds that
N; (o) is the number of copies of resource 7 needed to satisfy
all job requirements. The cost of a schedule o is the total cost
of the resources used in o, given by cost(c) = Y i~ | Ni(0)-¢;.
The goal is to satisfy all job requirements at a minimum total
resource cost, i.e., find a schedule o such that cost(o) is
minimal.

When preemptions are allowed, the processing of a task
on one resource may split into several disjoint intervals. We
distinguish between two types of preemptions (see Figure 1).

1) Weak Preemptions - for every job j and type i € S,
the processing of the task of type ¢ of job j may split
into several intervals, all of them are on the same copy
of a resource of type 1.

2) Strong Preemptions - for every job j and type ¢ € \S;, the
processing of the task of type ¢ of job j may split into
several intervals, which can be processed on different
copies of resources of type %.

OMER LAPIDOT, TAMI TAMIR: THE POWER OF PREEMPTIONS IN SCHEDULING ON SHAREABLE RESOURCES

For an instance I, let OPT opmin(L), OPTwpmin(I),
OPT gpmin(I) denote the minimal cost of a feasible schedule
of I without preemptions, with weak preemptions, and with
strong preemptions, respectively.

Definition 1.1: Let I be an instance of a resource sharing
problem. The power of weak preemption for I is POWP(I) =

OFTnopmn(I) - The power of strong preemption for I is

OPTwpmm(I)O'PT o
PoSP(I) = Gprry

Definition 1.2: For a class Z of instances, let POWP(Z) =
maxjez POWP(I), and PoSP(Z) = maxzez PoSP(Z).

When weak preemptions are allowed, a job may split its
processing but must remain in the same copy of a resource.
The next definition, of the power of migration, isolates the
benefit from allowing jobs to split a task among several
different copies of a resources.

Definition 1.3: Let I be an instance of a Resource Sharing
problem and Z a class of instances. The power of migration
for I is PoM(I) = %5((11))’ and the power of migration for

T is PoM(Z) = max ez ogpiiy -

We conclude the introduction with an example, demonstrat-
ing the power of preemption. Consider an instance [with
n = 6 jobs and m = 5 resource types. The jobs’ demands
are given in the table in Figure 2. Assume that all resources
have the same unit cost per copy. Assume also that 7" = 5.
Figure 2 presents two possible schedules. The left schedule is
an optimal schedule with weak preemptions. In this schedule
exactly one copy of each resource is allocated, therefore
OPT'vwpmin(I) = 5. The right schedule is an optimal non-
preemptive schedule. It holds that OPT yopmen(I) = 8. We
can see that the left schedule uses exactly [Z ;i Dij / T—‘ copies
of each resource type %, which is clearly the minimal possible.
We conclude that POWP(I) = PoSP(I) = & = 1.6.

The above example can be generalized to show that for
every n > 2, there exists an instance [,, with n jobs and
m = n+ 1 resource types of unit cost such that PoOWP(ZI,,) =
PoSP(I,,) = 2% =2 - 2.

n+1 n+1-°
needs all m resources for a short duration e, while each of

In this construction, one job

the remaining n — 1 jobs needs a distinct resource for 7' — ¢
time units. In the non-preemptive schedule, the first and last
resources can be shared and require a single copy each, while
each of the remaining m — 2 resources requires two copies,
yielding a total cost of 2(n — 1) + 2 = 2n. In contrast, a
preemptive schedule allows all jobs to be assigned efficiently
with only one copy per resource, giving a cost of m =n+1,
and thus the claimed ratio.

B EAEAEARAREAES
a 1 4 0 0 0 0
b 1 0 4 0 0 0
c 1 0 0 4 0 0
d 1 0 0 0 4 0
e 1 0 0 0 0 4
ar[]y] Iz |
by
bz‘ I3 ‘
a[] | L | @
bi[Js 11 | I3 | 2 | Ja |
al L L1 & | d;
dy | Js [[Js | ds | Is |
e | Je [/] e | Je LA
| I t | 1 t
0 1 2 3 4 5 0 1 2 3 4 5

Fig. 2. An example of an instance I for which PoP(I) = 2.

B. Related Work

There is an extensive body of literature dedicated to job
scheduling on parallel machines of various types. As previ-
ously mentioned, the resource sharing problem is dual to the
well-studied open-shop problem. An instance of open-shop
scheduling consists of m > 1 machines (or processors). Each
of these machines is capable to perform a single task type.
The machines are available at time ¢ = 0, and, unlike our
model, do not have limited active time, that is, 7' = oco. In the
problem O||C)y4. the goal is to minimize the makespan of the
schedule, given by the last completion time of a job. When
preemptions are allowed, the problem O|pmin|Ci,q. can be
solved in linear-time [6], [10] for any number of machines. In
contrast, for the non-preemptive variant, a poly-time algorithm
is known only for m < 2.

For m > 3, O||Cnax is NP-complete [6]. A known approx-
imation algorithm guarantees an approximation to the optimal
solution that is dependent on the ratio between the maximal
total demand for a single machine and the maximal demand
of a single job on a single machine [4]. The hardness of the
approximation for O||C},.. has also been studied. It is known
that, unless P=NP, there does not exist a polynomial-time
approximation algorithm that constructs a schedule with length
guaranteed to be strictly less than % times the optimal length
[17]. When m is fixed, there exists a (1 + €)-approximation
scheme for the problem that is polynomial in the size of the
instance, but exponential in m and % [14]. Optimal algorithm

555

556

or better approximal factors were given for restricted classes,
such as unit-length jobs [12], [1], or limited number of jobs
or machines [3].

The Power-of-Preemption (PoP) has been analyzed mainly
for the problem R||C),., of minimizing the makespan on
unrelated parallel machines. In [7] it is shown that the PoP
is exactly 4, by showing a lower bound to the PoP, after an
upper bound as well as approximation algorithms for restricted
classes were given in [2], [13], [15]. The paper [16] studies
the PoP and the power of limited preemptions (where only
a limited number of preemptions is allowed) for multiple
variants of machine environments, job characteristics and
objective functions.

Besides the resemblance to the shop-scheduling models, our
resource sharing problem with m = 1 is identical to the Bin-
Packing problem (BP). An instance of BP is given by n items,
each has a size in (0,1], and the objective is to pack the items
into a minimum number of bins, subject to the constraint that
the total item sizes in each bin is at most 1. The bin-packing
problem has been studied extensively. It is known to be NP-
hard and has an FPTAS whose approximation ratio is (1 + ¢),
with a run time of O(ne%ﬂ) (81, [9].

C. Our Results

In this work, we make several contributions that address
the scheduling of shared resources under preemptive and
non-preemptive settings, and examine how preemptions may
reduce the total resource cost. Our results are listed below.
We
present a polynomial-time optimal algorithm for the resource

a) Optimal Algorithm with Strong Preemptions:

sharing problem when strong preemptions are allowed. Our
solution is based on a reduction to open-shop scheduling with
preemptions (O|pmin|Cupax), and reveals that, under strong
preemptions, a minimal-cost schedule, in which for all 4, there
are exactly [Z ; Dij / T—‘ copies of resource %, can be computed
efficiently.

b) Power of Preemption in the Class p;; € {0,p}: For
the restricted class of instances in which every task is either
of length p or zero, we showed that both non-preemptive and
strong-preemptive scheduling can be computed in polynomial
time. Yet, the benefit from preemptions may be significant.
We prove that the Power of Strong Preemption (PoSP) for
this class is bounded by 2, and this is tight.

¢) Greedy Heuristics and Empirical Evaluation: Since
non-preemptive resource sharing is NP-hard in the general
case, we design and evaluate several heuristic algorithms. Our
experiments measure how these heuristics perform as problem

PROCEEDINGS OF THE FEDCSIS. KRAKOW, POLAND, 2025

parameters (number of jobs, resource costs, variation of pro-
cessing times) vary, and quantify the benefit of preemptions
in practice.

Together, these results offer both theoretical and empirical
insights into the power of preemptions in shared resource
scheduling. We identify tractable cases, establish tight bounds
on preemption benefits, and demonstrate through experiments
how simple heuristics behave across realistic settings. Our
work highlights the fundamental trade-offs between scheduling
flexibility, computational complexity, and solution cost.

II. RESOURCE SHARING WITH STRONG PREEMPTIONS
ALLOWED

In this section we consider settings with strong preemption
allowed. We first present and analyze natural greedy algo-
rithms. Similar greedy algorithms are known to be optimal
for makespan minimization and for the Bin Packing problem
[11]. However, as we show, the greedy approach fails in
the resource sharing problem. We then present an optimal,
yet more elaborate, polynomial-time optimal algorithm for
resource sharing with strong preemptions allowed.

Greedy Algorithm: Algorithm 1 considers the resources
one after the other. For every resource ¢, it assigns the jobs
for which ¢ € S; one after the other. Every task of length p;; is
assigned to the earliest set of disjoint intervals of total length
p;; available on open copies of resource 7, or on a new copy
of resource ¢ if required. The interval must be disjoint with
intervals already allocated to previous tasks of job j. Figure 3
presents an execution of Algorithm 1, and demonstrates that
it is sub-optimal.

Algorithm 1 - A greedy algorithm for computing a schedule
with strong preemptions.
1: All jobs are initially unassigned.

2: for i =1 tom do

33 for j=1tondo

4: if ¢ € S; then: then

5 Assign task ¢ of job j on the earliest feasible
disjoint intervals of total length p;; on copies of
resource ¢. Open a new copy of resource ¢ if
needed.

6: end if

7. end for

8: end for

It is easy to see that additional greedy heuristics, which
apply a different assignment order (e.g., the outer loop con-
siders the jobs one after the other), are sub-optimal as well,

OMER LAPIDOT, TAMI TAMIR: THE POWER OF PREEMPTIONS IN SCHEDULING ON SHAREABLE RESOURCES

a1| N | 12 |
T=51|J J. J. a
‘ 313233 L] - | aII] |]1| |J]2 :
2
b 2] 12 bl Ll |]1|_‘| b|2] |]|31 |
1
b, A ‘ 3 2 1 ‘ ¢
Resource demand table ! : t 0 1 2 3 4 5

0 1 2 3

4 5

Fig. 3. An example of an instance I with unit-cost resources, demonstrating the suboptimality of a greedy strong-preemptive algorithm. Left: demand table.
Center: greedy schedule o, with cost 4. Right: optimal schedule o* with cost 3.

hinting that an optimal algorithm for resource sharing with
strong preemptions, should be more involved.

Optimal Algorithm: Our algorithm for scheduling with
strong preemptions allowed employs an optimal algorithm for
the problem O|pmin|Ci.x as a black box [6]. Recall that in
an Open-Shop O|pmitn|Chnax problem, we are given a set of
n jobs, a set of m machines, and the processing time, p;; of
task 4 of job j. The jobs should be assigned to the machines (a
single copy of each machine) such that different tasks of job j
are processed in disjoint time intervals. The goal is to minimize
the makespan — defined as the last completion time of a job.
Let A; =), pi; be the total length of job j’s tasks. Let
L= ; Dij be the length of tasks that need to be performed
on machine .

The optimal algorithm for O|pmtn|Cpa.x presented in

[6] computes a schedule whose makespan is a =
max(max; A;, max; L;). Since each of these values is a lower
bound for the optimal makespan, the algorithm is clearly

optimal.

Given an instance of resource sharing, we construct an

instance of an open-shop problem as follows:

For every 1 < i < m, we define and allocate [L;/T]
machines that will process the tasks of type i. Denote by M;
the set of machines of type ¢. For every 1 < j < n, there
is a single job, whose tasks are determined as described in
Algorithm 2. The tasks are defined such that for all © € S;,
the total length of tasks on machines in M; is p;;, and for
every machine in M;, the total length of tasks that need to be
processed on M; is at most T'. An example of our reduction
is given in Figure 4.

Algorithm 2 - An optimal algorithm with strong preemptions

allowed.
1: Given a set J of n > 1 jobs and a set M of m > 1

resource types, p;j, Vi, j, and 7.
2: For 1 < i < m, allocate a set M; of [L;/T] machines.
3 Letm/ =« | Ml
4: Construct an instance of O|pmin|Cuax with n jobs and

m’ machines.

5: for i =1 to m do

6: for j=1tondo

7: while p;; > 0 do

8: Let ¢* be the lowest index of a machine in M; with
total load I7 < T.

9; Let p;; = man(pi;, T —I7).

10: =10+ pirj

11 Dij = Dij — Dirj

12: end while

13: end for

14: end for

15: Solve O|pmin|Ciayx on the resulting instance.

I EAFIEA
BRI EAEARS @] 320
a 3 3 3 ay 0 1 3
b 2 1 2 by 9 1 9

(a) (b)

Fig. 4. An example of our reduction. (a) Resource sharing demand table. (b)
Corresponding open-shop instance with M, = {a1, a2} and M, = {b1}.

Theorem 2.1: Algorithm 2 computes in polynomial time an
optimal solution to the resource sharing problem with strong
preemptions allowed.

Let o* be the schedule produced by Algorithm 2. The
algorithm reduces the resource sharing instance to an instance

Proof:

of the open-shop problem O|pmin|Ciax by allocating, for
each resource i, exactly [L;/T] machines, and distributing
the tasks of each job j across these machines such that the

557

558

total processing time per resource equals p;;. This guarantees
that the constructed open-shop instance satisfies the time
constraints of resource sharing and respects the job-resource
requirements.

The schedule o* is computed using the optimal algorithm
for O|pmin|Ciax from [6], which produces a schedule of
makespan o = max(max; A;, max; B;), where A; =Y. p;;
and B; = ; Pij- Our construction guarantees (steps 8-9) that
in the open-shop instance, each machine is allocated at most
T time units, that is Vi, B; < T'. In addition, by definition of
the resource rental problem, the total length of each job is at
most 7', that is, Vj, A; < T. This implies that o« < T', and the
resulting makespan is at most 7.

Since each machine in the open-shop solution corresponds
to one copy of a resource in resource sharing, and all jobs are
scheduled such that their tasks are disjoint on each machine,
the resulting schedule is feasible in resource sharing under
strong preemptions. Furthermore, the number of machines
used for each resource is the minimal possible given the total
load and capacity 7', meaning the total cost (i.e., number
of machines) is minimized. Hence, o* is a feasible resource
sharing schedule with minimal cost. The time complexity of
the algorithm is clearly polynomial and is dominated by the
(6],

which is O(r?), where r is the number of non-zero tasks -

time complexity of the algorithm for O|pmitn|Crax

typically smaller than O(n?). [|

III. THE CLASS Zy,: INSTANCES IN WHICH p;; € {0, p}

In this section we analyze the class 7y, of resource sharing
instances with p;; € {0, p}. That is, all the non-empty tasks
have the same length p. As a restricted class of the general
problem, our optimal algorithm for strong-preemptive applies
for this class as well, making the strong-preemptive problem
polynomially solvable.

We show that this class is polynomially solvable even when
preemptions are not allowed. Given an instance in Zj ,, let
r; denote the number of the non-zero tasks which require
resource ¢. Thus, the total demand for resource i is p - r;. Our
optimal solution reduces the problem to O|p;; € {0, 1}|Chuax,
that is, minimum makespan in an open-shop environment with
unit processing times. An optimal poly-time solution for this
problem, based on a reduction to minimum edge coloring in
a bipartite graph, is presented in [17].

Overview of our algorithm: In the first step, we determine
how many copies are required from each resource type. It
is easy to see that for all 1 < ¢ < m, [r;/|T/p]] is
a lower bound for this number. We define an instance of

PROCEEDINGS OF THE FEDCSIS. KRAKOW, POLAND, 2025

Olpi; € {0,1}|Cmax with [r;/|T/p]] machines of type i. We
then use the algorithm in [17] to get an optimal schedule for
the resulting Olp;; € {0,1}|Cnax problem, and conclude an
optimal solution to our resource rental problem. Formally:

Theorem 3.1: Computing an optimal solution for a resource
sharing problem in Zy, can be done in polynomial time.
Proof: Let I be an instance of resource sharing in Zg ,,
with availability time 7'. For each resource ¢, let r; denote the
number of jobs j for which p;; = p. Since each job requires
either 0 or p units on each resource, and each copy of ¢ can
process at most |T'/p| tasks of length p, it follows that at least
[r:/|T/p]] copies of resource i are required.

We reduce this instance to an instance of open-shop schedul-
ing Olp;; € {0,1}|Cmax with unit-length tasks. Note that
since p;; € {0, 1}, such an instance is defined by determining
a set of machines, a set of jobs, and the subset of machines
required by each job. For each resource ¢ in the resource rental
problem, we introduce [r;/|T/p]] machines of type 7, and for
every job j with p;; = p, we add one of these machines to the
subset of machines required by job j. This assignment is done
such that each machine is required by at most |7'/p| jobs. In
this way, we guarantee that the load on every machine in the
resulting open-shop instance is at most |T'/p].

The constructed instance is a valid Olp;; € {0,1}|Cpax
problem, which is known to admit a polynomial-time optimal
solution via a reduction to minimum edge coloring in bipartite
graphs [17]. The solution is the maximum between the load
on a single machine and the total demand of a job. Our
construction guarantees that this value is at most |[7/p].
The resulting open-shop schedule induces a feasible resource
sharing schedule by stretching each unit-length task to a length
p. The resulting makespan is 7" - that fits the availability time
of the resources.

Since our construction uses the minimal number of ma-
chines per resource (matching the lower bound), and produces
a feasible schedule, it is optimal. We conclude that resource
sharing with p;; € {0,p} can be solved optimally in polyno-
mial time. |

Next, we bound the power of strong preemption for this
class. It is interesting to note that PoSP > 1 even though the
problem is polynomially solvable in both the preemptive and
the non-preemptive models. Thus, preemptions do not affect
the computational complexity of the problem but reduce the
cost of an optimal solution.

Theorem 3.2: PoSP(Zy p) = 2.

Proof: Let I € Iy, be a resource sharing instance with
pi; € {0,p}, time T, and resource costs ¢;. Let r; denote

OMER LAPIDOT, TAMI TAMIR: THE POWER OF PREEMPTIONS IN SCHEDULING ON SHAREABLE RESOURCES

the number of jobs that require resource ¢. The total load on
resource ¢ is therefore r; - p.

As discussed in Section II, the cost of an optimal solution
with strong preemptions allowed is

costye(T) = XL: [nypij—‘ ¢ — ZZ: VLTPW ¢ = Z [;/‘pl c

i
and the cost of an optimal solution without preemptions is:

ot [

i

We first note that if p divides 7', then an optimal solution
with preemptions allowed, does not use any preemptions,
implying that PoSP(I) = 1. If p does not divide 7', then
since p < T, it holds that % > 1, implying (T'/p)/ |T/p] < 2.
Therefore,

EIE
> [n/%—‘ ¢

We show that the above analysis is tight, that is, we can get

PoSP(I) = <2

arbitrarily close to a PoSP of 2. Specifically, given 0 < § <
%, we present an instance I such that PoSP(I) > 2 — 4. As
we show, a tight example exists already for instances with a
single resource type.
Given 0 < § < %,
integers. Let ' =1, m=1,n =

2—¢
€

let ¢ < ¢ such that
2—¢ 1

and 1 are

for any 1 <5 < n.

Since % < p < 1, without preemptions no two jobs can

share a copy of the resource, therefore, n copies of resource
1 are required, implying that the cost on any solution without
preemptions is exactly n = 2=¢ = 2 _ 1,

€ €

On the other hand, the numberrof copies required with
preemptions allowed is

HiHEEE N e

Therefore,

2/6*1 2/6 1
— =2 9 _¢>9_4.
POSP(I) 1/6 1/6 1/6 2 € 2 1)

|
IV. GREEDY HEURISTICS AND EMPIRICAL EVALUATION
EXPERIMENT
A. Key Questions

In our experiments, we addressed the following questions
regarding the performance of some natural greedy heuristics
and the impact of preemptions in the resource sharing setting:

1) Evaluate the performance of natural greedy algo-
rithms
Since non-preemptive resource sharing is NP-hard, we
rely on greedy heuristics as approximate solutions. Our
goal is to test whether even simple heuristics produce
significant cut down in resource costs.

2) Investigate how parameter variations influence the

efficiency of allocations with no preemptions, weak,
and strong preemptions.
We systematically vary the number of jobs (n), the
number of resources (m) and the variance of distribu-
tions of job lengths (p;;). Our goal is to see how these
changes amplify or diminish the empirical advantages of
preemptions compared to non-preemptive allocations.

3) Estimating the Power of Preemption. For the restricted
class p;; € {0,p}, we proved that PoSP cannot exceed 2
(see Section III). For general instances, we lack a theo-
retical upper bound for either PoSP or POWP. To explore
them, we compare the performance of our three algo-
rithms (non-preemptive, weak-preemptive, and strong-
preemptive). Even while not optimal, these heuristics
provide a practical view of preemption benefits across
diverse instances.

B. Experiment Design

In order to address the key questions outlined in Sec-
tion IV-A, we built a simulator that generates a variety of
resource sharing instances and evaluated the schedules pro-
duced for these instances by several greedy heuristics under
different preemptive settings.

We measured the performance of each heuristic by compar-
ing the total cost of its resulting schedule against two baseline

values:

« The optimal cost, achieved when strong preemptions are
allowed, and given by

Con(D) = i

i€ M

2 jeg Pij
=71 |
« The no-sharing cost, which assumes that each non-empty

task p;; > 0 is assigned its own dedicated copy. This cost

represents a naive allocation strategy and is given by:

Cno—share(I) - Z Ci - ‘{] S \.7 | Dij > 0}| .

ieM
When evaluating the efficiency of various heuristics, we used
the no-sharing cost as a normalization baseline.

For simplicity, all instances used in our experiments assume
unit resource costs; that is, ¢; = 1 for all ¢ € M. This

560

allows us to focus solely on the structural differences between
scheduling strategies without the added complexity of cost
heterogeneity.

1) Heuristics: We implemented three heuristics to resource
sharing, corresponding to non-preemptive, weak-preemptive,
and strong-preemptive scheduling. All three heuristics share
the same core idea: iteratively assign each job’s tasks to
available resource copies using a first-fit strategy.

For scheduling with strong-preemptions we have used Al-
gorithm 1, augmented with the following resource-sorting
step: Before assigning a job, we sort its required resources
in descending order of task duration. That is, for each job
j, we reorder its set of required resources S; according to
Dij» scheduling longer tasks first. This helps accommodating
shorter tasks in the remaining gaps, and by that improving
success rate of sharing the resources. For scheduling with
weak-preemptions we used the same algorithm; however, in
Step 5, we only considered assignments on a single copy.

Algorithm 3 below describes our heuristic for non-
preemptive scheduling. In the non-preemptive setting, partial
assignments may block later tasks of the same job and prevent
any feasible solution. For example, if 7' = 6 and a job consists
of two tasks of length 3, then the second task cannot be
performed non-preemptively if the first task is not processed
in [0,3) or in [3,6). To address this, we keep for each job a
variable left; that stores the leftmost time-point in [0, 7] in
which it is assigned. We schedule the job using a left-aligned
strategy: tasks are scheduled one after the other, with each
task placed as early as possible (starting at a leftmost time)
and within a carefully restricted interval to ensure that it ends
early enough -enabling the remaining tasks to be assigned such
that the job completes by time 7. If no such interval exists
on an already-open copy of the corresponding resource, then
a new copy is activated.

All three algorithms share the same Python implementation
framework, managing available time segments in each ma-
chine’s schedule and placing tasks accordingly. The final cost
is computed by summing up the number of machines used for
each resource.

2) Dataset Generation: Our method for creating bench-
mark instances generates task durations for each job in a con-
sistent, yet randomized manner. Every instance is characterized
by four parameters: number of jobs, n; number of resources,
m; task-length variance 0 < variance < 1; and job length
as a fraction of 7', span < 1.

For a given set of parameters, we construct a set of n
jobs each consisting of m tasks, such that (i) for each job

PROCEEDINGS OF THE FEDCSIS. KRAKOW, POLAND, 2025

Algorithm 3 Greedy Algorithms for Non-Preemptive Schedul-
ing

1: for each job j € J do

2: Sort S; (the required resources of j) by non-increasing

order of p;;
Let left; < 0, p; + Ziesj Dij» scheduled < 0
for each i € S; where p;; > 0 do

Let remaining < p; — scheduled

Let latest_end < T — (remaining — p;;)

N Rw

Assign task (4, j) as a single interval of length p;; on
an existing copy, or a new copy of resource ¢ within
[left;, latest_end]

8: Let left; < end time of assigned interval

9: Let scheduled < scheduled + p;;

10: Update current solution and resource state

11: end for

12: end for

1 < j < n and resource 1 < ¢ < m, with probability 0.2
the task of job j corresponding to resource ¢ is empty, that is,
pij = 0. (i7) Each of the remaining tasks has a length drawn
uniformly from the range [l—variance, l+variance],
and then scaled such that the total tasks length is span. We
assume that 7' = 1. This is w.l.o.g. since in the last step,
the task durations are scaled such that the total job length is
span-T.

To evaluate how different structural parameters affect
scheduling performance, we generated four large sets of in-
stances, each containing 1000 samples. In each set, we fixed
three parameters and systematically varied the fourth: number
of jobs, number of resources, variance, or span. This design
isolates the influence of each factor on the heuristics’ relative
performance. When fixed, we used the following parameters:
n = 10 jobs, m = 3 resources, variance 0.9, and span
1. Our experiments show that these values best capture the
characteristics of each heuristic.

V. EXPERIMENTAL RESULTS

We begin by presenting the raw results of our experiments.
Figures 5- 8 summarize the efficiency of each of the heuristics
with respect to four parameters: number of jobs, number
of resources, variance, and span. For each experiment (of
1000 samples) we calculated the average solution cost of
the three heuristics, as well as the optimal cost. These costs
are normalized relative to the no-sharing baseline, giving the
efficiency of each heuristic, which is depicted in the figures.

OMER LAPIDOT, TAMI TAMIR: THE POWER OF PREEMPTIONS IN SCHEDULING ON SHAREABLE RESOURCES

o
9

s Greedy No

. Greedy Weak
B Greedy Strong
B Optimal

(=4 o o o 2
N w IS w» o

Cost of Schedule Relative to No-Sharing
I
et

o
[S)

20 30 40 50 300

Fig. 5. Efficiency for variable the number of jobs.

e o o o o o 9o
NoWwW U N @

o
h

Cost of Schedule Relative to No-Sharing

o
=}

2 3 4 5

Fig. 6. Efficiency for variable number of resources.

o o N I o =
N} w IS w o ~

o
.

Cost of Schedule Relative to No-Sharing

©
o

0 0.2 0.4 0.6

Fig. 7. Efficiency for variable variance.

o
~

o
o

o
0

o
'S

o
]

824024 023 023

=4
N

o
-

Cost of Schedule Relative to No-Sharing

o
[S)

A 0.8 0.6 0.4 0.2

Fig. 8. Efficiency for variable span (total job length as a fraction of T').

We now turn to interpreting these results in light of the three
research questions introduced earlier.

A. (Q1) How well do the greedy algorithms approximate
optimal schedules?

Our results show that all greedy algorithms remain within
a constant factor of the optimal strong-preemptive sched-
ule across all tested parameters. In favorable cases, greedy
schedules approximate the optimum within ratio 1.1. In more
constrained scenarios (e.g., with many resources), the gap may
increase, but none of the heuristics exceeded a factor of 2.
This empirical observation supports the practical use of these
heuristics even in the absence of theoretical guarantees.

B. (Q2) What is the effect of parameter variations on preemp-
tion benefits?

We observed how each structural parameter shaped the cost
gap between non-preemptive, weak-preemptive, and strong-
preemptive settings:

a) Number of Jobs (n): As n increases, all algorithms
achieve improved efficiency relative to the no-sharing baseline.
The strong-preemptive heuristic continues to closely approxi-
mate the optimal cost. Meanwhile, the non-preemptive heuris-
tic gets increasingly closer to the weak-preemptive approach,
and both converge to approximately 1.25 times the cost of the
optimal solution.

Greedy No
Greedy Weak

-
-

065 1 —8— Greedy Strong
—e— Optimal

o
u
o

Relative Cost over No-Sharing
o o
=y wu
w 6,

10 15 20 25 30 35 40 45 50
Fig. 9. Relative cost over no-sharing cost as number of jobs increases.

b) Number of Resources (m): As m increases, all of
our algorithms achieve improved efficiency relative to the no-
sharing baseline. The strong-preemptive heuristic continues to
produce near-optimal results, and the weak-preemptive algo-
rithm closely follows it, with the gap between them narrowing
as m grows. The non-preemptive heuristic also benefits from
increased resources, but to a lesser extent - its relative cost
remains around 1.5 times the optimal.

562

—8— Greedy No
—o— Greedy Weak
—e— Greedy Strong
—e— Optimal

o o o = o
IS n o ~ o

Relative Cost over No-Sharing

©
w

20 25 30 35 40 45 50 55 60
Fig. 10. Relative cost over no-sharing cost as number of resources increases.

c) Variance of Task Durations: Our results indicate that
variance in task durations significantly impacts scheduling
performance when it first appears (transitioning from zero
variance to some positive value). However, beyond this initial
effect, the magnitude of variance has minimal influence on the
algorithm performance. Once some level of variance exists,
increasing it further does not substantially change the gap
between the heuristics, suggesting that it is the presence of
variance, rather than its magnitude, that defines the difficulty
of the instances.

d) Span: Recall that the span determines the total length
of the jobs’ tasks. As expected, decreasing the span consis-
tently makes the problem easier, since tasks can be more flex-
ibly scheduled without conflicts, leading to lower overall costs.
Our results show that beyond a certain point, the problem
becomes nearly trivial, with all algorithms, in particular the
non-preemptive one, achieving near-optimal results.

C. (Q3) Estimating the Power of Preemption in General Cases

In the general case, across a wide range of tested in-
stances with relatively low values of n and m, the three
approaches—non-preemptive, weak-preemptive, and strong-
preemptive - are relatively comparable. In those values, we
find that non-preemptive schedules cost on average approxi-
mately 50% more than strong-preemptive ones, while weak-
preemptive schedules cost about 25% more than strong-
preemptive schedules. Thus, on average, the power of strong
preemption is PoSP(I) = 1.5, and the power of migration is
PoM(I) = 1.25. While these results are based on smaller
parameter settings, the trends observed in earlier sections
indicate similar or even stronger effects for larger instances. In
particular, as the number of jobs increases, the non-preemptive
and weak-preemptive heuristics converges toward a relative

PROCEEDINGS OF THE FEDCSIS. KRAKOW, POLAND, 2025

cost of approximately 1.25 compared to the optimal. While
as the number of resources increases, the weak-preemptive
algorithm achieves near-optimal performance, closing the gap
with the strong-preemptive approach.

VI. SUMMARY AND FUTURE WORK

In this paper we analyzed a scheduling problem arising in
environments in which resources may be shared by several
users. The goal is to minimize the total cost of allocated
resources. We summarize below our contribution and the main
takeaways from our theoretical and empirical study of the
resource sharing problem.

a) Optimal Algorithm for Scheduling with Preemptions
Allowed: We developed an algorithm for solving the problem
optimally when strong preemptions are allowed. Our optimal
algorithm is suitable for all classes of instances, and achieves
the lowest possible cost, given by

Ol = 3 e [225272]
i€eM

b) Tight analysis of the class Iy ,: For the class Iy p,
we developed an optimal algorithm for scheduling without
preemptions and established a tight bound of 2 for the power
of strong preemptions. We conjecture that this bound is valid
for additional classes.

¢) Greedy Approaches and Approximation: We devel-
oped three greedy heuristics for resource sharing: non-
preemptive, weak-preemptive, and strong-preemptive, and
found that all provide efficient approximations. As expected,
the weak and strong preemptive variants consistently outper-
form the non-preemptive approach. In all parameter regimes,
the heuristics remained within a constant factor of the optimal
cost.

Our work leaves open several directions for future work:

1) Theoretical analysis of the general case: A deeper
understanding of the general case is still needed. Two
specific directions stand out:

o Determining tight upper bounds for the power of
weak and strong preemptions (PoWP and PoSP),
as well as the power of migration (PoM).

« Deriving theoretical worst-case approximation guar-
antees for the proposed heuristics, complementing
the observed empirical performance.

2) Analysis of additional restricted classes of instances:
Beyond the 7, class, it would be interesting to analyze
additional classes of instances, arising in real-world
applications.

OMER LAPIDOT, TAMI TAMIR: THE POWER OF PREEMPTIONS IN SCHEDULING ON SHAREABLE RESOURCES

o Instances with a constant number of job types,
where all jobs of the same type have the same
resource requirements.

« Instances with job-dependent or resource-dependent
processing times, €.g., p;; = p;j OF P;; = D;.

« Instances in which each job consists of a bounded

S;| = 2 for all j).

number of tasks (e.g.,

For each such class, future work should aim to determine
whether an optimal solution can be computed in polyno-
mial time, or alternatively prove hardness and develop
approximation algorithms.

3) Modeling costs for preemptions and migrations: Our
model assumes that preemptions and migrations are not
associated with a cost. In real-world settings, however,
splitting or migrating tasks may involve setup or tran-
sition costs. Extending the model to incorporate these
costs may yield richer structural insights and lead to new
trade-offs between flexibility and efficiency. Analyzing
the effect of such costs on both the complexity and the
power of preemptions is a promising direction for future
work.

REFERENCES

[1] H. Brisel, D. Kluge, and F. Werner, A polynomial algorithm for the
[n/m/0,t;5 = 1,tree/Cmaz] open shop problem, European Journal
of Operational Research, 72(1):125-134, 1994.

[2] R. Canetti and S. Irani. Bounding the power of preemption in random-
ized scheduling. SIAM Journal on Computing, 27(4):993-1015, 1998.
[3] I. G. Drobouchevitch. Three-machine open shop with a bottleneck
machine revisited. Journal of Scheduling, 24(2):197-208, 2021.

[4] T. Fiala. An algorithm for the open-shop problem. Mathematics of

Operations Research, 8(1):100-109, 1983.

[5]

[6]

[7]

[8]

[9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

M.R. Garey and D.S. Johnson. Computers and Intractability: A Guide
to the Theory of NP-Completeness, 1979.

T. Gonzalez and S. Sahni. Open shop scheduling to minimize finish
time. J. ACM, 23(4):665-679, 1976.

J.R.Correa, M.Skutella, and J.Verschae. The power of preemption on
unrelated machines and applications to scheduling orders. Mathematics
of Operations Research, 37(2):379-398, 2012.

N. Karmakar and R. Karp. An efficient approximation scheme for the
one-dimensional bin packing problem. In Proc. 23rd IEEE Symp. on
Foundations of Computer Science, pages 312-320, 1982.

A. Levin. Approximation schemes for the generalized extensible bin
packing problem. Algorithmica, 84(2):325-343, 2022.

C. Liu and R. Bulfin. Scheduling open shops with unit execution times to
minimize functions of due dates. Operations Research, 36(4):553-559,
1988.

R. McNaughton. Scheduling with deadlines and loss functions. Manage.
Sci., 6:1-12, 1959.

B. Naderi, M. Zandieh, and M. Yazdani. Polynomial time approxima-
tion algorithms for proportionate open-shop scheduling. International
Transactions in Operational Research, 21(6):1031-1044, 2014.

A. S. Schulz and M. Skutella. Scheduling unrelated machines by ran-
domized rounding. SIAM Journal on Discrete Mathematics, 15(4):450—
469, 2002.

S. Sevastyanov and G. Woeginger. Makespan minimization in open
shops: A polynomial time approximation scheme.
82:191-198, 1998.

H. Shachnai and T. Tamir.
allotment and parallelism constraints.
2002.

B. Takand. Towards power of preemption on parallel machines. MPhil
thesis, University of Greenwich, 2016.

D. P. Williamson, L. A. Hall, J. A. Hoogeveen, C. A. J. Hurkens,
J. K. Lenstra, S. V. Sevast’janov, and D. B. Shmoys. Short shop
schedules. Operations Research, 45(2):288-294, 1997.

R. Zhang, N. Horesh, E. Kontou, and Y, Zhou, Electric vehicle com-
munity charging hubs in multi-unit dwellings: Scheduling and techno-
economic assessment, Transportation Research Part D: Transport and
Environment, Vol. 120, 2023.

Math. Program.,

Multiprocessor scheduling with machine
Algorithmica, 32(4):651-678,

563

