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Abstract—A common way for chess players to practice tactical
awareness is to solve chess puzzles, consisting of an initial position
and a sequence of moves to achieve a winning position. This
practice is more effective when puzzles are matched to the
player’s skill level. In this work, we present an approach for
estimating the difficulty of a chess puzzle using only the initial
position and the sequence of correct moves. Our approach uses
a fine-tuned modification of the Maia-2 model combined with a
set of hand-crafted features and features extracted from chess
engines such as Leela Chess Zero and Stockfish. All of these
features are then used as input to a gradient boosted decision
tree model that predicts the final rating of the puzzle. We applied
our approach to the FedCSIS 2025 Challenge on Predicting Chess
Puzzle Difficulty Part 2, where it achieved first place.

Index Terms—chess, chess puzzle, machine learning, trans-
former, neural network, gradient boosted decision tree

I. INTRODUCTION

S
OLVING chess puzzles, where a player is presented a

specific chess position and needs to find a sequence of

moves leading to a winning advantage, is an important part of

any chess player’s training routine. Solving puzzles allows the

player to learn important tactical patterns much more quickly

compared to just playing chess games, since a puzzle always

contains a critical position, and similar patterns can thus be

practiced far more frequently than they would appear in actual

games.

Chess puzzles are widely available on online platforms [1],

[2], [3] and may be automatically created by analyzing online

games and finding critical positions where a specific sequence

of moves leads to a winning position for one side [4]. While

the creation of puzzles can be automated, the process of

determining the difficulty remains mostly dependent on human

input. The puzzle difficulty is usually estimated by having a

number of different people attempt the puzzle and measuring

the success rate. This information can then be used to calculate

the puzzle rating, using for instance the Elo [5] or Glicko-2 [6]

algorithm. The drawback of this process is that determining

the puzzle rating accurately is quite time-consuming, requiring

the input of multiple human solvers. Automating the process of

determining the difficulty would allow newly included puzzles

to be immediately shown to players of suitable strength, which

Fig. 1. An example of a chess puzzle. The opponent (black pieces), just
made the move Qd8xd4, capturing a pawn (red circle), leaving the black
queen undefended. Thus the puzzle solver (white pieces) can make the move
Bd3xb5, capturing the black pawn (green arrow) and checking the black king
(green circle). After the opponent captures the bishop (red arrow) to escape
check, the white queen captures the black queen with the move Qd1xd4 (blue
arrow). In the final position black is without a queen while white has only
lost a bishop, leaving white with a decisive material advantage.

would improve the puzzle solving experience.

The FedCSIS 2025 Challenge on Predicting Chess Puzzle

Difficulty Part 2 [7] is centered around automating the task

of predicting the difficulty of chess puzzles using only the

initial position and the sequence of moves, without the need

for repeated human solving. The competition is a follow-up

to the IEEE Big Data Cup 2024 Challenge on Predicting

Chess Puzzle Difficulty [8]. The second edition of the com-

petition introduces more chess puzzles in the training dataset.

Additionally, the training data features also include success

probabilities computed using the Maia-2 [9] model.

In this work, we introduce an approach for estimating the
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difficulty of chess puzzles which adapts and fine-tunes Maia-2,

originally trained to predict the probability of humans making

certain moves in a specific position. We also utilize ideas from

the approaches of the first [10] and second place [11] teams

from the first edition of the competition, as well as extend

our own previous method [12] which placed third. Our new

approach was applied to the second edition of the challenge,

achieving first place.

II. RELATED WORK

While the estimation of chess puzzle difficulty had been

analyzed on a small scale previously [13], [14], the main body

of work related to the problem of predicting the difficulty of

chess puzzles is due to the IEEE Big Data Cup 2024 Challenge

on Predicting Chess Puzzle Difficulty [8], which we later refer

to as the first edition of the competition. The top performing

teams of the first edition used the following methods:

1) The winning team [10] used multiple Maia-1 [15] and

Leela Chess Zero [16] models to encode the chess

positions in a puzzle into vectors and then used an RNN

to combine these position embeddings into one puzzle

embedding, which was used to predict the puzzle rating.

2) The second place team [11] used a CNN architecture

similar to Leela Chess Zero to encode each position in

the puzzle and trained the model from scratch to predict

the rating. The model also predicted the next move in

the position and used the loss of that prediction as an

additional feature when predicting the rating.

3) The third place team [12] (our submission to the first edi-

tion) used hand-crafted features and features extracted

from chess engines, as well as a rating predicted by a

residual neural network as input to a LightGBM [17]

model to predict the puzzle rating.

Other approaches used in the first edition of the competition

include a RankNet-based deep neural network model [18],

a Transformer-based approach using a modified version of

ChessFormer [19] and other CNN-based solutions [20], [21].

III. CHESS PUZZLE CHALLENGE DATASET

The dataset of chess puzzles available for training provided

by the FedCSIS 2025 Challenge on Predicting Chess Puzzle

Difficulty Part 2 [7] consists of approximately 4.55 million

chess puzzles obtained from the Lichess open database [22].

An example puzzle can be seen in Figure 1. Each puzzle

in the training dataset contains an initial position given in

FEN notation [23] and the sequence of the correct moves of

the puzzle in long algebraic notation [24]. Additionally, the

training dataset contains metadata such as rating deviation,

attempt count, popularity, tactical themes, and opening info.

A new addition to the second edition of the competition is

the inclusion of 22 success probability predictions, describing

how likely humans of varying playing strength are to correctly

solve the puzzle. The target variable is the rating of the puzzle,

determined by repeated solving of the puzzle in the Lichess

trainer [1]. The distribution of ratings is shown in Figure 2.
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Fig. 2. The distribution of the puzzle ratings in the training set. A large
number of puzzles have a rating near the initial puzzle rating of 1500, with
another visible concentration of puzzles around 1000.

The competition also provides a public test set containing

2,235 puzzles. The public test set does not contain any of the

metadata that is available for the training set — it only has

the initial position, the solution moves as well as the predicted

human success probabilities. The goal of the competition is

to predict accurate ratings for the public test set. The public

test set is further split into a holdout set used to compute

the preliminary score, and a final test set, used for the final

competition ranking.

IV. APPROACH

Our approach is based mainly on the following observation:

The first place solution [10] in the first edition used pre-trained

chess engine models to extract position embeddings but did

not fine-tune the engine model weights. The second place

solution [11], on the other hand, used the model architecture

of a chess engine model and trained it end-to-end, but did not

initialize the model weights with any pre-trained model. Thus,

we wanted to analyze whether these two methods could be

combined by both training a model end-to-end and initializing

the model with pre-trained weights. The reason why no team

did this in the first edition of the competition is likely related

to the difficulty of extracting the trained weights from Maia-1

and Leela Chess Zero models for use in a commonly used

deep learning library like PyTorch.

Shortly after the first edition of the competition finished, the

Maia-2 [9] model was released. This model turned out to be

a great candidate to both initialize a model with and to fine-

tune, since the model code and weights are freely available,

and the model is written in PyTorch, making it easy to modify

and extend. Thus, we decided to use the Maia-2 model as the

backbone of our approach.

We also wanted to verify whether the use of hand-crafted

features and features extracted from other chess engines is

still useful even when fine-tuning a deep learning model to

predict the ratings, so we decided also to include and extend

the features used in our third place solution for the first edition

[12].
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Fig. 3. Flowchart showing the basic structure of the method to predict
the Glicko-2 rating for chess puzzles. Ratings are first predicted by a fine-
tuned Maia-2 model as well as a LightGBM model. Multiple variations of
both models are trained, and the predicted ratings are given as input to a
final CatBoost model that ensembles the ratings into a final prediction. The
different models and features are described in detail in Section IV.

An overview of our approach is shown in Figure 3. We

first train a fine-tuned Maia-2 model to predict the rating

of puzzles, and use this rating as well as hand-crafted and

chess engine features as input to a LightGBM model to

predict the puzzle rating. Finally, we use ratings predicted by

multiple variants of the fine-tuned Maia-2 and the LightGBM

model as input to a final CatBoost ensemble, which then

predicts the final puzzle rating. For the predictions submitted

to the competition, we additionally perform a linear scaling to

account for the differences in the rating distribution between

the training set and the public test set.

A. Fine-Tuned Maia-2

1) Architecture: Maia-2 [9] is a model trained to predict

the probability of a human making a specific move in a

certain chess position. Maia-2 consists of a ResNet backbone

that embeds a position to a set of patch embeddings, and

of a Transformer model that takes the patch embeddings as

input and outputs a position embedding encoding relevant

information about the board state. The Transformer layers

incorporate skill-aware attention which allows the model to see

information about the skill level of the players when predicting

the next move. The position embedding is used as input to

three different heads: The move head predicting the probability

of each possible next move, the auxiliary head predicting,

among others, the legal moves and move-specific information

such as whether the move is a check or capture, and the value

head predicting the result of the game.

An overview of how we use the Maia-2 model is shown in

Figure 4. We utilize the model for predicting the puzzle rating

as follows: First, for each position in the puzzle (up to and

including the fifth move), we compute the position embedding

using the ResNet backbone and the Transformer model. We

inject a constant skill value to the Transformer model since

puzzle solvers are unknown.

Additionally, for each position in the puzzle, we compute

the move and auxiliary predictions by passing the position em-

bedding to the heads. Then, we compute the cross-entropy loss

of these using the ground truth (which is known because all the

puzzle moves are available), following how move predictions

were used in [11]. Finally, we embed the correct move in the

position using a two-layer MLP. The final embedding of the

position is a concatenation of the Maia-2 position embedding

and the move and auxiliary prediction losses, as well as the

correct move embedding. We also experimented with using

the Maia-2 value head here, but it did not improve the rating

predictions, so we ultimately left it out.

To obtain a single embedding for an entire puzzle, we pass

the final position embedding sequence into a bi-directional

GRU model (with two layers and a hidden size of 512) to

obtain a single 1024-dimensional embedding for the entire

puzzle, similarly as in [10]. The main difference from their

solution is that we use the Maia-2 model instead of Maia-1

and Leela, and we also fine-tune the entire model instead of

keeping the position embedder frozen.

The final predicted rating is obtained by passing the puzzle

embedding given by the GRU to a final linear layer. This layer

predicts the rating of the puzzle, normalized to zero mean and

unit variance.

As an additional variant, we also include a set of other

features as input to the final linear layer. These features are

a subset of the ones used as input to the LightGBM model

(described in section IV-B). These features are embedded

using a residual neural network, and the output embedding

is concatenated with the puzzle embedding and given as input

to the final linear layer.

2) Training: The Maia-2 model is implemented using Py-

Torch [25], so we also implement our additional layers using

PyTorch and use it to train the model. We initialize the Maia-2

model with the pre-trained rapid or blitz weights. The entire

model is trained end-to-end, meaning that also the pre-trained

Maia-2 layers change during training. We use mean squared

error (MSE) loss for the predicted rating, and we additionally

also compute the cross-entropy loss for the move and auxiliary

predictions from Maia-2 to keep them from diverging, with the

cross-entropy losses having significantly lower weight than the

rating MSE loss. We also weigh the loss of each puzzle by

the inverse of its rating deviation to prevent the model from

paying too much attention to puzzles that have a very uncertain

rating.

We use the Schedule-Free AdamW optimizer [26] to train

our model, which allows us to use a fixed learning rate for

the entire training. The model is trained using approximately

4.1 million puzzles. We use a batch size of 128 puzzles and

evaluate the model every 5,000 iterations. The training is

stopped when the validation loss hasn’t improved for three

consecutive evaluations.

A single NVIDIA RTX 4070 GPU is used to train the

model, and we run the training using bfloat16 automatic mixed
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Fig. 4. Diagram describing how the fine-tuned and customized Maia-2 model for predicting puzzle ratings. First, each position in the puzzle is encoded
using the Maia-2 backbone. Then, the predictions of the move and auxiliary heads are used to compute a loss using the ground-truth values. Additionally
the correct move in the position is embedded using an MLP. The position embeddings, loss values and move embeddings of a puzzle are then combined into
a single puzzle embedding using a GRU model. The predicted rating is then computed using a final linear layer, which also may obtain as input additional
hand-crafted or engine features. The model is trained end-to-end with all layers being trained or fine-tuned simultaneously. For more details, see Section IV-A.

precision to speed up the training and reduce memory usage. A

single training run takes about two hours. Multiple variants of

the model are trained with different hyperparameters (dropout,

weight decay, learning rate, loss weights) and slightly different

model configurations and weights (Maia-2 rapid or blitz).

B. LightGBM model

The next step in our rating prediction pipeline is training

a gradient boosted decision tree model using LightGBM [17]

that receives as inputs three different types of features:

1) Ratings predicted by the fine-tuned Maia-2 model, as

described above in section IV-A

2) Features extracted from various chess engines such as

Leela, Maia-1 and Stockfish

3) Hand-crafted features created from the initial position

and the solution moves

The LightGBM model is trained with approximately 4.4

million puzzles using MSE loss. The training is stopped if

the validation loss doesn’t improve in 50 iterations. Multiple

different versions of the model are trained using slightly dif-

ferent feature sets and hyperparameters (like different dropout

and bagging factor). We chose to use LightGBM due to its

fast training speed when using a large number of features and

puzzles. In the final ensemble we instead used CatBoost [27],

which is slower but results in a slightly more accurate model.

1) Ratings predicted by fine-tuned Maia-2: The LightGBM

model uses as input the rating predicted by seven different

versions of the fine-tuned Maia-2 model. For six of these

versions we trained the Maia-2 model multiple times using

different folds, and then predicted the rating for the training

set with the model where the fold was not used for training,

following our previous approach [12]. We also included the

rating of one fine-tuned Maia-2 model that was trained only

once due to time constraints, meaning the LightGBM model

retrieved ratings predicted on the train set of the Maia-2 model.

We added Gaussian noise to these ratings to make sure the

model didn’t overfit to this specific feature.

2) Features extracted from chess engines: The main feature

extracted from chess engines is the probability that the correct

puzzle move is made in different positions during the puzzle,

as in [12]. The probability is computed for the first five player

and opponent moves, with a default value of 1.0 being used

if the puzzle is shorter than five moves. We compute the

probability using the engine evaluation function only, without

any search being performed. This feature is obtained using the

following models:

• All Maia-1 models (1100, 1200, ..., 1900) [15]

• Leela "best nets" T1-256x10 and T1-512x15x8h [28]

• BadGyal-8, GoodGyal-5, GoodGyal-7 and TinyGyal-8

[29]

• Additional Leela networks LD2, J104.1-30, T73_RL.2-

10000 and J64-180 [30]

We also use Stockfish 17 [31] to extract the material,

positional, and total evaluations according to its evaluation

function. Stockfish is also used to compute the final centipawn

value after the last move of the puzzle, as well as to compute

whether the correct move is found on a certain depth. For this

purpose we used depths 1 through 100,000 in powers of ten.

Additionally we use the success probabilities provided by

the competition organizers in the original dataset.

3) Hand-crafted features: We extract three feature families

using python-chess [32] and pandas [33]: puzzle-level basic

features, move/position features, and tactical features.

a) Puzzle-level basic features: These features are com-

puted once per puzzle: solution length; is the player white?;

Lichess themes from the puzzle tagger [4]; initial piece place-

ment (board array) before the first player move.

b) Move/position features: These features are computed

for the first five moves by each side, and are listed in Table I.

c) Tactical features: Features indicating tactical motifs,

described in Table II. Unless noted, computed for the first five

moves by each side.

C. Final CatBoost ensemble

To obtain the final predicted rating, we train a gradient

boosted tree model using CatBoost [27] that receives as input
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TABLE I
MOVE- AND POSITION-SPECIFIC FEATURES

Category Features

Position state # legal moves; in-check flag
Forcing moves # checking moves / pieces; # capturing

moves / pieces; captures winning material;
materially safe captures

Correct move Check flag; moving piece mobility; captures
undefended piece; material gain; piece type;
from/to column and row

Material and
structure

Side material and material diff.; mobility by
piece type; undefended pieces (# and value);
attackers/defenders near each king

Pawn structure Pawn islands; doubled / isolated / passed
pawns

Other Over-/under-defended pieces; castling status
(both sides); castling/en passant flags

TABLE II
TACTICAL FEATURES

Feature Notes

Accepted
sacrifice

Correct move accepts a sacrifice

Interposition de-
fence

Correct move blocks a check

Mate threat First five player moves only; correct move
poses a mate threat, detected using Stockfish
assuming opponent skips a turn

Recapture First five player moves only; correct move
recaptures previously lost piece

the predictions of 17 different versions of the fine-tuned Maia-

2 model, as well as 12 different versions of the LightGBM

model. Additionally, the model uses as input the number of

moves in the puzzle solution and the probability of making

the correct puzzle move according to the following Leela nets:

T3-512x15x16h [30], T82-768x15x24h and BT3-768x15x24h

[28]. We include these probabilities in this late stage instead

of in the larger LightGBM model due to the computation of

the probabilities with these models being quite slow.

The CatBoost model is trained using 100,000 puzzles, with

MSE loss. We note that using a gradient boosted tree model

for ensembling gives slightly better results compared to using

just a simple average or learned weighted average.

D. Scaling of predicted ratings

Since the public test set puzzles have on average fewer

attempts than the ones in the training set [8], they are also

likely to have fewer extremely high and low ratings, due to

puzzles with such extreme true ratings requiring many solving

attempts to converge. To account for this difference, we follow

the method used in [11] and apply linear scaling to align

the predicted ratings more closely with the estimated mean

c = 1600 of the test set distribution using the formula

ŷscaled = c+ g ∗ (ŷ − c),

where g is the scaling factor. The mean value was found

by weighing our own test set (extracted from the training

data) to better match the distribution of the public test set

(similarly to how we weighed our own validation set in the

first edition [12]). The raw predicted ratings we used for the

final submissions in the FedCSIS 2025 competition all came

from the same final CatBoost ensemble. We then applied the

scaling using factors g of 0.7, 0.8 and 0.9 to obtain three

different variations of the ratings.

V. RESULTS

TABLE III
FINAL FEDCSIS 2025 COMPETITION RESULTS (TOP 5 TEAMS OUT OF 31)

Rank Prelim. MSE Final MSE Rel. diff.

1 55,382 52,311 -

2 58,186 54,377 +3.9%

3 58,892 55,938 +6.9%

4 61,524 57,492 +9.9%

5 67,062 61,045 +17%

In the FedCSIS 2025 Challenge, the predicted puzzle ratings

are evaluated on the public test set by comparing the predicted

puzzle ratings to the ground truth ratings and computing the

MSE loss. Our method achieved a preliminary score of 55,382,

and a final score of 52,311, resulting in first place in the final

results (as well as on the preliminary leaderboard). The scores

of the top five teams (out of a total of 31 teams with a final

score) are shown in Table III. The final score of the second

place team is 3.9% higher than our score, and all of the top

four teams are within 10% of our score. This indicates that the

second edition of the competition was much closer than the

first edition, where the difference between the first and second

place teams was around 15% [8].

TABLE IV
RESULTS OF DIFFERENT VARIATIONS OF OUR MODEL

Model Test set MSE Rel. diff.

Final CatBoost ensemble 35,400 -

LightGBM (all feats) 36,400 +2.9%

LightGBM w/o hand-crafted feats 36,800 +4.1%

LightGBM w/o engine feats 37,300 +5.4%

Fine-tuned Maia-2 (with extra feats) 38,900 +10%

Fine-tuned Maia-2 (w/o extra feats) 40,800 +15%

LightGBM w/o fine-tuned Maia-2 52,600 +49%

We also performed an ablation study to verify the impact

of different parts of our solution, using a test set of 50,000

puzzles extracted randomly from competition training set. The

results of the ablation study are shown in Table IV. From the

results we can see that the fine-tuned Maia-2 model is critical

to our solution, since the LightGBM model without these

ratings has an MSE that is 49% higher than our final solution.

We also see that the final CatBoost ensemble is useful, since

without it the loss is 2.9% higher.

The ablation study also confirms that both the chess engine

features and hand-crafted features are still useful. Additionally

we see that even though the fine-tuned Maia-2 model is critical

for our model, by itself it performs around 15% worse than
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our final ensemble, which would place it close to the fifth

place finisher, assuming the results transfer to the competition

public test set.

VI. CONCLUSION

In this work, we described an approach for predicting the

difficulty of a chess puzzle based on fine-tuning the Maia-2

model and combining the predicted rating from this model

with hand-crafted features as well as features extracted from

chess engines. We showed that fine-tuning the pre-trained

Maia-2 model achieved strong performance for the puzzle

rating prediction by itself, and that hand-crafted and chess

engine features are still a useful addition to this deep learning-

based method. We demonstrated the effectiveness of the

method, achieving first place in the FedCSIS 2025 Challenge

on Predicting Chess Puzzle Difficulty.
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