Proceedings of the 20" Conference on Computer
Science and Intelligence Systems (FedCSIS) pp. 801-806 ISSN 2300-5963 ACSIS, Vol. 43

DOI: 10.15439/2025F6497

Estimating the Difficulty of Chess Puzzles by
Combining Fine-Tuned Maia-2 with Hand-Crafted
and Engine Features

Sebastian Bjorkqvist
0009-0006-9039-8623
IPRally Technologies Oy
Helsinki, Finland
Email: sebastian@iprally.com

Abstract—A common way for chess players to practice tactical
awareness is to solve chess puzzles, consisting of an initial position
and a sequence of moves to achieve a winning position. This
practice is more effective when puzzles are matched to the
player’s skill level. In this work, we present an approach for
estimating the difficulty of a chess puzzle using only the initial
position and the sequence of correct moves. Our approach uses
a fine-tuned modification of the Maia-2 model combined with a
set of hand-crafted features and features extracted from chess
engines such as Leela Chess Zero and Stockfish. All of these
features are then used as input to a gradient boosted decision
tree model that predicts the final rating of the puzzle. We applied
our approach to the FedCSIS 2025 Challenge on Predicting Chess
Puzzle Difficulty Part 2, where it achieved first place.

Index Terms—chess, chess puzzle, machine learning, trans-
former, neural network, gradient boosted decision tree

I. INTRODUCTION

OLVING chess puzzles, where a player is presented a

specific chess position and needs to find a sequence of
moves leading to a winning advantage, is an important part of
any chess player’s training routine. Solving puzzles allows the
player to learn important tactical patterns much more quickly
compared to just playing chess games, since a puzzle always
contains a critical position, and similar patterns can thus be
practiced far more frequently than they would appear in actual
games.

Chess puzzles are widely available on online platforms [1],
[2], [3] and may be automatically created by analyzing online
games and finding critical positions where a specific sequence
of moves leads to a winning position for one side [4]. While
the creation of puzzles can be automated, the process of
determining the difficulty remains mostly dependent on human
input. The puzzle difficulty is usually estimated by having a
number of different people attempt the puzzle and measuring
the success rate. This information can then be used to calculate
the puzzle rating, using for instance the Elo [5] or Glicko-2 [6]
algorithm. The drawback of this process is that determining
the puzzle rating accurately is quite time-consuming, requiring
the input of multiple human solvers. Automating the process of
determining the difficulty would allow newly included puzzles
to be immediately shown to players of suitable strength, which

IEEE Catalog Number: CFP2585N-ART ©2025, PTI

801

Fig. 1. An example of a chess puzzle. The opponent (black pieces), just
made the move Qd8xd4, capturing a pawn (red circle), leaving the black
queen undefended. Thus the puzzle solver (white pieces) can make the move
Bd3xb5, capturing the black pawn (green arrow) and checking the black king
(green circle). After the opponent captures the bishop (red arrow) to escape
check, the white queen captures the black queen with the move Qd1xd4 (blue
arrow). In the final position black is without a queen while white has only
lost a bishop, leaving white with a decisive material advantage.

would improve the puzzle solving experience.

The FedCSIS 2025 Challenge on Predicting Chess Puzzle
Difficulty Part 2 [7] is centered around automating the task
of predicting the difficulty of chess puzzles using only the
initial position and the sequence of moves, without the need
for repeated human solving. The competition is a follow-up
to the IEEE Big Data Cup 2024 Challenge on Predicting
Chess Puzzle Difficulty [8]. The second edition of the com-
petition introduces more chess puzzles in the training dataset.
Additionally, the training data features also include success
probabilities computed using the Maia-2 [9] model.

In this work, we introduce an approach for estimating the

Thematic Session: Data Mining Competition

802

difficulty of chess puzzles which adapts and fine-tunes Maia-2,
originally trained to predict the probability of humans making
certain moves in a specific position. We also utilize ideas from
the approaches of the first [10] and second place [11] teams
from the first edition of the competition, as well as extend
our own previous method [12] which placed third. Our new
approach was applied to the second edition of the challenge,
achieving first place.

II. RELATED WORK

While the estimation of chess puzzle difficulty had been
analyzed on a small scale previously [13], [14], the main body
of work related to the problem of predicting the difficulty of
chess puzzles is due to the IEEE Big Data Cup 2024 Challenge
on Predicting Chess Puzzle Difficulty [8], which we later refer
to as the first edition of the competition. The top performing
teams of the first edition used the following methods:

1) The winning team [10] used multiple Maia-1 [15] and
Leela Chess Zero [16] models to encode the chess
positions in a puzzle into vectors and then used an RNN
to combine these position embeddings into one puzzle
embedding, which was used to predict the puzzle rating.

2) The second place team [11] used a CNN architecture
similar to Leela Chess Zero to encode each position in
the puzzle and trained the model from scratch to predict
the rating. The model also predicted the next move in
the position and used the loss of that prediction as an
additional feature when predicting the rating.

3) The third place team [12] (our submission to the first edi-
tion) used hand-crafted features and features extracted
from chess engines, as well as a rating predicted by a
residual neural network as input to a LightGBM [17]
model to predict the puzzle rating.

Other approaches used in the first edition of the competition
include a RankNet-based deep neural network model [18],
a Transformer-based approach using a modified version of
ChessFormer [19] and other CNN-based solutions [20], [21].

III. CHESS PUZZLE CHALLENGE DATASET

The dataset of chess puzzles available for training provided
by the FedCSIS 2025 Challenge on Predicting Chess Puzzle
Difficulty Part 2 [7] consists of approximately 4.55 million
chess puzzles obtained from the Lichess open database [22].
An example puzzle can be seen in Figure 1. Each puzzle
in the training dataset contains an initial position given in
FEN notation [23] and the sequence of the correct moves of
the puzzle in long algebraic notation [24]. Additionally, the
training dataset contains metadata such as rating deviation,
attempt count, popularity, tactical themes, and opening info.
A new addition to the second edition of the competition is
the inclusion of 22 success probability predictions, describing
how likely humans of varying playing strength are to correctly
solve the puzzle. The target variable is the rating of the puzzle,
determined by repeated solving of the puzzle in the Lichess
trainer [1]. The distribution of ratings is shown in Figure 2.

PROCEEDINGS OF THE FEDCSIS. KRAKOW, POLAND, 2025

300k §

250k q

200k §

Count

150k A

100Kk A

50k A

0k

1500 2000 2500 3000

Rating

500 1000

Fig. 2. The distribution of the puzzle ratings in the training set. A large
number of puzzles have a rating near the initial puzzle rating of 1500, with
another visible concentration of puzzles around 1000.

The competition also provides a public test set containing
2,235 puzzles. The public test set does not contain any of the
metadata that is available for the training set — it only has
the initial position, the solution moves as well as the predicted
human success probabilities. The goal of the competition is
to predict accurate ratings for the public test set. The public
test set is further split into a holdout set used to compute
the preliminary score, and a final test set, used for the final
competition ranking.

IV. APPROACH

Our approach is based mainly on the following observation:
The first place solution [10] in the first edition used pre-trained
chess engine models to extract position embeddings but did
not fine-tune the engine model weights. The second place
solution [11], on the other hand, used the model architecture
of a chess engine model and trained it end-to-end, but did not
initialize the model weights with any pre-trained model. Thus,
we wanted to analyze whether these two methods could be
combined by both training a model end-to-end and initializing
the model with pre-trained weights. The reason why no team
did this in the first edition of the competition is likely related
to the difficulty of extracting the trained weights from Maia-1
and Leela Chess Zero models for use in a commonly used
deep learning library like PyTorch.

Shortly after the first edition of the competition finished, the
Maia-2 [9] model was released. This model turned out to be
a great candidate to both initialize a model with and to fine-
tune, since the model code and weights are freely available,
and the model is written in PyTorch, making it easy to modify
and extend. Thus, we decided to use the Maia-2 model as the
backbone of our approach.

We also wanted to verify whether the use of hand-crafted
features and features extracted from other chess engines is
still useful even when fine-tuning a deep learning model to
predict the ratings, so we decided also to include and extend
the features used in our third place solution for the first edition
[12].

SEBASTIAN BJORKQVIST: ESTIMATING THE DIFFICULTY OF CHESS PUZZLES

Fine-Tuned Maia-2 Features from Engines Hand-Crafted Features

w‘iuns /

LightGBM Model

‘M riations

CatBoost Model

17 Variations

A 4

Predicted Puzzle Rating

Fig. 3. Flowchart showing the basic structure of the method to predict
the Glicko-2 rating for chess puzzles. Ratings are first predicted by a fine-
tuned Maia-2 model as well as a LightGBM model. Multiple variations of
both models are trained, and the predicted ratings are given as input to a
final CatBoost model that ensembles the ratings into a final prediction. The
different models and features are described in detail in Section IV.

An overview of our approach is shown in Figure 3. We
first train a fine-tuned Maia-2 model to predict the rating
of puzzles, and use this rating as well as hand-crafted and
chess engine features as input to a LightGBM model to
predict the puzzle rating. Finally, we use ratings predicted by
multiple variants of the fine-tuned Maia-2 and the LightGBM
model as input to a final CatBoost ensemble, which then
predicts the final puzzle rating. For the predictions submitted
to the competition, we additionally perform a linear scaling to
account for the differences in the rating distribution between
the training set and the public test set.

A. Fine-Tuned Maia-2

1) Architecture: Maia-2 [9] is a model trained to predict
the probability of a human making a specific move in a
certain chess position. Maia-2 consists of a ResNet backbone
that embeds a position to a set of patch embeddings, and
of a Transformer model that takes the patch embeddings as
input and outputs a position embedding encoding relevant
information about the board state. The Transformer layers
incorporate skill-aware attention which allows the model to see
information about the skill level of the players when predicting
the next move. The position embedding is used as input to
three different heads: The move head predicting the probability
of each possible next move, the auxiliary head predicting,
among others, the legal moves and move-specific information
such as whether the move is a check or capture, and the value
head predicting the result of the game.

An overview of how we use the Maia-2 model is shown in
Figure 4. We utilize the model for predicting the puzzle rating
as follows: First, for each position in the puzzle (up to and
including the fifth move), we compute the position embedding
using the ResNet backbone and the Transformer model. We

inject a constant skill value to the Transformer model since
puzzle solvers are unknown.

Additionally, for each position in the puzzle, we compute
the move and auxiliary predictions by passing the position em-
bedding to the heads. Then, we compute the cross-entropy loss
of these using the ground truth (which is known because all the
puzzle moves are available), following how move predictions
were used in [11]. Finally, we embed the correct move in the
position using a two-layer MLP. The final embedding of the
position is a concatenation of the Maia-2 position embedding
and the move and auxiliary prediction losses, as well as the
correct move embedding. We also experimented with using
the Maia-2 value head here, but it did not improve the rating
predictions, so we ultimately left it out.

To obtain a single embedding for an entire puzzle, we pass
the final position embedding sequence into a bi-directional
GRU model (with two layers and a hidden size of 512) to
obtain a single 1024-dimensional embedding for the entire
puzzle, similarly as in [10]. The main difference from their
solution is that we use the Maia-2 model instead of Maia-1
and Leela, and we also fine-tune the entire model instead of
keeping the position embedder frozen.

The final predicted rating is obtained by passing the puzzle
embedding given by the GRU to a final linear layer. This layer
predicts the rating of the puzzle, normalized to zero mean and
unit variance.

As an additional variant, we also include a set of other
features as input to the final linear layer. These features are
a subset of the ones used as input to the LightGBM model
(described in section IV-B). These features are embedded
using a residual neural network, and the output embedding
is concatenated with the puzzle embedding and given as input
to the final linear layer.

2) Training: The Maia-2 model is implemented using Py-
Torch [25], so we also implement our additional layers using
PyTorch and use it to train the model. We initialize the Maia-2
model with the pre-trained rapid or blitz weights. The entire
model is trained end-to-end, meaning that also the pre-trained
Maia-2 layers change during training. We use mean squared
error (MSE) loss for the predicted rating, and we additionally
also compute the cross-entropy loss for the move and auxiliary
predictions from Maia-2 to keep them from diverging, with the
cross-entropy losses having significantly lower weight than the
rating MSE loss. We also weigh the loss of each puzzle by
the inverse of its rating deviation to prevent the model from
paying too much attention to puzzles that have a very uncertain
rating.

We use the Schedule-Free AdamW optimizer [26] to train
our model, which allows us to use a fixed learning rate for
the entire training. The model is trained using approximately
4.1 million puzzles. We use a batch size of 128 puzzles and
evaluate the model every 5,000 iterations. The training is
stopped when the validation loss hasn’t improved for three
consecutive evaluations.

A single NVIDIA RTX 4070 GPU is used to train the
model, and we run the training using bfloat16 automatic mixed

804

CE Losses

Maia-2 Backbone

Move Embedder

Correct Moves (2-Layer MLP)

Fig. 4.

Move and Aux Head Preds (Move + Aux) LO\VAI”CSA
Puzzle Positions |~ @ esNet + Transformer) Position Embeddings

Correct Move Embeddings

PROCEEDINGS OF THE FEDCSIS. KRAKOW, POLAND, 2025

GRU
(2-Layer, Bidirectional)

Final Linear Pmdicted)

Layer

Rating

Extra
Features

Diagram describing how the fine-tuned and customized Maia-2 model for predicting puzzle ratings. First, each position in the puzzle is encoded

using the Maia-2 backbone. Then, the predictions of the move and auxiliary heads are used to compute a loss using the ground-truth values. Additionally
the correct move in the position is embedded using an MLP. The position embeddings, loss values and move embeddings of a puzzle are then combined into
a single puzzle embedding using a GRU model. The predicted rating is then computed using a final linear layer, which also may obtain as input additional
hand-crafted or engine features. The model is trained end-to-end with all layers being trained or fine-tuned simultaneously. For more details, see Section IV-A.

precision to speed up the training and reduce memory usage. A
single training run takes about two hours. Multiple variants of
the model are trained with different hyperparameters (dropout,
weight decay, learning rate, loss weights) and slightly different
model configurations and weights (Maia-2 rapid or blitz).

B. LightGBM model

The next step in our rating prediction pipeline is training
a gradient boosted decision tree model using LightGBM [17]
that receives as inputs three different types of features:

1) Ratings predicted by the fine-tuned Maia-2 model, as
described above in section IV-A

2) Features extracted from various chess engines such as
Leela, Maia-1 and Stockfish

3) Hand-crafted features created from the initial position
and the solution moves

The LightGBM model is trained with approximately 4.4
million puzzles using MSE loss. The training is stopped if
the validation loss doesn’t improve in 50 iterations. Multiple
different versions of the model are trained using slightly dif-
ferent feature sets and hyperparameters (like different dropout
and bagging factor). We chose to use LightGBM due to its
fast training speed when using a large number of features and
puzzles. In the final ensemble we instead used CatBoost [27],
which is slower but results in a slightly more accurate model.

1) Ratings predicted by fine-tuned Maia-2: The LightGBM
model uses as input the rating predicted by seven different
versions of the fine-tuned Maia-2 model. For six of these
versions we trained the Maia-2 model multiple times using
different folds, and then predicted the rating for the training
set with the model where the fold was not used for training,
following our previous approach [12]. We also included the
rating of one fine-tuned Maia-2 model that was trained only
once due to time constraints, meaning the LightGBM model
retrieved ratings predicted on the train set of the Maia-2 model.
We added Gaussian noise to these ratings to make sure the
model didn’t overfit to this specific feature.

2) Features extracted from chess engines: The main feature
extracted from chess engines is the probability that the correct
puzzle move is made in different positions during the puzzle,
as in [12]. The probability is computed for the first five player
and opponent moves, with a default value of 1.0 being used
if the puzzle is shorter than five moves. We compute the
probability using the engine evaluation function only, without
any search being performed. This feature is obtained using the
following models:

o All Maia-1 models (1100, 1200, ..., 1900) [15]

o Leela "best nets" T1-256x10 and T1-512x15x8h [28]

« BadGyal-8, GoodGyal-5, GoodGyal-7 and TinyGyal-8

(29]

¢ Additional Leela networks LD2, J104.1-30, T73_RL.2-

10000 and J64-180 [30]

We also use Stockfish 17 [31] to extract the material,
positional, and total evaluations according to its evaluation
function. Stockfish is also used to compute the final centipawn
value after the last move of the puzzle, as well as to compute
whether the correct move is found on a certain depth. For this
purpose we used depths 1 through 100,000 in powers of ten.

Additionally we use the success probabilities provided by
the competition organizers in the original dataset.

3) Hand-crafted features: We extract three feature families
using python-chess [32] and pandas [33]: puzzle-level basic
features, move/position features, and tactical features.

a) Puzzle-level basic features: These features are com-
puted once per puzzle: solution length; is the player white?;
Lichess themes from the puzzle tagger [4]; initial piece place-
ment (board array) before the first player move.

b) Move/position features: These features are computed
for the first five moves by each side, and are listed in Table L.

¢) Tactical features: Features indicating tactical motifs,
described in Table II. Unless noted, computed for the first five
moves by each side.

C. Final CatBoost ensemble

To obtain the final predicted rating, we train a gradient
boosted tree model using CatBoost [27] that receives as input

SEBASTIAN BJORKQVIST: ESTIMATING THE DIFFICULTY OF CHESS PUZZLES

TABLE I
MOVE- AND POSITION-SPECIFIC FEATURES

Features

legal moves; in-check flag

checking moves / pieces; # capturing
moves / pieces; captures winning material;
materially safe captures

Check flag; moving piece mobility; captures
undefended piece; material gain; piece type;
from/to column and row

Side material and material diff.; mobility by
piece type; undefended pieces (# and value);
attackers/defenders near each king

Pawn islands; doubled / isolated / passed
pawns

Category
Position state
Forcing moves

Correct move

Material and

structure

Pawn structure

Other Over-/under-defended pieces; castling status
(both sides); castling/en passant flags
TABLE 1T
TACTICAL FEATURES
Feature Notes
Accepted Correct move accepts a sacrifice
sacrifice
Interposition de- | Correct move blocks a check
fence

Mate threat First five player moves only; correct move
poses a mate threat, detected using Stockfish
assuming opponent skips a turn

First five player moves only; correct move

recaptures previously lost piece

Recapture

the predictions of 17 different versions of the fine-tuned Maia-
2 model, as well as 12 different versions of the LightGBM
model. Additionally, the model uses as input the number of
moves in the puzzle solution and the probability of making
the correct puzzle move according to the following Leela nets:
T3-512x15x16h [30], T82-768x15x24h and BT3-768x15x24h
[28]. We include these probabilities in this late stage instead
of in the larger LightGBM model due to the computation of
the probabilities with these models being quite slow.

The CatBoost model is trained using 100,000 puzzles, with
MSE loss. We note that using a gradient boosted tree model
for ensembling gives slightly better results compared to using
just a simple average or learned weighted average.

D. Scaling of predicted ratings

Since the public test set puzzles have on average fewer
attempts than the ones in the training set [8], they are also
likely to have fewer extremely high and low ratings, due to
puzzles with such extreme true ratings requiring many solving
attempts to converge. To account for this difference, we follow
the method used in [11] and apply linear scaling to align
the predicted ratings more closely with the estimated mean
¢ = 1600 of the test set distribution using the formula

gscaled =c+gx* (Z) - C)7

where ¢ is the scaling factor. The mean value was found
by weighing our own test set (extracted from the training

data) to better match the distribution of the public test set
(similarly to how we weighed our own validation set in the
first edition [12]). The raw predicted ratings we used for the
final submissions in the FedCSIS 2025 competition all came
from the same final CatBoost ensemble. We then applied the
scaling using factors g of 0.7, 0.8 and 0.9 to obtain three
different variations of the ratings.

V. RESULTS

TABLE III
FINAL FEDCSIS 2025 COMPETITION RESULTS (TOP 5 TEAMS OUT OF 31)

Rank | Prelim. MSE | Final MSE | Rel. diff.
1 55,382 52,311 -
2 58,186 54,377 +3.9%
3 58,392 55,938 +6.9%
4 61,524 57,492 +9.9%
5 67,062 61,045 +17%

In the FedCSIS 2025 Challenge, the predicted puzzle ratings
are evaluated on the public test set by comparing the predicted
puzzle ratings to the ground truth ratings and computing the
MSE loss. Our method achieved a preliminary score of 55,382,
and a final score of 52,311, resulting in first place in the final
results (as well as on the preliminary leaderboard). The scores
of the top five teams (out of a total of 31 teams with a final
score) are shown in Table III. The final score of the second
place team is 3.9% higher than our score, and all of the top
four teams are within 10% of our score. This indicates that the
second edition of the competition was much closer than the
first edition, where the difference between the first and second
place teams was around 15% [8].

TABLE IV
RESULTS OF DIFFERENT VARIATIONS OF OUR MODEL

Model Test set MSE | Rel. diff.
Final CatBoost ensemble 35,400 -
LightGBM (all feats) 36,400 +2.9%
LightGBM w/o hand-crafted feats 36,800 +4.1%
LightGBM w/o engine feats 37,300 +5.4%
Fine-tuned Maia-2 (with extra feats) 38,900 +10%
Fine-tuned Maia-2 (w/o extra feats) 40,800 +15%
[LightGBM w/o fine-tuned Maia-2 | 52,600 [+49% |

We also performed an ablation study to verify the impact
of different parts of our solution, using a test set of 50,000
puzzles extracted randomly from competition training set. The
results of the ablation study are shown in Table IV. From the
results we can see that the fine-tuned Maia-2 model is critical
to our solution, since the LightGBM model without these
ratings has an MSE that is 49% higher than our final solution.
We also see that the final CatBoost ensemble is useful, since
without it the loss is 2.9% higher.

The ablation study also confirms that both the chess engine
features and hand-crafted features are still useful. Additionally
we see that even though the fine-tuned Maia-2 model is critical
for our model, by itself it performs around 15% worse than

806

our final ensemble, which would place it close to the fifth
place finisher, assuming the results transfer to the competition
public test set.

VI. CONCLUSION

In this work, we described an approach for predicting the
difficulty of a chess puzzle based on fine-tuning the Maia-2
model and combining the predicted rating from this model
with hand-crafted features as well as features extracted from
chess engines. We showed that fine-tuning the pre-trained
Maia-2 model achieved strong performance for the puzzle
rating prediction by itself, and that hand-crafted and chess
engine features are still a useful addition to this deep learning-

based method. We demonstrated the effectiveness

of the

method, achieving first place in the FedCSIS 2025 Challenge
on Predicting Chess Puzzle Difficulty.

(1]
(2]
(3]
(4]

(3]

(6]

(71

(8]

[9]

(10]

(11]

[12]

[13]

REFERENCES

Lichess.org, “Lichess training,” https:/lichess.org/training, 2025, ac-
cessed: 2025-08-16.

Chess.com, “Chess.com puzzles,” https://www.chess.com/puzzles, 2025,
accessed: 2025-08-16.

ChessTempo, “Chesstempo,” https://chesstempo.com/, 2025, accessed:
2025-08-16.

T. Duplessis,
lichess-puzzler.
lichess-puzzler

A. E. Elo, The Rating of Chessplayers, Past and Present. New
York: Arco Pub., 1978. ISBN 0668047216 9780668047210. [Online].
Available: http://www.amazon.com/Rating- Chess-Players-Past-Present/
dp/0668047216

M. E. Glickman, “Example of the glicko-2 system,” http://www.glicko.
net/glicko/glicko2.pdf, 2022, published: 2022-03-22, accessed: 2025-08-
16.

J. Zysko, M. Slezak, D. Slezak, and M. Swiechowski, “FedCSIS 2025
knowledgepit.ai Competition: Predicting Chess Puzzle Difficulty Part
2 & A Step Toward Uncertainty Contests,” in Proceedings of the
20th Conference on Computer Science and Intelligence Systems, ser.
Annals of Computer Science and Information Systg:ms, M. Bolanowski,
M. Ganzha, L. Maciaszek, M. Paprzycki, and D. Slgzak, Eds., vol. 43.
Polish Information Processing Society, 2025. doi: 10.15439/2025F5937.
[Online]. Available: http://dx.doi.org/10.15439/2025F5937

J. Zyéko, M. §Wiechowski, S. Stawicki, K. Jagieta, A. Janusz, and
D. Slgzak, “Teee big data cup 2024 report: Predicting chess puzzle
difficulty at knowledgepit.ai,” in IEEE International Conference on Big
Data, Big Data 2024, Washington DC, USA, December 15-18, 2024.
IEEE, 2024.

Z. Tang, D. Jiao, R. Mcllroy-Young, J. Kleinberg, S. Sen, and A. An-
derson, “Maia-2: A unified model for human-ai alignment in chess,” Ad-
vances in Neural Information Processing Systems, vol. 37, pp. 20919—
20944, 2024.

T. Woodruff, O. Filatov, and M. Cognetta, “The bread emoji team’s
submission to the ieee bigdata 2024 cup: Predicting chess puzzle
difficulty challenge,” in 2024 IEEE International Conference on Big
Data (BigData). 1EEE, 2024, pp. 8415-8422.

A. Schiitt, T. Huber, and E. André, “Estimating chess puzzle difficulty
without past game records using a human problem-solving inspired
neural network architecture,” in 2024 IEEE International Conference
on Big Data (BigData). ITEEE, 2024, pp. 8396-8402.

S. Bjorkqvist, “Estimating the puzzlingness of chess puzzles,” in 2024
IEEE International Conference on Big Data (BigData). 1EEE, 2024,
pp. 8370-8376.

S. Stoiljkovikj, I. Bratko, M. Guid, and F. UNI, “A computational model
for estimating the difficulty of chess problems,” in Proceedings of the
third annual conference on advances in cognitive systems ACS, 2015,
p.- 7.

“lichess
[Online].

puzzler,”
Available:

https://github.com/ornicar/
https://github.com/ornicar/

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

22

[23]

[24]

[25]

[26]

[27]

[28]

[29]

[30]

[31]

[32]

[33]

PROCEEDINGS OF THE FEDCSIS. KRAKOW, POLAND, 2025

D. Hristova, M. Guid, and I. Bratko, “Assessing the difficulty of chess
tactical problems,” International journal on advances in intelligent
systems, vol. 7, no. 3, pp. 728-738, 2014.

R. Mcllroy-Young, S. Sen, J. Kleinberg, and A. Anderson, “Aligning
superhuman ai with human behavior: Chess as a model system,”
in Proceedings of the 26th ACM SIGKDD International Conference
on Knowledge Discovery & Data Mining, ser. KDD ’20. New
York, NY, USA: Association for Computing Machinery, 2020.
doi: 10.1145/3394486.3403219. ISBN 9781450379984 p. 1677-1687.
[Online]. Available: https://doi.org/10.1145/3394486.3403219
The LCZero Authors, “Leela chess zero.” [Online].
https://lczero.org/

G. Ke, Q. Meng, T. Finley, T. Wang, W. Chen, W. Ma, Q. Ye, and T.-Y.
Liu, “Lightgbm: a highly efficient gradient boosting decision tree,” in
Proceedings of the 31st International Conference on Neural Information
Processing Systems, ser. NIPS’17. Red Hook, NY, USA: Curran
Associates Inc., 2017. ISBN 9781510860964 p. 3149-3157.

A. Rafaralahy, “Pairwise learning to rank for chess puzzle difficulty pre-
diction,” in 2024 IEEE International Conference on Big Data (BigData).
IEEE, 2024, pp. 8385-8389.

S. Mitosz and P. Kapusta, “Predicting chess puzzle difficulty with
transformers,” in 2024 IEEE International Conference on Big Data
(BigData). 1EEE, 2024, pp. 8377-8384.

D. Ruta, M. Liu, and L. Cen, “Moves based prediction of chess
puzzle difficulty with convolutional neural networks,” in 2024 [EEE
International Conference on Big Data (BigData). IEEE, 2024, pp.
8390-8395.

M. Omori and P. Tadepalli, “Chess rating estimation from moves and
clock times using a cnn-Istm,” in International Conference on Computers
and Games. Springer, 2024, pp. 3—-13.

Lichess.org, “Lichess open database: Chess puzzles,” https://database.
lichess.org/#puzzles, 2025, accessed: 2025-08-16.

Wikipedia contributors, “Forsyth—-edwards notation — Wikipedia,” https:
/len.wikipedia.org/wiki/Forsyth%E2%80%93Edwards_Notation, 2025,
accessed: 2025-08-16.

, “Algebraic Notation (Chess) — Wikipedia,” https://en.wikipedia.
org/wiki/Algebraic_notation_(chess), 2025, accessed: 2025-08-16.

A. Paszke, S. Gross, F. Massa, A. Lerer, J. Bradbury, G. Chanan,
T. Killeen, Z. Lin, N. Gimelshein, L. Antiga, A. Desmaison, A. Kopf,
E. Yang, Z. DeVito, M. Raison, A. Tejani, S. Chilamkurthy, B. Steiner,
L. Fang, J. Bai, and S. Chintala, PyTorch: an imperative style, high-
performance deep learning library. Red Hook, NY, USA: Curran
Associates Inc., 2019.

A. Defazio, X. Yang, A. Khaled, K. Mishchenko, H. Mehta, and
A. Cutkosky, “The road less scheduled,” Advances in Neural Information
Processing Systems, vol. 37, pp. 9974-10007, 2024.

A. V. Dorogush, V. Ershov, and A. Gulin, “Catboost: gradient boosting
with categorical features support,” arXiv preprint arXiv:1810.11363,
2018. [Online]. Available: https://arxiv.org/abs/1810.11363

Leela Chess Zero contributors, “Best networks for Ic0,” https:
/Nlczero.org/dev/wiki/best-nets-for-1c0/, 2024, accessed: 2025-07-25.
[Online]. Available: https://Iczero.org/dev/wiki/best-nets-for-1c0/
dkappe, “Leela chess weights: Bad gyal,” https:/github.com/
dkappe/leela-chess-weights/wiki/Bad-Gyal, 2020, GitHub release,
accessed 2025-07-25. [Online]. Available: https://github.com/dkappe/
leela-chess-weights/wiki/Bad-Gyal

Leela Chess Zero contributors, “Contributed networks for 1c0,” https:
/Istorage.lczero.org/files/networks-contrib/, 2024, accessed: 2025-07-26.
[Online]. Available: https://storage.lczero.org/files/networks-contrib/
The Stockfish developers, T. Romstad, M. Costalba, J. Kiiski,
G. Linscott, Y. Nasu, M. Isozaki, and H. Noda, “Stockfish.” [Online].
Available: https://stockfishchess.org/

N. Fiekas, “python-chess: a chess
//github.com/niklasf/python-chess, 2025.
//github.com/niklasf/python-chess

W. McKinney, “Data structures for statistical computing in python,” in
Proceedings of the 9th Python in Science Conference, S. van der Walt
and J. Millman, Eds., 2010, pp. 51 — 56.

Available:

library for python,” https:
[Online]. Available: https:

