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Abstract—We detail the bread emoji team’s submission to
the FedCSIS 2025 Predicting Chess Puzzle Difficulty Challenge.
Our solution revolved around improving our submission from
the previous competition by incorporating a new puzzle metadata
feature and optimizing our implementation to allow for larger
model ensembles and more stable training. Similar to our
submission from last year, our system has two stages: learning a
strong predictor for the LICHESS dataset and then rescaling the
distribution using an empirically-guided post-processing step to
fit it to the smaller and noisier competition dataset.

Our submission placed second with a ~3.9% gap in mean
squared error (MSE) from first place 11!

I. INTRODUCTION

HIS paper introduces our team’s (bread emoji) sub-

mission to Predicting Chess Puzzle Difficulty - Second
Edition, a competition hosted by FedCSIS. This was an open-
to-the-public online machine learning competition that chal-
lenged teams to come up with novel solutions for predicting
the difficulty (represented by the GLICKO2 rating system [2])
of a chess puzzle, given the initial board state, the winning
moves, and a small set of metadata for each puzzle.

We participated in last year’s iteration of this competition,
placing first by a significant margin [3][4]. Our solution to
this year’s competition iterated on last year’s solution, and we
cover our updated methodologies in this paper. Overall, our
solution placed second out of 71 teams, narrowly missing out
on first place by 2k MSE (< 4%).

II. COMPETITION BACKGROUND

A chess puzzle is an initial board state and sequence of
moves that lead to one side of the board gaining a significant
material or strategic advantage over the other in a chess game.
Puzzles are created primarily by algorithms that parse actual
human vs. human games on online chess websites and find
interesting move sequences. They are then added to a game
server that serves players a continuous stream of puzzles to
play against. Both the puzzle and the player have a rating,
which are both updated by player wins and losses, according
to the GLICKO?2 rating system.

“This work is not related to the author’s work at Amazon.

'Our code can be found here: https://github.com/mcognetta/ieee-chess.
We have moved the implementation from the previous iteration of the contest
to the 2024-iteration-archive branch.
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FEN: 8/7p/4pp1k/7P/6P1/r2R1P2/3K4/8 b - - 0 44
Solution: ["a3d3","d2d3","h6g5","d3e4","h7h6","f3f4","g5g4"]
Rating: 2631

Fig. 1: An example puzzle from the LICHESS database. The
most basic information required is the initial position (given
in FEN format), the solution (from which we can generate
a sequence of boards), and the puzzle rating (which we are
trying to predict). However, the LICHESS and competition
datasets provide some additional puzzle metadata. The theme
of this puzzle is to convert white’s blunder (capturing the
pawn on d3, which starts the puzzle) into a winning pawn
endgame via zugzwang. The algebraic solution is Exd37??
E d3+ &xd3 g5 ¥ed &Ah6! A fd+ dxgd, after which
black has an overwhelming pawn advantage.

Figure 1 gives an example from the LICHESS database.’

A. LICHESS Dataset

The training dataset given by the competition is a list of over
4.5 million puzzles taken from LICHESS. This is a snapshot
of the free-to-download, updated-monthly puzzle dataset taken
several months prior to the start of the competition. This
dataset contains per-puzzle metadata that is the same as the

Zhttps://database.lichess.org/#puzzles
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prior iteration of this competition (we point the reader to
[3], [4]) with the addition of a set of “success probabilities”
computed by the MAIA2 neural chess engine.

B. MAIA2 Success Probabilities

This year’s competition introduces new metadata in the form
of success probabilities generated by MAIA2, a neural chess
engine designed to mimic human play (Section III-B). Each
value corresponds to the estimated likelihood that a player
of a given skill level would successfully complete the puzzle
according to the move distributions predicted by 22 different
variations of the MAIA2 model [1]. These probabilities were
included as scalar features, indexed by their model configura-
tions and were provided for both the LICHESS and competition
datasets by the organizers.

III. NEURAL CHESS MODELS

Here, we briefly introduce the families of neural chess
models that we use as the backbone for our system. These
models differ from classical chess models in that they are
trained entirely on data without any hand-crafted features.
In particular, we utilize MAIA and MAIA2, which are a
family of neural models that are designed to mimic human
players of various strengths, and LEELA, an open-source
reimplementation of the ALPHAZERO neural chess system.
This is not an exhaustive set of neural chess engines, and we
point the interested reader to [5] for an overview.

A. MAIA

MAIA is a set of neural chess models that are trained
to mimic players of a given rating (for ratings 1100 to
1900 in increments of 100) [6]. Each model has the same
architecture—a chain of 6 convolutional blocks with residual
connections, followed by a value and policy head—that takes
a board representation as input and produces a policy and
value score which encode the probability distribution over next
moves and the evaluation of the position, respectively.

B. MAIA2

MAIA2 builds upon the ideas of MAIA, but with two key
differences. First, the models are no longer segmented by
rating; they now take the player ratings as input. And second,
the model includes a new rating-board attention layer, which
injects rating information into the board representation [7].
The board input and output representations are also different
than MAIA, but the training objective is the same.

MAIA2 comes in two flavors, RAPID and BLITZ, denoting
the training data used to train it, and the default parameters
chunk player ratings into 11 buckets (1050 to 2050).

C. LEELA

LEELA is an open source implementation of the ALP-
HAZERO neural chess engine [8], [9]. The most modern
iteration of LEELA uses a transformer backbone, but we opted
to continue using the original model (as we did in [3]), which
uses a convolutional backbone. LEELA was trained via self-
play to be as strong as possible and has SMALL, MEDIUM,
and LARGE variants.
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IV. OUR SYSTEM

Our general approach mirrors our implementation from the
prior competition [3]. In short, we use neural chess board
embedders to extract latent representations of the boards in
a puzzle. These are fed into an RNN to produce a puzzle
representation, which is then combined with puzzle metadata
and passed to a regression MLP. Our solution for this challenge
differs from our previous solution in a few details, including an
updated, optimized implementation and some architectural and
modeling differences. Here, we review the main architectural
components of our system and in Section VI-A, we discuss the
application of this system to the actual competition challenge.

A. Board and Puzzle Embedders

We again use the MAIA and LEELA neural chess engine
family as our neural chess embedding backbone. These are
large, convolutional models that ingest board representations
(i.e., bitboards representing piece positions and castling meta-
data) and produce a series of policy and value scalars that
are used during min-max tree search in a chess engine. We
truncate the models by removing the policy and value heads
and take the output of the last convolutional block as the latent
vector representation of a given board state.

We point the reader to Figure 10 of [6] (in the Supplemental
section) which shows the MAIA architecture. Our latent rep-
resentation is the vector that is produced by the convolutional
block directly before the model is split into the two heads (and
we use the analogous vector for the LEELA family, which has
a similar architecture [8][9]).

However, puzzles are inherently sequential and variable
length. Thus, after extracting latent representations of each
board-state in a puzzle, we combine them into a puzzle
representation by feeding them into an RNN to produce a
single, vector representation.

B. Board Metadata

The LICHESS dataset comes with a large amount of ad-
ditional metadata other than just the puzzle information. For
example, it contains themes (e.g. mate-in-two, pin, etc.), pop-
ularity, the game it was drawn from, and more. This metadata
may be helpful for modeling purposes, so our architecture
allows for injecting representations of the metadata into the
latent representation of the puzzle. The competition dataset,
however, contains only the explicit puzzle information and the
set of precomputed MAIA2 puzzle probabilities (Section II-B),
so much of the metadata that is available during training is not
immediately helpful since we do not have access to the same
metadata during inference.

In our final architecture, we use only puzzle length and
MAIA2 puzzle probabilities as metadata features. For the
former, we produced a categorical representation of puzzle
length (e.g., puzzles of length 2, 4, ..., 16) and used an
embedding table to extract the learned metadata representation
corresponding to the length of the given puzzle. For the
latter, which consists of 22 scalar values, we produce a vector
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Fig. 2: The model architecture used in the previous competition (top) [3] and the system in this paper (bottom).

embedding by constructing a 22-length vector and passing it
through a small MLP to produce a latent representation.

We note one feature, puzzle themes, that is present in the
LICHESS dataset but not the competition dataset. However,
the LICHESS theme tagging algorithm is open-source® and can
be used to tag the competition dataset. At least one team in
the first iteration of this competition tagged the competition
dataset so that the feature could be used during inference [10],
however, we did not experiment with including this metadata.

The metadata representations are concatenated to the output
of the RNN to produce the final puzzle representation.

C. Rating Prediction as Regression

Once a latent vector representation of the board and its
metadata has been formed, we use it to predict the GLICKO2
rating of the puzzle—a simple regression task. We use a three
layer, dense MLP with relu activations and dropout to learn
a mapping from a puzzle representation to its scalar rating.

D. Ensembled Embeddings

Like in [3], we do not restrict ourselves to having a single
neural board embedder in a model. Instead, we allow multiple
neural board embedders to independently produce board rep-
resentations which are then combined to form an ensembled
board representation. The intuition behind this is that different
models have different strengths and weaknesses due to their
training objectives and so their latent representations of the
board may be complementary and lead to better modeling.

3https://github.com/ornicar/lichess-puzzler

Our architecture allows for arbitrarily many board embed-
ders and can mix MAIA and LEELA embeddings.

V. ARCHITECTURAL AND MODELING DIFFERENCES FROM
OUR SUBMISSION TO THE PRIOR CONTEST [3]

Despite using the same initial framework as in [3], we
implemented a number of architectural and modeling changes
(other than the inclusion of the new MAIA2 features) that
improved our system’s performance. Figure 2 shows the major
differences between the two systems.

A. RNN Implementation

In the previous iteration of this competition we manually
implemented the RNN in our model architecture. Regardless of
puzzle input length, we truncated or padded to 10 boards and
then used a hand-written RNN loop. This was slow, had many
wasted computations (in that many puzzles have less than 10
boards, but the padded boards were processed anyway), and
had some undesirable modeling properties (in theory, models
should learn to ignore the padding boards, but they can still
"wash out" the signal of non-padding boards, especially when
the puzzle is very short).

We replaced our implementation with the PYTORCH RNN
implementation, which is faster, uses less memory, and, by
using packed tensors, only processes non-padding boards. In a
benchmark, we observed a >4 x runtime speed-up when using
the PYTORCH RNN compared to our hand-written RNN.

B. Board Pooling

Recall that we have several board embedders that each pro-
duce a sequence of latent board representations for each board

839



840

(a) Results from the previous competition, taken directly from [3].
These do not include MAIA2 features and use the previous iteration
of our architecture. Note that the bottom row is an output-ensemble
of embedding-ensemble models.

Model MSE
MAIA-1300 56.5k
MAIA-1500 57.5k
MAIA-1700 57.9k
LEELA-SMALL 65.5k
LEELA-MED 66.1k
MAIA-1300 + LEELA-SMALL 65.4k
MAIA-1300 + LEELA-MED 50.8k
MaA1a-{1300, 1500, 1700} 56.0k
Mala-{1300, 1500, 1700} +

[MAIA-1300 + LEELA-SMALL] + 46.7k

[MAIA-1300 + LEELA-MED]

PROCEEDINGS OF THE FEDCSIS. KRAKOW, POLAND, 2025

(b) Results for our updated architecture, which includes MAIA2
features. Note that all of these are embedding-ensembled models.
The right column is the same model configuration but with an
additional LEELA-SMALL embedder.

MSE
Model

+ LEELA-SMALL
MAIA-1100 41.2k 41.3k
MAIA-1500 41.6k 41.3k
MAIA-1700 42.2k 42.1k
MAIA-{1100, 1500} 41.7k 38.9k
Maia-{1100, 1700} 40.3k 38.7k
Ma1a-{1500, 1700} 39.7k 39.3k
MA1A-{1100, 1500, 1700} 39.2k 38.3k

TABLE I: Results on the LICHESS dataset using different model configurations, including from our solution to the previous
competition. Each model configuration’s MSE is the average of 3 copies of the model. The best performing model is bolded.

state in the puzzle and our goal is to somehow combine all of
them into a single puzzle representation. In [3], we achieved
this by first computing a puzzle vector for each embedder
(by processing that embedder’s board representations with the
RNN) then (mean) pooling the resulting vectors.

In our updated implementation, we reverse this process. We
now use the embedders to compute each board state, then
(mean) pool all of the analogous board representations before
passing it through an RNN.

This has two main benefits. First, it allows for different
embedders’ board representations to be "mixed" earlier in the
model pipeline, which should allow the model to better in-
corporate the different representations. And second, the board
embeddings are processed in parallel in a giant batch, but
the RNN inherently involves a non-parallelization, sequential
process. Thus, by pooling the embeddings before the RNN
layer, we reduce the number of non-parallelizable operations
to just a single RNN call, which massively speeds up training
and inference runtimes.

Due to the runtime speed up and lower memory require-
ments of the combination of pre-RNN board pooling and the
PYTorRCH RNN implementation, we were able to increase
our training batch sizes and observed more stable training and
faster convergence.

C. Regression Target

Recall that the primary objective of this competition is to
predict a puzzle’s GLICKO2 rating, which is a non-negative
scalar, and try to minimize MSE. In [3], we simply predicted
this scalar value directly. Since the ratings can be higher than
3000, the squared errors of predictions can be very large,
which leads to training instability due to large gradients.

In our updated version, we instead computed the mean g
and standard deviation o of the clean LICHESS dataset and
scaled the ratings as 7, = "—* to produce a normalized rating
(which was used in the MSE objective). During inference, we
reverse the normalization by predicting a normalized rating

7y, and recovering the predicted rating # = o X 7, + p. This
resulted in more stable training and faster convergence.

VI. RESULTS

Overall, our updated model architecture and training
scheme, coupled with the addition of MAIA2 probability
metadata, led to significantly more accurate models on the
LIcHESS dataset. Table I shows the results of our prior
solution (taken directly from [3]) and a subset of the model
configurations we trained for our final submissions.

We note that, across the board, the updated models have
substantially lower MSE, despite having similar parameter
counts. Most clearly, we can compare models which have the
same embedding configurations and thus the salient differences
are our new architecture and the MAIA2 metadata (regrettably,
we did not perform MAIA2 ablation tests).

For example, comparing the MAIA-1500 model from the
previous competition to the MAIA-1500 model from this
competition, we observe a ~ 16k reduction in MSE (a 27.7%
reduction), despite having similar parameter counts.

Perhaps unsurprisingly, we find that our largest ensemble,
MAIA-{1100, 1500, 1700} + LEELA-SMALL, performed
the best — achieving 38.3k MSE on the LICHESS test set,
which is an 8.4k (18.0%) reduction in MSE over the best,
multi-ensembled model from our submission to the prior
competition. Ensembling all of the models that we trained for
this competition (i.e., the entire set of models from the right
two tables of Table I) reached 36.1k MSE corresponding to a
2.2k (5.7%) reduction in MSE over the best individual model
from this competition and a 10.6k (22.7%) reduction over the
multi-ensembled model from the last competition.

A. Fitting to the Competition Dataset

Like in [3], we found that models that performed well on
the clean LICHESS dataset did not necessarily perform well
on the competition dataset, as there are significant differences
between the competition distribution and the LICHESS dataset
distribution (for example, see Figure 1 of [4]).
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Fig. 3: An overlay of the competition test set’s distribution (blue) as reported in the prior competition’s writeup [4], our best
model’s predictions before scaling (green), and our best, scaled result (red). Notice that they have significantly different shapes,
implying that accurately modeling one is not a guarantee of accurately modeling another.

We again used the strategy of producing as good of a model
as possible on the LICHESS dataset and then rescaling it to fit
what we expected the competition dataset to look like.

Previously, we used a simulator that estimated, given a set
of players and puzzles for which we had gold-standard rating
information, what the distribution of puzzle ratings would look
like after each puzzle had been played by a subset of N
random players. This was designed to mimic the competition
server, which matched players with puzzles randomly (i.e. not
matching players and puzzles of similar skill level) and, at
the time, did not have many plays-per-puzzle. We used these
findings to guide our search for a rescaling function that could
map our predicted ratings to what we would expect that puzzle
to be rated in the low-play competition-server regime.

We followed the same procedure in this iteration, by using
rescaling functions that attempted to reshape our distribution
of predicted competition puzzle ratings to be more centered
around what we believed the mean competition rating to be.

First, as a baseline, we noted that this year’s competi-
tion dataset was a subset of the previous year’s competition
dataset. Thus, we simply reused our winning solution from
[3] after filtering out the removed puzzles. On the preliminary
competition dataset from last year, our winning solution had
49.1k MSE. However, the same solution scored 64.1k MSE,
indicating that the current iteration of the competition dataset
is significantly different than the prior version.

We first performed binary search over the set of possible
ratings (between 0 and 3000) for the value that minimized
MSE on the preliminary competition dataset when we used
it as a constant prediction (i.e., we predicted the same value
for all puzzles). The value that minimizes this function gives
the mean of the dataset (and we can also recover the standard

deviation), approximately p =~ 1650.

We then used post-processing rescaling steps to try to
reshape our predicted output distribution to a distribution that
had similar properties to what we expected the competition
dataset to have and settled on rescaling functions of the form:

o+ 8ED 1 g
SCALE(r) = o loggzlr) r<0
where r is the normalized predicted rating % and oy, 1,
and c, are rescaling hyperparameters that we searched over for
when our predicted rating was above the mean (and likewise
for o, ¢}, and ¢, when it is below the mean). We separated
these so that we could control the shape of both sides of the
output distribution, as we found it was not symmetric. The
normalized predicted rating is mapped back into the raw rating
space after rescaling.

The differences between the prior competition dataset, our
model’s (unscaled) predictions on the competition dataset, and
our best solution’s scaled predictions is shown in Figure 3.

VII. THINGS WE TRIED THAT DID NOT WORK

Like in [3], once our core pipeline was finished, we exper-
imented with several variants but found that none provided
gains over our baseline.

A. RNN — Transformer

One goal of our updated implementation was to improve
the model’s runtime performance in order to improve training
speed and performance by increasing the batch size and param-
eter count. A major bottleneck is the RNN layer (particularly
in the older, hand-written implementation that pooled boards
after the RNN), since it is inherently sequential and cannot
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be parallelized. We experimented with replacing this layer
with a small transformer model, which has the benefit of
increased parallelization and the ability to explicitly inspect
the representations of every board in a puzzle simultaneously
and learn a weighting for their interactions. We hoped that
this would improve both the model’s runtime and quality,
but we instead found that it massively reduced the modeling
performance, even at similar parameter counts.

We experimented with several variations, including stacking
several layers of transformers and adjusting the transformer’s
internal hidden dimension (both within a fixed parameter
budget), but we were not able to match the RNN baseline.

B. MAIA2 Board Embeddings

We experimented with adding MAIA2 as a board embedder
by using the output of the board-rating attention layer as the
latent board representation. As the MAIA2 model requires
player ratings as input, but the competition dataset does not
provide this metadata (the LICHESS dataset does include it),
we experimented with several different schemes to select a
reasonable rating. For example, we performed a hyperparam-
eter search over all pairs (p1,p2) where p1,ps were ratings
in the MAIA2 rating buckets to see if some pair worked
well. We additionally tried using the ratings as a form of
self-ensembling, by simply selecting several rating pairs as
hyperparameters and then computing the latent representation
of the board for each pair and averaging them.

None of these schemes were effective and we found that
models using MAIA2 embeddings were substantially worse
than those using MAIA. This is potentially due to the compar-
atively small output dimension of the rating-board attention
layer of MAIA2 (1024) compared to the convolutional block
layers of MAIA (4096), which means that it carries less signal
when used in the downstream task.

Since MAIA2 also uses a sequence of convolutional blocks
as a backbone before the attention layer, we could have used
the output of that as well, but we did not experiment with this.

C. Alternative Loss Functions

Our baseline model uses MSE loss as the primary loss
function in order to mimic the competition objective. However,
as noted in [3], our best performing models had relatively
high MSE (40k+ and 50k+ on the LICHESS dataset and
the preliminary competition dataset, respectively). Thus, we
hypothesized that "small" errors (for example, those with
absolute error of less than 180, which would have a squared
error of at most 34k) were less important than large errors (e.g.,
predicting 1800 when the true rating was 2500, corresponding
to a squared error of 490k).

We experimented a with piecewise loss, where the model
was penalized more harshly for larger errors. For example, we
considered loss functions with the basic form:

if [f—r|<T
otherwise,
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where r and 7 are the (unnormalized) true and predicted
ratings, respectively, and 7" is some threshold (180, in the
example above, though we used normalized rating thresholds
in the actual implementation). We also tried more stratified
loss functions (e.g. with multiple thresholds and loss scaling
functions), but did not observe any improvements.
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