
The bread emoji Team’s Submission to the

2025 FedCSIS Predicting Chess Puzzle Difficulty

Challenge

Tyler Woodruff*

Amazon Project Kuiper

hhhtylerw@protonmail.com

Luke Imbing

Independent Researcher

lukeimbing@gmail.com

Marco Cognetta

Google + Institute of Science Tokyo

cognetta.marco@gmail.com

Abstract—We detail the bread emoji team’s submission to
the FedCSIS 2025 Predicting Chess Puzzle Difficulty Challenge.
Our solution revolved around improving our submission from
the previous competition by incorporating a new puzzle metadata
feature and optimizing our implementation to allow for larger
model ensembles and more stable training. Similar to our
submission from last year, our system has two stages: learning a
strong predictor for the LICHESS dataset and then rescaling the
distribution using an empirically-guided post-processing step to
fit it to the smaller and noisier competition dataset.

Our submission placed second with a ∼3.9% gap in mean
squared error (MSE) from first place [1].1

I. INTRODUCTION

T
HIS paper introduces our team’s (bread emoji) sub-

mission to Predicting Chess Puzzle Difficulty - Second

Edition, a competition hosted by FedCSIS. This was an open-

to-the-public online machine learning competition that chal-

lenged teams to come up with novel solutions for predicting

the difficulty (represented by the GLICKO2 rating system [2])

of a chess puzzle, given the initial board state, the winning

moves, and a small set of metadata for each puzzle.

We participated in last year’s iteration of this competition,

placing first by a significant margin [3][4]. Our solution to

this year’s competition iterated on last year’s solution, and we

cover our updated methodologies in this paper. Overall, our

solution placed second out of 71 teams, narrowly missing out

on first place by 2k MSE (<4%).

II. COMPETITION BACKGROUND

A chess puzzle is an initial board state and sequence of

moves that lead to one side of the board gaining a significant

material or strategic advantage over the other in a chess game.

Puzzles are created primarily by algorithms that parse actual

human vs. human games on online chess websites and find

interesting move sequences. They are then added to a game

server that serves players a continuous stream of puzzles to

play against. Both the puzzle and the player have a rating,

which are both updated by player wins and losses, according

to the GLICKO2 rating system.

*This work is not related to the author’s work at Amazon.
1Our code can be found here: https://github.com/mcognetta/ieee-chess.

We have moved the implementation from the previous iteration of the contest
to the 2024-iteration-archive branch.

Fig. 1: An example puzzle from the LICHESS database. The

most basic information required is the initial position (given

in FEN format), the solution (from which we can generate

a sequence of boards), and the puzzle rating (which we are

trying to predict). However, the LICHESS and competition

datasets provide some additional puzzle metadata. The theme

of this puzzle is to convert white’s blunder (capturing the

pawn on d3, which starts the puzzle) into a winning pawn

endgame via zugzwang. The algebraic solution is Rxd3??

rd3+ Kxd3 kg5 Ke4 ph6! Pf4+ kxg4, after which

black has an overwhelming pawn advantage.

Figure 1 gives an example from the LICHESS database.2

A. LICHESS Dataset

The training dataset given by the competition is a list of over

4.5 million puzzles taken from LICHESS. This is a snapshot

of the free-to-download, updated-monthly puzzle dataset taken

several months prior to the start of the competition. This

dataset contains per-puzzle metadata that is the same as the

2https://database.lichess.org/#puzzles

Proceedings of the 20th Conference on Computer
Science and Intelligence Systems (FedCSIS) pp. 837–842

DOI: 10.15439/2025F6771
ISSN 2300-5963 ACSIS, Vol. 43

IEEE Catalog Number: CFP2585N-ART ©2025, PTI 837 Thematic Session: Data Mining Competition

prior iteration of this competition (we point the reader to

[3], [4]) with the addition of a set of “success probabilities”

computed by the MAIA2 neural chess engine.

B. MAIA2 Success Probabilities

This year’s competition introduces new metadata in the form

of success probabilities generated by MAIA2, a neural chess

engine designed to mimic human play (Section III-B). Each

value corresponds to the estimated likelihood that a player

of a given skill level would successfully complete the puzzle

according to the move distributions predicted by 22 different

variations of the MAIA2 model [1]. These probabilities were

included as scalar features, indexed by their model configura-

tions and were provided for both the LICHESS and competition

datasets by the organizers.

III. NEURAL CHESS MODELS

Here, we briefly introduce the families of neural chess

models that we use as the backbone for our system. These

models differ from classical chess models in that they are

trained entirely on data without any hand-crafted features.

In particular, we utilize MAIA and MAIA2, which are a

family of neural models that are designed to mimic human

players of various strengths, and LEELA, an open-source

reimplementation of the ALPHAZERO neural chess system.

This is not an exhaustive set of neural chess engines, and we

point the interested reader to [5] for an overview.

A. MAIA

MAIA is a set of neural chess models that are trained

to mimic players of a given rating (for ratings 1100 to

1900 in increments of 100) [6]. Each model has the same

architecture—a chain of 6 convolutional blocks with residual

connections, followed by a value and policy head—that takes

a board representation as input and produces a policy and

value score which encode the probability distribution over next

moves and the evaluation of the position, respectively.

B. MAIA2

MAIA2 builds upon the ideas of MAIA, but with two key

differences. First, the models are no longer segmented by

rating; they now take the player ratings as input. And second,

the model includes a new rating-board attention layer, which

injects rating information into the board representation [7].

The board input and output representations are also different

than MAIA, but the training objective is the same.

MAIA2 comes in two flavors, RAPID and BLITZ, denoting

the training data used to train it, and the default parameters

chunk player ratings into 11 buckets (1050 to 2050).

C. LEELA

LEELA is an open source implementation of the ALP-

HAZERO neural chess engine [8], [9]. The most modern

iteration of LEELA uses a transformer backbone, but we opted

to continue using the original model (as we did in [3]), which

uses a convolutional backbone. LEELA was trained via self-

play to be as strong as possible and has SMALL, MEDIUM,

and LARGE variants.

IV. OUR SYSTEM

Our general approach mirrors our implementation from the

prior competition [3]. In short, we use neural chess board

embedders to extract latent representations of the boards in

a puzzle. These are fed into an RNN to produce a puzzle

representation, which is then combined with puzzle metadata

and passed to a regression MLP. Our solution for this challenge

differs from our previous solution in a few details, including an

updated, optimized implementation and some architectural and

modeling differences. Here, we review the main architectural

components of our system and in Section VI-A, we discuss the

application of this system to the actual competition challenge.

A. Board and Puzzle Embedders

We again use the MAIA and LEELA neural chess engine

family as our neural chess embedding backbone. These are

large, convolutional models that ingest board representations

(i.e., bitboards representing piece positions and castling meta-

data) and produce a series of policy and value scalars that

are used during min-max tree search in a chess engine. We

truncate the models by removing the policy and value heads

and take the output of the last convolutional block as the latent

vector representation of a given board state.

We point the reader to Figure 10 of [6] (in the Supplemental

section) which shows the MAIA architecture. Our latent rep-

resentation is the vector that is produced by the convolutional

block directly before the model is split into the two heads (and

we use the analogous vector for the LEELA family, which has

a similar architecture [8][9]).

However, puzzles are inherently sequential and variable

length. Thus, after extracting latent representations of each

board-state in a puzzle, we combine them into a puzzle

representation by feeding them into an RNN to produce a

single, vector representation.

B. Board Metadata

The LICHESS dataset comes with a large amount of ad-

ditional metadata other than just the puzzle information. For

example, it contains themes (e.g. mate-in-two, pin, etc.), pop-

ularity, the game it was drawn from, and more. This metadata

may be helpful for modeling purposes, so our architecture

allows for injecting representations of the metadata into the

latent representation of the puzzle. The competition dataset,

however, contains only the explicit puzzle information and the

set of precomputed MAIA2 puzzle probabilities (Section II-B),

so much of the metadata that is available during training is not

immediately helpful since we do not have access to the same

metadata during inference.

In our final architecture, we use only puzzle length and

MAIA2 puzzle probabilities as metadata features. For the

former, we produced a categorical representation of puzzle

length (e.g., puzzles of length 2, 4, . . . , 16) and used an

embedding table to extract the learned metadata representation

corresponding to the length of the given puzzle. For the

latter, which consists of 22 scalar values, we produce a vector

838 PROCEEDINGS OF THE FEDCSIS. KRAKÓW, POLAND, 2025

2495

Board
Inputs

Board
Embedders

Board
Embeddings

RNN Puzzle
Embeddings

Pooled
Embedding

Regression
MLP

Predicted
Rating

Metadata
Embedding

2.32

Board
Inputs

Board
Embedders

Board
Embeddings RNNPooled Board

Embeddings
Puzzle

Embedding
Regression

MLP

Predicted
Normalized

Rating

Metadata
Embedding

Maia2
Probabilities

Maia2
Probabilities
Embedding

Maia2 Probabilities
Embedder

Fig. 2: The model architecture used in the previous competition (top) [3] and the system in this paper (bottom).

embedding by constructing a 22-length vector and passing it

through a small MLP to produce a latent representation.

We note one feature, puzzle themes, that is present in the

LICHESS dataset but not the competition dataset. However,

the LICHESS theme tagging algorithm is open-source3 and can

be used to tag the competition dataset. At least one team in

the first iteration of this competition tagged the competition

dataset so that the feature could be used during inference [10],

however, we did not experiment with including this metadata.

The metadata representations are concatenated to the output

of the RNN to produce the final puzzle representation.

C. Rating Prediction as Regression

Once a latent vector representation of the board and its

metadata has been formed, we use it to predict the GLICKO2

rating of the puzzle—a simple regression task. We use a three

layer, dense MLP with relu activations and dropout to learn

a mapping from a puzzle representation to its scalar rating.

D. Ensembled Embeddings

Like in [3], we do not restrict ourselves to having a single

neural board embedder in a model. Instead, we allow multiple

neural board embedders to independently produce board rep-

resentations which are then combined to form an ensembled

board representation. The intuition behind this is that different

models have different strengths and weaknesses due to their

training objectives and so their latent representations of the

board may be complementary and lead to better modeling.

3https://github.com/ornicar/lichess-puzzler

Our architecture allows for arbitrarily many board embed-

ders and can mix MAIA and LEELA embeddings.

V. ARCHITECTURAL AND MODELING DIFFERENCES FROM

OUR SUBMISSION TO THE PRIOR CONTEST [3]

Despite using the same initial framework as in [3], we

implemented a number of architectural and modeling changes

(other than the inclusion of the new MAIA2 features) that

improved our system’s performance. Figure 2 shows the major

differences between the two systems.

A. RNN Implementation

In the previous iteration of this competition we manually

implemented the RNN in our model architecture. Regardless of

puzzle input length, we truncated or padded to 10 boards and

then used a hand-written RNN loop. This was slow, had many

wasted computations (in that many puzzles have less than 10

boards, but the padded boards were processed anyway), and

had some undesirable modeling properties (in theory, models

should learn to ignore the padding boards, but they can still

"wash out" the signal of non-padding boards, especially when

the puzzle is very short).

We replaced our implementation with the PYTORCH RNN

implementation, which is faster, uses less memory, and, by

using packed tensors, only processes non-padding boards. In a

benchmark, we observed a >4× runtime speed-up when using

the PYTORCH RNN compared to our hand-written RNN.

B. Board Pooling

Recall that we have several board embedders that each pro-

duce a sequence of latent board representations for each board

TYLER WOODRUFF ET AL.: THE BREAD EMOJI TEAM’S SUBMISSION TO THE 2025 FEDCSIS PREDICTING CHESS PUZZLE DIFFICULTY CHALLENGE 839

(a) Results from the previous competition, taken directly from [3].
These do not include MAIA2 features and use the previous iteration
of our architecture. Note that the bottom row is an output-ensemble
of embedding-ensemble models.

Model MSE

MAIA-1300 56.5k

MAIA-1500 57.5k

MAIA-1700 57.9k

LEELA-SMALL 65.5k

LEELA-MED 66.1k

MAIA-1300 + LEELA-SMALL 65.4k

MAIA-1300 + LEELA-MED 50.8k

MAIA-{1300, 1500, 1700} 56.0k

MAIA-{1300, 1500, 1700} +
[MAIA-1300 + LEELA-SMALL] +
[MAIA-1300 + LEELA-MED]

46.7k

(b) Results for our updated architecture, which includes MAIA2
features. Note that all of these are embedding-ensembled models.
The right column is the same model configuration but with an
additional LEELA-SMALL embedder.

Model
MSE

+ LEELA-SMALL

MAIA-1100 41.2k 41.3k

MAIA-1500 41.6k 41.3k

MAIA-1700 42.2k 42.1k

MAIA-{1100, 1500} 41.7k 38.9k

MAIA-{1100, 1700} 40.3k 38.7k

MAIA-{1500, 1700} 39.7k 39.3k

MAIA-{1100, 1500, 1700} 39.2k 38.3k

TABLE I: Results on the LICHESS dataset using different model configurations, including from our solution to the previous

competition. Each model configuration’s MSE is the average of 3 copies of the model. The best performing model is bolded.

state in the puzzle and our goal is to somehow combine all of

them into a single puzzle representation. In [3], we achieved

this by first computing a puzzle vector for each embedder

(by processing that embedder’s board representations with the

RNN) then (mean) pooling the resulting vectors.

In our updated implementation, we reverse this process. We

now use the embedders to compute each board state, then

(mean) pool all of the analogous board representations before

passing it through an RNN.

This has two main benefits. First, it allows for different

embedders’ board representations to be "mixed" earlier in the

model pipeline, which should allow the model to better in-

corporate the different representations. And second, the board

embeddings are processed in parallel in a giant batch, but

the RNN inherently involves a non-parallelization, sequential

process. Thus, by pooling the embeddings before the RNN

layer, we reduce the number of non-parallelizable operations

to just a single RNN call, which massively speeds up training

and inference runtimes.

Due to the runtime speed up and lower memory require-

ments of the combination of pre-RNN board pooling and the

PYTORCH RNN implementation, we were able to increase

our training batch sizes and observed more stable training and

faster convergence.

C. Regression Target

Recall that the primary objective of this competition is to

predict a puzzle’s GLICKO2 rating, which is a non-negative

scalar, and try to minimize MSE. In [3], we simply predicted

this scalar value directly. Since the ratings can be higher than

3000, the squared errors of predictions can be very large,

which leads to training instability due to large gradients.

In our updated version, we instead computed the mean µ

and standard deviation σ of the clean LICHESS dataset and

scaled the ratings as rn = r−µ
σ

to produce a normalized rating

(which was used in the MSE objective). During inference, we

reverse the normalization by predicting a normalized rating

r̂n and recovering the predicted rating r̂ = σ × r̂n + µ. This

resulted in more stable training and faster convergence.

VI. RESULTS

Overall, our updated model architecture and training

scheme, coupled with the addition of MAIA2 probability

metadata, led to significantly more accurate models on the

LICHESS dataset. Table I shows the results of our prior

solution (taken directly from [3]) and a subset of the model

configurations we trained for our final submissions.

We note that, across the board, the updated models have

substantially lower MSE, despite having similar parameter

counts. Most clearly, we can compare models which have the

same embedding configurations and thus the salient differences

are our new architecture and the MAIA2 metadata (regrettably,

we did not perform MAIA2 ablation tests).

For example, comparing the MAIA-1500 model from the

previous competition to the MAIA-1500 model from this

competition, we observe a ∼16k reduction in MSE (a 27.7%

reduction), despite having similar parameter counts.

Perhaps unsurprisingly, we find that our largest ensemble,

MAIA-{1100, 1500, 1700} + LEELA-SMALL, performed

the best — achieving 38.3k MSE on the LICHESS test set,

which is an 8.4k (18.0%) reduction in MSE over the best,

multi-ensembled model from our submission to the prior

competition. Ensembling all of the models that we trained for

this competition (i.e., the entire set of models from the right

two tables of Table I) reached 36.1k MSE corresponding to a

2.2k (5.7%) reduction in MSE over the best individual model

from this competition and a 10.6k (22.7%) reduction over the

multi-ensembled model from the last competition.

A. Fitting to the Competition Dataset

Like in [3], we found that models that performed well on

the clean LICHESS dataset did not necessarily perform well

on the competition dataset, as there are significant differences

between the competition distribution and the LICHESS dataset

distribution (for example, see Figure 1 of [4]).

840 PROCEEDINGS OF THE FEDCSIS. KRAKÓW, POLAND, 2025

Fig. 3: An overlay of the competition test set’s distribution (blue) as reported in the prior competition’s writeup [4], our best

model’s predictions before scaling (green), and our best, scaled result (red). Notice that they have significantly different shapes,

implying that accurately modeling one is not a guarantee of accurately modeling another.

We again used the strategy of producing as good of a model

as possible on the LICHESS dataset and then rescaling it to fit

what we expected the competition dataset to look like.

Previously, we used a simulator that estimated, given a set

of players and puzzles for which we had gold-standard rating

information, what the distribution of puzzle ratings would look

like after each puzzle had been played by a subset of N

random players. This was designed to mimic the competition

server, which matched players with puzzles randomly (i.e. not

matching players and puzzles of similar skill level) and, at

the time, did not have many plays-per-puzzle. We used these

findings to guide our search for a rescaling function that could

map our predicted ratings to what we would expect that puzzle

to be rated in the low-play competition-server regime.

We followed the same procedure in this iteration, by using

rescaling functions that attempted to reshape our distribution

of predicted competition puzzle ratings to be more centered

around what we believed the mean competition rating to be.

First, as a baseline, we noted that this year’s competi-

tion dataset was a subset of the previous year’s competition

dataset. Thus, we simply reused our winning solution from

[3] after filtering out the removed puzzles. On the preliminary

competition dataset from last year, our winning solution had

49.1k MSE. However, the same solution scored 64.1k MSE,

indicating that the current iteration of the competition dataset

is significantly different than the prior version.

We first performed binary search over the set of possible

ratings (between 0 and 3000) for the value that minimized

MSE on the preliminary competition dataset when we used

it as a constant prediction (i.e., we predicted the same value

for all puzzles). The value that minimizes this function gives

the mean of the dataset (and we can also recover the standard

deviation), approximately µ ≈ 1650.

We then used post-processing rescaling steps to try to

reshape our predicted output distribution to a distribution that

had similar properties to what we expected the competition

dataset to have and settled on rescaling functions of the form:

SCALE(r) =

{

ou + log(c1r)
c2

r > 0

ol −
log(c′

1
r)

c′
2

r ≤ 0

where r is the normalized predicted rating r̂−µ
σ

and ou, c1,

and c2 are rescaling hyperparameters that we searched over for

when our predicted rating was above the mean (and likewise

for ol, c
′

1, and c′2 when it is below the mean). We separated

these so that we could control the shape of both sides of the

output distribution, as we found it was not symmetric. The

normalized predicted rating is mapped back into the raw rating

space after rescaling.

The differences between the prior competition dataset, our

model’s (unscaled) predictions on the competition dataset, and

our best solution’s scaled predictions is shown in Figure 3.

VII. THINGS WE TRIED THAT DID NOT WORK

Like in [3], once our core pipeline was finished, we exper-

imented with several variants but found that none provided

gains over our baseline.

A. RNN → Transformer

One goal of our updated implementation was to improve

the model’s runtime performance in order to improve training

speed and performance by increasing the batch size and param-

eter count. A major bottleneck is the RNN layer (particularly

in the older, hand-written implementation that pooled boards

after the RNN), since it is inherently sequential and cannot

TYLER WOODRUFF ET AL.: THE BREAD EMOJI TEAM’S SUBMISSION TO THE 2025 FEDCSIS PREDICTING CHESS PUZZLE DIFFICULTY CHALLENGE 841

be parallelized. We experimented with replacing this layer

with a small transformer model, which has the benefit of

increased parallelization and the ability to explicitly inspect

the representations of every board in a puzzle simultaneously

and learn a weighting for their interactions. We hoped that

this would improve both the model’s runtime and quality,

but we instead found that it massively reduced the modeling

performance, even at similar parameter counts.

We experimented with several variations, including stacking

several layers of transformers and adjusting the transformer’s

internal hidden dimension (both within a fixed parameter

budget), but we were not able to match the RNN baseline.

B. MAIA2 Board Embeddings

We experimented with adding MAIA2 as a board embedder

by using the output of the board-rating attention layer as the

latent board representation. As the MAIA2 model requires

player ratings as input, but the competition dataset does not

provide this metadata (the LICHESS dataset does include it),

we experimented with several different schemes to select a

reasonable rating. For example, we performed a hyperparam-

eter search over all pairs (p1, p2) where p1, p2 were ratings

in the MAIA2 rating buckets to see if some pair worked

well. We additionally tried using the ratings as a form of

self-ensembling, by simply selecting several rating pairs as

hyperparameters and then computing the latent representation

of the board for each pair and averaging them.

None of these schemes were effective and we found that

models using MAIA2 embeddings were substantially worse

than those using MAIA. This is potentially due to the compar-

atively small output dimension of the rating-board attention

layer of MAIA2 (1024) compared to the convolutional block

layers of MAIA (4096), which means that it carries less signal

when used in the downstream task.

Since MAIA2 also uses a sequence of convolutional blocks

as a backbone before the attention layer, we could have used

the output of that as well, but we did not experiment with this.

C. Alternative Loss Functions

Our baseline model uses MSE loss as the primary loss

function in order to mimic the competition objective. However,

as noted in [3], our best performing models had relatively

high MSE (40k+ and 50k+ on the LICHESS dataset and

the preliminary competition dataset, respectively). Thus, we

hypothesized that "small" errors (for example, those with

absolute error of less than 180, which would have a squared

error of at most 34k) were less important than large errors (e.g.,

predicting 1800 when the true rating was 2500, corresponding

to a squared error of 490k).

We experimented a with piecewise loss, where the model

was penalized more harshly for larger errors. For example, we

considered loss functions with the basic form:

L(r̂, r) =

{

(r̂ − r)2, if |r̂ − r| ≤ T

(r̂ − r)4, otherwise,

where r and r̂ are the (unnormalized) true and predicted

ratings, respectively, and T is some threshold (180, in the

example above, though we used normalized rating thresholds

in the actual implementation). We also tried more stratified

loss functions (e.g. with multiple thresholds and loss scaling

functions), but did not observe any improvements.

REFERENCES

[1] J. Zyśko, M. Ślȩzak, D. Ślȩzak, and M. Świechowski,

“FedCSIS 2025 knowledgepit.ai Competition: Predicting

Chess Puzzle Difficulty Part 2 & A Step Toward

Uncertainty Contests,” in Proceedings of the 20th

Conference on Computer Science and Intelligence

Systems, ser. Annals of Computer Science and

Information Systems, M. Bolanowski, M. Ganzha,

L. Maciaszek, M. Paprzycki, and D. Ślȩzak, Eds., vol. 43.

Polish Information Processing Society, 2025. [Online].

Available: http://dx.doi.org/10.15439/2025F5937

[2] M. E. Glickman, “Example of the glicko-2 system,” http:

//www.glicko.net/glicko/glicko2.pdf, 2022.

[3] T. Woodruff, O. Filatov, and M. Cognetta, “The bread

emoji team’s submission to the ieee bigdata 2024 cup:

Predicting chess puzzle difficulty challenge,” in 2024

IEEE International Conference on Big Data (BigData),

2024, pp. 8415–8422.

[4] J. Zyśko, M. Świechowski, S. Stawicki, K. Jagieła,

A. Janusz, and D. Ślȩzak, “Ieee big data cup 2024 report:

Predicting chess puzzle difficulty at knowledgepit.ai,” in

IEEE International Conference on Big Data, Big Data

2024, Washington DC, USA, December 15-18, 2024.

IEEE, 2024.

[5] D. Klein, “Neural networks for chess,” 2022. [Online].

Available: https://arxiv.org/abs/2209.01506

[6] R. McIlroy-Young, S. Sen, J. M. Kleinberg, and

A. Anderson, “Aligning superhuman AI with human

behavior: Chess as a model system,” in KDD ’20:

The 26th ACM SIGKDD Conference on Knowledge

Discovery and Data Mining, Virtual Event, CA, USA,

August 23-27, 2020, R. Gupta, Y. Liu, J. Tang, and B. A.

Prakash, Eds. ACM, 2020, pp. 1677–1687. [Online].

Available: https://doi.org/10.1145/3394486.3403219

[7] Z. Tang, D. Jiao, R. McIlroy-Young, J. Kleinberg,

S. Sen, and A. Anderson, “Maia-2: A unified model for

human-ai alignment in chess,” 2024. [Online]. Available:

https://arxiv.org/abs/2409.20553

[8] T. L. Authors, “Leela chess zero,” https://lczero.org/.

[9] D. Silver, T. Hubert, J. Schrittwieser, I. Antonoglou,

M. Lai, A. Guez, M. Lanctot, L. Sifre, D. Kumaran,

T. Graepel, T. Lillicrap, K. Simonyan, and D. Hassabis,

“Mastering chess and shogi by self-play with a general

reinforcement learning algorithm,” 2017. [Online].

Available: https://arxiv.org/abs/1712.01815

[10] S. Björkqvist, “Estimating the puzzlingness of chess

puzzles,” in 2024 IEEE International Conference on Big

Data (BigData), 2024, pp. 8370–8376.

842 PROCEEDINGS OF THE FEDCSIS. KRAKÓW, POLAND, 2025

