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Abstract—This paper introduces the DivCrypt framework,
a step-by-step guidance for validation of cryptographic implemen-
tations. The core idea is to decompose the evaluated implementa-
tion into components across complexity layers and validate each
component through a structured five-step process. DivCrypt is
not intended to replace existing standards, but rather to serve
as a practical audit playbook. It can be easily adopted by eval-
uators in formal certification processes, researchers conducting
security audits, and developers performing internal testing. The
framework is also intended to encourage creators of novel, non-
standardized cryptographic constructs to publish and maintain
DivCrypt-aligned knowledge base. Such contributions, including
test vectors and known implementation vulnerabilities, would
support not only the application of DivCrypt, but also benefit
the broader research and development community.

I. Introduction

M
ODERN services increasingly depend on complex,

multi-component IT/OT systems, highlighting the crit-

ical need to enhance their robustness. To establish trust, the

security of these systems should be validated through external,

independent security audits, typically performed in accor-

dance with family of standards such as ISO/IEC 15408 [1]

or ISA/IEC 62443 [2]. Compliance with such norms may be

enforced by law or required in procurement for the defense sec-

tor. Given their fundamental role, cryptographic mechanisms

are integral to these certification processes, serving as essential

trust anchors. Even minor implementation flaws can signifi-

cantly undermine security of the system, emphasizing the need

for consistent and rigorous validation. Consequently, there are

standards for both developing [3], [4] and testing [5], [6] of the

cryptographic modules.

However, existing norms do not cover the validation of

non-standardized cryptographic mechanisms. Notably, widely

adopted community or industry tested cryptographic solutions

sometimes enable advanced features in modern applications,

yet the formal standardization processes can take years1 result-

ing in significant gaps in official guidance. Security auditors

evaluating novel cryptographic schemes currently rely on

limited informal guidelines [9]. As a result, a comprehensive,

high-level framework for the consistent validation of cutting-

edge cryptography implementations is currently lacking.

1For example, the NIST Post Quantum Cryptography competition selected
new standards: ML-KEM [7] and ML-DSA [8], after eight years of evaluation.

To address this gap, we introduce a methodology consisting

of five sequential steps, grounded in a core principle: de-

composing cryptographic solutions into smaller, manageable

components. As illustrated in Figure 1, each component un-

dergoes comprehensive security evaluation across four dimen-

sions: theoretical, functional, computational, and contextual.

The advantages of our framework include:

• Efficiency. Defines high-level procedural steps and

methodologies without prescribing specific implemen-

tation details. The decomposition of the evaluated im-

plementation and reuse of knowledge bases make the

framework efficient by avoiding redundant efforts;

• Inclusivity. Accessible to a diverse range of users includ-

ing developers, security auditors, and evaluators - thanks

to its simplicity and flexibility in tool selection;

• Universality. Applicable to both standardized and emerg-

ing cryptographic protocols, including homomorphic en-

cryption and non-interactive zero-knowledge proofs;

• Estimability. Once an implementation is decomposed,

the total time required for evaluation becomes easy to es-

timate.

Fig. 1. The five sequential steps of DivCrypt comprehensively address four
essential aspects of implementation security.
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The absence of standards for novel cryptographic solu-

tions poses significant challenges, especially under regulatory

scrutiny of blockchain-based applications. In this domain,

there is a growing adoption of zero-knowledge proofs, primar-

ily to enhance privacy and scalability. Our framework is in-

tended to bridge the gap between innovation and compliance,

enabling consistent evaluation of cryptographic implementa-

tions across industry.

II. DivCrypt Framework

A. Terminology

The DivCrypt framework adopts a structured perspective on

cryptographic implementations by organizing them into a hi-

erarchy of four abstraction levels, referred to as Cryptographic

Layers (CL):

CL1. cryptographic protocols;

CL2. cryptographic schemes;

CL3. cryptographic primitives;

CL4. underlying arithmetic.

We also introduce the notion of Cryptographic Layer Object

(CLO) which denotes a specific instance at any given layer.

For example, CLO can be: TLS v1.3 (CL1), Ed25519 (CL2),

SHA-512 (CL3) or prime field (CL4). As a natural extension

of CL and CLO, we define the notion of a Cryptographic

Layer Object Implementation (CLOI), representing the actual

implementation of a given CLO. The implementation under

evaluation within the DivCrypt framework is referred to as the

DivCrypt Target (DCT). DCT is subsequently decomposed

into a directed acyclic graph, known as the DCT-graph, where

the DCT itself serves as the root node with no parents.

An illustrative example of such a decomposition is presented

in Figure 2.

B. Testing procedure

The main idea behind DivCrypt is to conduct methodologi-

cal analysis of cryptographic primitives, schemes, or protocols

by applying divide-and-conquer-like approach, which materi-

alizes through the construction of the DCT-graph. The Di-

vCrypt framework incorporates a range of validation tech-

niques to comprehensively address all relevant security aspects

of cryptographic algorithm implementations. It consists of

three main parts:

1) Building the Knowledge Base: This is a continuous pro-

cess of maintaining a database comprising two core elements

described in the Section III: the Cryptographic Validation

Card (CVC) and the Cryptographic Vulnerability Reference

(CVR). This component is verification-independent and serves

as a shared foundation for evaluations.

2) Decomposing into DCT-graph: By identifying each

subcomponent according to its corresponding cryptographic

layer, the DCT is decomposed into a directed acyclic graph

with four levels of nodes, each visualizing a specific Crypto-

graphic Layer (CL). The DCT-graph can be understood as a

graph of dependencies, where edges represent implementation-

level reliance. An example DCT-graph for Ed25519 [10]

Fig. 2. The DCT-graph of the software implementation of Ed25519 digital
signature scheme.

is shown in Figure 2. It is important to note that every node

must be identified by its package name, as a DCT may contain

multiple implementations of the same primitive (e.g., three

different implementations of SHA-256). In Figure 2, package

names are enclosed in square brackets. Each package name

must be unique to ensure clarity and avoid ambiguity.

3) Validating DCT-graph: Validation is carried out through

five sequential steps described in the Section IV, applied

recursively from the leaf nodes to the root, ensuring that

each node is verified before its parent. These steps, illustrated

in Figure 1, define a strict sequence to follow, while allowing

flexibility in how precisely each step is tailored to the context

and assurance requirements of the evaluation.

III. Reusable Knowledge Base

During the decomposition of the DCT into the DCT-

graph, it is necessary to ensure that every CLO is asso-

ciated with a corresponding Cryptographic Validation Card

(CVC) and Cryptographic Vulnerability Reference (CVR). The

creation and maintenance of both artifacts are verification-

independent tasks, performed prior to the validation phase.

The purpose of this initial step is to establish and continuously

update a knowledge base containing essential information

about various CLOs. The CVC (Subsection III-A) captures

the detailed specification and structure of CLO, incorporat-

ing both official and internally constructed test vectors. The

CVR (Subsection III-B) enumerates known sources of security

issues, including academic papers, vulnerability disclosures,

and implementation-specific attack reports relevant to the

examined CLO. The concept of utilizing a reusable knowledge
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base to improve the efficiency and consistency of security

evaluations has been applied in other contexts - for example,

to streamline the complex documentation process for Common

Criteria certification [11].

A. Cryptographic Validation Card

[CVC-1] Specifications. Reference to the official CLO speci-

fication, including relevant standards and technical documen-

tation.

[CVC-2] Algorithms. A list of algorithms that collectively

define the CLO.

[CVC-3] Dependencies. A list of other CLOs from lower

cryptographic layers that are directly utilized by the CLO.

[CVC-4] Sources. Collection of useful materials, such as

reference implementations and technical analyses.

[CVC-5] Official Test Procedures. References to official test-

ing procedures developed by the authors of the cryptographic

standard or proposal. Usually, this is a set of test vectors called

Known Answer Tests (KATs).

[CVC-6] Other Test Procedures. Supplementary internal

testing strategies aimed at verifying both correctness and

robustness against failure scenarios. This can be achieved by

designing test vectors that cover edge cases and applying them

to both the reference and the evaluated implementation.

B. Cryptographic Vulnerability Reference

[CVR-1] Queries Table. A complete list of search queries

used to collect entries for CVR-2, CVR-3, and CVR-4.

[CVR-2] CVE Entries. A list of relevant Common Vulnera-

bilities and Exposures (CVE) entries associated with the CLO.

[CVR-3] Academic Papers. A curated list of academic publi-

cations addressing implementation-specific aspects or vulner-

abilities of the CLO.

[CVR-4] Media. A collection of publicly available sources,

such as blog posts, technical write-ups, or incident reports,

that refer to observed vulnerabilities or behaviors.

IV. DivCrypt’s Evaluation Steps

S1. Verify theoretical design

Task. Evaluator shall verify that the DCT is listed in widely

accepted standards.

Example. The evaluator confirmed that the Ed25519 signature

scheme is included in NIST FIPS 186-5 [12].

Remarks. DivCrypt is not intended to analyze the security of

the cryptographic protocols, schemes, or primitives, but only

the implementation correctness of standardized ones.

S2. Test functional correctness

Task. Evaluator shall execute the test procedures specified

in CVC-5 and CVC-6.

Example. The evaluator developed interfaces in Python for

both the tested and reference implementations. A test script

was run, invoking procedures described in CVC-5 and CVC-6.

The results indicated all tests completed successfully.

Remarks. Testing with predefined or dynamically generated

test vectors is the basic method of verifying implementation

correctness. The reference implementation serves as a bench-

mark to validate the behavior of the evaluated cryptographic

module.

S3. Source code verification

Task. Evaluator shall perform a comprehensive review of

source files, focusing on critical functions and their usage,

including input handling and side-channel resistance.

Example. The evaluator manually reviewed the codebase

and, using all accessible CVC/CVR artifacts, concluded that

the implementation conforms to current best practices and

is appropriate for the intended application context.

Remarks. Although time-consuming, manual source code

analysis provides deep insight and allows the evaluator to

understand the implementation at a level comparable to its

developers.

S4. Computer-aided analysis

Task. The evaluator shall apply static and/or dynamic analysis

tools to identify implementation flaws.

Example. The evaluator used Wycheproof [13] and Crypto-

fuzz [14] to check the Ed25519 implementation. Then he

applied a generic C++ static analyzer to detect unsafe coding

practices.

Remarks. Static analysis does not require execution of the

evaluated codebase and includes tools like Wycheproof [13].

Dynamic analysis is performed during execution and includes

fuzzers and tools such as Valgrind [15] to detect runtime issues

like memory leaks.

S5. Context validation

Task. The evaluator shall examine the interaction of the DCT

with its external environment to identify context-related misuse

or misconfiguration.

Example. The evaluator used the recursive grep command

to list function calls and further analyzed the invoking context.

Remarks. Contextual validation ensures that even correctly

implemented algorithms are not undermined by improper use.

This step often goes beyond the scope of the DCT itself but

is essential for assessing overall system security.

V. Case Study: ED25519 Implementation

To validate the implementation of the Ed25519 digital

signature scheme [10], we constructed a knowledge base

comprising a Cryptographic Validation Card and a Crypto-

graphic Vulnerability Reference for each component shown in

Figure 2. For brevity, Subsection V-A presents CVC of just

one component - Ed25519 digital signature scheme. In the

Subsection V-B we cover the concise record of the validation

process. All future updates to the framework and its knowledge

base will be made available in the project’s GitHub repository

at https://github.com/arturmisztal/divcrypt.
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A. Cryptographic Validation Card for Ed25519

[CVC-1] Specifications.

• NIST FIPS 186-5 [12].

• RFC 8032 [16].

• EdDSA for more curves [17].

• High-speed high-security signatures [10].

[CVC-2] Algorithms.

• ed25519-gen

– description: key generation

– input domain: -

– output domain: {0, 1}256 × {0, 1}256

• ed25519-sig

– description: signature generation

– input domain: message M of length less than 2
128 bits

– output domain: {0, 1}512

• ed25519-ver

– description: signature verification

– input domain: M×{0, 1}512 × {0, 1}256

– output domain: {invalid, valid}

[CVC-3] Dependencies (Table I).

[CVC-4] Sources.

• NIST ACVP EdDSA [18].

• Ed25519 reference implementation [19].

• CRYPTREC Review of EdDSA [20].

• EdDSA signature verification edge cases [21].

• The Provable Security of Ed25519 [22].

[CVC-5] Official Test Procedures.2

• For the given set of messages and private keys, the signa-

ture is generated with ed25519-sig and the expected

result is to be correctly verified by ed25519-ver [19].

• For the given set of messages and private keys, the

signature is generated with ed25519-sig, incremented,

and the expected result is that the forgery is detected by

ed25519-ver [19].

• Ed25519 test vectors from RFC 8032 [16].

• EdDSA test procedures located in CCN-STIC 2100 [23].

[CVC-6] Other Test Procedures.2

• EdDSA-oriented adaptation of ECDSA test procedures

located in SOG-IS Crypto Evaluation Scheme [6] and

ISO/IEC 18367 [24].

2Although a standalone guide would describe the test procedures in details
using pseudocode, this paper provides only a high-level overview due to space
constraints.

TABLE I
List of direct ED25519 dependencies.

Algorithm ed25519-gen ed25519-sig ed25519-ver

curve25519-mul ✓ ✓ ✓

curve25519-add ✗ ✗ ✓

sha2-512 ✓ ✓ ✓

fp-mul ✗ ✓ ✗

fp-add ✗ ✓ ✗

B. Validation Process Record

1) The implementation under evaluation was identified

as a portable C implementation of the Ed25519 digital

signature scheme.

2) The DCT-graph for the Ed25519 implementation was

constructed.

3) The implementation was investigated to ensure that each

Cryptographic Layer Object (CLO) was uniquely repre-

sented. As the hash function was located in a separate

file, two package families were created: [hsm.sign] and

[hsm.crypto] (see Figure 2).

4) The CVC and CVR artifacts were created for the follow-

ing components:

• prime field (fp),

• elliptic curve Curve25519 (curve25519),

• hash function SHA512 (sha2-512),

• digital signature scheme Ed25519 (ed25519).

In cases where CVC/CVR artifacts already existed, they

only needed to be updated.

5) The five DivCrypt steps were performed sequentially

for each Cryptographic Layer Object Implementation

(CLOI). Test procedures (Step S2) were conducted using

the Python programming language, while SageMath [25]

was used to generate reference test vectors for fp and

curve25519. Computer-aided analysis (Step S4) was

performed using the general-purpose static code analysis

tool CodeChecker [26].

6) As the evaluation of each CLOI was successful, the final

verdict was PASS.

VI. Comparision with Existing Standards

In the domain of systems security, standards can generally

be classified into three categories: theoretical components,

evaluation criteria, and testing guidance. When narrowing

the focus specifically to cryptographic mechanisms, one can

readily identify numerous specifications published by National

Institute of Standards and Technology [27], whether these de-

fine a family of cryptographic solutions [12] or detail a single

standardized scheme [7]. In addition, there exist global [3],

regional [4] and national [28] standards that specify how and

which schemes should be deployed. Unfortunately, when it

comes to testing guidance, such documents are almost always

tailored to specific schemes within particular application do-

mains. Existing standards that describe testing methodologies

for cryptographic implementations are summarized in Table II.

According to our case study, we provide a brief overview of the

procedures dedicated to the Ed25519 digital signature scheme

recommended by each standard.

a) ISO/IEC 24759 [3]: This document defines the spe-

cific test procedures that a laboratory must use to check a mod-

ule’s conformance to the requirements in ISO/IEC 19790 [5].

For digital signatures, its procedures ensure a module can

perform critical self-tests, such as the pair-wise consistency

test upon key generation and various KATs.
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TABLE II
A Selection of English-Language Standards for Testing

Cryptographic Implementations.

Year Title Scope

2025
ISO/IEC 24759: Test requirements for cryp-

tographic modules [5] Global

2025
CCN-STIC 2100: Cryptographic Mecha-

nisms Evaluation Methodology [23] Spain

2023
AEPD Guidelines for the validation of cryp-

tographic systems in data protection pro-

cessing [29]

Spain

2022
EN 17640: Fixed-time cybersecurity evalua-

tion methodology for ICT products (Sections

6.11 and 6.12) [30]

Europe

2020
SOG-IS Crypto Evaluation Scheme: Har-

monised Cryptographic Evaluation Proce-

dures [6]

Europe

2019
FIPS 140-3: Security Requirements for

Cryptographic Modules [31] USA

2016

ISO/IEC 18367: Information technology -

Security techniques - Cryptographic algo-

rithms and security mechanisms confor-

mance testing [24]

Global

2015
ANSSI-CC-CRY-P01: Methods For Carry-

ing Out Cryptographic Analysis And Ran-

dom Number Evaluations [32]

France

b) CCN-STIC 2100 [23]: This document from Spain’s

National Cryptologic Center is a highly detailed and pre-

scriptive methodology for evaluating specific, CCN-agreed

cryptographic mechanisms against defined certification levels.

It provides an exhaustive list of conformity tests for EdDSA

(see Table 66 in [23]), including specific Validation Tests for

signature generation and KATs for signature verification.

c) AEPD [29]: These guidelines from the Spanish Data

Protection Agency provide a framework for assessing cryp-

tographic systems, specifically to ensure they comply with

GDPR [33] and effectively protect personal data. Its focus is

on the governance and risk management surrounding the cryp-

tosystem rather than detailing technical verification procedures

for specific algorithms like EdDSA.

d) EN 17640 [30]: EN 17640 defines a modular evalua-

tion methodology for ICT products designed to be performed

within a fixed time budget, including tasks for basic and

extended analysis of cryptographic mechanisms. Its recom-

mendations cover conformance testing with KATs and source

code analysis to check for implementation errors.

e) SOG-IS [6]: These harmonized procedures detail the

evaluation tasks for cryptographic mechanisms within the

formal SOG-IS scheme, which is used for Common Criteria

evaluations in Europe. Crucially, this document defines a com-

plete suite of evaluation tasks specifically for ECDSA-like

digital signatures, including conformity testing and analysis of

implementation pitfalls related to the underlying elliptic curve

cryptography.

f) FIPS 140-3 [31]: This standard specifies the security

requirements for a cryptographic module as a whole, covering

areas from physical security to roles and services. It delegates

the specific test procedures for approved algorithms like Ed-

DSA to related standards.

g) ISO/IEC 18367 [24]: This standard provides guide-

lines for black-box and white-box conformance testing to

ensure a cryptographic implementation correctly adheres to its

specification. ISO/IEC 18367:2016 is based on conformance

testing methods employed by the Japan Cryptographic Module

Validation Program (JCMVP) and the NIST Cryptographic

Algorithm Validation Program (CAVP).

h) ANSSI-CC-CRY-P01 [32]: This French procedure

defines the formal roles and responsibilities for how approved

evaluation labs must conduct cryptographic analyses for the

national certification scheme, distinguishing between theoreti-

cal and implementation analysis. It specifies that an evaluator

should perform analysis of conformity and vulnerability in

cryptography implementation.

Many standards such as CCN-STIC 2100 [23], EN

17640 [30] or SOG-IS procedures [6] cover important top-

ics related to cryptographic scheme sub-primitives, imple-

mentation pitfalls and usage context. However, a universal,

formalized methodology that is equally applicable to both

a simple stream cipher like ChaCha20 [34] and a complex

non-interactive zero-knowledge protocol zk-STARK [35] is

currently lacking, given their significant differences in crypto-

graphic structure, complexity, and maturity. What these diverse

cryptographic constructs do share is the need to address

four fundamental aspects of implementation security, which

DivCrypt covers through five dedicated actions (see Figure 1).

VII. Conclusion and Future Work

This work introduced DivCrypt, a structured and lay-

ered framework for validating cryptographic implementations.

By decomposing cryptographic solutions into layered compo-

nents and evaluating each through structured steps, DivCrypt

ensures that both standardized and emerging cryptographic

mechanisms are subjected to thorough and context-aware

analysis. The framework balances flexibility with rigor, offer-

ing evaluators a practical methodology that is both scalable

and reusable across implementations. DivCrypt addresses

a critical gap in current evaluation practices by introducing

a reusable knowledge base (CVC and CVR), a clear abstraction

hierarchy (CLO, CLOI and DCT-graph), and a comprehensive

five-step validation process that covers theoretical design,

functional correctness, code-level assurance, computer-aided

analysis, and contextual robustness.

Future work should focus on several key directions. First,

initiating a broader discussion with the community is essential

to evaluate the advantages and limitations of the DivCrypt

framework. Second, establishing a publicly accessible database

of CVC and CVR entries would significantly support shared

validation efforts and improve reproducibility. Finally, incor-

porating formal verification methods potentially as an optional

step should be considered, as this would further strengthen the

rigor and reliability of the validation process where applicable.
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