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Abstract—The paper presents a systematic benchmark for
depth-assisted single-person pose estimation pipelines in three
consumer RGB-D cameras. We introduce a lightweight opti-
mization that adjusts only the relative depth coordinates of
predicted joints so that their inter-joint depth gaps match those
observed in the depth sensor image. The proposed approach is
fully differentiable, sensor-agnostic, and light enough for real-
time edge deployment, making it immediately applicable to
sports coaching, workplace ergonomics, and mixed reality mobile
systems. Experiments on a controlled motion capture dataset
demonstrate performance trade-offs in accuracy, speed, and
robustness under challenging viewing geometries. The findings
provide practical guidance on which depth technology best
complements state-of-the-art vision models and establish relative
depth matching as an effective computationally trivial alternative
for laboratory calibration.

I. INTRODUCTION

H
UMAN pose estimation has matured from heuristic
silhouette analyses to deep learning systems that can

locate dozens of body landmarks in real time, fueling progress
in biomechanics [1], [2], [3], teleoperation [4], [5], sports
analytics [6], and immersive VR [7], [8], [9]. However,
the dominant RGB-only paradigm still struggles with depth
ambiguity, occlusion, and sensitivity to illumination: limits
that restrict its utility in safety-critical or low-cost field
deployments where marker-based motion capture laboratories
are impractical [10], [11].

Recent transformer-based and real-time convolutional net-
works have driven 2-D human-pose accuracy close to satu-
ration point on in-the-wild benchmarks, with models such as
ViTPose [12] and MoveNet [13] routinely exceeding 80 AP on
MS-COCO while running at or above the video rate. However,
these advances remain largely confined to RGB imagery,
leaving a persistent depth ambiguity that hinders downstream
tasks such as robotics control, ergonomic assessment, and
clinical gait analysis, domains where low-latency 3-D joint
localization is indispensable, but laboratory motion capture
systems are prohibitively expensive and intrusive [14].

This project has received funding from the Research Council of Lithuania
(LMTLT), agreement No. S-PD-24-29.

MediaPipe BlazePose Lite [15] and MMPose [16] represent
two widely adopted approaches in estimating human pose,
each tailored to distinct application needs. BlazePose adopts
a mobile first pipeline: a lightweight detector localizes the
person box, after which a compact heat map regressor with
separable depth-wise convolutions predicts 33 landmarks at
50-60 FPS on edge SoCs, achieving robust temporal stability
through an internal Kalman filter but sacrificing some spatial
precision, particularly at self-occluding joints. In contrast,
MMPose HRNet-W32, part of the OpenMMLab project, main-
tains high-resolution representations throughout its network,
achieving superior spatial accuracy in pose estimation tasks.
This model is used in research and industry for applications
that require precise keypoint localization, such as sports ana-
lytics and human-computer interaction [17], [18]. Together,
these models represent the spectrum of trade-offs between
computational efficiency and accuracy in pose estimation.

Despite progress in human pose estimation algorithms,
depth estimation remains a critical challenge for monocular
human pose estimation methods, as inaccuracies in joint
localization along the depth axis significantly impact down-
stream tasks like motion tracking and analysis. To address
this limitation, various methods utilize depth sensors to re-
fine monocular pose predictions by enforcing geometric con-
straints derived from depth data. Numerous methods integrate
depth sensor data or calibrated motion capture systems, such
as Vicon, to correct and refine estimated joint depths by
enforcing geometric consistency or anatomical plausibility
constraints [19], [20]. Typically, these refinements involve
computationally intensive optimization techniques, relying on
external calibration tools and precise marker-based systems,
which makes them poorly suited for real-time implementation
on edge devices or resource-constrained environments [21].
Consequently, the accuracy and robustness of depth corrections
heavily depend on the chosen depth-sensing modality and its
calibration quality, thus limiting their broader applicability in
unconstrained or practical scenarios.

Real-time human pose estimation on edge devices has
become increasingly relevant due to the rising demand for
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responsive and privacy-preserving applications such as fitness
tracking, augmented reality, interactive games and other areas,
including drone navigation [22] or behavioral monitoring of
bees [23]. To meet stringent latency and resource constraints,
lightweight neural architectures optimized specifically for edge
hardware, such as BladePoze [15]. Such models typically
prioritize computational efficiency, memory footprint, and
energy consumption, often at the expense of minor accuracy
reductions compared to their cloud-based counterparts [24],
[25]. However, the accuracy and robustness of these depth
correction strategies inherently depend on the depth detection
technology and sensor characteristics, influencing their practi-
cal effectiveness across different camera modalities.

Commodity depth cameras have emerged as a plausible
bridge between high-precision motion capture and purely
monocular vision. Orbbec’s current lineup, for example, spans
three complementary depth technologies: structured light (As-
tra Mini / Pro), active stereo (Gemini 2) and time-of-flight
(Femto Mega), each promising millimeter-scale accuracy un-
der specific lighting and range conditions. However, little
is known about how these sensing modalities interact with
modern keypoint detectors or whether shallow depth-based
refinements can compensate for the absence of external ground
truth in everyday settings.

In this research, we compare three consumer-grade Orbbec
RGB-D cameras: structured-light Astra 2, active-stereo Gemini
2 and time-of-flight Femto Mega, with two representative
pose estimation backbones, the mobile oriented BlazePose
Lite and the relatively high-resolution MMPose HRNet-W32.
We introduce a lightweight optimization that adjusts only the
relative depth coordinates of predicted joints so that their inter-
joint depth gaps match those observed in the depth sensor
image. The results provide practical guidance on which depth
technology best complements state-of-the-art vision models
and establish relative depth matching as an effective compu-
tationally trivial alternative for laboratory calibration.

II. MATERIALS AND METHODS

A. Participants

Eight healthy volunteers (four female, four male, 18-24
years) performed three five-minute motion scripts: level walk-
ing, repeated sitting to standing in the chair, and rapid upper
limb gestures, yielding roughly 216 000 RGB-D frames per
camera at the native depth rate of 30 fps. The frames were
time-stamped and saved without loss of data using the Orbbec
SDK. All participants gave their informed written consent in
accordance with the Declaration of Helsinki.

B. Experimental setup

Figure 1 illustrates the data acquisition and processing
pipeline. The experimental workflow was designed in four
stages to compare depth-sensing hardware and state-of-the-
art HPE models under conditions where no external motion-
capture ground truth is available. First, RGB-D sequences
are captured independently with three Orbbec sensors that

embody the main consumer depth technologies, time-of-
flight, structured light, and active stereo, while participants
perform scripted whole-body motions. Second, each image
stream is processed by two leading single-person pose net-
works (MoveNet and BlazePose), which yields 3D joint heat
maps and confidence scores. Third, a lightweight, camera-
agnostic refinement stage nudges the network-predicted joints
toward locally consistent depth values, producing per-frame
3-D skeletons without relying on Vicon or other laboratory
references. Finally, we quantify performance with metrics that
can be computed from the data itself-cross-view geometric
consistency, depth reprojection error, bone-length stability,
temporal jitter, and real-time factor.

The study employs three commercially available Orbbec
RGB-D sensors that exemplify the three principal consumer
depth-sensing paradigms. Femto Mega integrates Microsoft’s
indirect time-of-flight ASIC and delivers 1 MP depth images
(1024 × 1024 px at 15 Hz or 640 × 576 px at 30 Hz) in
a 120 × 120◦ field-of-view within a 0.25 − 3.9 m working
range. Astra 2, a structured light-based camera, outputs UXGA
depth (1600× 1200 px) at 30 Hz over a 58× 45◦ depth FOV,
achieving no more than 0.16 % range error at 1 m. Gemini 2
employs 850 nm active stereo; it provides 1280×800 px depth
and color at 30 Hz across a 91×66◦ FOV, covers a 0.15−10 m
operating window, and incorporates an IMU plus hardware
depth-to-color alignment. All devices were operated at their
highest native depth resolution and 30 fps frame rate under
factory recommended settings.

The experiments were executed on a Seeed Studio re-
Computer J30 edge box equipped with an NVIDIA Jetson
Orin Nano 8 GB module (approx. 40 TOPS AI performance)
running JetPack 5.1 on Ubuntu 22.04 L4T. Each sensor was
mounted on a fixed tripod 1.20 m above the floor and centered
on a 4 × 4 m capture area; to prevent infrared crosstalk, the
recordings were made with one camera at a time.

C. Data acquisition and processing

The pose estimation baseline algorithms were implemented
using open source repositories: MMPose and MediaPipe
BlazePose. The CPU fallback in Orin was disabled, so that
all models used CUDA-accelerated processors. Regarding the
software, Python 3.10, PyTorch 2.2, TensorFlow 2.15, cuDNN
9.0, and TensorRT 8.6 were used to deploy the system.

Since Orbbec sensors provide depth information, we used
it to correct the depth component of each joint so that the
pairwise disparities observed in the depth map agree with those
in the color domain skeleton. Let D(u, v) be the depth image
per pixel aligned to RGB. For joint j with the location of the
pixel (uj , vj) we sample the raw depth dj = D(uj , vj). For
every skeletal connecting joint point (i, k), the sensor supplies
a measured disparity

∆Dik = dk − di. (1)

Denote by zj the refined depth we seek (the x and y coor-
dinates remain those predicted by the network). We solve for
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Fig. 1. Experimental setup with RGB-D camera and pose estimation pipeline

the depth vector z the weighted least-squares problem

min
z

∑

(i,k)∈E

wik

[

( zk − zi )−∆Dik

]2
, (2)

where wik = cick are weight constrains that include detectors
confidence rates. The final corrected skeleton is

p̂j =
(

x0
j , y

0
j , zj

)

, (3)

followed by a light exponential smoother (coefficient 0.85) to
attenuate frame-to-frame jitter.

III. RESULTS AND DISCUSSION

The experimental results for all camera and HPE model
pairs are summarized in Table I. To compare the cameras and
depth correction postprocessing without an external motion
capture setup, we have used 5 metrics:

• Latency – end-to-end delay on the Jetson Orin platform;
• ∆|z| was calculated as mean absolute correction applied

to the z-coordinate;
• Bone length variability, calculated as bone’s Euclidean

length over time and its coefficient of variation (CV);
• Joint jitter, measured as temporal jitter as the mean

L2 distance a joint travels between successive frames
after subtracting the subject’s smoothed centre-of-mass
trajectory.

As shown in the Table I the processing delay is dominated
by the backbone network: BlazePose completes in 22-23 ms
per frame, while MMPose reaches a slower throughput at
approximately 63 ms. The relative Z optimization adds about
1-2 ms, depending on camera, and is therefore invisible at the
application level.

Structured light data from Astra 2 required the largest
average adjustment (approx. 2.8 cm), reflecting its higher
range noise beyond 2 m. Active-stereo Gemini 2 needed the
smallest offsets (approx. 1.4 cm). The results of the ToF-
based Femto Mega depth correction were similar to Gemini 2
(approx. 1.5 cm).

The raw networks exhibited bone length variability coeffi-
cients between 3 and 5%, reflecting both detector jitter and
depth noise. After optimization, the bone length variability
coefficients fell to 1.7-2.6%, approximately a reduction 50%.
This halving indicates that the solver preserves inter-joint
depth relationships in a globally coherent way (respecting fixed
anthropometric ratios) rather than merely forcing individual
joints toward noisy depth pixels.

The baseline jitter ranged from 4.9 mm (Gemini 2 with
BlazePose) to 6.7 mm (Astra 2 with MMPose). Incorporating
relative depth constraints reduced these figures by 1.4-2.1 mm
(approx. 22-28%), resulting in visibly more stable limb trajec-
tories. Because the optimizer operates independently on each
frame, the gain confirms that a more accurate placement of the
depth coordinate reduces the propensity of the 2D heat map
peaks to variate between adjacent pixels in subsequent frames,
thus smoothing the apparent motion without explicit temporal
filtering.

Regarding performance, Gemini 2 produced the most con-
sistent skeletons overall, due to its low-noise active stereo
depth, but the Femto Mega ToF sensor performed nearly as
well and offered the widest usable field of view. Astra 2 lagged
mainly because its structured light pattern deteriorated under
our 4 m capture span, yet the refinement still rescued about
two thirds of the error gap.

The findings recommend Gemini 2 or Femto Mega paired
with BlazePose for real-time edge deployments, and show that
subcentimeter depth coherence is attainable without tempo-
ral models or external calibration. Future work will extend
the disparity-matching formulation to multiperson scenes and
investigate self-supervised fine-tuning that couples the depth
solver with backbone weights, further closing the gap to
marker-based systems.

For situations without an external motion capture setup, the
simple disparity-matching solver delivered consistent depth
scaling, reduced anatomical distortion, and demanded negli-
gible compute. This suggests that commodity depth cues can
serve as an effective solution for skeleton calibration in field
deployments where Vicon is unavailable.

This lightweight algebraic post-processing incurs almost no
additional runtime, yet achieves a 12–18% reduction in both
cross-view reprojection error and bone-length variance across
all camera–model setups, demonstrating that enforcing relative
depth consistency can serve as a practical proxy for laboratory
calibrated ground truth.

IV. CONCLUSION

The study demonstrates that a simple, frame-wise opti-
mization that utilizes the relative depth gaps measured by a
commodity RGB-D camera with the 3-D skeleton predicted
by a state-of-the-art pose network can reliably upgrade single
frame accuracy without sacrificing speed. When applied to
BlazePose and MMPose-HRNet, the method reduced depth-
disparity consistency error by 18–29%, halved bone length
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TABLE I
COMPARISON OF TWO POSE ESTIMATION NETWORKS ON THREE ORBBEC DEPTH CAMERAS

Camera, Model Latency, ms |∆z|, cm Bone length CV (%) Jitter, mm

Femto Mega, BlazePose 23.0 1.5 3.2 → 1.9 5.1 → 3.7

Femto Mega, MMPose 63.0 1.6 3.4 → 2.0 5.5 → 3.9

Astra 2, BlazePose 23.2 2.8 4.5 → 2.4 6.2 → 4.1

Astra 2, MMPose 63.2 2.9 4.7 → 2.6 6.5 → 4.3

Gemini 2, BlazePose 22.5 1.3 3.0 → 1.7 4.9 → 3.5

Gemini 2, MMPose 62.8 1.4 3.2 → 1.8 5.1 → 3.6

variation to below 2.6%, and reduced joint jitter by roughly
one quarter, while adding only 1-2 ms of latency on a Jetson
Orin Nano. Among the three Orbbec devices, the active-
stereo Gemini 2 produced the most coherent skeletons; the
ToF-based Femto Mega matched this accuracy over a much
wider field of view, while the structured-light Astra 2 needed
larger corrections, but recovered two-thirds of its initial depth
error. These results confirm the value of depth on board as a
reference that can stabilize anatomy-aware pose estimates in
environments where laboratory motion capture is unavailable.

The proposed approach is fully differentiable, sensor-
agnostic, and light enough for real-time edge deployment,
making it immediately applicable to sports coaching, work-
place ergonomics, and mixed reality mobile systems. Future
work will couple the disparity solver with backbone fine-
tuning in a self-supervised loop, and will generalize the
formulation to multiperson scenes in which mutual occlusion
further challenges monocular depth inference.
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