
A Comparative Study of LSTM Efficiency vs.
Transformer Power for Localized Time Series

Forecasting
Twisampati Sarkar

School of Computing and Informatics
University of Louisiana at Lafayette, U.S.A.

Email: twisampati.sarkar1@louisiana.edu
ORCID: 0009-0003-6872-358X

Chee-Hung Henry Chu
School of Computing and Informatics

University of Louisiana at Lafayette, U.S.A.
Email: chu@louisiana.edu

ORCID: 0000-0002-5817-8798

Abstract—Forecasting multivariate time series increasingly
uses deep learning, including models inspired by Neural Ma-
chine Translation (NMT). While Transformers excel at long-
range dependencies, their computational overhead may not suit
all problems. This study advocates the relevancy of Long Short-
Term Memory (LSTM)-based encoder-decoder networks for
scenarios with shorter input windows and prediction horizons.
We present a comprehensive empirical evaluation of four
classical LSTM-based NMT models, including variants with
attention mechanisms specifically adapted for multistep time
series forecasting. Our assessment focuses on their performance
and the impact of varying input window sizes and prediction
horizons within these computationally efficient, short-sequence
contexts. We empirically compare these LSTM-based models
against Transformer baselines operating under the same short
input window and prediction horizon constraints.

Key findings indicate that: (i) LSTM-based NMT models
achieve or exceed existing state-of-the-art results for short-
term predictions; (ii) within smaller input configurations, input
window size minimally affects forecasting performance for
tested horizons, suggesting efficiency gains are possible; (iii)
for attention-based NMT models, attention scoring critically
influences accuracy, demanding careful selection; (iv) our com-
parative analysis demonstrates that for time series problems
where immediate historical context is sufficient, LSTM-based
encoder-decoders are competitive with, or even outperform,
Transformer-based models while offering a more computation-
ally efficient solution.

Overall, our findings signify that original LSTM-based NMT
models are robust and capable tools, particularly well-suited
for short-term time series prediction tasks where local pattern
capture and computational efficiency are priorities, even in the
era of Transformers.

Index Terms—Attention Mechanism; Long Short-Term Mem-
ory; Transformers; Neural Machine Translation; Time Series
Forecasting

I. INTRODUCTION

M
ULTIVARIATE time series are embedded in our day-
to-day activities; examples are health and mobile

sensor readings, contagious disease markers, power con-
sumption, road occupancy rates and traffic flow indicators,
financial stock prices and currency exchange rates. A pri-
mary challenge in forecasting multivariate time series lies in

extracting both complex temporal patterns—such as short-
term trends and yearly seasonalities—and dynamic, nonlinear
interdependencies among the individual driving variables of
the multiple series. Different machine learning methods have
been used to predict the trends [1], [2] as well as values
[3] of the time series. Deep learning-based methods are
increasingly utilized for such multivariate, multistep time se-
ries analysis tasks, including forecasting energy demand [4],
network intrusion [5], and anomaly detection [6], [7]. In
particular, deep learning architectures leveraging Recurrent
Neural Networks (RNNs) effectively address many short-
comings of traditional models in these analytical tasks [8],
[9].

Deep learning models for time series forecasting often
draw inspiration from Neural Machine Translation (NMT)
frameworks [10], highly successful in Natural Language
Processing (NLP) and Computer Vision (CV). NMT models
translate word sequences from one language to another,
traditionally using an encoder to process the input into a
fixed-length vector and a decoder to generate the output
sequence [11]. This encoder-decoder paradigm adapts to time
series prediction by treating past observations as an “input
language” and future predictions as an “output language,”
effectively “translating” past sequences into future values.
Long Short-Term Memory (LSTM) [12] is a specialized
type of RNN particularly adept at sequential data tasks.
LSTMs can be employed in an NMT encoder-decoder ar-
chitecture: the encoder LSTM reads the input sequence
(source language) word by word, processing it into a fixed-
length context vector that encapsulates the entire input’s
meaning; subsequently, the decoder LSTM takes this context
vector as its initial hidden state and generates the output
sequence (target language) word by word, leveraging the
learned information from the encoder to produce a coherent
and accurate translation [13], [14].

Attention mechanisms [15] critically advanced NMT, al-
lowing decoders to selectively focus on relevant parts of
the input sequence (or past time series points), significantly
improving performance for translation or prediction. LSTM-
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based NMT models can incorporate an attention mechanism
to overcome the limitation of fixed-length context vectors
by allowing the decoder to dynamically “attend” to different
parts of the encoder’s output at each decoding step, giving
more weight to relevant source words when generating a
particular target word. Transformer networks, a more recent
NMT evolution, move beyond earlier RNN-based models by
relying entirely on attention mechanisms to draw relation-
ships between input and output sequence positions.

Traditional statistical approaches to time series forecasting
have often focused on predicting a single future time step.
However, contemporary applications increasingly demand
predictions over a longer horizon—not just one step ahead,
but potentially tens or even hundreds of time steps into the
future. This extended prediction horizon seems to be well
matched to NMT models’ capabilities. For example in NLP
it is not unusual to translate, say, five words in one language
to, say, ten words in a different language. When extending
this scenario to time series forecasting, it is natural to ask
how the NMT models would perform in predicting a time
sequence (“horizon”) longer than the input sequence (“input
window”).

Given the recent advancements and dominance of
Transformer-based architectures in handling long sequences,
what then is the continued relevance and precise niche for
LSTM-based models in time series forecasting, particularly
when considering resource constraints or the need to un-
derstand specific short-to-medium range forecasting behav-
iors? To precisely delineate this niche and understand their
practical applicability, we study how LSTM-based encoder-
decoder models, particularly their performance across var-
ied input and prediction window sizes and the influence
of different attention mechanisms, compare in efficiency
and effectiveness against contemporary Transformer models
when specific short-to-medium range forecasting behaviors
are critical. This raises the following questions:

1) How would these models behave when both the input
window size and the predicted horizon window size
are varied on a narrow time interval?

2) Although [16] presents a comparison of the different
attention scoring functions on NLP tasks, how do
the scoring functions affect the performance of these
models for time series analysis? Does the use of dif-
ferent attention scoring function for different attention-
based NMT models as described in [16], [17] have a
significant effect on the performance of the attention-
based models?

3) While Transformers excel at longer contexts, might
LSTMs still offer competitive or superior performance
and efficiency for shorter input windows and prediction
horizons, a common requirement in many real-world
applications?

To address these pertinent questions and delineate oppor-
tunities for enhancing time series forecasting, this research
undertakes an empirical investigation into the performance

of NMT models. Specifically, we evaluate and compare two
baseline (or ‘vanilla’) NMT models [10], [18] with two
attention-equipped NMT models [16], [17] and compared
them to three Transformer models [19], [20], [21].

Based on the findings from our experimental study on
multivariate time series forecasting models, we note the
following contributions.

1) We provide a thorough empirical evaluation of classical
LSTM-based encoder-decoder networks for multivari-
ate time series forecasting, assessing their performance
across various real-world datasets and different input
window and prediction horizon configurations.

2) We examine the effect of varying input window sizes,
demonstrating that even smaller input contexts can
yield accurate predictions for longer horizons in certain
time series. Furthermore, we confirm that the choice of
attention scoring function significantly impacts fore-
casting accuracy for attention-based LSTM models,
emphasizing the need for careful selection.

3) We empirically compare the performance of LSTM-
based encoder-decoder models against Transformer-
based architectures when both operate under compara-
ble short input window widths and prediction horizons.
Our findings suggest that for these specific local fore-
casting scenarios, LSTM-based methods can achieve
competitive or even superior performance, often with
greater computational efficiency, thereby highlighting
their continued relevance where long-range depen-
dencies are not the primary drivers or resources are
constrained.

4) This study contributes to a more nuanced under-
standing of deep learning for time series forecasting
by delineating specific contexts where LSTM-based
models remain a highly viable and efficient choice,
thus informing the selection of appropriate models
based on problem characteristics (e.g., emphasis on
local patterns, computational budget) rather than solely
relying on state-of-the-art benchmarks achieved with
extensive contexts.

The remainder of this paper is organized as follows. In
Section II, we describe traditional and deep learning methods
for time series forecasting, discussing their limitations and
advantages, and explain the relevance of NMT models,
including the recently developed Transformer methods. In
Section III, we provide details of the LSTM-based encoder-
decoder models used for time series forecasting and explain
the model architecture, attention mechanisms, and training
procedure. Section IV presents the experimental setup, in-
cluding datasets, parameter settings, evaluation metrics, and
results, along with a discussion and analysis of the findings.
Finally, we draw our conclusion and suggest directions for
future research in Section V.

II. RELATED WORK

Most time series data in real world scenarios involves a
mixture of long and short term patterns. Time series forecast-
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ing models therefore have been developed to capture long
or short term, or both, recurring patterns for accurate pre-
dictions. Classical approaches include traditional statistical
methods such as Auto-Regressive (AR) models, e.g. ARIMA
[22], Box-Jenkins [23], [24], Moving Averages, e.g. Holt and
Winters method [25], [26]. Vector Auto-regression (VAR)
family of models such as structured VAR [27] and elliptical
VAR [28] are preferred when handling high-dimensional
time series as they have the inherent property of AR mod-
els and are agnostic to the dependencies between output
variables. However, the VAR models tend to overfit when
modeling longer time intervals. Nonparametric algorithms
such as Gaussian Processes [29] model the complex dynamic
temporal relationship with a Bayesian approach, at a higher
computational cost. Although these methods are somewhat
effective, they fall short in capturing the complicated non-
linear dependencies between a wider or longer interval of
observed time series signals and between multiple high-
dimensional variables.

A. Recurrent Neural Networks and Encoder-Decoder Mod-

els

RNN-based networks [30]—based on LSTM or Gated
Recurrent Units (GRU) [12], [18]—were the first sequential
deep learners for time series analysis, where they encode
past information as a fixed-length vector. An RNN learns
a fixed-length representation from multiple sequences of
arbitrary length. Advantages of using RNN-based models are
as follows. Firstly, it has been shown [31] that RNN fits into
the Nonlinear Autoregressive Moving Average framework.
The state of the hidden layer in an RNN at any given time is
dependent on the previous time steps. Hence RNNs have the
inherent desirable properties of AutoRegression and Moving
Average-based statistical methods. Secondly, RNNs represent
time recursively, making temporal dependencies easier to
learn [30]. Third, the recursive property of the RNN model
allows it to store complex signals for a variable amount of
time. These properties make the RNN a good choice for mod-
eling or learning sequences of variable length data, where
each sequence of data points can be assumed to be dependent
on previous ones [32]. However, learning in RNNs can suffer
from the problems of vanishing and exploding gradients [33],
[34] and thus RNNs can have difficulty capturing long-term
temporal dependencies. Vanishing gradients are mitigated by
using LSTM or GRU units, which can effectively learn long-
range temporal dependencies [12], [18]. Both the LSTM and
GRU variants of RNN have been the foundations for many
state-of-the-art algorithms in speech recognition, machine
translation, sentiment analysis and other NLP tasks. LSTMs
have also played a significant role in capturing temporal
dependencies in CV tasks such as activity classification,
detection and other video tasks [35], [36].

A prominent variant of RNN architecture is the encoder-
decoder (sequence-to-sequence) model [18], [37]. The
encoder-decoder model sequentially links two RNNs—that
serve as an encoder and a decoder—through a fixed size

vector, generally the last encoder state. The concept is to
encode the input sequence as a fixed-length vector represen-
tation and use the decoder to translate the learned, encoded
fixed-length vector into a variable output sequence. LSTM
and GRU-based encoder-decoder networks are popular due
to their success in neural machine translation.

B. Attention Mechanisms

Embedding all the information in a fixed-size vector may
result in information loss. In addition, the performance of
sequence-to-sequence models deteriorates as the length of
sequences of the encoder or the decoder increases [38]. To
overcome these shortcomings, the attention mechanism is
introduced to the architecture to focus on important parts
of the input temporal sequences, by adding relevance calcu-
lation from all the encoder cells to each decoder cell [17].
This method has been proven to be successful in various
NMT tasks in which the translation of each word from one
language to another requires specific attention to particular
words in the input source sequence [39].

A prominent example of an attention-embedded archi-
tecture is one that uses a dual attention mechanism in an
LSTM-based encoder-decoder with a two-stage process. The
first attention stage automatically extracts essential driving
variables from the encoder’s previous hidden state, while
the second selects the encoder’s hidden states across all
time steps [40]. This is effectively complemented by self-
attention mechanisms integrated with convolutional layers,
which further enhance the model’s ability to focus on relevant
information [41].

Other notable architectures include TreNet, a hybrid net-
work combining LSTM and temporal Convolutional Neural
Network (CNN) modules to predict time series trends [42].
Similarly, LSTNet [8] utilizes temporal one-dimensional
convolutions for short-term patterns and LSTMs for long-
term dependencies. Interestingly, the LSTNet integrates both
components with an autoregressive module, demonstrating
a significant performance drop when this component is
removed. Their research also indicates that attention does
not consistently improve results across all datasets, whereas
skip connections have proven more effective [8], [43].

While many models focus on point predictions, DeepAR
proposes outputting a probability density function based on
parameter estimations at each time step [44]. However, this
approach relies on assumptions about the time series data’s
distribution, which may not always be realistic in real-world
scenarios.

Further advancements in recurrent architectures for time
series forecasting include a bidirectional LSTM-based
encoder-decoder that incorporates a position-based attention
mechanism to exploit periodic patterns and strong vari-
able correlations within the data [45]. For multi-quantile
probabilistic forecasts, an approach utilizing LSTM-based
encoders and decoders has been proposed, though primarily
tested on univariate datasets [46]. Additionally, a time-aware
LSTM Network addresses predictions on sequential data,
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irrespective of the time lag between data points [47]. Finally,
an architecture featuring an unidirectional LSTM encoder
and a bidirectional LSTM decoder employs an attention
mechanism over groups of time sequences, with encoder
outputs additively passed to the decoder’s input instead of
calculating attention over longer sequences [48].

C. Transformer Methods

Transformers have largely supplanted RNN models in
sequence modeling tasks due to their proficiency in learn-
ing long-range dependencies and interactions in sequential
data [49]. However, time series forecasting poses unique
challenges for Transformers. Their limitations in effectively
modeling complex temporal dependencies and their compu-
tational intensity necessitate specialized approaches for this
domain. One such approach, LogTrans [50], addresses these
issues by employing local convolutions and a log-sparse self-
attention mechanism to capture local patterns and reduce
space complexity.

Informer [51] is an extension of of the Transformer with
sparse self attention to mine the most important temporal
features in a sequence. Autoformer [19] uses a decomposi-
tion framework and auto-correlation methods from statistical
methods to implement an autoregressive attention that ex-
ploits the inherent periodicity in a time series data. Building
upon Autoformer’s decomposition architecture, FEDformer
[20] and TDformer [21] enhance time series pattern learning
by decoupling trend and seasonality modeling. Both methods
leverage Fourier attention in the frequency domain, achieving
linear time complexity. However, these approaches do not
fully exploit multi-dimensional dependencies, which could
further improve long-term forecasting accuracy. To address
this, Crossformer [52] utilizes cross-dimensional information
for multivariate modeling.

D. Long vs. Short Input Windows and Prediction Horizons

Having reviewed various LSTM and Transformer models
in the literature, we turn our attention to a direct comparison
of their strengths and weaknesses in sequence modeling.
The Transformer-based methods use mainly self-attention
and multiple heads to model long-range dependencies with
large input windows (e.g., 50-100+). This contrasts with
the present study’s exploration of LSTM-based encoder-
decoder models using shorter input windows (up to 12).
Our focus is on their efficacy for localized forecasts: local
patterns and shorter prediction horizons where computational
efficiency is also a key consideration, reflecting differing
typical application contexts.

Why should we pay attention to methods for short-term
predictions? Beyond lower computational needs, modeling
local patterns is often more critical than global trends for
practical reasons. First, many real-world applications, such
as hourly traffic management or minute-by-minute finan-
cial trading, prioritize accurate immediate forecasts where
local patterns are most influential, unlike year-long trend
predictions. Secondly, for non-stationary time series whose

statistical properties change, global trends can mislead as
past behavior may not represent the future; local pattern
modeling allows adaptation to the most recent data dynamics.
Furthermore, local patterns are crucial for capturing sudden
changes, shocks, or anomalies that models focused on global,
long-term trends might fail to react to quickly.

E. Evaluation Studies

Often algorithms are evaluated on different datasets or
different metrics, or both. Some cases also see the use of
these forecasting models on synthetic datasets. Although all
forecasting models, citing the shortcomings of each of their
predecessors, improve the state-of-the-art results, there is a
lack of evaluation on standard real world datasets. The closest
relatable work to that of ours is that of [9], who (a) con-
duct a detailed analysis of various multi-variate time series
datasets and their patterns which account for explaining each
of the model’s performance on that data, (b) presented a
prediction analysis over a longer term whilst deploying direct
and recursive strategies, and (c) studied the application of
Spatio-Temporal Graph Convolutional Networks. Although
an evaluative study of non-gated RNNs, LSTMs and GRUs
on short term predictions was presented in [53], it did not
cover the encoder-decoder or the effect of various attention
scoring functions. Our work compares the performances of
the existing encoder-decoder models based on LSTM units
and the effect of attention scores on short term predictions
based on the predictions as a function of varying input sizes.
Furthermore, we compare them to Transformer methods to
put the results in the context of contemporary research.

III. METHODOLOGY

A. Problem Formulation

Consider a series of observed time series vector samples
YT = {y1, y2, · · · , yT } where yt ∈ R

n, n is the number of
time series channels. Our objective is to predict a series of H
future samples ỹT+h, h ∈ {1, · · · , H}. When the underlying
architecture is an encoder-decoder with an RNN such as an
LSTM in the decoder, the output is produced in the style of
an RNN, viz. one sample at a time. It thus takes H time
steps to predict all H samples. We refer to T of the input
set YT as the window width and H of the output set as the
horizon.

B. LSTM-Based Encoder

We adopt a sequence-to-sequence learning pipeline to
encode T historical input variables for a given time window
and decode the future h predictions, but with minor modifi-
cations. The encoder is an RNN based on LSTM or GRU that
encodes the input sequences into a fixed dimensional feature
vector [18], [37], [10]. For time series prediction, given the
input sequence YT = {y1, y2, · · · , yT } with yt ∈ R

n, where
n is the number of driving variables, the encoder can be
applied to learn a mapping from yt to ht ht = f1(ht−1; yt)
where ht ∈ R

m is the hidden state of the encoder at time
t, m is the size of the hidden state, and f1 is a non-linear
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activation function that could be an LSTM or a GRU. In
this paper, we use an LSTM unit as f1 to capture temporal
dependencies. Each LSTM unit has a memory cell with the
state st at time t. Access to the memory cell is controlled by
three sigmoid gates: forget gate ft, input gate it and output
gate ot. The update of an LSTM unit can be summarized as
follows:

ft = σ(Wf [ht−1; yt] + bf ) (1)

it = σ(Wi[ht−1; yt] + bi) (2)

ot = σ(Wo[ht−1; yt] + bo) (3)

st = ft ⊙ st−1 + it ⊙ tanh(Ws[ht−1; yt] + bs) (4)

ht = ot ⊙ tanh(st) (5)

where [ht−1; yt] ∈ R
m+n is a concatenation of the previous

hidden state ht−1 and the current input yt. The parameters
Wf , Wi, Wo, Ws ∈ R

m×(m+n), and bf , bi, bo, bs ∈ R
m are

to be learned. The operators σ and ⊙ are the logistic sigmoid
function and the element-wise multiplication, respectively.

C. LSTM-Based Decoder without Attention

To predict the output ŷT , we use another LSTM-based
RNN to decode the fixed vector Rm produced by the encoder
LSTM:

ŷT = F (yt+1, yt+2, · · · , yT+h−1, XT ) (6)

where ŷT is the total number of sequences to be predicted,
given the input sequence Xt. We experiment on two such
encoder-decoder models without attention mechanisms, viz.
that of Cho et al. [18] and Sutskever et al. [10]. The only
difference between the two models is that in [18] an extra
context vector is augmented to inputs at each of the time
steps in the decoder. The context vector being the last hidden
state of the encoder. The problem with a vanilla decoder
is that its performance can degrade over a longer range of
sequences [38].

D. LSTM-Based Decoder with Temporal Attention

The performance of the encoder-decoder network can de-
teriorate rapidly as the length of the input sequence increases
[38]. Therefore, following the encoder with input attention,
a temporal attention mechanism is used in the decoder to
adaptively select relevant encoder hidden states across all
time steps. The attention weight of each encoder hidden
state at time t is calculated based upon the previous decoder
hidden state ds−1 ∈ R

m and each of the hidden states
of the encoder LSTM h′

t where T is the number of time
steps in the input window. The term [ds−1;h

′

t] ∈ R
2m is a

concatenation of the previous hidden state of the decoder and
hidden states of the LSTM encoder units, whereas vd ∈ R

m,

Wd ∈ R
m×2m and Ud ∈ R

m×m are parameters to learn. The
attention schemes per [17], [16] are as follows:

score(ds−1, h
′
t)=















vTa σ(Wdds−1+Udh
′

t) Bahdanau (a)
vTa σ(Wd[ds−1;h

′
t]) Concat (b)

dTs−1Wdh
′
t General (c)

dTs−1h
′
t Dot (d)

(7)
The slight changes in eqs. 7a,b are the replacement of the
tanh non-linearity by the sigmoid σ, to keep the range of
the intermediary logits in the range [0, 1].

The attention weight βi
t represents the weight of the ith

encoder hidden state for the prediction:

βs
t =

exp(score(ds−1, h
′
t))

∑Tx

k=1 exp(score(ds−1, ht))
(8)

Since each encoder hidden state hi is mapped to a temporal
component of the input, the attention mechanism computes
the context vector ct as a weighted sum of all the encoder
hidden states {h′

1, h
′

2, · · · , h
′

T } as

cs =
T
∑

t=1

βs
t ht. (9)

The context vector ct is distinctly calculated at each time
step as per Equation 9.

Once we get the weighted sum of the context vec-
tors, we can combine them with the given target series
{y1, y2, · · · , yT−1}:

ỹt−1 = w̃T [yt−1; cs−1] + b̄ (10)

where [yt−1; ct−1] ∈ R
2m is a concatenation of the decoder

input yt−1 and the computed context vector ct−1. Parameters
w̃ ∈ R

2m and b̃ ∈ R map the concatenation to the size of
the decoder input. The newly computed ỹt−1 can be used for
the update of the decoder hidden state at time t as :

ds = f2(ds−1; ỹt−1) (11)

We choose the nonlinear function f2 as an LSTM unit ds
that can be updated per eqs. 1 to 5.

E. Training Procedure

Our optimization strategy is similar to traditional direct
time series forecasting model. Assume the input time series
is Yt = {y1, y2, · · · , yt}, we define a tunable window
size q, and reformulate the input at time step t as Xt

= {yt−q+1, yt−q+2, · · · , yt}. The problem then becomes a
regression task with a set of feature-value pairs { Xt , Yt+h

} and is optimized with the Adam optimizer (β1 = 0.9, β2 =
0.999, ϵ = e−8) [54], a variant of Stochastic Gradient Decent
(SGD), with learning rate of e−5 to train the model. The
minibatch size is set to 32 and number of epochs at 1,000,
for training every model across all datasets. The squared error
is the default loss function for many forecasting tasks, the
corresponding optimization objective is formulated as:

min
Θ

∑

y∈ΩTrain

∥Yt − Ŷt−h∥
2
F (12)
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where Θ denotes the parameter set of our model, ΩTrain is
the set of time stamps used for training, ∥·∥F is the Frobenius
norm, and h is the horizon. Similar to [10], [18], [17], we
train the encoder and decoder models jointly to minimize the
objective function.

IV. EVALUATION

A. Datasets

The multivariate time series datasets used in our study
are as follows: Solar1, Traffic2, Electricity3, Beijing PM2.54,
and Exchange5. The pattern analysis on these datasets helps
to understand the performance of time series forecasting
models. Temporal regularity has been quantified using the
Sample Entropy [9]. Following the methods used in [8]
each of the datasets is split into training set (first 60%),
validation set (next 20%) and test set (last 20%). All the
training, validation and test data were normalized by Min-
Max Scaling.

B. Parameter Settings

There are two parameters we have experimented on: the
number of time steps for the input window T and the number
of time steps to be predicted in the horizon h. Different from
refs. [8], [9], [40], we report the results of the experiments
where we set the value of T∈{3, 6, 9, 12} and h∈{3, 6, 9, 12}.
We use a single layer of LSTM units in both the encoder and
decoder LSTMs without any dropout. We have experimented
with the number of hidden units in the encoder and the
decoder in {128, 256, 512}. All weights have been initialized
from −

√

1/k to
√

1/k, where k is the number of hidden
units. We report average results over two runs of each model.

C. Metrics

To keep the evaluation metric standard to the benchmark
results reported in [8], [9] we use the metrics in those papers,
viz. the Root Relative Squared Error (RSE) and the Empirical
Correlation Coefficient (CORR). A model where the RSE
exceeds 1 indicates a bad prediction. Lower RSE values
implies better predictions, while a higher CORR value is
better.

D. Methods for Comparison

The two methods without attention used for comparison
in this paper listed in the first two rows of Table I, are
labeled as Cho et al. [18], and Sutskever et al. [10]. The two
models with attention are Bahdanau et al. [17], and Luong et
al. [16]. Of the two with attention, we experimented different
attention schemes with corresponding scoring equations,
referred to as “Bahdanau et al. (*)” and “Luong et al.(*)”
where * refers to the attention scheme in Table I.

1https://www.nrel.gov/grid/solar-power-data.html
2https://pems.dot.ca.gov/
3https://archive.ics.uci.edu/ml/datasets/ElectricityLoadDiagrams20112014
4https://archive.ics.uci.edu/ml/datasets/Beijing+PM2.5+Data
5https://github.com/laiguokun/multivariate-time-series-

data/tree/master/exchange_rate

(a) Solar (b) Electricity (c) Traffic

Fig. 1: RSE plots (y-axis) at different prediction horizon (x-

axis) for different input window widths (by color) evaluated
using three datasets (by column) of the seven forecasters:
Bahdanau et al. using attention schemes “Concat,” “General,”
“Dot”; Cho et al.; Luong et al. using attention schemes
“Concat,” “General,” “Dot.” (top to bottom).

We compare the results to that of LSTNet [8], selected as
our benchmark set. LSTNet serves as a strong, contemporary,
and relevant benchmark because it was a leading model in the
field at the time, designed to tackle the same core problems,
and evaluated using consistent methodologies and datasets.

TABLE I: The methods and the attention scoring functions
used in our experiments.

Method Name Attention Scoring Function Eq.
Scheme

Cho et al. N/A N/A N/A
Sutskever et al. N/A N/A N/A
Bahdanau et al. Bahdanau vTa σ(Wdds−1 + Udh

′

t
) 7(a)

Bahdanau et al. Concat vTa σ(Wd[ds−1;h′
t]) 7(b)

Bahdanau et al. General dT
s−1

Wdh
′
t 7(c)

Bahdanau et al. Dot dT
s−1

h′
t 7(d)

Luong et al. Concat vTa σ(Wd[ds−1;h′
t]) 7(b)

Luong et al. General dT
s−1

Wdh
′
t 7(c)

Luong et al. Dot dT
s−1

h′
t 7(d)

E. Discussion and Analysis of Experimental Results

We provide the RSE and CORR values of nine LSTM
methods on five datasets in tables II and III. Due to space
consideration, we show the results for window size set to
3, 6, 9, and 12 and for horizon of 3, 6, and 12 (skipping
9) for each method. From these tables, we observe that, on
the three datasets with high periodicity (viz. Solar, Traffic,
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TABLE II: Evaluation summary of all LSTM models (RSE and CORR) trained on MSE (Part I). Results in bold face
indicate that the result of that column is better than the benchmark result [8] of a particular metric.

Dataset Solar Traffic Electricity Exchange-Rate Beijing PM 2.5
Horizon Horizon Horizon Horizon Horizon

Metrics 3 6 12 3 6 12 3 6 12 3 6 12 3 6 12
Method: Cho et al. Next rows correspond to window size of 3, 6, 9, 12
3 RSE 0.199 0.203 0.242 0.486 0.505 0.51 0.529 0.524 0.537 1.222 1.154 1.055 0.101 0.077 0.08

CORR 0.981 0.981 0.973 0.879 0.867 0.862 0.838 0.841 0.826 0.604 0.639 0.693 0.944 0.959 0.958
6 RSE 0.201 0.201 0.227 0.485 0.495 0.499 0.558 0.545 0.532 1.119 1.035 0.916 0.087 0.085 0.091

CORR 0.982 0.981 0.977 0.877 0.870 0.868 0.815 0.821 0.834 0.719 0.752 0.464 0.958 0.956 0.957
9 RSE 0.197 0.203 0.207 0.486 0.495 0.492 0.596 0.523 0.52 1.035 0.912 0.813 0.088 0.084 0.1

CORR 0.982 0.981 0.98 0.873 0.871 0.873 0.808 0.837 0.829 0.761 0.746 0.788 0.956 0.951 0.955
12 RSE 0.205 0.206 0.217 0.487 0.487 0.503 0.538 0.555 0.513 0.948 0.865 1.158 0.089 0.104 0.119

CORR 0.981 0.980 0.978 0.872 0.874 0.866 0.831 0.825 0.827 0.739 0.747 0.55 0.955 0.956 0.951

Method: Sutskever et al.
3 RSE 0.208 0.208 0.212 0.467 0.479 0.483 0.569 0.578 0.539 0.822 1.571 1.552 0.085 0.086 0.736

CORR 0.980 0.979 0.979 0.882 0.878 0.879 0.824 0.825 0.839 0.569 0.420 0.196 0.959 0.957 0.955
6 RSE 0.214 0.211 0.209 0.468 0.481 0.487 0.567 0.597 0.54 1.410 1.842 1.827 0.777 0.796 0.745

CORR 0.978 0.979 0.98 0.880 0.877 0.878 0.823 0.817 0.841 0.368 -0.032 -0.066 0.958 0.953 0.953
9 RSE 0.218 0.220 0.21 0.468 0.475 0.489 0.607 0.546 0.577 1.843 1.840 1.813 0.768 0.794 0.736

CORR 0.978 0.978 0.979 0.880 0.879 0.877 0.802 0.834 0.819 -0.034 -0.039 -0.058 0.955 0.954 0.957
12 RSE 0.230 0.219 0.214 0.486 0.483 0.496 0.514 0.561 0.574 1.517 1.807 1.835 0.784 0.791 0.789

CORR 0.974 0.977 0.979 0.874 0.878 0.878 0.836 0.831 0.822 0.005 -0.017 -0.07 0.954 0.956 0.953

Method: Bahdanau et al. (Bahdanau)

3 RSE 0.182 0.193 0.202 0.453 0.482 0.494 0.435 0.461 0.499 0.587 0.526 0.507 0.072 0.074 0.078
CORR 0.985 0.983 0.981 0.886 0.877 0.869 0.866 0.856 0.852 0.872 0.862 0.785 0.959 0.960 0.957

6 RSE 0.184 0.192 0.212 0.474 0.525 0.515 0.497 0.468 0.555 0.598 0.492 0.543 0.089 0.082 0.083
CORR 0.985 0.983 0.979 0.875 0.847 0.857 0.834 0.860 0.842 0.905 0.906 0.833 0.960 0.957 0.957

9 RSE 0.187 0.192 0.21 0.484 0.493 0.516 0.515 0.510 0.541 0.555 0.339 0.831 0.093 0.089 0.092
CORR 0.984 0.983 0.981 0.870 0.869 0.862 0.836 0.825 0.836 0.899 0.936 0.83 0.958 0.956 0.959

12 RSE 0.188 0.202 0.203 0.484 0.487 0.51 0.579 0.472 0.553 0.597 0.384 0.467 0.091 0.091 0.1
CORR 0.984 0.981 0.981 0.874 0.871 0.861 0.813 0.850 0.837 0.913 0.903 0.88 0.960 0.958 0.959

Method: Bahdanau et al. (Concat)

3 RSE 0.179 0.190 0.204 0.451 0.486 0.521 0.433 0.451 0.521 0.690 0.435 0.495 0.075 0.074 0.082
CORR 0.985 0.983 0.981 0.886 0.874 0.854 0.873 0.868 0.845 0.868 0.857 0.86 0.959 0.960 0.959

6 RSE 0.185 0.189 0.207 0.471 0.526 0.524 0.481 0.456 0.56 0.550 0.437 0.654 0.085 0.080 0.097
CORR 0.984 0.983 0.98 0.877 0.850 0.857 0.850 0.856 0.817 0.934 0.859 0.776 0.958 0.958 0.954

9 RSE 0.188 0.189 0.349 0.480 0.492 0.501 0.583 0.480 0.593 0.668 0.424 0.539 0.090 0.085 0.102
CORR 0.984 0.983 0.973 0.873 0.868 0.867 0.802 0.850 0.804 0.903 0.903 0.84 0.958 0.958 0.957

12 RSE 0.188 0.193 0.205 0.498 0.483 0.51 0.575 0.666 0.543 0.568 0.387 0.449 0.099 0.091 0.109
CORR 0.984 0.983 0.98 0.867 0.873 0.864 0.812 0.794 0.827 0.856 0.737 0.824 0.954 0.958 0.957

Method: Bahdanau et al. (General)

3 RSE 0.177 0.187 0.195 0.460 0.469 0.521 0.538 0.460 0.527 0.630 0.919 0.594 0.078 0.073 0.075
CORR 0.985 0.984 0.983 0.883 0.880 0.857 0.834 0.862 0.838 0.896 0.703 0.794 0.959 0.960 0.957

6 RSE 0.215 0.189 0.2 0.451 0.490 0.515 0.494 0.548 0.556 0.587 0.409 0.477 0.087 0.087 0.113
CORR 0.983 0.984 0.982 0.887 0.870 0.857 0.837 0.824 0.815 0.904 0.873 0.858 0.959 0.959 0.949

9 RSE 0.184 0.183 0.204 0.482 0.484 0.517 0.520 0.549 0.576 0.502 0.442 0.631 0.096 0.086 0.094
CORR 0.985 0.984 0.98 0.872 0.870 0.862 0.843 0.822 0.807 0.903 0.906 0.852 0.959 0.960 0.958

12 RSE 0.189 0.212 0.213 0.482 0.505 0.504 0.576 0.523 0.588 0.575 0.647 0.514 0.098 0.103 0.094
CORR 0.984 0.980 0.979 0.872 0.867 0.862 0.818 0.836 0.808 0.893 0.780 0.786 0.960 0.954 0.957

Method: Bahdanau et al. (Dot)

3 RSE 0.200 0.212 0.216 0.501 0.499 0.51 0.547 0.525 0.58 1.298 0.656 1.119 0.080 0.076 0.088
CORR 0.981 0.981 0.979 0.874 0.870 0.861 0.829 0.840 0.814 0.496 0.736 0.444 0.956 0.958 0.957

6 RSE 0.195 0.217 0.215 0.495 0.496 0.522 0.548 0.585 0.552 0.809 0.970 0.933 0.085 0.085 0.087
CORR 0.982 0.978 0.979 0.876 0.869 0.859 0.826 0.806 0.828 0.812 0.582 0.616 0.958 0.955 0.953

9 RSE 0.201 0.212 0.276 0.489 0.502 0.517 0.533 0.541 0.551 0.594 0.809 0.698 0.095 0.087 0.117
CORR 0.982 0.981 0.97 0.875 0.868 0.859 0.829 0.833 0.836 0.745 0.732 0.5 0.953 0.960 0.958

12 RSE 0.201 0.200 0.217 0.498 0.535 0.518 0.634 0.570 0.579 0.691 0.682 0.876 0.094 0.105 0.097
CORR 0.981 0.981 0.979 0.873 0.849 0.859 0.803 0.806 0.818 0.855 0.839 0.776 0.954 0.957 0.954
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TABLE III: Evaluation summary of all models (RSE and CORR) trained on MSE (Part II). Results in bold face indicate
that the result of that column is better than the benchmark result [8] of a particular metric

Dataset Solar Traffic Electricity Exchange-Rate Beijing PM 2.5
Horizon Horizon Horizon Horizon Horizon

Metrics 3 6 12 3 6 12 3 6 12 3 6 12 3 6 12
Method: Luong et al. (Concat)

3 RSE 0.194 0.206 0.208 0.460 0.471 0.485 0.533 0.605 0.568 1.647 0.876 1.674 0.085 0.080 0.081
CORR 0.982 0.980 0.979 0.884 0.879 0.876 0.821 0.807 0.821 0.743 0.501 -0.031 0.956 0.960 0.956

6 RSE 0.201 0.212 0.217 0.463 0.475 0.477 0.509 0.630 0.592 1.117 1.053 1.225 0.090 0.095 0.087
CORR 0.981 0.979 0.977 0.884 0.878 0.879 0.830 0.812 0.815 0.696 0.630 0.617 0.956 0.959 0.959

9 RSE 0.207 0.241 0.223 0.459 0.468 0.482 0.588 0.539 0.658 0.893 0.898 0.971 0.097 0.095 0.091
CORR 0.980 0.976 0.977 0.882 0.880 0.876 0.814 0.832 0.786 0.697 0.671 0.684 0.961 0.959 0.954

12 RSE 0.212 0.215 0.223 0.466 0.467 0.48 0.457 0.648 0.565 0.683 1.437 0.82 0.100 0.108 0.226
CORR 0.979 0.978 0.977 0.881 0.882 0.877 0.852 0.800 0.818 0.724 -0.174 0.692 0.956 0.956 0.786

Method: Luong et al. (General)

3 RSE 0.197 0.204 0.212 0.460 0.479 0.487 0.564 0.569 0.518 0.815 0.823 1.04 0.089 0.084 0.088
CORR 0.982 0.980 0.978 0.884 0.880 0.876 0.825 0.812 0.842 0.862 0.609 0.637 0.959 0.959 0.958

6 RSE 0.200 0.222 0.224 0.459 0.470 0.477 0.525 0.575 0.549 0.883 0.909 1.044 0.092 0.111 0.083
CORR 0.981 0.978 0.977 0.884 0.879 0.878 0.831 0.831 0.829 0.764 0.623 0.715 0.955 0.955 0.957

9 RSE 0.204 0.216 0.226 0.473 0.468 0.477 0.508 0.555 0.534 0.982 1.191 1.604 0.101 0.093 0.104
CORR 0.980 0.978 0.976 0.878 0.880 0.878 0.843 0.818 0.84 0.741 0.652 0.649 0.945 0.952 0.953

12 RSE 0.210 0.219 0.222 0.465 0.465 0.484 0.462 0.517 0.606 1.123 0.927 1.625 0.123 0.106 0.4
CORR 0.979 0.978 0.977 0.881 0.882 0.875 0.856 0.842 0.818 0.695 0.604 -0.11 0.952 0.956 0.767

Method: Luong et al. (Dot)

3 RSE 0.195 0.204 0.224 0.463 0.469 0.471 0.466 0.612 0.616 0.853 0.805 0.65 0.084 0.111 0.784
CORR 0.982 0.980 0.977 0.883 0.881 0.88 0.860 0.809 0.807 0.575 0.686 0.763 0.958 0.950 0.016

6 RSE 0.202 0.215 0.213 0.466 0.468 0.473 0.562 0.505 0.565 0.604 0.861 0.855 0.091 0.090 0.111
CORR 0.981 0.978 0.979 0.880 0.880 0.882 0.832 0.848 0.827 0.782 0.667 0.651 0.954 0.958 0.953

9 RSE 0.203 0.219 0.215 0.456 0.471 0.47 0.465 0.541 0.563 0.934 0.854 1.018 0.099 0.106 0.782
CORR 0.981 0.977 0.978 0.886 0.881 0.881 0.858 0.830 0.82 0.596 0.689 0.482 0.958 0.954 0.097

12 RSE 0.213 0.221 0.223 0.463 0.467 0.483 0.473 0.575 0.567 1.159 0.984 0.869 0.109 0.117 0.166
CORR 0.979 0.978 0.978 0.882 0.881 0.879 0.852 0.824 0.824 0.765 0.566 0.749 0.955 0.958 0.809

Beijing PM2.5 datasets), the NMT models used for fore-
casting outperform the benchmark results as reported in [8].
Experimenting with the hidden units in the encoder and
decoder LSTMs did not yield a significant variation in MSE
results. The number of hidden units of both the encoder
and decoder LSTMs is fixed at 512, to give the models an
increased learning capacity.

In Fig. 1, we note that the RSE values across the horizons
show rising, though insignificantly so, trends. The Electricity
data set results show the most fluctuations. Interestingly,
the method without an attention mechanism (Cho et al.;
fourth plots from the top) show no substantial deterioration
with longer horizon, comparable to Luong et al.’s methods.
Comparing Bahdanau et al. and Luong et al., across the data
sets and across the attention scoring function, Luong et al.
is more stable relative to horizon and window widths.

We note that Bahdanau’s model, [17] coupled with the
attention scoring scheme (b) as shown in tables II and III
performs the best across all the datasets among all models.
The Sutskever et al. model [10] has the worst performance
across all the datasets. We hypothesize this happens mainly
because in this model the decoder is not augmented with
any context vector as opposed to the other NMT models.
Although Cho’s model [18] lacks an attention mechanism,
the decoder is augmented with the hidden state of the
encoder’s last time step. This suggests that augmenting the
decoder with a context is essential for better performance in
NMT models.

We observe that given a short input to NMT models for
predicting a longer horizon, for example, given an input of 3
time steps we need to predict 12 time steps, yields the best
results. To date, there exists no work which has experimented
with LSTM models for forecasting a longer horizon given
a shorter window. Majority of forecasting models have a
longer input sequence of {24, 36, 64, 128} time steps, to
predict a future horizon of {12, 24, 48} time steps. Our
experiments show that NMT models can not only improve
on the benchmark method [8] but also handle these cases
with decent results in other datasets with no periodic trends.
Another question pointed out in Section I is how each model
behaves if a different attention scoring function is used? It
was mentioned earlier that Bahdanau’s model performs best
with the “concat (b)” function in Eq. 7. Hence, the choice
of attention function is a factor in improving the prediction
accuracy. All these observations make us believe that fine
tuning of hyper-parameters, employing regularization tech-
niques of the NMT models could lead to improved results
across the datasets.

F. Comparison with Transformer Models

We selected three Transformer models, viz. Autoformer
[19], FEDformer [20], and TDformer [21], for compari-
son. They are representative of the decomposition-centric
transformer models. They were configured and evaluated
specifically to operate within the same short input window
widths and prediction horizons as the LSTM models. We
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emphasize that this is not testing these Transformers models
at their optimal, long-sequence capacity but rather assessing
their performance and efficiency in the localized forecasting
context where LSTMs are hypothesized to be strong. Of the
models being evaluated, FEDformer has two variants in the
Fourier and wavelet domains. TDformer can operate in the
time, Fourier, and wavelet domains. The results of evaluating
these 6 transformer models using the Traffic and Electricity
datasets are shown in Table IV. The Transformer studies as
reported [19], [20], [21] have a different preprocessing pro-
tocol compared to the earlier LSTM methods. In particular,
they do not use min-max scaling. Instead, all data—even
before being split into training, validation, and test sets—are
normalized by the overall maximum value of the series. To
ensure a fair comparison, we repeated the experiments for the
LSTM with attention methods using the Transformer studies
pre-processing pipeline. The results are shown in Table V.

Comparing tables IV and V, we can see that TDformer
has the worst performance among all evaluated forecasters.
The LSTM methods are competitive (Electricity data set)
or slightly better (Traffic) compared to the Autoformer
and FEDformer methods. The Bahdanau methods (all four
scoring functions) performed the best among the evaluated
forecasters.

G. Computational Cost

The two models with attention mechanisms [17], [16]
generally require more computational cost than the two with-
out attention mechanisms. Attention mechanisms introduce
additional computations to calculate attention weights and
apply them to the encoder hidden states. These additional
steps increase the overall complexity of the model compared
to those without attention, which primarily consist of LSTM
operations. The computational cost of the attention mecha-
nism scales with the sequence length, as the model needs
to compute attention weights for each decoder step over all
encoder hidden states.

The computational cost of simpler attention scoring func-
tions tend to be less computationally expensive. The “dot
(d)” product attention in Eq.7 is generally the simplest
and fastest, as it only involves matrix multiplications. The
“Concat (b),” “General (c),” and “Bahdanau (a)” attention in
Eq. 8 involve additional linear transformations (Wd, Ud) and
may be slightly more expensive. Other attention mechanisms
that involve more complex calculations will increase the
computational cost. While there might be some differences
in computational cost between different attention scoring
functions, the overall impact on the model’s computational
cost is likely to be less significant than other factors, such
as the LSTM layer sizes or the input sequence length.

When comparing the computational cost of LSTM-based
models with attention mechanisms to a Transformer-based
model, even with the same input window width and output
prediction horizon, there are some key differences. The first
is in the attention complexity. LSTM attention typically
calculates attention between the decoder’s current state and

TABLE IV: Evaluation summary of Transformer Models
(RSE and CORR) using Transformer studies preprocessing
pipeline and trained on MSE and trained on MSE.

Dataset Traffic Electricity
Horizon Horizon

Metrics 3 6 12 3 6 12
Method: Autoformer
3 RSE 0.706 0.807 0.89 0.419 0.535 0.761

CORR 0.793 0.722 0.654 0.889 0.827 0.684
6 RSE 0.732 0.775 0.83 0.496 0.543 0.595

CORR 0.771 0.742 0.694 0.849 0.822 0.791
9 RSE 0.685 0.742 0.78 0.414 0.431 0.516

CORR 0.81 0.772 0.743 0.895 0.888 0.846
12 RSE 0.672 0.711 0.733 0.442 0.428 0.474

CORR 0.825 0.798 0.779 0.883 0.89 0.867
Method: FEDformer- Fourier
3 RSE 0.659 0.758 0.91 0.386 0.464 0.579

CORR 0.832 0.773 0.674 0.905 0.869 0.809
6 RSE 0.667 0.733 0.798 0.385 0.44 0.507

CORR 0.832 0.79 0.758 0.907 0.882 0.848
9 RSE 0.666 0.707 0.734 0.391 0.428 0.471

CORR 0.833 0.813 0.796 0.905 0.888 0.867
12 RSE 0.663 0.691 0.703 0.394 0.424 0.446

CORR 0.836 0.821 0.81 0.904 0.89 0.88
Method: FEDformer- wavelet
3 RSE 0.675 0.79 0.905 0.396 0.5 0.645

CORR 0.824 0.74 0.63 0.9 0.848 0.753
6 RSE 0.687 0.771 0.826 0.393 0.464 0.558

CORR 0.82 0.757 0.706 0.902 0.868 0.814
9 RSE 0.682 0.736 0.729 0.4 0.452 0.457

CORR 0.82 0.784 0.801 0.9 0.875 0.875
12 RSE 0.684 0.712 0.699 0.403 0.441 0.437

CORR 0.822 0.803 0.814 0.899 0.881 0.884
Method: TDformer- Fourier
3 RSE 0.657 0.885 1.118 0.657 0.885 1.118

CORR 0.737 0.527 0.224 0.737 0.527 0.224
6 RSE 0.731 0.888 1.04 0.731 0.888 1.04

CORR 0.664 0.484 0.264 0.664 0.484 0.264
9 RSE 0.777 0.881 0.924 0.777 0.881 0.924

CORR 0.596 0.445 0.375 0.596 0.445 0.375
12 RSE 0.778 0.845 0.801 0.778 0.845 0.801

CORR 0.58 0.466 0.54 0.58 0.466 0.54
Method: TDformer- wavelet
3 RSE 0.662 0.897 1.149 0.662 0.897 1.149

CORR 0.733 0.513 0.182 0.733 0.513 0.182
6 RSE 0.733 0.907 1.069 0.733 0.907 1.069

CORR 0.663 0.458 0.212 0.663 0.458 0.212
9 RSE 0.778 0.884 0.941 0.778 0.884 0.941

CORR 0.595 0.443 0.344 0.595 0.443 0.344
12 RSE 0.77 0.84 0.807 0.77 0.84 0.807

CORR 0.588 0.475 0.53 0.588 0.475 0.53
Method: TDformer- time
3 RSE 0.658 0.886 1.115 0.658 0.886 1.115

CORR 0.736 0.526 0.228 0.736 0.526 0.228
6 RSE 0.727 0.897 1.035 0.727 0.897 1.035

CORR 0.671 0.467 0.271 0.671 0.467 0.271
9 RSE 0.769 0.899 0.938 0.769 0.899 0.938

CORR 0.609 0.417 0.349 0.609 0.417 0.349
12 RSE 0.768 0.834 0.831 0.768 0.834 0.831

CORR 0.591 0.485 0.489 0.591 0.485 0.489
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TABLE V: Evaluation summary of LSTM Models (RSE and
CORR) using Transformer studies preprocessing pipeline and
trained on MSE.

Dataset Traffic Electricity
Horizon Horizon

Metrics 3 6 12 3 6 12
Method: Bahdanau et al. (Bahdanau)
3 RSE 0.599 0.6 0.596 0.368 0.373 0.372

CORR 0.869 0.87 0.872 0.928 0.927 0.927
6 RSE 0.628 0.634 0.636 0.406 0.415 0.418

CORR 0.854 0.851 0.849 0.914 0.91 0.909
9 RSE 0.644 0.659 0.669 0.427 0.443 0.448

CORR 0.848 0.838 0.831 0.906 0.898 0.896
12 RSE 0.647 0.659 0.665 0.432 0.449 0.456

CORR 0.847 0.837 0.833 0.904 0.895 0.894
Method: Bahdanau et al. (Concat)
3 RSE 0.6 0.599 0.598 0.369 0.372 0.373

CORR 0.868 0.87 0.872 0.927 0.927 0.927
6 RSE 0.628 0.636 0.638 0.405 0.415 0.419

CORR 0.854 0.849 0.847 0.914 0.909 0.909
9 RSE 0.645 0.658 0.671 0.428 0.442 0.447

CORR 0.847 0.838 0.829 0.905 0.898 0.896
12 RSE 0.645 0.664 0.664 0.432 0.452 0.459

CORR 0.645 0.836 0.832 0.904 0.895 0.892
Method: Bahdanau et al. (General)
3 RSE 0.596 0.598 0.595 0.369 0.372 0.372

CORR 0.869 0.871 0.872 0.928 0.926 0.927
6 RSE 0.628 0.635 0.635 0.407 0.417 0.414

CORR 0.853 0.849 0.848 0.914 0.909 0.91
9 RSE 0.644 0.659 0.668 0.428 0.444 0.445

CORR 0.847 0.838 0.831 0.904 0.897 0.897
12 RSE 0.646 0.661 0.67 0.435 0.451 0.455

CORR 0.846 0.837 0.831 0.903 0.894 0.894
Method: Bahdanau et al. (Dot)
3 RSE 0.597 0.599 0.596 0.37 0.373 0.373

CORR 0.869 0.869 0.872 0.928 0.926 0.927
6 RSE 0.628 0.638 0.639 0.405 0.417 0.416

CORR 0.852 0.847 0.845 0.914 0.909 0.91
9 RSE 0.648 0.662 0.668 0.43 0.445 0.447

CORR 0.846 0.835 0.831 0.904 0.897 0.896
12 RSE 0.651 0.666 0.674 0.436 0.454 0.456

CORR 0.844 0.834 0.828 0.901 0.893 0.894
Method: Luong et al. (Concat)
3 RSE 0.648 0.646 0.644 0.498 0.498 0.496

CORR 0.855 0.856 0.857 0.878 0.878 0.88
6 RSE 0.65 0.654 0.652 0.505 0.511 0.509

CORR 0.854 0.85 0.851 0.875 0.871 0.872
9 RSE 0.65 0.655 0.663 0.504 0.513 0.516

CORR 0.854 0.85 0.846 0.875 0.87 0.869
12 RSE 0.65 0.653 0.659 0.504 0.513 0.519

CORR 0.854 0.851 0.848 0.875 0.869 0.868
Method: Luong et al. (General)
3 RSE 0.65 0.647 0.644 0.5 0.5 0.497

CORR 0.854 0.855 0.857 0.879 0.878 0.878
6 RSE 0.651 0.654 0.654 0.504 0.509 0.509

CORR 0.853 0.851 0.85 0.875 0.872 0.872
9 RSE 0.651 0.657 0.663 0.505 0.513 0.517

CORR 0.853 0.849 0.844 0.875 0.87 0.867
12 RSE 0.652 0.656 0.661 0.507 0.515 0.519

CORR 0.853 0.849 0.844 0.874 0.869 0.868
Method: Luong et al. (Dot)
3 RSE 0.649 0.647 0.646 0.5 0.499 0.496

CORR 0.854 0.856 0.857 0.877 0.878 0.878
6 RSE 0.651 0.654 0.655 0.505 0.512 0.511

CORR 0.852 0.85 0.85 0.874 0.87 0.871
9 RSE 0.652 0.659 0.666 0.506 0.517 0.518

CORR 0.852 0.847 0.841 0.875 0.867 0.866
12 RSE 0.651 0.657 0.665 0.506 0.518 0.52

CORR 0.852 0.848 0.842 0.874 0.867 0.866

all encoder hidden states. Transformers use self-attention,
where each position in the input sequence attends to all other
positions. This self-attention in Transformers has a quadratic
complexity (O(T 2)) with respect to the input window width
T .

Also worth noting is that LSTMs are inherently sequential
in that calculations at each time step depend on the previous
time step, thus limiting parallelization. Transformers can
process all positions in the input sequence in parallel, which
can be much faster, especially with hardware acceleration
such as GPUs, but this parallelization comes at the cost of
increased memory and computations.

For shorter input window widths, the computational cost
might be comparable, with LSTMs slightly cheaper. As
the input window width increases, the quadratic complexity
of Transformer self-attention becomes dominant, making
Transformers more computationally expensive.

V. CONCLUSION

Our empirical evaluation confirms that LSTM-based
encoder-decoder networks can be a powerful tool for time
series forecasting, achieving competitive results with careful
selection of input window size and attention mechanisms.
The key takeaway is that the choice between LSTM-based
models and Transformer-based methods is highly context-
dependent.

When computational resources are limited or the forecast-
ing task primarily relies on short-term dependencies, LSTM-
based models provide an efficient and effective solution. Con-
versely, for applications demanding the modeling of intricate
long-range relationships and the generation of long-horizon
predictions, Transformer-based architectures are likely more
appropriate. Further investigation is needed to establish clear
guidelines for selecting the optimal model based on the spe-
cific characteristics of the time series data and the forecasting
objectives.

There are areas for future work that would extend our
findings. A more extensive set of experiments, utilizing a
larger number of random starting points for each model
configuration, will enable a robust statistical analysis, in-
cluding the calculation of confidence intervals and the ap-
plication of significance tests (e.g., t-tests). This approach
will more formally validate the performance differences
between LSTM and Transformer-based models. Furthermore,
while we provided a theoretical discussion of complexity
to advocate for LSTM’s computational efficiency, a direct
quantitative comparison would offer more definitive evi-
dence. This analysis might involve measuring and reporting
metrics such as training and inference latency and memory
consumption for all tested models under the same hardware
and software conditions.
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