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Abstract—Automatic recognition of features in digital images
has become a central topic in the field of cultural heritage
diagnostics. AI-based models are being increasingly applied to the
analysis of infrared reflectography and thermographic data. They
show great promise in automating time-consuming manual anal-
yses and improving the objectivity and repeatability of diagnostic
assessments. This work proposes 4 specialized classifiers for nails
and detachments in work of arts. In-situ active thermography
measurements are used for training proposed models. AI models
for nail classification reached accuracy of 96.03 % and 93.65 %
using planar composite thermal images and volumetric raw data
as inputs, respectively. AI models for detachment classification
reached accuracy of 87 % and 57 % using planar composite
thermal images and volumetric raw data as inputs, respectively.

I. INTRODUCTION

N RECENT years, the automatic recognition of features in

digital images has become a central topic in the field of
cultural heritage diagnostics, particularly with the increasing
adoption of imaging-based techniques. Advances in computer
vision and deep learning have led to the development of
algorithms capable of identifying patterns, anomalies, and
structural details that are often imperceptible to the human eye.
Artificial intelligence-assisted visual inspection for cultural
heritage is reviewed in [1]. Work [2] discuses application of
artificial intelligence in cultural heritage protection. Pattern
recognition and artificial intelligence techniques for cultural
heritage are analyzed in [3]. Detecting treasures in museums
with artificial intelligence is described in [4]. Reducing bias
in Al-based analysis of visual artworks is discused in [5].
Work [6] analyzes the research trends for using artificial
intelligence in cultural heritage. Convolutional neural networks
(CNNs) and other Al-based models are being increasingly
applied to the analysis of infrared reflectography and ther-
mographic data, with the potential to support tasks such as
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detecting underdrawings, material heterogeneities, and traces
of previous restoration interventions. These approaches show
great promise in automating time-consuming manual analyses
and improving the objectivity and repeatability of diagnostic
assessments. Nonetheless, challenges remain regarding the
availability of training data, the need for domain-specific
model tuning, and the effective integration of these tools into
conservation workflows. More scientific works are dedicated to
artwork inspection. Physical degradation detection on artwork
surface polychromies using deep learning models is discused
in [7]. A deep learning approach for anomaly detection in X-
ray images of paintings is described in [8].

This work presents 4 specialized classifiers for nails and
detachments in work of arts. Dataset for training Al models
was created from in-situ active thermography measurements.
Quantity of measurement is low which makes the process to
design Al models more difficult. Al models for nail classifi-
cation reached high accuracies of 96.03 % and 93.65 % for
models optimized for planar composite thermal images and
volumetric raw data measurements, respectively. AI models for
detachment classification reached accuracies of 87 % and 57 %
for models optimized for planar composite thermal images
and volumetric raw data measurements, respectively. Main
contribution of this work is in created dataset and 4 specialized
Al classifiers.

Proposed models are designed for use before restoration
process or for digitization purposes. They are created as useful
tool that reduces long manual work required for analysis of a
large size work of Art. They can be additionally use or making
the process of artwork analysis available for less experienced
personnel.

II. DATA PREPARATION

Active Thermography (AT) measurements were carried out
following a standardized procedure for each selected area of
the paintings. A thermal stimulus lasting 10 seconds was
applied using a 1000 W halogen lamp with adjustable out-
put. Depending on the characteristics of each painting, the
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TABLE I
SOURCES AND STATISTICS OF NAIL DEFECTS
Author Artwork Name Nails | Related samples
M. Cardisco | Adorazione dei Magi 8 NI1-N3
Unknown Eternal Father 3 N4
Unknown Madonna del Pozzano 18 N5-N7
Unknown San Francesco 47 N8-N18
TABLE II

SOURCES AND STATISTICS OF DETACHMENT DEFECTS

Author Artwork Name Detachments | Related samples
M. Cardisco | Adorazione dei Magi 17 D1-D9
Fig. 1. Artwork example - Adorazione dei Magi painting, author M. Cardisco, Unknown Eternal Father 13 D10-D15
size 254 x 268 cm Unknown Madonna del Pozzano 0 n.a.
Unknown San Francesco 0 n.a.

applied power ranged between 200 and 300 W. The lamp
was positioned approximately 1-2 meters from the surface.
A FLIR X6580 sc infrared camera (equipped with a cooled
InSb detector, operating in the MWIR range of 3.5-5 um,
IFOV 0.3 mrad, NETD 20 mK at 25 pym, and a 640 x 512
FPA sensor) with a 50 mm focal length lens was employed to
record thermal sequences.

Temperature rise during heating was controlled in real-
time using the ResearchIR software (FLIR Systems Inc.,
Wilsonville, OR, USA), ensuring that the maximum tempera-
ture difference (AT) on the surface did not exceed 5°C and
was as uniform as possible. After the thermal pulse, sequences
of 150 to 300 thermal images were acquired for each area at a
frame rate of 5 Hz. The data were exported in CSV format and
subsequently analyzed using two established post-processing Fig. 2. An SCs section example with labeled nails, Adorazione dei Magi
techniques: Principal Component Thermography (PCT) and  authored by M. Cardisco
Thermal Recovery Mapping (TRM), both well-documented in
the literature [9], [10], [11], [12].

Custom-developed scripts in MATLAB (R2019a, Math-
Works) were used for data processing, which was performed
on a workstation equipped with an Intel i7-4770 CPU @
3.40 GHz (8 cores) and 32 GB RAM. These analyses en-
abled (a) the identification and enhancement of major ther-
mal anomalies within 1-2 Spatial Components (SCs) through
PCT, and (b) their classification, with particular attention to
detecting detachments and metallic inclusions (e.g., nails). The
thermal datasets corresponding to these two types of defects
were subsequently organized into collections of raw thermal
images and their associated SCs, which served as the basis
for developing the analytical models proposed in this study.
Altogether, 4 paintings have been processed, see TABLE I,
TABLE 1II and Fig. 1. Due to larger size of paintings, each
painting was captured and evaluated by grid sections resulting  Fig. 3. An SCs section example with labeled detachments, Adorazione dei
in 18 sections with 76 labeled nails and 15 sections with 30 ~Magi authored by M. Cardisco
labeled detachments, see Fig. 2 and Fig. 3.
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TABLE III
STATISTICS OF CREATED DATASETS

TABLE IV

VARIOUS 2D CONVOLUTION MODELS

Dataset Number of Spatial Number of Model Convolution Pooling Validation Test
name samples resolution channels depth kernels kernels Accuracy Accuracy
Nails SCs 626 64 x 64 1 1 (7,7) Glob. 70.20 % 80.95 %
Nails raw data 626 64 x 64 300 1 (11,11) Glob. 85.88 % 82.54 %
Detachments 114 180 x 175 1 2 (5,5);(5,5) (4,4);Glob. 81.96 % 87.30 %
SCs (on average) 2 (7,7):(7,7) (4,4);Glob. 75.29 % 75.13 %
Detachments 114 180 x 175 300 2 (3,3);(3,3) (6,6);Glob. 86.47 % 90.48 %
raw data (on average) 2 (5,5);(3,3) (6,6);Glob. 90.00 % 90.48 %
3 (3,3):(3,3);(3,3) | (2,2);(2,2);Glob. 91.76 % 88.89 %
3 (3,3):;(3,3);(3,3) | (2,2);(4,4);Glob. 82.35 % 82.54 %
A. Dataset preparation 3 (5.5):(5.5:(5.5) | (2.2);44)Glob. | 4745 % | 5714 %
3 (3,3):(3,3);(2,2) | (3,3);(3,3);Glob. 86.47 % 90.48 %
Due to low quantity of nail and detachment examples, the 3 (3,3):(2,2);(2,2) | (3,3):3.,3);Glob. 86.47 % 85.72 %
binary classification of nails and detachments was selected 4 (3,3);(3,3); (2,2):(2,2); 68.25 % 69.31 %
as the best task to implement. Multi class classification and (3,3%:(3,3) (2,2);Glob.
detection are more complex and usually requires more param-
TABLE V

eters to train. Our very small dataset limits us to train smaller
models. Bigger models with more parameters require larger
datasets [13], [14] to be sufficiently trained. Two specialized
binary classifiers allow to focus on each problem characteris-
tics more deeply and maximized prediction accuracy with less
data.

Dataset is created with cropped areas. We experimented
with various input resolutions. For nails, 64 x 64 pixels
was selected. With higher resolutions, accuracy is decreasing
significantly. Smaller resolution offers slightly higher accuracy
but may be prone to overspecialization. For detachments,
rectangles with longer size 180 pixels was selected. The
dataset is balanced with 50 % positives and 50 % negatives
(background). Focus was on including hard negatives with
very close visual resemblance to positives. Min-max normal-
ization was applied to raw data (CSVs) to improve learning.
Missing channels were padded with the last measured channel.
This way we don’t introduce any bias by padding the data
with either white, black or gray color equivalent. The quantity
was increased with augmentation techniques [15] to partially
alleviate low quantity of data and to improve the trained
models’ robustness. Statistics are shown in TABLE III.

III. ARCHITECTURE DESIGN

Short visual analysis revealed that variation of detachment
examples is much more varied which makes it significantly
more difficult task to classify in comparison to nails. The
number of detachment true examples is only 30 which rep-
resents around 40 % of quantity of true nail examples and
such low quantity makes the problem even more difficult.
We started our design approach with SCs images due to its
simpler planar form. Designing a model for volumetric raw
data is more difficult. The dataset was split 80 % — 20 % for
training and testing. Presented values in following Tables are
averaged results of several training runs started from scratch
with random seeding.

EFFECTS OF GLOBAL POOLING AND EXTENDED CLASSIFIER

Validation Test
Global pooling Added layers Accuracy | Accuracy
Global Max Pool none 81.96 % 87.30 %
Global Max Pool 2D conv. (1,1) x64 76.93 % 75.40%
Global Average Pool none 69.41 % 69.84 %
Global Average Pool | 2D conv. (1,1) x64 68.12 % 73.86 %

A. Nail defect optimized models using SCs images

The training setup for nail classification using SCs images
is following: Environment TensorFlow, Adam optimizer, 20
Epoch training length, LR started from 0.0008, LR minimal
set to 0.0001, LR reducing factor set to 0.5, input resolution
64 x 64 pixels, quantity of samples 626. Adam optimizer
provided the best results.

We experimented with different augmentations. The stan-
dard rotations and flipping are already included in dataset.
Additive noise hurt accuracy with pink noise being worse in
comparison to white noise. Varied Gamma, implemented by a
constant additive shift, produced varied and conflicted results.
We decided not to use it due to unstable improvements and
very small increases.

Experiments with various model architectures are shown in
TABLE IV. Results show that the optimal model depth is
2 or 3. The single layer models are not descriptive enough
and 4 layer deep model is probably too complex with many
parameters for this dataset. Smaller convolution kernel sizes
are beneficial for 2 and 3 layer deep models. The 2 layer deep
model reached the best accuracy and was selected. Variation
of using different global pooling and extensions can be seen
in TABLE V. The global Max pooling is the best option.

The effects of different width of layers (varied number of
filters) can be seen in TABLE VI. Decreasing or increasing
number of filters symmetrically in all layers has little effect
with 64 filters being the best. Results of additional architecture
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TABLE VI
EFFECTS OF LAYERS’ WIDTH
Number of | Validation Test

filters Accuracy | Accuracy

32 69.28 % 68.37 %

64 69.41 % 69.84 %

96 68.77 % 68.51 %

128 67.96 % 68.91 %

TABLE VII
VARIOUS 2D CONVOLUTION MODELS, CONTINUATION
Model Convolution Pooling Validation Test

depth kernels kernels Accuracy | Accuracy
2 (7,7)x64;(3,3)x64 | (6,6);Glob. 90.00 % 88.89 %
2 (9,9)x64;(3,3)x64 | (6,6);Glob. 94.71 % 92.86 %
2 (5,5)x64;(3,3)x64 | (8,8);Glob. 87.06 % 92.86 %
2 (7,7)x64;(3,3)x64 | (8,8);Glob. 93.53 % 91.27 %
2 (9,9)x64;(3,3)x64 | (8,8);Glob. 92.35 % 92.06 %
2 (7,7)x128;(3,3)x64 | (6,6);Glob. 91.18 % 92.86 %
2 (9,9)x128;(3,3)x64 | (6,6);Glob. 90.59 % 89.68 %
2 (5,5)x128;(3,3)x64 | (8,8);Glob. 84.12 % 88.89 %
2 (7,7)x128;(3,3)x64 | (8,8);Glob. 90.59 % 87.30 %
2 (9,9)x128;(3,3)x64 | (8,8);Glob. 94.71 % 96.03 %
2 (7,7)x256;(3,3)x64 | (6,6);Glob. 88.82 % 88.10 %
2 (9,9)x256;(3,3)x64 | (6,6);Glob. 90.00 % 89.68 %
2 (5,5)x2565(3,3)x64 | (8,8);Glob. 83.53 % 89.68 %
2 (7,7)x256(3,3)x64 | (8,8);Glob. 91.18 % 91.27 %
2 (9,9)x256;(3,3)x64 | (8,8);Glob. 93.53 % 94.45 %

search is shown in TABLE VII. Larger kernels of the first layer
have positive effect. The best model has 128 filters with kernel
size of 9 x 9 in the first layers and Max pooling of 8 x 8.

B. Nail defect optimized models using raw data

The training setup for nail classification using raw data
measurements is following: Environment TensorFlow, Adam
optimizer, 20 Epoch training length, LR started from 0.0003,
LR minimal set to 0.00002, LR reducing factor set to 0.5,
input resolution 64 x 64 pixels, quantity of samples 626.

Experiments with various depth of model architecture are
shown in TABLE VIII. All models use 3D convolutions
and 3D Max pooling. Each convolution layer is followed by
ReLU [16] nonlinearity and Max pooling. The optimal model
depth is around 3. Resulted accuracy is lower in comparison
to models using SCs images. We focused on 3 layer deep
architectures, see TABLE IX. Results show that the bigger
kernels have positive effect.

The small dataset is a very limited factor for volumetric
data. Additional augmentations fail to improve results. So we
opted to reduce input space by Principal Component Analysis
(PCA). We applied PCA to dataset and used results as inputs,
see TABLE X. The best accuracy was reached by using 50
most significant PCA components.

We continued with architecture exploration with 50 PCA
components as inputs, see TABLE XI. Results shows that the
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TABLE VIII

VARIOUS 3D CONVOLUTION MODELS

Model | Convolution Pooling Validation Test
depth kernels kernels Accuracy | Accuracy
1 (3,3,3) Glob. 64.71 % 61.90 %
2 (3,3,3);(3,3,3) (2,2,2);Glob. 71.76 % 65.08 %
3 (3,3,3):(3,3,3) | (2,2,2);(2,2,2); 75.29 % 7143 %
(3,3,3) Glob.
4 (3,3,3);(3,3,3) | (2,2,2);(2,2,2); 7529 % 66.67 %
(3,3,3);(3,3,3) (2,2,2);Glob.
(3,3,3);(3,3,3) | (2,2,2);(2,2,2);
5 (3,3,3);(3,3,3) | (2,2,2);(2,2,2); 67.06 % 57.14 %
(3,3,3) Glob.
TABLE IX
VARIOUS 3D CONVOLUTION MODELS
Model Convolution Pooling Validation Test
depth kernels kernels Accuracy Accuracy
3 (3,3,3);(3,3,3) | (2,2,2);(2,2,2); 75.29 % 7143 %
(3,3,3) Glob.
3 (1,3,3);(3,1,1); | (2,2,2);(2,2,2); 75.29 % 63.49 %
(3.3.3) Glob.
3 (5,1,1);(1,5,5); | (2,2,2)5(2,2,2); 72.94 % 60.32 %
(3,3,3) Glob.
3 (5,3,3);(3,5,5); | (2,2,2)(2,2,2); 77.65 % 73.02 %
(3.3,3) Glob.
3 (3,5,5)5(5,3,3); | (2,2,2):(2,2,2); 81.18 % 76.19 %
(2,2,2) Glob.

suitable depth is at least 3. Smaller convolution kernels have
positive effect, especially at later layers. Smaller input map
before the last global pooling is beneficial. This is especially
true with the deepest model which has the best test accuracy.
Higher parameter count is detrimental with very small datasets
which makes the best model with higher parameter count a
surprise. It is interesting that using smaller convolution kernel
than (3,3,3) anywhere in architecture reduces the accuracy.
However, the optimal trends are clouded by the small dataset
size and it can be seen as fluctuating results. We experimented
with the varied width of layers with 64 filters being the best.

TABLE X
EFFECTS OF USING PCA TO REDUCE NUMBER OF INPUT CHANNELS

Number of Validation Test

PCA components | Accuracy | Accuracy
300 (no PCA) 84.71 % 82.54 %
200 84.71 % 80.95 %

150 85.88 % 82.54 %

50 94.12 % 90.48 %

25 90.48 % 85.71 %

15 85.88 % 79.37 %

10 83.54 % 80.95 %
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TABLE XI

VARIOUS 3D CONVOLUTION MODELS

Model Convolution Pooling Validation Test
depth kernels kernels Accuracy | Accuracy
2 (5,5,5);(5,5,5) (5,5,5);Glob. 94.12 % 87.30 %
3 (5,5,5);(3,3,3); | (3.3,3):(3,3,3); 91.76 % 92.06 %
(3,3,3) Glob.
3 (5,5,5);(3,3,3); | (3,3,3);(2,2,2); 89.41 % 88.89 %
(3,3,3) Glob.
3 (3,5,5);(5,3,3); | (2,2,2);(2,2,2); 94.12 % 90.48 %
(2,2,2) Glob.
4 (3,3,3);(3,3,3); | (2,2,2);(2,2,2); 88.24 % 92.06 %
(3,3,3);(3,3,3) (2,2,2);Glob.
(3,3,3);(3,3,3); | (2,2,2);(2,2,2);
5 (3,3,3):(3,3,3); | (2,2,2);(2,2,2); 91.76 % 93.65 %
(3,3,3) Glob.
3 (3,3,3);(3,3,3); | (3.3,3):(3,3,3); 89.42 % 81.75 %
(2,2,2) Glob.
3 (2,2,2);(2,2,2); | (3,3,3):(3,3,3); 85.88 % 80.95 %
(2,2,2) Glob.
4 (3,3,3);(3,3,3); | (2,2,2);(2,2,2); 90.59 % 80.95 %
(2,2,2);(2,2,2) (2,2,2);Glob.
4 (2,2,2);(2,2,2); | (2,2,2);(2,2,2); 89.41 % 88.89 %
(2,2,2);(2,2,2) (2,2,2);Glob.
(3,3.3:(3,3,3); | (2,2,2)(2,2,2);
5 (3,3,3);(2,2,2); | (2,2,2);(2,2,2); 90.59 % 90.48 %
(2,2,2) Glob.
(3,3,3);(2,2,2); | (2,2,2);(2,2,2);
5 (2,2,2);(2,2,2); | (2,2,2);(2,2,2); 94.12 % 87.30 %
(2,2,2) Glob.
(2,2,2);(2,2,2); | (2,2,2);(2,2,2);
5 (2,2,2);(2,2,2); | (2,2,2);(2,2,2); 90.59 % 92.06 %
(2,2,2) Glob.

C. Detachment defect optimized models using SCs images

The training setup for detachment classification using SCs
images is following: Environment TensorFlow, Adam opti-
mizer, 50 Epoch training length, LR started from 0.0001,
LR minimal set to 0.000001, LR reducing factor set to 0.5,
input resolution 115 x 115 & 128 x 128 & 130 x 130 &
150 x 150 pixels except where it is noted, augmentations: LR
flips & 90° angle rotations & brightness adjustments (gamma
variations). One transformation is randomly applied to each
image. These augmentations were applied only to the train
and validation datasets during training.

We experimented with various scaling of the inputs. The
best performance was achieved with the input resizing to
128 x 128 pixels resolution using stretching, see TABLE XII.
We augmented data with various input sizes which signif-
icantly improved accuracy. Our experiments with different
padding schemes confirmed that the stretching is the best, see
TABLE XIII.

Experiments with various model architecture are shown in
TABLE XIV. The optimal model depth is 2. However, 4
layer deep model reached good accuracy. Optimal kernel size

TABLE XII
EFFECTS OF VARIOUS INPUT RESOLUTIONS

Input size Validation Test
configuration Accuracy | Accuracy
128 x 128 (Resized only) 71 % 79 %
Original sizes 61 % 60 %
Original sizes 71 % 77 %
and 128 x 128
128 x 128 & 115 x 115 & 78 % 87 %
150 x 150 & 130 x 130
TABLE XIII

PADDING VARIATIONS FOR CREATING INPUT SAMPLES FOR DATASET

Validation Test

Padding type Accuracy | Accuracy
Zero padding 61 % 48 %
Mean value padding 65 % 61 %
Mirror padding 65 % 63 %
Stretching 78 % 87 %
No padding 61 % 60 %
Up to 10 % mirroring padding 69 % 77 %
Up to 20 % mirroring padding 67 % 72 %
Up to 30 % mirroring padding 65 % 69 %

varies. More experiments are necessary. Our experiments with
different global pooling confirmed the Max pooling as the
best, see TABLE XV. The global average pooling with adding
an extra layer behind it equaled the global Max pooling. We
selected global Max pooling due to lower parameter count. We
experimented with the different width, but for most models,
64 filters is the best option. Our best model uses small kernels
and twice the number of filters in the first layer. We also
experimented with different additional augmentations. Varied
contrast have negative effect. Surprisingly, added small amount
of white or pink noise have small positive effect.

TABLE XIV
VARIOUS 2D CONVOLUTION MODELS

Model Convolution Pooling Validation Test
depth kernels kernels Accuracy | Accuracy
1 (15,15) Glob. 66 % 68 %
1 (25,25) Glob. 67 % 66 %
2 (3,3)x256;(3,3)x128 | (2,2);Glob. 77 % 87 %
2 (11,11)5(11,11) (4,4);Glob. 75 % 83 %
2 (15,15)5(15,15) (5,5);Glob. 71 % 81 %
3 (7,7)y(7,7); (4,4);(4,4); 69 % 67 %
(7,7) Glob.
3 (I1,11)5(11,11); (4,4);(4,4); 67 % 59 %
9,9 Glob.
4 (5,5)5(5,5); (3,3):(3.3); 77 % 70 %
(5,5);(3,3) (4,4);Glob.
4 (7.71):(7,7); (3.3(3.3); 73 % 75 %
(7,7)5(5,5) (4,4);Glob.
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TABLE XV
EFFECTS OF GLOBAL POOLING AND EXTENDED CLASSIFIER
Validation Test
Global pooling Added layers Accuracy | Accuracy
Global Max Pool none 75 % 83 %
Global Max Pool 2D conv. (1,1) x64 75 % 81 %
Global Average Pool none 73 % 75 %
Global Average Pool | 2D conv. (1,1) x64 76 % 83 %
TABLE XVI
VARIOUS 3D CONVOLUTION MODELS
Model Convolution Pooling Validation Test
depth kernels kernels Accuracy | Accuracy
(9,3,3)stride of 2,1,1);
(2,1,1);(9,3,3); (2,1,1); 60 % 57 %
(9,3,3);(12,3,3); (glob.,1,1);
2 best 2D model best 2D model

D. Detachment defect optimized models using raw data

Experiments with raw data measurements did not reach
good results. Reducing the input space by PCA slightly
improved the results but still not good enough to be used.
With only 30 true examples and higher difficulty in compar-
ison to nails, it is very hard to design classification model
for volumetric raw data. Due to PCA failing, we opted to
design a new CNN model for reducing the input space from
volumetric to planar data. This model is trained by using SCs
images as ideal outputs. This way, there are much more data to
lead training process correctly. The best model trained on SCs
images are attached after this model. Our best results reached
by combining these two modes are shown in TABLE XVI.

IV. CONCLUSION & FUTURE WORK

We presented Al models for automated classification of de-
tachments and nails within paintings. We created small dataset
containing 4 paintings measured with active thermography.
Due to the small dataset size, we designed 4 specialized
models optimized to the single defect type. The best nail
classifier for SCs images reached 96.03 % accuracy and one
for volumetric raw data measurements reached 93.65 % accu-
racy. The best detachment classifier for SCs images reached
acceptable 87 % accuracy. However, the model optimized
for volumetric raw data measurements reached only 57 %
accuracy. The character of detachment, its more varied shapes
and variations, its varied placement between different paint
layers and varied texture character makes this a much more
difficult task. Availability of only 30 true examples limited our
options.

The presented models are designed for use before restora-
tion process or for digitization purposes. They can reduce long
manual work required for analysis of a large size work of Art.
They also make the process of artwork analysis available for
less experienced people in this domain.

Obtaining access to more paintings is a key part of our
future work. Only with granted access, we can produce more
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measurements and enlarge our dataset to improve detachment
classification accuracy. We are hopeful and open to wider
future research cooperation in this domain.
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