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Abstract—Automatic recognition of features in digital images
has become a central topic in the field of cultural heritage
diagnostics. AI-based models are being increasingly applied to the
analysis of infrared reflectography and thermographic data. They
show great promise in automating time-consuming manual anal-
yses and improving the objectivity and repeatability of diagnostic
assessments. This work proposes 4 specialized classifiers for nails
and detachments in work of arts. In-situ active thermography
measurements are used for training proposed models. AI models
for nail classification reached accuracy of 96.03 % and 93.65 %
using planar composite thermal images and volumetric raw data
as inputs, respectively. AI models for detachment classification
reached accuracy of 87 % and 57 % using planar composite
thermal images and volumetric raw data as inputs, respectively.

I. INTRODUCTION

I
N RECENT years, the automatic recognition of features in

digital images has become a central topic in the field of

cultural heritage diagnostics, particularly with the increasing

adoption of imaging-based techniques. Advances in computer

vision and deep learning have led to the development of

algorithms capable of identifying patterns, anomalies, and

structural details that are often imperceptible to the human eye.

Artificial intelligence-assisted visual inspection for cultural

heritage is reviewed in [1]. Work [2] discuses application of

artificial intelligence in cultural heritage protection. Pattern

recognition and artificial intelligence techniques for cultural

heritage are analyzed in [3]. Detecting treasures in museums

with artificial intelligence is described in [4]. Reducing bias

in AI-based analysis of visual artworks is discused in [5].

Work [6] analyzes the research trends for using artificial

intelligence in cultural heritage. Convolutional neural networks

(CNNs) and other AI-based models are being increasingly

applied to the analysis of infrared reflectography and ther-

mographic data, with the potential to support tasks such as
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detecting underdrawings, material heterogeneities, and traces

of previous restoration interventions. These approaches show

great promise in automating time-consuming manual analyses

and improving the objectivity and repeatability of diagnostic

assessments. Nonetheless, challenges remain regarding the

availability of training data, the need for domain-specific

model tuning, and the effective integration of these tools into

conservation workflows. More scientific works are dedicated to

artwork inspection. Physical degradation detection on artwork

surface polychromies using deep learning models is discused

in [7]. A deep learning approach for anomaly detection in X-

ray images of paintings is described in [8].

This work presents 4 specialized classifiers for nails and

detachments in work of arts. Dataset for training AI models

was created from in-situ active thermography measurements.

Quantity of measurement is low which makes the process to

design AI models more difficult. AI models for nail classifi-

cation reached high accuracies of 96.03 % and 93.65 % for

models optimized for planar composite thermal images and

volumetric raw data measurements, respectively. AI models for

detachment classification reached accuracies of 87 % and 57 %

for models optimized for planar composite thermal images

and volumetric raw data measurements, respectively. Main

contribution of this work is in created dataset and 4 specialized

AI classifiers.

Proposed models are designed for use before restoration

process or for digitization purposes. They are created as useful

tool that reduces long manual work required for analysis of a

large size work of Art. They can be additionally use or making

the process of artwork analysis available for less experienced

personnel.

II. DATA PREPARATION

Active Thermography (AT) measurements were carried out

following a standardized procedure for each selected area of

the paintings. A thermal stimulus lasting 10 seconds was

applied using a 1000 W halogen lamp with adjustable out-

put. Depending on the characteristics of each painting, the
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Fig. 1. Artwork example - Adorazione dei Magi painting, author M. Cardisco,
size 254 x 268 cm

applied power ranged between 200 and 300 W. The lamp

was positioned approximately 1–2 meters from the surface.

A FLIR X6580 sc infrared camera (equipped with a cooled

InSb detector, operating in the MWIR range of 3.5–5 µm,

IFOV 0.3 mrad, NETD 20 mK at 25 µm, and a 640 × 512

FPA sensor) with a 50 mm focal length lens was employed to

record thermal sequences.

Temperature rise during heating was controlled in real-

time using the ResearchIR software (FLIR Systems Inc.,

Wilsonville, OR, USA), ensuring that the maximum tempera-

ture difference (∆T) on the surface did not exceed 5 ◦C and

was as uniform as possible. After the thermal pulse, sequences

of 150 to 300 thermal images were acquired for each area at a

frame rate of 5 Hz. The data were exported in CSV format and

subsequently analyzed using two established post-processing

techniques: Principal Component Thermography (PCT) and

Thermal Recovery Mapping (TRM), both well-documented in

the literature [9], [10], [11], [12].

Custom-developed scripts in MATLAB (R2019a, Math-

Works) were used for data processing, which was performed

on a workstation equipped with an Intel i7-4770 CPU @

3.40 GHz (8 cores) and 32 GB RAM. These analyses en-

abled (a) the identification and enhancement of major ther-

mal anomalies within 1–2 Spatial Components (SCs) through

PCT, and (b) their classification, with particular attention to

detecting detachments and metallic inclusions (e.g., nails). The

thermal datasets corresponding to these two types of defects

were subsequently organized into collections of raw thermal

images and their associated SCs, which served as the basis

for developing the analytical models proposed in this study.

Altogether, 4 paintings have been processed, see TABLE I,

TABLE II and Fig. 1. Due to larger size of paintings, each

painting was captured and evaluated by grid sections resulting

in 18 sections with 76 labeled nails and 15 sections with 30

labeled detachments, see Fig. 2 and Fig. 3.

TABLE I
SOURCES AND STATISTICS OF NAIL DEFECTS

Author Artwork Name Nails Related samples

M. Cardisco Adorazione dei Magi 8 N1-N3

Unknown Eternal Father 3 N4

Unknown Madonna del Pozzano 18 N5-N7

Unknown San Francesco 47 N8-N18

TABLE II
SOURCES AND STATISTICS OF DETACHMENT DEFECTS

Author Artwork Name Detachments Related samples

M. Cardisco Adorazione dei Magi 17 D1-D9

Unknown Eternal Father 13 D10-D15

Unknown Madonna del Pozzano 0 n.a.

Unknown San Francesco 0 n.a.

Fig. 2. An SCs section example with labeled nails, Adorazione dei Magi
authored by M. Cardisco

Fig. 3. An SCs section example with labeled detachments, Adorazione dei
Magi authored by M. Cardisco
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TABLE III
STATISTICS OF CREATED DATASETS

Dataset Number of Spatial Number of

name samples resolution channels

Nails SCs 626 64 x 64 1

Nails raw data 626 64 x 64 300

Detachments 114 180 x 175 1

SCs (on average)

Detachments 114 180 x 175 300

raw data (on average)

A. Dataset preparation

Due to low quantity of nail and detachment examples, the

binary classification of nails and detachments was selected

as the best task to implement. Multi class classification and

detection are more complex and usually requires more param-

eters to train. Our very small dataset limits us to train smaller

models. Bigger models with more parameters require larger

datasets [13], [14] to be sufficiently trained. Two specialized

binary classifiers allow to focus on each problem characteris-

tics more deeply and maximized prediction accuracy with less

data.

Dataset is created with cropped areas. We experimented

with various input resolutions. For nails, 64 x 64 pixels

was selected. With higher resolutions, accuracy is decreasing

significantly. Smaller resolution offers slightly higher accuracy

but may be prone to overspecialization. For detachments,

rectangles with longer size 180 pixels was selected. The

dataset is balanced with 50 % positives and 50 % negatives

(background). Focus was on including hard negatives with

very close visual resemblance to positives. Min-max normal-

ization was applied to raw data (CSVs) to improve learning.

Missing channels were padded with the last measured channel.

This way we don’t introduce any bias by padding the data

with either white, black or gray color equivalent. The quantity

was increased with augmentation techniques [15] to partially

alleviate low quantity of data and to improve the trained

models’ robustness. Statistics are shown in TABLE III.

III. ARCHITECTURE DESIGN

Short visual analysis revealed that variation of detachment

examples is much more varied which makes it significantly

more difficult task to classify in comparison to nails. The

number of detachment true examples is only 30 which rep-

resents around 40 % of quantity of true nail examples and

such low quantity makes the problem even more difficult.

We started our design approach with SCs images due to its

simpler planar form. Designing a model for volumetric raw

data is more difficult. The dataset was split 80 % – 20 % for

training and testing. Presented values in following Tables are

averaged results of several training runs started from scratch

with random seeding.

TABLE IV
VARIOUS 2D CONVOLUTION MODELS

Model Convolution Pooling Validation Test

depth kernels kernels Accuracy Accuracy

1 (7,7) Glob. 70.20 % 80.95 %

1 (11,11) Glob. 85.88 % 82.54 %

2 (5,5);(5,5) (4,4);Glob. 81.96 % 87.30 %

2 (7,7);(7,7) (4,4);Glob. 75.29 % 75.13 %

2 (3,3);(3,3) (6,6);Glob. 86.47 % 90.48 %

2 (5,5);(3,3) (6,6);Glob. 90.00 % 90.48 %

3 (3,3);(3,3);(3,3) (2,2);(2,2);Glob. 91.76 % 88.89 %

3 (3,3);(3,3);(3,3) (2,2);(4,4);Glob. 82.35 % 82.54 %

3 (5,5);(5,5);(5,5) (2,2);(4,4);Glob. 47.45 % 57.14 %

3 (3,3);(3,3);(2,2) (3,3);(3,3);Glob. 86.47 % 90.48 %

3 (3,3);(2,2);(2,2) (3,3);(3,3);Glob. 86.47 % 85.72 %

4 (3,3);(3,3); (2,2);(2,2); 68.25 % 69.31 %

(3,3);(3,3) (2,2);Glob.

TABLE V
EFFECTS OF GLOBAL POOLING AND EXTENDED CLASSIFIER

Validation Test

Global pooling Added layers Accuracy Accuracy

Global Max Pool none 81.96 % 87.30 %

Global Max Pool 2D conv. (1,1) x64 76.93 % 75.40%

Global Average Pool none 69.41 % 69.84 %

Global Average Pool 2D conv. (1,1) x64 68.12 % 73.86 %

A. Nail defect optimized models using SCs images

The training setup for nail classification using SCs images

is following: Environment TensorFlow, Adam optimizer, 20

Epoch training length, LR started from 0.0008, LR minimal

set to 0.0001, LR reducing factor set to 0.5, input resolution

64 x 64 pixels, quantity of samples 626. Adam optimizer

provided the best results.

We experimented with different augmentations. The stan-

dard rotations and flipping are already included in dataset.

Additive noise hurt accuracy with pink noise being worse in

comparison to white noise. Varied Gamma, implemented by a

constant additive shift, produced varied and conflicted results.

We decided not to use it due to unstable improvements and

very small increases.

Experiments with various model architectures are shown in

TABLE IV. Results show that the optimal model depth is

2 or 3. The single layer models are not descriptive enough

and 4 layer deep model is probably too complex with many

parameters for this dataset. Smaller convolution kernel sizes

are beneficial for 2 and 3 layer deep models. The 2 layer deep

model reached the best accuracy and was selected. Variation

of using different global pooling and extensions can be seen

in TABLE V. The global Max pooling is the best option.

The effects of different width of layers (varied number of

filters) can be seen in TABLE VI. Decreasing or increasing

number of filters symmetrically in all layers has little effect

with 64 filters being the best. Results of additional architecture

PETER MALÍK ET AL.: AI CLASSIFIER OF DEFECTS IN ARTWORKS CAPTURED BY ACTIVE INFRARED THERMOGRAPHY 329



TABLE VI
EFFECTS OF LAYERS’ WIDTH

Number of Validation Test

filters Accuracy Accuracy

32 69.28 % 68.37 %

64 69.41 % 69.84 %

96 68.77 % 68.51 %

128 67.96 % 68.91 %

TABLE VII
VARIOUS 2D CONVOLUTION MODELS, CONTINUATION

Model Convolution Pooling Validation Test

depth kernels kernels Accuracy Accuracy

2 (7,7)x64;(3,3)x64 (6,6);Glob. 90.00 % 88.89 %

2 (9,9)x64;(3,3)x64 (6,6);Glob. 94.71 % 92.86 %

2 (5,5)x64;(3,3)x64 (8,8);Glob. 87.06 % 92.86 %

2 (7,7)x64;(3,3)x64 (8,8);Glob. 93.53 % 91.27 %

2 (9,9)x64;(3,3)x64 (8,8);Glob. 92.35 % 92.06 %

2 (7,7)x128;(3,3)x64 (6,6);Glob. 91.18 % 92.86 %

2 (9,9)x128;(3,3)x64 (6,6);Glob. 90.59 % 89.68 %

2 (5,5)x128;(3,3)x64 (8,8);Glob. 84.12 % 88.89 %

2 (7,7)x128;(3,3)x64 (8,8);Glob. 90.59 % 87.30 %

2 (9,9)x128;(3,3)x64 (8,8);Glob. 94.71 % 96.03 %

2 (7,7)x256;(3,3)x64 (6,6);Glob. 88.82 % 88.10 %

2 (9,9)x256;(3,3)x64 (6,6);Glob. 90.00 % 89.68 %

2 (5,5)x256;(3,3)x64 (8,8);Glob. 83.53 % 89.68 %

2 (7,7)x256;(3,3)x64 (8,8);Glob. 91.18 % 91.27 %

2 (9,9)x256;(3,3)x64 (8,8);Glob. 93.53 % 94.45 %

search is shown in TABLE VII. Larger kernels of the first layer

have positive effect. The best model has 128 filters with kernel

size of 9 x 9 in the first layers and Max pooling of 8 x 8.

B. Nail defect optimized models using raw data

The training setup for nail classification using raw data

measurements is following: Environment TensorFlow, Adam

optimizer, 20 Epoch training length, LR started from 0.0003,

LR minimal set to 0.00002, LR reducing factor set to 0.5,

input resolution 64 x 64 pixels, quantity of samples 626.

Experiments with various depth of model architecture are

shown in TABLE VIII. All models use 3D convolutions

and 3D Max pooling. Each convolution layer is followed by

ReLU [16] nonlinearity and Max pooling. The optimal model

depth is around 3. Resulted accuracy is lower in comparison

to models using SCs images. We focused on 3 layer deep

architectures, see TABLE IX. Results show that the bigger

kernels have positive effect.

The small dataset is a very limited factor for volumetric

data. Additional augmentations fail to improve results. So we

opted to reduce input space by Principal Component Analysis

(PCA). We applied PCA to dataset and used results as inputs,

see TABLE X. The best accuracy was reached by using 50

most significant PCA components.

We continued with architecture exploration with 50 PCA

components as inputs, see TABLE XI. Results shows that the

TABLE VIII
VARIOUS 3D CONVOLUTION MODELS

Model Convolution Pooling Validation Test

depth kernels kernels Accuracy Accuracy

1 (3,3,3) Glob. 64.71 % 61.90 %

2 (3,3,3);(3,3,3) (2,2,2);Glob. 71.76 % 65.08 %

3 (3,3,3);(3,3,3) (2,2,2);(2,2,2); 75.29 % 71.43 %

(3,3,3) Glob.

4 (3,3,3);(3,3,3) (2,2,2);(2,2,2); 75.29 % 66.67 %

(3,3,3);(3,3,3) (2,2,2);Glob.

(3,3,3);(3,3,3) (2,2,2);(2,2,2);

5 (3,3,3);(3,3,3) (2,2,2);(2,2,2); 67.06 % 57.14 %

(3,3,3) Glob.

TABLE IX
VARIOUS 3D CONVOLUTION MODELS

Model Convolution Pooling Validation Test

depth kernels kernels Accuracy Accuracy

3 (3,3,3);(3,3,3) (2,2,2);(2,2,2); 75.29 % 71.43 %

(3,3,3) Glob.

3 (1,3,3);(3,1,1); (2,2,2);(2,2,2); 75.29 % 63.49 %

(3,3,3) Glob.

3 (5,1,1);(1,5,5); (2,2,2);(2,2,2); 72.94 % 60.32 %

(3,3,3) Glob.

3 (5,3,3);(3,5,5); (2,2,2);(2,2,2); 77.65 % 73.02 %

(3,3,3) Glob.

3 (3,5,5);(5,3,3); (2,2,2);(2,2,2); 81.18 % 76.19 %

(2,2,2) Glob.

suitable depth is at least 3. Smaller convolution kernels have

positive effect, especially at later layers. Smaller input map

before the last global pooling is beneficial. This is especially

true with the deepest model which has the best test accuracy.

Higher parameter count is detrimental with very small datasets

which makes the best model with higher parameter count a

surprise. It is interesting that using smaller convolution kernel

than (3,3,3) anywhere in architecture reduces the accuracy.

However, the optimal trends are clouded by the small dataset

size and it can be seen as fluctuating results. We experimented

with the varied width of layers with 64 filters being the best.

TABLE X
EFFECTS OF USING PCA TO REDUCE NUMBER OF INPUT CHANNELS

Number of Validation Test

PCA components Accuracy Accuracy

300 (no PCA) 84.71 % 82.54 %

200 84.71 % 80.95 %

150 85.88 % 82.54 %

50 94.12 % 90.48 %

25 90.48 % 85.71 %

15 85.88 % 79.37 %

10 83.54 % 80.95 %
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TABLE XI
VARIOUS 3D CONVOLUTION MODELS

Model Convolution Pooling Validation Test

depth kernels kernels Accuracy Accuracy

2 (5,5,5);(5,5,5) (5,5,5);Glob. 94.12 % 87.30 %

3 (5,5,5);(3,3,3); (3,3,3);(3,3,3); 91.76 % 92.06 %

(3,3,3) Glob.

3 (5,5,5);(3,3,3); (3,3,3);(2,2,2); 89.41 % 88.89 %

(3,3,3) Glob.

3 (3,5,5);(5,3,3); (2,2,2);(2,2,2); 94.12 % 90.48 %

(2,2,2) Glob.

4 (3,3,3);(3,3,3); (2,2,2);(2,2,2); 88.24 % 92.06 %

(3,3,3);(3,3,3) (2,2,2);Glob.

(3,3,3);(3,3,3); (2,2,2);(2,2,2);

5 (3,3,3);(3,3,3); (2,2,2);(2,2,2); 91.76 % 93.65 %

(3,3,3) Glob.

3 (3,3,3);(3,3,3); (3,3,3);(3,3,3); 89.42 % 81.75 %

(2,2,2) Glob.

3 (2,2,2);(2,2,2); (3,3,3);(3,3,3); 85.88 % 80.95 %

(2,2,2) Glob.

4 (3,3,3);(3,3,3); (2,2,2);(2,2,2); 90.59 % 80.95 %

(2,2,2);(2,2,2) (2,2,2);Glob.

4 (2,2,2);(2,2,2); (2,2,2);(2,2,2); 89.41 % 88.89 %

(2,2,2);(2,2,2) (2,2,2);Glob.

(3,3,3);(3,3,3); (2,2,2);(2,2,2);

5 (3,3,3);(2,2,2); (2,2,2);(2,2,2); 90.59 % 90.48 %

(2,2,2) Glob.

(3,3,3);(2,2,2); (2,2,2);(2,2,2);

5 (2,2,2);(2,2,2); (2,2,2);(2,2,2); 94.12 % 87.30 %

(2,2,2) Glob.

(2,2,2);(2,2,2); (2,2,2);(2,2,2);

5 (2,2,2);(2,2,2); (2,2,2);(2,2,2); 90.59 % 92.06 %

(2,2,2) Glob.

C. Detachment defect optimized models using SCs images

The training setup for detachment classification using SCs

images is following: Environment TensorFlow, Adam opti-

mizer, 50 Epoch training length, LR started from 0.0001,

LR minimal set to 0.000001, LR reducing factor set to 0.5,

input resolution 115 x 115 & 128 x 128 & 130 x 130 &

150 x 150 pixels except where it is noted, augmentations: LR

flips & 90◦ angle rotations & brightness adjustments (gamma

variations). One transformation is randomly applied to each

image. These augmentations were applied only to the train

and validation datasets during training.

We experimented with various scaling of the inputs. The

best performance was achieved with the input resizing to

128 x 128 pixels resolution using stretching, see TABLE XII.

We augmented data with various input sizes which signif-

icantly improved accuracy. Our experiments with different

padding schemes confirmed that the stretching is the best, see

TABLE XIII.

Experiments with various model architecture are shown in

TABLE XIV. The optimal model depth is 2. However, 4

layer deep model reached good accuracy. Optimal kernel size

TABLE XII
EFFECTS OF VARIOUS INPUT RESOLUTIONS

Input size Validation Test

configuration Accuracy Accuracy

128 x 128 (Resized only) 71 % 79 %

Original sizes 61 % 60 %

Original sizes 71 % 77 %

and 128 x 128

128 x 128 & 115 x 115 & 78 % 87 %

150 x 150 & 130 x 130

TABLE XIII
PADDING VARIATIONS FOR CREATING INPUT SAMPLES FOR DATASET

Validation Test

Padding type Accuracy Accuracy

Zero padding 61 % 48 %

Mean value padding 65 % 61 %

Mirror padding 65 % 63 %

Stretching 78 % 87 %

No padding 61 % 60 %

Up to 10 % mirroring padding 69 % 77 %

Up to 20 % mirroring padding 67 % 72 %

Up to 30 % mirroring padding 65 % 69 %

varies. More experiments are necessary. Our experiments with

different global pooling confirmed the Max pooling as the

best, see TABLE XV. The global average pooling with adding

an extra layer behind it equaled the global Max pooling. We

selected global Max pooling due to lower parameter count. We

experimented with the different width, but for most models,

64 filters is the best option. Our best model uses small kernels

and twice the number of filters in the first layer. We also

experimented with different additional augmentations. Varied

contrast have negative effect. Surprisingly, added small amount

of white or pink noise have small positive effect.

TABLE XIV
VARIOUS 2D CONVOLUTION MODELS

Model Convolution Pooling Validation Test

depth kernels kernels Accuracy Accuracy

1 (15,15) Glob. 66 % 68 %

1 (25,25) Glob. 67 % 66 %

2 (3,3)x256;(3,3)x128 (2,2);Glob. 77 % 87 %

2 (11,11);(11,11) (4,4);Glob. 75 % 83 %

2 (15,15);(15,15) (5,5);Glob. 71 % 81 %

3 (7,7);(7,7); (4,4);(4,4); 69 % 67 %

(7,7) Glob.

3 (11,11);(11,11); (4,4);(4,4); 67 % 59 %

(9,9) Glob.

4 (5,5);(5,5); (3,3);(3,3); 77 % 70 %

(5,5);(3,3) (4,4);Glob.

4 (7,7);(7,7); (3,3);(3,3); 73 % 75 %

(7,7);(5,5) (4,4);Glob.
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TABLE XV
EFFECTS OF GLOBAL POOLING AND EXTENDED CLASSIFIER

Validation Test

Global pooling Added layers Accuracy Accuracy

Global Max Pool none 75 % 83 %

Global Max Pool 2D conv. (1,1) x64 75 % 81 %

Global Average Pool none 73 % 75 %

Global Average Pool 2D conv. (1,1) x64 76 % 83 %

TABLE XVI
VARIOUS 3D CONVOLUTION MODELS

Model Convolution Pooling Validation Test

depth kernels kernels Accuracy Accuracy

(9,3,3)stride of (2,1,1);

4 (2,1,1);(9,3,3); (2,1,1); 60 % 57 %

+ (9,3,3);(12,3,3); (glob.,1,1);

2 best 2D model best 2D model

D. Detachment defect optimized models using raw data

Experiments with raw data measurements did not reach

good results. Reducing the input space by PCA slightly

improved the results but still not good enough to be used.

With only 30 true examples and higher difficulty in compar-

ison to nails, it is very hard to design classification model

for volumetric raw data. Due to PCA failing, we opted to

design a new CNN model for reducing the input space from

volumetric to planar data. This model is trained by using SCs

images as ideal outputs. This way, there are much more data to

lead training process correctly. The best model trained on SCs

images are attached after this model. Our best results reached

by combining these two modes are shown in TABLE XVI.

IV. CONCLUSION & FUTURE WORK

We presented AI models for automated classification of de-

tachments and nails within paintings. We created small dataset

containing 4 paintings measured with active thermography.

Due to the small dataset size, we designed 4 specialized

models optimized to the single defect type. The best nail

classifier for SCs images reached 96.03 % accuracy and one

for volumetric raw data measurements reached 93.65 % accu-

racy. The best detachment classifier for SCs images reached

acceptable 87 % accuracy. However, the model optimized

for volumetric raw data measurements reached only 57 %

accuracy. The character of detachment, its more varied shapes

and variations, its varied placement between different paint

layers and varied texture character makes this a much more

difficult task. Availability of only 30 true examples limited our

options.

The presented models are designed for use before restora-

tion process or for digitization purposes. They can reduce long

manual work required for analysis of a large size work of Art.

They also make the process of artwork analysis available for

less experienced people in this domain.

Obtaining access to more paintings is a key part of our

future work. Only with granted access, we can produce more

measurements and enlarge our dataset to improve detachment

classification accuracy. We are hopeful and open to wider

future research cooperation in this domain.
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