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Abstract—This paper presents our third-place solution for the
FedCSIS 2025 Challenge: Predicting Chess Puzzle Difficulty —
Second Edition. Building on our prior GlickFormer architecture,
we develop a transformer-based approach featuring a novel
multitask pretraining strategy that combines masked-square
reconstruction with solution policy prediction. Our spatial-only
architecture directly embeds solution moves, eliminating tem-
poral modules, while integrating human-centric priors through
Maia-2 engine solve-rate predictions. Evaluated on the Lichess
puzzle corpus, our approach reduces validation MSE by 30.4%
compared to from-scratch training and achieves competitive
results (test MSE: 55.9k) despite distribution shifts in the com-
petition environment. In an auxiliary uncertainty-masking side
competition organized post hoc, our simple calibration-sensitivity
mask achieved the best score and won the side competition.
Details are provided in the Appendix.

Index Terms—Chess Al, Transformer Pretraining, Puzzle Dif-
ficulty, Self-Supervised Learning, Glicko-2

I. INTRODUCTION

HESS puzzles challenge players to identify tactical se-

quences that yield decisive gains. On platforms like
Lichess, puzzle difficulty is quantified via Glicko-2 ratings de-
rived from human solve rates. The requirement for thousands
of human attempts makes rapid rating of new puzzles im-
practical, motivating automated difficulty prediction methods
that model human problem-solving rather than engine-optimal
play.

Building on our prior GlickFormer (11th place in 2024) [1],
we introduce GlickFormer v2, which placed third in the Fed-
CSIS 2025 Challenge: Predicting Chess Puzzle Difficulty —
Second Edition. [2] While retaining a transformer backbone,
this new version simplifies computation by eliminating explicit
temporal modules in favor of embedding future solution moves
directly in the input representation. Additionally, we incorpo-
rate human-centric priors through solve-rate predictions from
Maia chess engines [3] across various Elo bands.

Our core contribution is a novel multitask pretraining strat-
egy inspired by large language models (LLMs), which simul-
taneously trains the model to reconstruct randomly masked
board squares while predicting the puzzle’s correct solution
move. When fine-tuned on the 4.7 million-position training set,
this pretraining significantly outperforms both from-scratch
training and masked-only pretraining baselines. To address
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the distribution shift between validation and test ratings, we
implement post-hoc distribution scaling technique used by
Woodruff et al. [4].

The resulting model achieves competitive performance de-
spite its simplified architecture, demonstrating that the com-
bination of efficient spatial processing, human-aligned inputs,
and targeted pretraining can effectively capture human puzzle-
solving complexity without expensive temporal modeling.

II. RELATED WORK

Early approaches to chess puzzle difficulty estimation relied
primarily on human-derived ratings, but recent competitions
have established new state-of-the-art benchmarks. The 2024
IEEE BigData Cup [5] saw significant advances: Bjorkqvist
et al. [6] combined handcrafted features with engine-extracted
signals from Maia, Leela, and Stockfish using a residual
neural network and LightGBM to place third. Schiitt et al. [7]
developed a human problem-solving inspired CNN with auxil-
iary theme and move-prediction tasks, securing second place.
Rafaralahy [8] applied a pairwise learning-to-rank framework
using RankNet to simulate puzzle “matches” for Glicko-2
rating inference, achieving fourth place.

The current state-of-the-art was established by the bread
emoji team [4], winners of the 2024 competition. Their so-
lution employed an ensemble of pretrained Maia and Leela
embedders with distribution rescaling postprocessing, achiev-
ing over 13% reduction in MSE compared to runner-up
solutions. Our original GlickFormer [1] leveraged a factorized
spatio-temporal transformer to model board states and move
sequences, placing 11th in 2024 while demonstrating atten-
tion mechanisms’ potential for capturing human-like puzzle
difficulty, though its computational costs were substantial.

Our multitask pretraining approach draws inspiration from
LLM strategies. The masked reconstruction component adapts
BERT’s masked language modeling objective [9] to chess by
predicting masked board squares based on spatial context. This
technique shares strong parallels with Vision Transformers
(ViT) [10], which successfully adapted BERT-style pretraining
to image recognition tasks by treating image patches as tokens.
The policy prediction task shares similarities with next-token
prediction in autoregressive models like GPT [11], but focuses
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specifically on identifying optimal tactical moves. This dual-
objective approach mirrors multi-task pretraining in models
like TS [12], creating robust representations through diverse
objectives. Recent chess-specific transformers like the Chess
Transformer [13] have demonstrated the value of language-
modeling-inspired approaches for move generation, though not
specifically for difficulty prediction.

Building on these foundations, GlickFormer v2 integrates
efficient spatial-only transformers with LLM-inspired mul-
titask pretraining and competition-proven calibration tech-
niques. Our approach adapts established language modeling
paradigms to structured prediction tasks in chess while build-
ing upon the state-of-the-art results from the 2024 competition.

III. METHODOLOGY

Building upon our previous GlickFormer architecture, we
maintain the core data pipeline and noise-aware target sam-
pling strategy while introducing three key enhancements: im-
proved input representations, a leaner spatial-only transformer
backbone, a novel multitask pretraining schedule, and the
integration of post-hoc distribution calibration.

A. Data and Stochastic Target Sampling

The training corpus comprises 4.7 million puzzles with
Glicko-2 ratings r;, rating deviations RD;, complete solution
move sequences, and solve-rate predictions from the Maia-2
chess engine [3]. These predictions are provided for multiple
Elo bands (approximately 1000-2100, though exact ranges
were unspecified by competition organizers), including both
rapid and blitz time control configurations. The solution moves
represent the optimal tactical sequence required to solve each
puzzle, typically ranging from 1-5 moves in length.

To evaluate model performance during development, we
reserve 1% of puzzles (approximately 47,000) for validation,
selected via stratified sampling across puzzle themes to ensure
representativeness.

For pretraining, we construct a 14-channel input representa-
tion where 13 binary planes indicate piece occupancies: each
plane corresponds to a specific piece type-color combination
or empty square, with values set to 1 where present and 0
otherwise. This is supplemented with a binary mask-indicator
plane that marks randomly selected squares for masking (1
= masked, 0 = visible), with all other channels zeroed out at
masked positions.

During fine-tuning, we use a richer 55-channel input with
three components: the same 13 binary board-state planes; 20
binary planes encoding the complete solution line (truncated
or zero-padded to exactly 5 moves, each move represented
as side x {from,to} pairs); and 22 continuous-valued Maia-
2 solve-rate priors broadcast as constant spatial planes. All
channels are linearly projected to form 64 tokens (one per
board square) for transformer processing.
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For stochastic target sampling, we normalize ratings using
dataset statistics:

i = 7§ — Mdataset )
O dataset
RD;
gi = — @)
O dataset

where fdataset aNd Odaraset TEpresent the mean and standard
deviation of all puzzle ratings in the training set. We model
each rating as a normal distribution N (y;,02) and generate
noisy targets during mini-batch sampling:

yi ~ clip (N (i, 07), i — 303, pii + 30%) &)

This injects label noise that regularizes the regression objective
while respecting rating deviation bounds.

B. Model Architecture

GlickFormer v2 employs 12 encoder-only transformer
blocks with 768-dimensional embeddings and 24 attention
heads with Smolgen positional encoding, using Mish activation
functions. [14] The model processes different inputs during
pretraining and fine-tuning phases: pretraining uses only the
14-channel tensor, while fine-tuning incorporates the extended
55-channel tensor where both the solution-move projector Wy
and Maia-prior projector Wyy,i, are randomly initialized and
trained alongside the backbone.

Each input stack undergoes projection via linear embedding
into 64 tokens (one per chess square), which are then pro-
cessed by the transformer backbone. During pretraining, two
specialized heads operate simultaneously: a masked-square
classifier implemented as an MLP applied independently to
each token predicts piece types at masked positions, while a
policy head employs two parallel MLPs to project each token
to “from” (query) and “to” (key) vectors. Move logits are
computed as dot products between all query-key pairs (q, k;,
for move a — b), implementing the Leela Chess Zero policy
formulation [15]. This formulation considers only square-
to-square transitions without special move types, inherently
omitting promotion moves since puzzles rarely involve pawn
underpromotions in their solution lines.

For policy prediction during pretraining, we consider only
the first move of each puzzle’s solution sequence. This design
choice reflects that the initial move typically represents the
most significant tactical insight distinguishing puzzle diffi-
culty, while subsequent moves are often forced responses or
technical conversions contributing less to human solve-rate
variance. This simplification maintains predictive power while
reducing computational complexity.

For fine-tuning, both pretraining heads are discarded and
replaced with the value head architecture from the original
GlickFormer. This consists of a linear layer that projects
the entire sequence of 64 token embeddings to a hidden
dimension, followed by Mish activation and a final linear
layer that outputs a scalar difficulty prediction. The entire
model - including the transformer backbone, input projectors,
and regression head - is trained end-to-end during this phase,
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allowing the pretrained representations to adapt while special-
izing for rating prediction.

C. Multitask Pretraining

Our pretraining approach masks k£ random squares per
puzzle, where M denotes the set of masked squares. We define
two complementary loss functions:

The masked reconstruction loss predicts missing piece

types:

1
Lk = =7 log pmsk (¢ 4
S 2 e )

where ¢; is the true piece class at square i.
The policy loss identifies the correct solution move:

Lol = —log ppor (a*) ®)

where a* is the ground-truth solution move.
The combined pretraining objective balances these losses:

£pre = )\msk[*msk + )\pol[/pol (6)

Figure 1 illustrates our dual pretraining objectives. The
model receives boards with randomly masked squares (Fig.
la), then must both reconstruct the original pieces at masked
positions (Fig. 1b) and predict the optimal solution move
indicated by the arrow (Fig. 1c¢).

Following the Chinchilla scaling rule [16], we train with
20x more tokens than parameters using AdamW optimization
with batch size 256, dropout rate 0.1, weight decay 0.1, initial
learning rate 5 x 104, 10% linear warmup, and cosine decay
to final learning rate 5 x 107°. We empirically set k = 8
and weighting coefficients Apgc = 1, Apgy = 0.1 based on
validation performance.

D. Fine-Tuning Procedure

During supervised fine-tuning, we employ the 55-channel
input tensor with newly initialized projectors for solution-
move and Maia-prior planes. The entire model trains end-
to-end without freezing components. We discard pretraining
heads and replace them with the regression head described
in Model Architecture section, minimizing the mean squared
error:

N

Lo= 3 2 —r)? ™
=1

using AdamW optimization [17] with dropout rate 0.1, weight
decay 0.1, batch size 256, and initial learning rate 5 x 1075,
We reduce the learning rate by a factor of 0.1 after each
epoch without validation improvement, with a maximum of
two reductions. This configuration maintains consistency with
our original GlickFormer implementation while leveraging the
enhanced pretrained representations.

E. Post-Hoc Distribution Calibration

To address distribution shifts between validation and test
environments, we implement the distribution rescaling tech-
nique introduced by Woodruff et al. This calibration corrects
systematic biases in predicted ratings caused by the key
difference in data collection: limited solving attempts (25-
50 per puzzle) compared to the training data, which shifts
the rating distribution toward the mean p by preventing full
convergence.

The calibration function is defined as:

max(,u,f—amin(l,(%“)w)) P>
min(u,f—kﬁmin(l,(”gf)v)) <l ®

with empirically tuned coefficients oo = 200, 8 = 400, v = 2,
0 = 550. This formulation applies progressively stronger
corrections to predictions farther from u, counteracting the
observed shift toward the mean caused by limited solving
attempts.

R(7) =

IV. RESULTS AND DISCUSSION

Our experimental evaluation addresses the effectiveness
of our pretraining strategies, GlickFormer v2’s performance
relative to state-of-the-art baselines, and the impact of post-hoc
calibration. All validation results use our stratified validation
set while test results report official competition metrics.

A. Evaluation Protocol

We compare three pretraining strategies: from-scratch train-
ing (baseline), masked-only pretraining (Apoy = 0), and our
multitask approach (A, = 0.1). Baseline comparisons include
GlickFormer v1 [1] and the bread emoji 2024 solution [4].
Note that both our approach and bread emoji used similar
validation strategies with sampling from training data. All
models are evaluated on our validation set unless otherwise
specified.

B. Pretraining Effectiveness

Table 1 demonstrates the progressive improvements from
our pretraining strategy. Masked-only pretraining reduces val-
idation MSE by 22.3% compared to from-scratch training
(44.9k vs. 57.8k). Our multitask approach further improves
performance by 10.4% over masked-only pretraining (40.2k
vs. 44.9k), confirming that combining reconstruction with
policy prediction provides richer representations for difficulty
assessment.

TABLE I: Pretraining ablation on validation set

Pretraining Strategy | Validation MSE | Difference

No pretraining (from scratch) 57.8k -
Masked squares only 44.9k -22.3%
Multitask 40.2k -10.4%
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(a) Masked input board

(b) Reconstruction target

(c) Policy prediction target

Fig. 1: Multitask pretraining objectives: (a) Input board with randomly masked squares (red); (b) Target state for masked-square
reconstruction; (c) Target solution move (arrow) for policy prediction.

C. Validation Set Comparisons

Table II compares GlickFormer v2 against key baselines
on our validation set. Our approach reduces MSE by 50.2%
compared to GlickFormer vl and by 13.9% compared to
Woodruff et al. [4], demonstrating significant improvements
over state-of-the-art approaches.

TABLE II: Validation set comparison with baselines

Method | Validation MSE | Difference
GlickFormer vl 80.8k -
Woodruff et al. (SotA) 46.7k -
GlickFormer v2 (ours) 40.2k -50.2% vs vl

-13.9% vs SotA

D. Competition Results and Calibration Impact

GlickFormer v2 achieved third place in the 2025 compe-
tition with a test MSE of 55.9k. The top-performing teams
secured first and second place with MSEs of 52.3k and 54.4k
respectively. To quantify the impact of post-hoc calibration,
we evaluated its effect on a preliminary test dataset (subset
of official test data). This analysis revealed calibration was
critical for performance - without it, our MSE increased by
38.6% to 81.6k, demonstrating its importance for addressing
distribution shifts in the full competition environment. The
close margin between top 5 solutions (52.3k - 61.1k) highlights
the competitiveness of this year’s challenge, with our approach
placing solidly within this range.

E. Key Findings

Analysis reveals several important insights. Masked-only
pretraining provides significant gains over from-scratch train-
ing, reducing validation MSE by 22.3%. Our multitask ap-
proach yields a further 10.4% improvement over masked-only
pretraining, confirming the value of combining reconstruction
with policy prediction. Post-hoc calibration proves essential
for test performance, preventing a 38.6% MSE degradation.

Overall, our solution achieves a 50.2% improvement over
our previous entry [1] while reducing training time by >80%
through architectural simplifications.

The integration of Maia solve-rate priors contributed sub-
stantially to our 50.2% improvement over GlickFormer vl1,
highlighting the value of human-aligned signals in puzzle
difficulty modeling. This demonstrates that encoding domain-
specific human behavior patterns through pretrained engines
provides crucial complementary information beyond board-
state analysis alone.

V. CONCLUSION

GlickFormer v2 demonstrates that spatial-only transformers
with targeted pretraining can effectively predict chess puzzle
difficulty. The model’s novel multitask pretraining strategy,
combining masked-square reconstruction with solution pol-
icy prediction, significantly outperforms both training-from-
scratch and masked-only pretraining baselines. By incorporat-
ing human-centric priors through Maia solve-rate predictions
and addressing distribution shifts via post-hoc calibration,
the approach maintains effectiveness across varied evaluation
environments.

Our solution achieved third place in the FedCSIS 2025
Challenge: Predicting Chess Puzzle Difficulty —- Second
Edition, showcasing the potential of efficient architectures
combined with strategic pretraining.

For future work, this pretraining framework could be
adapted for other chess-specific tasks such as value and policy
prediction in chess engines. Additional research directions
include enhancing robustness to distribution shifts through
domain adaptation techniques and refining temporal modeling
approaches for complex multi-move puzzles.
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APPENDIX: UNCERTAINTY-MASKING SIDE COMPETITION

After the main leaderboard closed, the organizers announced
an additional task focused on uncertainty estimation. Each
team was asked to submit a binary mask over the test set
marking exactly 10% of instances deemed most problematic.

During scoring, the organizers replaced model predictions with
the ground-truth values on the masked subset and recomputed

the test metric. Let [P] denote the perfect-mask score for a
given team’s final submission (i.e., the best possible score
if the team had masked the true worst 10%), and let [IV]
denote the score obtained using the team’s submitted mask.
The side competition ranked teams by the ratio [N]/[P] (lower
is better).

Evaluation Setting

Per the organizers’ rules, the submitted 10% mask was
evaluated on all three of our final submissions, using the
same mask for each. In our case, these were an uncalibrated
prediction run, a prediction run calibrated using the post-hoc
rescaling parameters of Woodruff et al., and a prediction run
calibrated using the post-hoc rescaling parameters used in this
paper. The organizers computed the score across these three
final submissions according to the side-competition protocol.

Method

Our approach leverages the post-hoc distribution calibration
R(-) (Eq. (8)) to construct a simple, model-agnostic uncer-
tainty proxy. For each test puzzle ¢, we compute a calibration
sensitivity

5 =

,”,;;'H,W _ R(TA;I’LW )

; &)

where 71*% is the uncalibrated prediction and R(7*V) is the
calibrated one. Intuitively, J; measures how much calibration
“needs to move” a prediction to account for the rating-
distribution shift (caused by limited solving attempts in the
test environment). Large §; values occur predominantly at
the distribution tails (very easy/very hard puzzles), which
are known to exhibit higher instability. We rank puzzles by
0; and mark the top 10% as the uncertainty mask. This
design purposely targets cases where calibration most alters
the prediction, and was explicitly intended to reduce error on
the uncalibrated submission.

Outcome

This calibration-sensitivity mask achieved the lowest
[N]/[P] ratio among all participating teams, winning the side
competition. Our ratio was:

S 1.496,

which gave us 1st place out of 9 teams that decided to
participate in this additional task. For our final submitted mask:

[N] ~ 61.49k, [P]=~ 43.12k.

Beyond its simplicity and robustness (no additional training
or ensembling), the method aligns tightly with our main-
system calibration: it explicitly targets those instances where
calibration exerts the largest corrective effect, which empir-
ically coincide with the most uncertain test cases under the
competition’s setting.
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