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Abstract—This paper presents our third-place solution for the
FedCSIS 2025 Challenge: Predicting Chess Puzzle Difficulty —
Second Edition. Building on our prior GlickFormer architecture,
we develop a transformer-based approach featuring a novel
multitask pretraining strategy that combines masked-square
reconstruction with solution policy prediction. Our spatial-only
architecture directly embeds solution moves, eliminating tem-
poral modules, while integrating human-centric priors through
Maia-2 engine solve-rate predictions. Evaluated on the Lichess
puzzle corpus, our approach reduces validation MSE by 30.4%
compared to from-scratch training and achieves competitive
results (test MSE: 55.9k) despite distribution shifts in the com-
petition environment. In an auxiliary uncertainty-masking side
competition organized post hoc, our simple calibration-sensitivity
mask achieved the best score and won the side competition.
Details are provided in the Appendix.

Index Terms—Chess AI, Transformer Pretraining, Puzzle Dif-
ficulty, Self-Supervised Learning, Glicko-2

I. INTRODUCTION

C
HESS puzzles challenge players to identify tactical se-

quences that yield decisive gains. On platforms like

Lichess, puzzle difficulty is quantified via Glicko-2 ratings de-

rived from human solve rates. The requirement for thousands

of human attempts makes rapid rating of new puzzles im-

practical, motivating automated difficulty prediction methods

that model human problem-solving rather than engine-optimal

play.

Building on our prior GlickFormer (11th place in 2024) [1],

we introduce GlickFormer v2, which placed third in the Fed-

CSIS 2025 Challenge: Predicting Chess Puzzle Difficulty —

Second Edition. [2] While retaining a transformer backbone,

this new version simplifies computation by eliminating explicit

temporal modules in favor of embedding future solution moves

directly in the input representation. Additionally, we incorpo-

rate human-centric priors through solve-rate predictions from

Maia chess engines [3] across various Elo bands.

Our core contribution is a novel multitask pretraining strat-

egy inspired by large language models (LLMs), which simul-

taneously trains the model to reconstruct randomly masked

board squares while predicting the puzzle’s correct solution

move. When fine-tuned on the 4.7 million-position training set,

this pretraining significantly outperforms both from-scratch

training and masked-only pretraining baselines. To address

the distribution shift between validation and test ratings, we

implement post-hoc distribution scaling technique used by

Woodruff et al. [4].

The resulting model achieves competitive performance de-

spite its simplified architecture, demonstrating that the com-

bination of efficient spatial processing, human-aligned inputs,

and targeted pretraining can effectively capture human puzzle-

solving complexity without expensive temporal modeling.

II. RELATED WORK

Early approaches to chess puzzle difficulty estimation relied

primarily on human-derived ratings, but recent competitions

have established new state-of-the-art benchmarks. The 2024

IEEE BigData Cup [5] saw significant advances: Björkqvist

et al. [6] combined handcrafted features with engine-extracted

signals from Maia, Leela, and Stockfish using a residual

neural network and LightGBM to place third. Schütt et al. [7]

developed a human problem-solving inspired CNN with auxil-

iary theme and move-prediction tasks, securing second place.

Rafaralahy [8] applied a pairwise learning-to-rank framework

using RankNet to simulate puzzle “matches” for Glicko-2

rating inference, achieving fourth place.

The current state-of-the-art was established by the bread

emoji team [4], winners of the 2024 competition. Their so-

lution employed an ensemble of pretrained Maia and Leela

embedders with distribution rescaling postprocessing, achiev-

ing over 13% reduction in MSE compared to runner-up

solutions. Our original GlickFormer [1] leveraged a factorized

spatio-temporal transformer to model board states and move

sequences, placing 11th in 2024 while demonstrating atten-

tion mechanisms’ potential for capturing human-like puzzle

difficulty, though its computational costs were substantial.

Our multitask pretraining approach draws inspiration from

LLM strategies. The masked reconstruction component adapts

BERT’s masked language modeling objective [9] to chess by

predicting masked board squares based on spatial context. This

technique shares strong parallels with Vision Transformers

(ViT) [10], which successfully adapted BERT-style pretraining

to image recognition tasks by treating image patches as tokens.

The policy prediction task shares similarities with next-token

prediction in autoregressive models like GPT [11], but focuses
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specifically on identifying optimal tactical moves. This dual-

objective approach mirrors multi-task pretraining in models

like T5 [12], creating robust representations through diverse

objectives. Recent chess-specific transformers like the Chess

Transformer [13] have demonstrated the value of language-

modeling-inspired approaches for move generation, though not

specifically for difficulty prediction.

Building on these foundations, GlickFormer v2 integrates

efficient spatial-only transformers with LLM-inspired mul-

titask pretraining and competition-proven calibration tech-

niques. Our approach adapts established language modeling

paradigms to structured prediction tasks in chess while build-

ing upon the state-of-the-art results from the 2024 competition.

III. METHODOLOGY

Building upon our previous GlickFormer architecture, we

maintain the core data pipeline and noise-aware target sam-

pling strategy while introducing three key enhancements: im-

proved input representations, a leaner spatial-only transformer

backbone, a novel multitask pretraining schedule, and the

integration of post-hoc distribution calibration.

A. Data and Stochastic Target Sampling

The training corpus comprises 4.7 million puzzles with

Glicko-2 ratings ri, rating deviations RDi, complete solution

move sequences, and solve-rate predictions from the Maia-2

chess engine [3]. These predictions are provided for multiple

Elo bands (approximately 1000-2100, though exact ranges

were unspecified by competition organizers), including both

rapid and blitz time control configurations. The solution moves

represent the optimal tactical sequence required to solve each

puzzle, typically ranging from 1-5 moves in length.

To evaluate model performance during development, we

reserve 1% of puzzles (approximately 47,000) for validation,

selected via stratified sampling across puzzle themes to ensure

representativeness.

For pretraining, we construct a 14-channel input representa-

tion where 13 binary planes indicate piece occupancies: each

plane corresponds to a specific piece type-color combination

or empty square, with values set to 1 where present and 0

otherwise. This is supplemented with a binary mask-indicator

plane that marks randomly selected squares for masking (1

= masked, 0 = visible), with all other channels zeroed out at

masked positions.

During fine-tuning, we use a richer 55-channel input with

three components: the same 13 binary board-state planes; 20

binary planes encoding the complete solution line (truncated

or zero-padded to exactly 5 moves, each move represented

as side × {from,to} pairs); and 22 continuous-valued Maia-

2 solve-rate priors broadcast as constant spatial planes. All

channels are linearly projected to form 64 tokens (one per

board square) for transformer processing.

For stochastic target sampling, we normalize ratings using

dataset statistics:

µi =
ri − µdataset

σdataset

(1)

σi =
RDi

σdataset

(2)

where µdataset and σdataset represent the mean and standard

deviation of all puzzle ratings in the training set. We model

each rating as a normal distribution N (µi, σ
2

i ) and generate

noisy targets during mini-batch sampling:

yi ∼ clip
(

N (µi, σ
2

i ), µi − 3σi, µi + 3σi

)

(3)

This injects label noise that regularizes the regression objective

while respecting rating deviation bounds.

B. Model Architecture

GlickFormer v2 employs 12 encoder-only transformer

blocks with 768-dimensional embeddings and 24 attention

heads with Smolgen positional encoding, using Mish activation

functions. [14] The model processes different inputs during

pretraining and fine-tuning phases: pretraining uses only the

14-channel tensor, while fine-tuning incorporates the extended

55-channel tensor where both the solution-move projector Wsol

and Maia-prior projector Wmaia are randomly initialized and

trained alongside the backbone.

Each input stack undergoes projection via linear embedding

into 64 tokens (one per chess square), which are then pro-

cessed by the transformer backbone. During pretraining, two

specialized heads operate simultaneously: a masked-square

classifier implemented as an MLP applied independently to

each token predicts piece types at masked positions, while a

policy head employs two parallel MLPs to project each token

to “from” (query) and “to” (key) vectors. Move logits are

computed as dot products between all query-key pairs (q⊤
a kb

for move a → b), implementing the Leela Chess Zero policy

formulation [15]. This formulation considers only square-

to-square transitions without special move types, inherently

omitting promotion moves since puzzles rarely involve pawn

underpromotions in their solution lines.

For policy prediction during pretraining, we consider only

the first move of each puzzle’s solution sequence. This design

choice reflects that the initial move typically represents the

most significant tactical insight distinguishing puzzle diffi-

culty, while subsequent moves are often forced responses or

technical conversions contributing less to human solve-rate

variance. This simplification maintains predictive power while

reducing computational complexity.

For fine-tuning, both pretraining heads are discarded and

replaced with the value head architecture from the original

GlickFormer. This consists of a linear layer that projects

the entire sequence of 64 token embeddings to a hidden

dimension, followed by Mish activation and a final linear

layer that outputs a scalar difficulty prediction. The entire

model - including the transformer backbone, input projectors,

and regression head - is trained end-to-end during this phase,
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allowing the pretrained representations to adapt while special-

izing for rating prediction.

C. Multitask Pretraining

Our pretraining approach masks k random squares per

puzzle, where M denotes the set of masked squares. We define

two complementary loss functions:

The masked reconstruction loss predicts missing piece

types:

Lmsk = −
1

|M|

∑

i∈M

log pmsk(ci) (4)

where ci is the true piece class at square i.

The policy loss identifies the correct solution move:

Lpol = − log ppol(a
⋆) (5)

where a⋆ is the ground-truth solution move.

The combined pretraining objective balances these losses:

Lpre = λmskLmsk + λpolLpol (6)

Figure 1 illustrates our dual pretraining objectives. The

model receives boards with randomly masked squares (Fig.

1a), then must both reconstruct the original pieces at masked

positions (Fig. 1b) and predict the optimal solution move

indicated by the arrow (Fig. 1c).

Following the Chinchilla scaling rule [16], we train with

20× more tokens than parameters using AdamW optimization

with batch size 256, dropout rate 0.1, weight decay 0.1, initial

learning rate 5× 10−4, 10% linear warmup, and cosine decay

to final learning rate 5 × 10−5. We empirically set k = 8
and weighting coefficients λmsk = 1, λpol = 0.1 based on

validation performance.

D. Fine-Tuning Procedure

During supervised fine-tuning, we employ the 55-channel

input tensor with newly initialized projectors for solution-

move and Maia-prior planes. The entire model trains end-

to-end without freezing components. We discard pretraining

heads and replace them with the regression head described

in Model Architecture section, minimizing the mean squared

error:

Lft =
1

N

N
∑

i=1

(r̂i − ri)
2 (7)

using AdamW optimization [17] with dropout rate 0.1, weight

decay 0.1, batch size 256, and initial learning rate 5× 10−5.

We reduce the learning rate by a factor of 0.1 after each

epoch without validation improvement, with a maximum of

two reductions. This configuration maintains consistency with

our original GlickFormer implementation while leveraging the

enhanced pretrained representations.

E. Post-Hoc Distribution Calibration

To address distribution shifts between validation and test

environments, we implement the distribution rescaling tech-

nique introduced by Woodruff et al. This calibration corrects

systematic biases in predicted ratings caused by the key

difference in data collection: limited solving attempts (25-

50 per puzzle) compared to the training data, which shifts

the rating distribution toward the mean µ by preventing full

convergence.

The calibration function is defined as:

R(r̂) =







max
(

µ, r̂ − αmin
(

1,
(

r̂−µ
δ

)γ))

r̂ ≥ µ

min
(

µ, r̂ + βmin
(

1,
(

µ−r̂
δ

)γ))

r̂ < µ
(8)

with empirically tuned coefficients α = 200, β = 400, γ = 2,

δ = 550. This formulation applies progressively stronger

corrections to predictions farther from µ, counteracting the

observed shift toward the mean caused by limited solving

attempts.

IV. RESULTS AND DISCUSSION

Our experimental evaluation addresses the effectiveness

of our pretraining strategies, GlickFormer v2’s performance

relative to state-of-the-art baselines, and the impact of post-hoc

calibration. All validation results use our stratified validation

set while test results report official competition metrics.

A. Evaluation Protocol

We compare three pretraining strategies: from-scratch train-

ing (baseline), masked-only pretraining (λpol = 0), and our

multitask approach (λpol = 0.1). Baseline comparisons include

GlickFormer v1 [1] and the bread emoji 2024 solution [4].

Note that both our approach and bread emoji used similar

validation strategies with sampling from training data. All

models are evaluated on our validation set unless otherwise

specified.

B. Pretraining Effectiveness

Table I demonstrates the progressive improvements from

our pretraining strategy. Masked-only pretraining reduces val-

idation MSE by 22.3% compared to from-scratch training

(44.9k vs. 57.8k). Our multitask approach further improves

performance by 10.4% over masked-only pretraining (40.2k

vs. 44.9k), confirming that combining reconstruction with

policy prediction provides richer representations for difficulty

assessment.

TABLE I: Pretraining ablation on validation set

Pretraining Strategy Validation MSE Difference

No pretraining (from scratch) 57.8k -
Masked squares only 44.9k -22.3%
Multitask 40.2k -10.4%

SZYMON MIŁOSZ: PRETRAINING TRANSFORMERS FOR CHESS PUZZLE DIFFICULTY PREDICTION 833



(a) Masked input board (b) Reconstruction target (c) Policy prediction target

Fig. 1: Multitask pretraining objectives: (a) Input board with randomly masked squares (red); (b) Target state for masked-square

reconstruction; (c) Target solution move (arrow) for policy prediction.

C. Validation Set Comparisons

Table II compares GlickFormer v2 against key baselines

on our validation set. Our approach reduces MSE by 50.2%

compared to GlickFormer v1 and by 13.9% compared to

Woodruff et al. [4], demonstrating significant improvements

over state-of-the-art approaches.

TABLE II: Validation set comparison with baselines

Method Validation MSE Difference

GlickFormer v1 80.8k -
Woodruff et al. (SotA) 46.7k -
GlickFormer v2 (ours) 40.2k -50.2% vs v1

-13.9% vs SotA

D. Competition Results and Calibration Impact

GlickFormer v2 achieved third place in the 2025 compe-

tition with a test MSE of 55.9k. The top-performing teams

secured first and second place with MSEs of 52.3k and 54.4k

respectively. To quantify the impact of post-hoc calibration,

we evaluated its effect on a preliminary test dataset (subset

of official test data). This analysis revealed calibration was

critical for performance - without it, our MSE increased by

38.6% to 81.6k, demonstrating its importance for addressing

distribution shifts in the full competition environment. The

close margin between top 5 solutions (52.3k - 61.1k) highlights

the competitiveness of this year’s challenge, with our approach

placing solidly within this range.

E. Key Findings

Analysis reveals several important insights. Masked-only

pretraining provides significant gains over from-scratch train-

ing, reducing validation MSE by 22.3%. Our multitask ap-

proach yields a further 10.4% improvement over masked-only

pretraining, confirming the value of combining reconstruction

with policy prediction. Post-hoc calibration proves essential

for test performance, preventing a 38.6% MSE degradation.

Overall, our solution achieves a 50.2% improvement over

our previous entry [1] while reducing training time by >80%

through architectural simplifications.

The integration of Maia solve-rate priors contributed sub-

stantially to our 50.2% improvement over GlickFormer v1,

highlighting the value of human-aligned signals in puzzle

difficulty modeling. This demonstrates that encoding domain-

specific human behavior patterns through pretrained engines

provides crucial complementary information beyond board-

state analysis alone.

V. CONCLUSION

GlickFormer v2 demonstrates that spatial-only transformers

with targeted pretraining can effectively predict chess puzzle

difficulty. The model’s novel multitask pretraining strategy,

combining masked-square reconstruction with solution pol-

icy prediction, significantly outperforms both training-from-

scratch and masked-only pretraining baselines. By incorporat-

ing human-centric priors through Maia solve-rate predictions

and addressing distribution shifts via post-hoc calibration,

the approach maintains effectiveness across varied evaluation

environments.

Our solution achieved third place in the FedCSIS 2025

Challenge: Predicting Chess Puzzle Difficulty —- Second

Edition, showcasing the potential of efficient architectures

combined with strategic pretraining.

For future work, this pretraining framework could be

adapted for other chess-specific tasks such as value and policy

prediction in chess engines. Additional research directions

include enhancing robustness to distribution shifts through

domain adaptation techniques and refining temporal modeling

approaches for complex multi-move puzzles.
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APPENDIX: UNCERTAINTY-MASKING SIDE COMPETITION

After the main leaderboard closed, the organizers announced

an additional task focused on uncertainty estimation. Each

team was asked to submit a binary mask over the test set

marking exactly 10% of instances deemed most problematic.

During scoring, the organizers replaced model predictions with
the ground-truth values on the masked subset and recomputed

the test metric. Let [P ] denote the perfect-mask score for a

given team’s final submission (i.e., the best possible score

if the team had masked the true worst 10%), and let [N ]
denote the score obtained using the team’s submitted mask.

The side competition ranked teams by the ratio [N ]/[P ] (lower

is better).

Evaluation Setting

Per the organizers’ rules, the submitted 10% mask was

evaluated on all three of our final submissions, using the

same mask for each. In our case, these were an uncalibrated

prediction run, a prediction run calibrated using the post-hoc

rescaling parameters of Woodruff et al., and a prediction run

calibrated using the post-hoc rescaling parameters used in this

paper. The organizers computed the score across these three

final submissions according to the side-competition protocol.

Method

Our approach leverages the post-hoc distribution calibration

R(·) (Eq. (8)) to construct a simple, model-agnostic uncer-

tainty proxy. For each test puzzle i, we compute a calibration

sensitivity

δi =
∣

∣r̂rawi −R(r̂rawi )
∣

∣, (9)

where r̂rawi is the uncalibrated prediction and R(r̂rawi ) is the

calibrated one. Intuitively, δi measures how much calibration

“needs to move” a prediction to account for the rating-

distribution shift (caused by limited solving attempts in the

test environment). Large δi values occur predominantly at

the distribution tails (very easy/very hard puzzles), which

are known to exhibit higher instability. We rank puzzles by

δi and mark the top 10% as the uncertainty mask. This

design purposely targets cases where calibration most alters

the prediction, and was explicitly intended to reduce error on

the uncalibrated submission.

Outcome

This calibration-sensitivity mask achieved the lowest

[N ]/[P ] ratio among all participating teams, winning the side

competition. Our ratio was:

[N ]

[P ]
= 1.426,

which gave us 1st place out of 9 teams that decided to

participate in this additional task. For our final submitted mask:

[N ] ≈ 61.49k, [P ] ≈ 43.12k.

Beyond its simplicity and robustness (no additional training

or ensembling), the method aligns tightly with our main-

system calibration: it explicitly targets those instances where

calibration exerts the largest corrective effect, which empir-

ically coincide with the most uncertain test cases under the

competition’s setting.
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