
An RL Agent to Find Minimum Energy in a

Tensegrity Representing a Cell

Mustafa Shah

Department of Electronics,

Quaid-e-Azam University,

Islamabad, Pakistan

mustafamohmand59@gmail.com

Arsenio Cutolo

Dept. of Structures for Engineering and Architecture

University of Napoli Federico II

Naples, Italy

arsenio.cutolo@unina.it

Muddasar Naeem
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Abstract—Understanding the mechanical behavior of cells is
a complex challenge at the crossroads of physics, biology, and
engineering. The cytoskeleton which is a dynamic network of
filaments which helps cells maintain shape, move, and respond to
their environment. Tensegrity structures, made of interconnected
tensile and compressive elements, offer a compelling way to
model these internal forces. In this work, we use Reinforcement
Learning (RL) to simulate and optimize cellular mechanics. We
propose an RL framework where an agent learns to minimize
the total mechanical energy of tensegrity-based cell models
by adjusting node positions. We consider diverse shapes from
simple shapes like lines and triangles, to more complex shapes
like cell-like geometries. Our approach shows that RL can
effectively model mechanical adaptations in cells and opens the
door to intelligent, bio-inspired simulations. This work bridges
biophysics, AI, and structural mechanics, offering new ways to
predict and understand how cells respond to mechanical stress.

Index Terms—Reinforcement Learning, Tensegrity, Cell Me-
chanics, Structural Optimization, Deep Learning, PPO, Cy-
toskeleton

I. INTRODUCTION

C
ELLS are not static entities; they are dynamic, me-

chanically active systems that continuously adapt their

internal architecture in response to various environmental and

biological cues [14]. One of the most compelling frameworks

for modeling the mechanical integrity of cells is the tensegrity

model, which represents the cytoskeletal network as a balance

of tensile and compressive forces [1], [4]. Tensegrity—short

for “tensional integrity”—describes a structural system com-

posed of isolated struts (under compression) suspended within

a web of tensile elements (like cables or filaments). This

principle reflects the way real cells maintain their shape,

transmit forces, and react to mechanical stress.

The tensegrity-based approach allows one to capture the in-

terplay between cytoskeletal elements such as actin filaments,

microtubules, and intermediate filaments, providing a robust

platform to simulate how cells respond to external mechanical

stimuli and internal biochemical signals [3]. Beyond biology,

tensegrity models have also found significant applications

in the design and development of soft robotic systems and

bioinspired structural materials that mimic cellular mechanics

and adaptability [15].

With the rapid advancement of artificial intelligence and

machine learning, particularly in the realm of reinforcement

learning (RL), new opportunities have emerged to understand

and control dynamic systems in ways that were previously

unfeasible [8]. RL algorithms allow agents to interact with

complex environments and learn control strategies through

trial and error [13].

In this work, we propose a novel integration of RL with

tensegrity physics to simulate a biologically inspired cell

model. An RL agent is tasked with iteratively adjusting the

positions of the nodes within a tensegrity structure to achieve

a configuration with minimal mechanical energy, a proxy of

structural equilibrium. Previous work in robotics has demon-

strated the efficacy of such approaches in enabling tensegrity-

based systems to learn locomotion and adaptive behaviors [6],

[17]. By extending these concepts to cellular modeling, we

aim to bridge the gap between mechanobiology and intelligent

control systems.

The rest of the paper is organised as follow: Section II

presents related work where we review the exisitng work

in cell mechanics as well as use of RL to solve various

problems. The section III is about our system model and

methodology were we present in details our approach and

tensegrity structure visualizations using RL. We outlined the

results of experiments in section IV, followed by a discussion

in section V and conclusion in section VI.

II. RELATED WORK

In this section, we report the relevant literature to highlight

the limitation of existing work and contribution of our work.

The work in [18] proposes an interpretable machine learning

framework of cell mechanics from protein images and neural
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networks (NN) for prediction of traction forces from a single

focal adhesion protein field. Agnostic and physics-constrained

approaches learn interpretable rules for prediction. A DCell

is proposed in [20] that is a visible NN embedded in the

hierarchical structure of 2,526 subsystems and encompasses an

eukaryotic cell. DCell is able to simulates cellular growth with

reasonable accuracy after training on millions of genotypes.

The proposed setup provides a foundation to decode the drug

resistance, genetics of disease, and synthetic life.

An interesting work is done in [22] to develop the safe RL

approaches specially for environments where non rewarded

states are also important. Authors considered different scenario

to validate their approaches and use of safe RL methods could

have useful contribution in cell mechanics. RL methods are

also used in important medical issues to provide assistance to

patients with disabilities [19], [21]. These works demonstrate

a useful application of RL algorithms but the such formulation

of tensegrity representing a cell is work to be done.

Moreover, Deep RL (DRL) is utilized in [9] to infer

collective cell behaviours and cell–cell interactions in tissue

morphogenesis from 3D time-lapse images. Hierarchical DRL

is applied to investiage cell migrations from the images with

an ubiquitous nuclear label. The hierarchical DRL method

HDRL reveals a modular, multiphase organization of cell

movement to Caenorhabditis elegans embryogenesis. A hybrid

RL model is proposed in [12] to manage process control

efficiently. A probabilistic knowledge graph mdoel is devel-

oped characterizing the science and risk-based understanding

of quantifying inherent stochasticity and biomanufacturing

process mechanisms.

In our work, we investigate how reinforcement learning can

be applied to better understand the ways in which biological

cells adapt their shapes and internal structures in response to

mechanical forces. The proposed work formulate a tensegrity

model representing a cell into an RL setup and then design a

RL agent using proximal policy optimization to find minimum

energy in a tensegrity representing a cell.

III. METHODOLOGY

This section presents the methodology used in our work.

The first step is to model the cell as a tensegrity structure—a

network of compressive elements (rods) and tensile elements

(cables)—to capture how real cells maintain mechanical bal-

ance through tension and compression [1].

To explore this model computationally, we employ a Rein-

forcement Learning (RL) agent that learns to adjust node posi-

tions in the tensegrity structure to reduce the total mechanical

energy, guiding it toward a stable, low-energy configuration.

We use the Proximal Policy Optimization (PPO) algorithm due

to its robustness in continuous control tasks [2].

By integrating biophysics, artificial intelligence, and struc-

tural mechanics, this approach contributes to the understanding

of how cellular behavior emerges from physical constraints.

Such methods also support the design of soft robotic systems

that mimic cellular mechanics [5].

Fig. 1: Flowchart outlining the proposed approach.

The mechanical energy of the tensegrity structure is com-

puted based on edge deformations relative to rest length:

E =
∑

(i,j)∈edges

kij · (||xi − xj || − l0ij)
2

where xi, xj are 2D positions of nodes, l0ij is the rest length,

and kij is the stiffness constant (set to 1). This energy reflects

internal stress.

1) Mechanical Energy Decomposition: To distinguish ten-

sion and compression, we decompose the total energy:

Etotal =
∑

(i,j)∈C

k
(c)
ij

(

∥xi − xj∥ − l0ij
)2

+
∑

(i,j)∈T

k
(t)
ij

(

∥xi − xj∥ − l0ij
)2

(1)

Here, C and T are sets of compressive and tensile elements,

with different stiffness coefficients k
(c)
ij , k

(t)
ij , respectively.

2) Gradient of Energy with Respect to Node Position: Al-

though PPO is model-free, internal forces can be approximated

by the energy gradient:

∂E

∂xi

=
∑

j∈N (i)

2kij(∥xi − xj∥ − l0ij) ·
(xi − xj)

∥xi − xj∥
(2)

This gradient represents the net force acting on node i,

offering a physical interpretation of movement.
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3) Proximal Policy Optimization (PPO) Loss: We use

PPO’s clipped surrogate loss [2]:

LPPO(θ) = Et

[

min
(

rt(θ)Ât, clip (rt(θ), 1− ϵ, 1 + ϵ) Ât

)]

(3)

with

rt(θ) =
πθ(at|st)

πθold
(at|st)

where Ât is the advantage estimate. This formulation ensures

stable policy updates.

4) Energy Convergence Metric: To evaluate learning stabil-

ity, we compute average energy change over the last N steps:

∆E =
1

N

T
∑

t=T−N+1

|Et − Et−1| (4)

A small ∆E signals convergence to a stable, low-energy

configuration.

5) RL Formulation:

• State Space: A flattened vector of 2D node coordinates

representing the structure.

• Action Space: Small shifts (∆x,∆y) applied to movable

nodes.

• Reward Function: Negative of total mechanical energy.

• Termination: Fixed-length episodes without early stop-

ping.

6) Implementation Steps:

• Model the cell as a tensegrity structure of nodes and

rods/cables [3].

• Develop a Python simulation environment to update node

positions.

• Define an energy function to evaluate mechanical stress.

• Use PPO (via Stable-Baselines3) to train the agent [2].

• Train the agent to iteratively reduce system energy.

• Visualize learning and adaptations of the structure.

• Analyze biological relevance of learned behaviors [5].

• Explore applications in mechanobiology and soft

robotics [15].

A. Reproducibility and Future Extensions

Each structure is defined by nodes and edges (cables/rods).

A custom Python environment updates positions using actions

from the agent. The state is a flattened list of node coordinates,

while actions apply perturbations. The reward is based on

internal potential energy. All components are modular and can

be adapted for future extensions, including 3D structures and

additional biophysical constraints.

B. Tensegrity Structures Visualization

We consider diverse tensegrity structures, from simple to

complex, in our work as shown in Figure 2. Each config-

uration is simulated and visualized using Python, enabling

us to observe how reinforcement learning (RL) guides the

system toward more stable, low-energy states. These structures

ranging from basic geometries to biologically inspired shapes

demonstrate the adaptability of RL in modeling cellular me-

chanics [6], [7].

(a) Triangle (b) Line

(c) Hexagon (d) Circle-like

(e) Irregular Cell-like

Fig. 2: Various tensegrity structures used in the study.

Each of the structures illustrated in Figure 2 represents

a unique scenario in our simulations. Figure 2a shows a

simple triangular tensegrity, serving as a basic case to val-

idate the RL agent’s energy minimization capability in a

constrained geometry. Figure 2b presents a linear config-

uration, ideal for examining the agent’s behavior in elon-

gated systems. The symmetric hexagonal form in Fig-

ure 2c introduces more complexity, resembling biological

structures. Figure 2d illustrates a radially balanced, circu-

lar tensegrity, while Figure 2e presents an irregular, cell-

like morphology—a step toward realistic cellular model-

ing.

Across all cases, the RL agent effectively minimized system

energy, reinforcing the concept that even simple tensegrity
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models can provide meaningful insights into cellular biome-

chanics.

C. Towards Realistic Cell-like Tensegrity Structures

We demonstrate a biologically inspired tensegrity system

that reflects the intricate architecture of real cells, in Fig-

ure 3. This advanced model incorporates elements resem-

bling cytoskeletal components such as actin filaments and

microtubules, which are critical for maintaining cell shape

and enabling mechanical responsiveness. Such structures have

been central to tensegrity-based modeling frameworks in cel-

lular biomechanics [4], [5]. By simulating these complex

geometries, we move closer to capturing the adaptive, dynamic

nature of living cells.

Fig. 3: A biologically inspired tensegrity model representing

a complex cell.

IV. RESULTS

This section presents the experimental results that we per-

formed while considering different structures.

Our experiments began with basic triangular tensegrity

structures as shown in Figure 2a, where the RL agent con-

sistently achieved noticeable reductions in total mechanical

energy over training episodes. These early successes demon-

strated the agent’s capacity to learn stable configurations, even

in minimal geometric setups.

As we progressed to more complex shapes such as hexag-

onal (Figure 2c) and circular configurations (Figure 2d), the

RL agent adapted well, maintaining structural coherence while

reducing energy levels. Notably, the hexagonal structures,

which resemble symmetrical cell geometries, converged faster

toward low-energy states. The circular models, simulating soft

boundary conditions like those found in real cell membranes,

further confirmed the agent’s ability to generalize across

geometries.

Visual analysis of the final tensegrity forms and energy

plots validated the model’s effectiveness. These findings are

consistent with earlier research where RL-based policies

achieved adaptive control and energy-efficient locomotion in

soft tensegrity robots [7], [11].

(a) Triangle tensegrity

(b) Line tensegrity

(c) Hexagon tensegrity

Fig. 4: Energy of the tensegrity structures over training steps.

(a) Triangle tensegrity (b) Line tensegrity (c) Hexagon tenseg-

rity.

For tensegrity structures to train the RL agent, we employed

the Proximal Policy Optimization (PPO) algorithm and used

a reward function based on the system’s mechanical energy.

Specifically, the agent receives a negative reward equal to

the sum of squared differences between the current and rest

lengths of all links, effectively encouraging configurations that

minimize internal tension and compression. The environment

state is defined as a flat vector of 2D coordinates representing

the positions of all nodes. This simple representation provides
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the agent with sufficient spatial information to act. During

early training, exploration is naturally handled through PPO’s

stochastic policy updates, allowing the agent to try unstable

configurations and gradually converge toward energy-efficient

ones.

Each experiment was trained over 100,000 timesteps, typi-

cally spanning 500 to 1,000 episodes depending on episode

length. This duration provided the agent with enough in-

teraction to consistently learn optimal or near-optimal con-

figurations. For example, in the triangular and hexagonal

tensegrities, the policy reliably minimized energy within the

first 60,000 timesteps, while irregular cell-like shapes required

more training to stabilize. We observed that once the energy

starts decreasing steadily, subsequent steps fine-tune the po-

sitions rather than cause drastic shifts. Preliminary robustness

checks indicate the learned policies remain effective when

tested on slightly perturbed initial states.

While our current results are mostly qualitative, they offer

clear and reproducible patterns of energy reduction across

varied structures. In future work, we plan to include statistical

metrics such as average final energy, convergence rate, and

baseline comparisons with classical physics-based solvers. We

are also extending our approach to 3D tensegrity models and

exploring more expressive RL methods like Soft Actor-Critic

(SAC) to improve learning in high-dimensional, nonlinear

cellular geometries.

V. DISCUSSION AND FUTURE WORK

This study has demonstrated the feasibility of using rein-

forcement learning to manipulate tensegrity-based cell mod-

els toward stable and energy-efficient states. It provides a

promising step in merging biophysical modeling with artificial

intelligence, especially for systems that rely on structural

tension and compression, like real cells. Despite its success

in 2D structures, our framework opens the door to deeper

biological relevance through future improvements as explained

below:

• Adding biological constraints, such as anchor points

representing extracellular matrix contacts or internal pres-

sure mimicking cytoplasmic resistance [4].

• Scaling to 3D tensegrity systems, which can better

replicate the spatial complexity of cytoskeletal networks

found in living cells [10].

• Incorporating viscoelasticity, allowing simulation of

how cells respond over time to mechanical stimuli and

not just at equilibrium.

• Integrating with real data, such as microscopy-derived

cell geometries, to improve biological validity and poten-

tially guide experimental modeling [5].

Finally, we can summarize that as artificial intelligence

continues to make significant contributions in the medical and

healthcare domains, its integration into biological modeling

is becoming increasingly relevant. Studies have shown how

AI-driven approaches enhance diagnostic precision in areas

such as skin cancer and COVID-19 detection [23], as well

as in risk management [22]. In a similar spirit, our work

demonstrates the potential of reinforcement learning for un-

derstanding complex biomechanical behavior at the cellular

level. This further supports the growing trend of leveraging AI

not only for diagnosis but also for predictive and mechanistic

modeling of biological systems.

These enhancements would bring the relevant research

community closer to a useful tool that can not only simulate

the structure but also predict and interpret cellular mechanical

behavior in health and disease.

In the future work, we will extend our work to more

complex topologies and we will also consider including ex-

ternal constraints like cell-substrate interaction or intracellular

pressure.

VI. CONCLUSION

In this work, we have presented a novel integration of

tensegrity mechanics with reinforcement learning to explore

how AI methods, specifically RL agent can autonomously

discover stable, low-energy configurations of cell-like struc-

tures. By learning control strategies that minimize mechanical

energy, the agent mimics cellular adaptation behaviors in

silico. This framework lays the groundwork for more intel-

ligent models of mechanobiology—capable of interpreting,

simulating, and even designing cellular responses. With further

development, it may contribute to advances in synthetic biol-

ogy, bio-inspired robotics, and our theoretical understanding

of cellular mechanics.
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