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Abstract—Photovoltaic platforms enable a single agent to
simultaneously act as both a producer and a consumer of
power, facilitating self-consumption strategies. This trend aligns
with the goal of reducing CO2 emissions and is poised to
significantly transform the structure of energy markets. It also
introduces specific challenges—both tactical (e.g., pricing) and
operational (e.g., routing, scheduling)—related to synchronizing
energy production with consumption. In this work, we address
the problem of efficiently routing a fleet of electric autonomous
vehicles (EAVs), using energy that is either produced by a
photovoltaic platform or purchased from the general power grid.
We propose an exact Mixed-Integer Linear Programming (MILP)
formulation of the problem, along with a heuristic approach
that approximates the power production component of the model
using surrogate representations.

I. INTRODUCTION

ENEWABLE energy sources (e.g., photovoltaic, wind,

hydrogen) are driving the emergence of local, in situ
producers who simultaneously consume energy—such as fac-
tories and farms. In this context, the energy production-
consumption process becomes partially endogenous, forming
a closed-loop system under the self-consumption paradigm
[15]. This paradigm is expected to have a significant impact
on energy economics [11], [14]. It raises various challenges,
ranging from operational issues—related to the scheduling and
synchronization of production and consumption—to tactical
and strategic decisions, such as pricing, storage, and interac-
tion with the central grid. In scenarios where the decentralized
producer-consumer entity is a consortium of independent
agents, each with its own schedule and shared access to
the production platform, fairly distributing costs and benefits
raises the cooperative issue.

We consider here the problem of routing a fleet of electric
autonomous vehicles (EAVs), powered either by photovoltaic-
generated electricity—available at time-dependent rates—or
by electricity purchased from the general grid at time-
dependent prices. This Vehicle Routing under Energy Pro-
duction Costs (VR_EPC) problem requires fleet managers
to synchronize vehicle activity with energy production and
procurement, while taking into account the limited storage
capacities of both the platform and the vehicles.
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A. State of the Art

Numerous studies have explored the routing of electric
vehicles with the aim of minimizing energy costs or addressing
environmental concerns, such as in the Green Vehicle Routing
Problem (Green VRP), the Pollution Routing Problem, and the
Hybrid Vehicle Routing Problem: [5], [16], [21],[19]). They
most often proposed models involving refueling transactions
subject to time windows or shared access constraints. For
example:

o Erdogan and al. [6] introduced the Green VRP, which
minimizes both total travel distance and the number of
refueling transactions.

o Franceschetti and al. [8] proposed a Pollution-Routing
model, incorporating time-dependent costs and an objec-
tive function accounting for driver wages and fuel costs.

o Kog and al. [12] focused on determining where and how
much vehicles should be recharged, considering access-
to-energy constraints.

o In [21], authors addressed customer sequencing, while
explicitly accounting for the recharge capacity of the
charging stations.

Some authors also dealt with CO2 emitting vehicles, with
the purpose of controlling related CO2 emission:

o Raylan and al. [17] minimized emissions resulting from
both routing and load-related factors.

o Sachenbacher and al. [18] accounted for time-dependent
factors and refueling schemes, adapting shortest path
algorithms accordingly.

o Kuo [13] explored speed control to balance energy con-
sumption, distance, and time.

o Schneider and al. [19] developed heuristics for a Vehicle
Routing problem with time windows and safety-specific
refueling constraints.

o Lajunen [14] performed simulation-based comparisons of
energy savings across urban shuttle and bus configura-
tions.

Despite these contributions, few studies have jointly man-
aged both energy production and consumption. Addressing
this challenge requires integrating heterogeneous routing and
scheduling processes while accounting for storage constraints
(see [2], [3], [1]). Some formulations borrow from the Lot
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Sizing framework or its multi-level scheduling variants (see
[4], [10], [20]), but these models involve highly heterogeneous
variables and constraints, often leading to poor performance
of linear relaxations. Moreover, they implicitly rely on the
existence of a single decider provided with full control and full
information with respect to the system, inducing an assumption
which does not fit most real life contexts. Alternatives such as
constraint programming and bi-level formulations may help
coordinate interactions across decision levels. Nonetheless,
whatever be the point of view (centralized or collaborative),
designing efficient solution algorithms remains a major chal-
lenge. A recent trend—facilitated by machine learning—is to
approximate complex sub-models using surrogate constraints
or cost functions.

B. Main Achievements

Since our VR_EPC problem is likely to involve in practice
collaborative features making it difficult to suppose the exis-
tence of a global decider, we adopt here the point of view of
the EAV. Also, we skip the uncertainty issue, while supposing
that the behavior of our system, and more specifically of the
photovoltaic platform, is deterministic. Then we propose two
solution approaches for the VR_EPC problem.

o The first one is an exact MILP formulation that considers
the vehicle variables as master variables and includes
specific Recharge Decomposition constraints requiring
the application of a specific separation procedure, which
works in polynomial time. This MILP model is solved
using a branch-and-cut method. However, this approach
becomes computationally inefficient for large instances.

« So we also design 2 heuristic algorithms, which makes
the EAV decide under a partial knowledge of the behavior
of the photovoltaic platform, while using an approxi-
mation of the energy production model. The resulting
algorithms pave the way for more efficient handling
of uncertainty and collaboration challenges, particularly
in scenarios where the photovoltaic (PV) platform and
the vehicles are run by distinct players, who do not
fully share neither the same goals nor the access to
information.

The paper is organized as follows. Section II provides a
detailed description of the Vehicle Routing under Energy Pro-
duction Costs problem (VR_EPC). In Section III, we present
the MILP formulation and its resolution using a branch-and-
cut approach. Section IV offers a statistical analysis that
provides the basis for the development and testing of 2 local
search heuristic. We conclude briefly in Section V.

II. THE VEHICLE ROUTING UNDER ENERGY PRODUCTION
CoOSTS PROBLEM

We consider a photovoltaic (PV) micro-plant, referred to as
PVP, along with a fleet of electric autonomous vehicles (EAV)
in charge of visiting a set of stations. These two components
interact through recharge transactions when the vehicles return
to the micro-plant to recharge (see Fig. 1). For the sake of
simplicity, we limit our study to a single vehicle that must
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complete a Traveling Salesman-type tour, and we assume the
system operates in a deterministic manner. Thus, the main
components of our target system are:

Micre-Plant Depot
&
Stations-

.

Tank B Refueling Detour

Vehicle P

‘. ! -
Fig. 1. The PV-Micro-Plant Interacting with a Vehicle Route

e A Photo-Voltaic Micro-Plant PVP
The time horizon of PVP is divided into N periods
1 =20,...,N —1, all with a same duration p. Thus the
starting timestamp of period ¢ is equal to p - ¢ and its
ending timestamp equal to p - (i + 1). During a period
i, PVP is expected to produce R; energy units. It may
also buy an additional amount y; of power, that cannot
exceed a charge capacity denoted by C°". The cost of
buying such an additional energy amount y; depends
on both i and y; and may be written ®;(y), where ®;
is a piecewise linear increasing convex function. The
convexity of this cost function ®; expresses the fact that
marginal power purchase prices are usually increasing.
PVP is provided with a macro-battery, with storage
capacity C*VP > CC" and initial load H'VP. Tt must
manage its purchase operations in a way which makes it
able to meet vehicle’s demand without exceeding storage
and charge capacities, while ending the process with a
load at least equal to HV¥ and minimizing related
purchase costs.

e An Electric Autonomous Vehicle EVeh and a Set of
Stations J
This vehicle, denoted by EVeh, is initially located at a
specific station Depot. It must visit and service, within
the time horizon [0,N.p], a set J = {1,...,M} of
stations according to a TSP (Traveling Salesman) route
I, before coming back to Depot. Moving from a station
j to a station k requires E;; energy units and T
time units, service times being included into the Tj
values. We suppose that vectors T',0,0* (F, ¢, €*) define
a distance on the set defined by Depot, PVP and J.
EVeh is provided with a battery, with storage capacity
CVe" and initial load HY*". It must end with a load
at least equal to HY *" while minimizing the time when

it returns to Depot. Depot is considered as a station,

identified as Depot = 0 at the beginning of the process

and Depot = M + 1 at the end. By the same way, PVP

is also considered as a station, identified as PVP = —1
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e Recharge Transactions

Because of its storage capacity and the constraint

about its load at the end of the process, EVeh must

periodically move to PVP in order to recharge. Such a

recharge transaction can be achieved in a single period

i and takes place between two stations j, k consecutive

according to the route I': EVeh moves from j to PVP in

order to arrive before time p - 4, receives some amount

m < Inf(CC" CVeh) of energy, and starts again from

PVP at time p-(i+1) in order to reach k. Since the vehicle

is a kind of robot, this recharge transaction, denoted by

w = (4,4, k, m), involves some human resource and so

it induces a cost ¥,. This human resource cost depends

on ¢ and is independent on m. For the sake of safety,
purchasing power is forbidden during the period ¢ when

the recharge transaction w takes place. Moving from j

to PVP requires €; energy units and ¢; additional time,

while moving from PVP to k requires €} energy units and

0} additional time. A recharge transaction may impose

EVeh to wait at PVP until the beginning of period ¢ in

case it arrives before time p-:. If we denote by 7; the time

when EVeh arrives at j, by V;“" its energy load and by

V.PVE the energy load of the PV-plant at the beginning

of period 4, then we must have:

-pi>T+n e =p-(0+1)+05;

- VP =VE—m=>o0
The load of EVeh at the end of period i must be
equal to Vjveh —€;+m< CVeh,
The load of EVeh at the beginning of period ¢ must
be equal to Vjveh —¢€; > 0.

Since the system described this way involves two players,

each provided with its own performance criterion, resulting
problem might be set according to the bi-objective format. Yet,
our focus here is on the algorithms. Therefore, we introduce
a time versus money coefficient o, and formulate VR_EPC as
a mono-objective problem. By the same way, since we tend
here to adopt the point of view of the vehicle manager EVeh,
we set related model as a bi-level one.
VR_EPC: Vehicle Routing with Energy Production Costs :
{Compute the route I" followed by EVeh together with the
recharge transactions that link PVP and EVeh in such a way
that:

e All stations are visited once within the time horizon
[0,p- N].

e Vehicle storage capacity
requirements are satisfied.

e Some extended cost PCost+a.Veh_Time is minimized,
where PCost means the optimal cost value induced by
the PVP sub-problem consisting in deciding the purchase
vector y = (y;,¢ =0,...,N — 1) in such a way that:

CVeh

constraints and energy

— It meets PVP storage and charge capacities;

— It meets the needs related to the recharge transactions
while allowing PVP to end with at least as much
energy as when it started;

i

TABLE I
PRODUCTION RATES, UNIT PURCHASE PRICES AND RECHARGE COSTS

¢ |0 1|2 [3|4]5|6]7|8]9]|10]|11 12 | 13

R, |2]|12|0|0[4[4]4]0]0]0O0 0 2 2 0

P23 15151 1 1151515 5 2 2 5

v, 1 1 1 1121211 1 1 1 1 1 2 2

An Example: Let us suppose that:

e M =5 N=14,p=2,a=1;

. CVeh 167HVeh 97 CPVP 20, HPVP
5,CC" = 15;

« Expected productions R;,7 = 0,...,N — 1 come as in
Table I;

« For any period i, function ®; comes as: ®;(y) = P; - v,
y denoting the additional energy bought at period 7 and
prices P; come according to table I.
Let us consider a route I' = {0,1,2,3,4,5,6} together with
time and energy requirements given according to Figure 2:
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Time value Energy value
,‘/5,i 2,2 1,2
2.1 ‘5, 6 Depl\(;ltj] 6=
1,3
Micro-plant

Fig. 2. The Route I', together with the time and energy requirements

Then we get a feasible VR_EPC solution involving I' by
specifying the recharge transactions as follows:

e A first recharge transaction occurs at period 3, while
EVeh is moving from station 1 to station 2. Related
energy amount m is equal to 10.

« Another recharge transaction occurs at period 11, while
EVeh is moving from station 3 to station 4. Related
energy amount m is equal to 15.

o PVP buys 3 energy units at period 0 and 3 energy units at
period 1. Those operations induce a purchase cost equal
to3:-3+2-3=15.

o The 2 recharge transactions induce a cost equal to 2,
which makes the PCost value equal to 15+2 = 17, while
the value Veh_Time is equal to 14 -2 = 28 , inducing a
generalized cost value o+ PCost + - Veh_Time equal
tol-17+41-28 =45.

III. A MILP MODEL

Though VR_EPC is too complex for an exact handling
of large size instances, casting it into the MILP format is
important, not only because resulting MILP_VR_EPC model
will provide us with benchmark results in the case of small
instances, but also because it will contain a structural analysis
of the problem.
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A. The Variables of the MILP_VR_EPC model

Getting a MILP formulation first requires identifying the
variables. Since we adopt here the point of view of the vehicle
manager, our master variables are going to be 2 {0, 1}-valued
vectors Z = (Zjp,k # j € {-1,0,...,M + 1}) and
X = (Xjr,k # j € {0,....,M + 1}), that respectively
describe the routes followed by the vehicle with and without
the detours induced by the recharging transactions. Those
main vehicle variables are going to be completed by auxiliary
variables related to the time values when the vehicle visits the
stations and to its energy load at this time. We also need PV-
Plant variables that allow us to describe the evolution along the
periods of the power load stored inside the PVP macro-battery.
Finally, we need Recharge Transaction variables, linking the
respective trajectories of the vehicle EVeh and the PV-Plant
PVP. This leads us to introduce the following variables:

o Vehicle variables:

- {0,1}-valued variables Z;i,k # j €
{-1,0,....,.M + 1}: Z;), = 1 iff the vehicle
moves from j to k: -1 denotes here the micro-plant
PVP.

- {0,1}-valued variables X,k # j € {0,...,M +
1}: X, = 1 iff the vehicle moves either from j to
k or from j to PVP, and next from PVP to k.

- Non negative variables LY ", j = 0,...,M: L}"
means the energy transferred to EVeh just after j, in
case Zj 1 = 1;

— Non negative VariablestVEh,j =0,....M + 1:
V}Veh means the energy stored by EVeh when it
arrives at j;

— Non negative variables 75,7 = 0,...,M + 1: 7;
means the time when EVeh arrives at j;

- Non negative variables 77,7 = 0,...,M + 1. If
Zj,—1 = 1then T;‘ means the time when EVeh starts
recharging after station j in case Z; 1 = 1.

o PV-Plant variables:

— Non negative variables y;,7 = 0, ..., N—1: y; means
the energy amount bought by the PV-Plant’s during
period ;

- {0,1}-valued variables §;,: =0,..., N —1: §; =1
means that some recharge transaction takes place at
%5

— Non negative variables V;V'V¥ i =0,...,N -1, N:
VFPVP means the energy stored by PVP at the
beginning of i;

- Non negative variables LFVF i = 0,...,N — 1:
LFVP means the energy transferred from PVP pe-
riod 7 in case in case §; = 1.

« Recharge Transaction variables:

- {0,1}-valued variables U; ;,i = 0,...,N —1,j =
0,...,M: U;; = 1 means that some recharge
transactions occurs at period ¢ that involves station
7 and its sucessor in I’

— Non negative variables m; ;,i = 0,...,N — 1,5 =
0,...,M: m; ; means related amount of energy.
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B. Structural Recharge Decomposition Vehicle Constraints

Z and X describe the full route followed by EVeh. They
must clearly meet the following standard vehicle routing
constraints:

. ZM+1,0 = 1; V] : Zj.,j = O; (VRI)
° Vj = O, ey M + 1: Zszl,...,]\l+1 Zj,k =1=

Dhe 1. a1 Zhijs (VR2)
o Yicon. i1 Zi—1= 20 mp1Z-15>1; (VR3)
. VJ,]{? S {0,,M+1} Xj,k > Zj,k ) (VR4)
e Vje{0,...,M+1}: Zk:O,l,...,M-H Xjp=1=

D k=01, M1 Xk (VR5)

Yet we see that (VRI, ..., VRS) are not enough to ensure that
we may interpret Z, X as a route followed by EVeh, feasible
with respect to the energy requirements. In fact, they are not
enough to prevent us from the existence of standard Traveling
Salesman sub-tours. So we must reinforce them. We do it by
noticing that if EVeh spends W energy while moving inside or
at the boarder of some station subset A which does contain the
micro-plant, then it must move at least [ vy | times towards
PVP in order to refuel. In order to formalize this, we must
introduce some additional notations:

« For any such a subset A of {—1,0,...,M,M + 1}:

- Cl(A) ={(J,k) st at least j or k is in A};
- 0(A)={(j,k),stj¢ Aand k € A}.

« For any (j, k):

- I, = Ep if (j, k) = (M + 1,0) and I, , = CV¢h
else.
- I, = CVeh — By if (j, k) = (M +1,0) and IT¥ , =

Vel else.

Then we become able to derive the following Recharge
Decomposition constraints that reinforce (VR1, ..., VRS):
e Forany A C{0,...,M + 1},Z(jyk)€6(l4) k- Zjr >
Z(j7k)€Cl(A) Ech ’ Z'yk (VRO)
e Forany A C{0,...,M+1}, Z(J}k)eé(r}_m I Zj g >
Z(j,k)eCl(A) Ej,k . Zj,k (VR6-B1S)
The following Lemma 1 provides us with the structural
meaning of these constraints: It tells us that adding them to
(VRI1, ..., VR5) ensures us that (Z, X) are going to describe a
vehicle route that excludes sub-tours and can be decomposed
into a sequence of sub-routes (Depot — PVP), (PVP — PVP)
and (PVP — Depot), all feasible with respect to the energy
requirements.
Lemma 1: The VRP constraints (VRI, ..., VR6-Bis) hold if and
only if the arcs (j, k) such that Z;, = 1 define a collection
v of sub-tours vs,s =0,...,S such that:

e 7o starts from Depot = 0, ends into PVP = —1, and
spends less than H) " energy. (SUBI)

o g starts from PVP = —1, ends into Depot = 0, and
spends less than CVe'—HY " energy. (SUB2)

e Foranys=1,...,5-1, s starts from PVP = —1, ends
into —1 and does not require more than CV" energy.
(SUB3)

o Every station j = 1,..., M is visited once. (SUB4)
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Proof. We only need to simultaneously follow the TSP route
defined by X and its extension defined by Z. End-Proof
Remark 1: Constraints (VR6, VR6-Bis) neither tells in which
order the sub-routes v4, s = 0,...,.S must be performed, nor
it ensures the feasibility of resulting route with respect to the
time horizon p - N.
Separating the Recharge Decomposition Constraints: As
usually when it comes to the management of constraints on
the subsets of a given set, we must cope with the separability
issue. Given 2 possibly non integral vectors (Z, X ), separating
the constraints (VR6, VR6-Bis) means checking that all those
constraints are satisfied by (Z, X) and, in case they are not,
computing a subset A C {0,...,M + 1} such that related
VRG6 or VR6-Bis constraint is violated by (Z, X ). Theorem 1
below not only tells us that separating (VR6, VR6-Bis) can be
done in polynomial time, but related proof provides us with
a polynomial time algorithm that will perform this separation
process.
Theorem 1: The Recharge Decomposition constraints can be
separated in polynomial time, by application of a min cost
flow algorithm.
Sketch of the Proof: Let us restrict ourselves to the case
of the constraints VR6 (the case of the constraints VR6-Bis
is quite similar). Given Z, possibly non integral. Separating
VR6 means searching for A C {0,..., M + 1}, which does
not contain —1 and is such that:
2 mescay Wik - Zik < X wyecia)y Eik * Zik

or equivalently for B = {-1,0,...,M + 1} \ A, which
contains —1 and is such that: *)
DGk stjeBken Wik Zik +

(k) stjeB ke Eik - Zk<Z(jk)E “Zjk

Let us set A = Z Ej - Z;k, and let us “construct an
auxiliary multi-graph G (X, A) as follows:

o X ={Source=-1,0,...,M + 1, M + 2 = Sink};
o A is defined as the set of all simple-arc (j,k),j # k €
{-1,0,..., M + 1}, augmented, for every j, with copy-

arcs (j,M + 1)k k # j € {-=1,0,..., M + 1}, which
connect j to Sink = (M + 2) and are provided with
label k. Every copy-arc a = (j, M + 1)* is provided
with a weight w, equal to Ej, - Z; . Every simple-arc
= (j, k) is provided with a weight w, equal to II; -
Zjk = Ejx - Zj.
Then we easily check that computing B such that (*) holds
means computing a cut B’ which separates Source =
—1 from Sink = M 4+ 2 in G and is such that
Za s.t. origin(a)€B’,destination(a)¢ B’ Wq < A. We know that
this can be done in polynomial time through a simple Max-
Flow algorithm. End-Proof.

C. The VR_EPC_MILP MILP formulation

We are now able to extend the structural vehicle routing
constraints VR1, ..., VR6-Bis into a VR_EPC_MILP setting
of VR_EPC. We do it while distinguishing 3 main groups of
constraints:

o The PV-Plant Constraints: They involve the variables

related to the purchase of power and express the evolution

along the periods of the load V;"V'¥ of the PVP battery,
the fact that this load cannot exceed the capacity CVF,
and the fact that the final load VV? must be no smaller
than the initial load HZV?.

o The Vehicle Routing Constraints: They contain VRI,
..., VR6-Bis, together with constraints related to the
time values when the vehicle arrives to the stations or
to PVP for the recharging transactions. Those temporal
constraints fix the order according to which the sub-routes
involved in Lemma 1 are visited. The Vehicle Routing
constraints also contain constraints which express the
evolution along the route defined by (Z, X) of the load
VjVEh of the EVeh battery, the fact that this load cannot
exceed the capacity C'V°", and the fact that the final load
V¢ must be no smaller than the initial load H "

o The Synchronization Constraints: They link together
the PVP periods and the time horizon [0,p - N] of
the vehicle, and synchronize the energy received by the
vehicle and the energy delivered by the PV-Plant during
the recharge transactions.

Those constraints may be formalized as follows (for the
sake of simplicity, we replace the "Big M formulations by
implications):
VR_EPC Constraints and Objective Function:

o Objective: Minimize Y (U;.5; + ®;(yi) + @.7ar41

« PV-Plant Constraints’

-Vi=1,....,.N—1: y <C%".(1-4); (PCl)
- Vi=0,...,N: VPVE < CPVE (PC2)
_ VOPVP HPVP VPVP > HPVP (PC3)
- Vi=1,.. N VPVP VPVP+
- LfVP ; (PC4)
« Vehicle Routing Constraints

— (VRI, ..., VR6-Bis) involved in Lemma 1;
_ VVeh HVeh V]\‘/;ihl > HVeh (VR7)
-Vj=0,.... M+1: E; 1 < VVeh < Vel (VRS)
- Vj,k:O,...7M+1 Xjka

(VY + B+ (Zjge — 1) - (e +ex — Ejp)) <

(V'jVeh + L;_/eh) : (VR9)
- Vj=0,...,M: Z; = (VY">¢); (VRIO)
- Vj=0,...,M: Zj 1 — (VVh + LYh <

€ +CVely (VR10-Bis)
- 10=0; 741 <p-N; (VR11)
- Vik=0,.... M+1: Z;, —

(15 + Tje < Tr); (VR12)
- Vj,k=0,....,.M+1: (Xj,k_Zj,k = 1) —

(77 +p+To1p < ) (VR13)
- VJ:O,7M+1 (Zj,fl) —

(rj+ Tj—1 < —77); (VR13-Bis)

« Synchronization Constraints

J=0,. MZzo ..... No1Uij =215 (SYD)
- Vj = O7 ..

Zi:o,...,N 1mm =LYy (SY1-Bis)
-Vi=0,...,N—1: Zj—o wUii =6, (SY2)
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- Vi=0,...,N—1:
Zg: vy M Mg = LPVP 3 (SY2-Bis)
- Vj=0,. M-Z10 N PiUiy =775 (SY3)
—Vi=0,....N—1,j=0,...,M:
mij < Inf(CPVP,CVEh) Ul,j ; (SY4)

Theorem 2: Above VR_EPC _MILP MILP model solves
VR_EPC in an exact way.

Proof: Lemma 1 tells us that X, Z define a feasible vehicle
route I'. Constraints (SY1, SY2) link the variables U, m with
the route Z and the energy received by the vehicle, with
the PV-Plant variables § and the energy transferred by PVP.
(SY4) makes those energy amounts be consistent with the
storage capacities. (SY3) links the time values of PVP and
EVeh. (PC4) describes the evolution throughout the time of
the energy stored by PVP. Vehicle constraints (VR7, ..., VR10)
describe the evolution throughout the time of the energy stored
by EVeh. They keep this energy from becoming negative or
larger than the capacity CV¢". (VR11, ..., VR13-Bis) describe
the evolution of the time while the vehicle follows the route
described by X and Z. End-Proof

Practical Handling of the VR_EPC_MILP MILP model.
We handle VR_EPC_MILP through Branch and Cut, while
applying the auxiliary graph and the Max-Flow algorithm
involved in Theorem 1 in order to separate the Recharge
Decomposition constraints.

D. Numerical Experiments

Purpose: Evaluating the VR_EPC_MILP MILP model.
Technical Context: The experiments are performed on a
computer with AMD EPYC 7H12 64-Core processor, and are
running under Gnu/linux Ubuntu 20.04.2. The MILP library
CPLEX 12.10 is used in a single-thread mode.

1) Instance generation: The main parameters of every
instance are the station number M, the period number NV,
and the length p of the periods. M varies from 5 to 30; N
varies from 40 to 320; p takes values in {1,2,4}. We derive
from the instances with p = 1 the instances with p = 2 and
p = 4 by merging the periods in a natural way, the length
TMaz =p- N of the time horizon remaining the same.
Vehicle coefficients: The M stations, together with Depot
and HMP are generated as integral points of a square in
the 2D plane. Vectors 7', 60,6* corresponds to a rounding of
the Euclidean distance, and vectors E, ¢, €* correspond to the
Manhattan distance.

PV-Plant coefficients: We cluster production periods into
5 super-periods of same length, each provided with sym-
bolic mean production and cost values R., Costy in
{Low, Medium, High}. Then, integral time dependent pro-
duction coefficients R;, together with time dependent cost con-
vex piecewise (2 pieces) linear functions ®;,7 =0,...,N—1,
are generated accordingly in such a way that resulting instance
is feasible and that this feasibility requires the purchase of
additional power.

Storage capacities: We cor‘}t;ol the number of recharge trans-
actions by maintaining cVeh between 0.5 and 3.
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TABLE II
BEHAVIOR OF VR_EPC_MILP

Id (N,M,p) | LBG_LP | UBG_LP
1 | (160, 10, 1) 56,7 173
2 | (160, 10, 1) 76,6 131
1-2 | (160, 10, 2) 58,5 175
2-2 | (160, 10, 2) 71,7 135
3 | (160, 10, 1) 51,6 171
4| (160, 10, 1) 64,0 125
3-2 | (160, 10, 2) 51,7 174
4-2 | (160, 10, 2) 63,4 134
5 | (240, 20, 1) 43,8 148
6 | (240, 20, 1) 59,5 176
7 | (240, 20, 1) 83,2 208
5-2 | (240, 20, 2) 43,9 148
6-2 | (240, 20, 2) 59,1 201
7-2 | (240, 20, 2) 82,8 255
8 | (320, 30, 1) 58,0 151
9 | (320, 30, 1) 51,7 117
10 | (320, 30, 1) 63,2 150
8-2 | (320, 30, 2) 58,0 153
9-2 | (320, 30, 2) 51,2 127
10-2 | (320, 30, 2) 63,08 163

Scaling coefficients o:: We do in such a way that the weights
of respectively PCost and o.Veh_Time remain integral and
comparable.

For every instance Id (Tables II), we provide input values
values N, M, p. We tested 242 instances. Yet, we restrict
ourselves here to 20 instances, with p = 1, referred to as Id,
and p = 2 referred to as Id — 2.

2) Results: For every instance, Table II displays The

lower bound LBG_LP and the upper bound UBG_UB
computed through Branch and Cut by the CPLEX library
in 2 CPU hours (7200 seconds). We boost the computation
of upper bounds UBG_UB with the CPLEX parameter
MIP_emphasis_switch.
Comments: Even when allowed to run during 2 hours, the
model never reaches optimality, though it often allows the
computation of a good feasible solution. That is why we
are now going to derive from some statistical analysis some
efficient heuristics for our problem.

IV. HEURISTIC HANDLING OF VR_EPC

The bi-level structure of VR_EPC and the fact that this bi-
level structure will correspond in most cases to some collab-
orative decision context, suggests to manage VR_EPC while
acting on the master route I" through local search operators and
devices that anticipate the behavior of resulting sub-problem
VR_EPC(I") through the use of simple devices. There exists
many ways to proceed this way. The approach which we are
going to propose here relies on a statistical analysis of the
correlation which may exist between the optimal value of
VR_EPC and some key features of the route I'.

In order to keep on, we need some additional notations:

e We denote by VR_EPC(I') the VR_EPC instance

induced by fixing I' (that means, referring to the
VR_EPC_MILP MILP model, if we fix X in such a
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TABLE III
CORRELATION ANALYSIS

It 1 2 3 4 5 6 7 8 9
W(T) | 564 | 504 | 500 | 462 | 464 | 435 | 3838 | 390 | 378
LT(T) | 197 | 183 | 182 | 165 | 162 | 152 | 135 | 132 | 126
NRT 11 10 9 9 9 9 7 7 8

TABLE IV
CORRELATION ANALYSIS

It 10 11 12 13 14 15 16 17 18
W() [ 564 | 504 | 500 | 462 | 319 | 315 | 314 | 326 | 324
LT(T) | 197 | 183 | 182 | 165 | 105 99 | 101 | 100 99
NRT 11 10 9 9 6 6 6 7 7

way it meets (VR3, VR4) and does not induce any sub-
tour). We denote by W (T") its optimal value;

o We denote by LT (T"), L¥(T") the lengths of T" in the sense
of respectively vectors 7' and F.

Let us also recall the way the standard Traveling Salesman
2_Opt and Reloc operators act on any current route I' through
2 parameters ji, jo in J +{Depot}:

e 2_Opt(T', j1,j2) replaces the moves from j; to its suc-
cessor j; and from j, to its successor j, by moves from
j1 to jo and from j; to jo, and reverses the orientation
of T between j, and 71;

e Reloc(T, j1,jo) relocates j; between jo and ja.

A. Experimentally Linking W(T'), LT (') and L¥(T")

Tables III, ..., VI show that W(T"), LT(T'), L¥(T") and the
number N RT of recharge transactions are strongly correlated
along the 36 iterations It = 1,...,36 of a descent loop
involving 2_Opt and Reloc and performed on 20 stations. We
observe the same kind of correlation when performing the
same experimental process on all the instances involved in
table II.

B. A Simple PDYN_EPC Algorithm for the Computation of an
Upper Bound W _Aux(T') of W(I')

Though fixing I' deeply simplifies the VR_EPC_MILP
MILP model, it does make it suitable for repeated applications
inside a local search process. So we briefly describe here a

TABLE V
CORRELATION ANALYSIS

It 19 20 21 22 23 24 25 26 27
W() [ 205 [ 202 | 211 | 200 | 199 | 178 | 178 | 185 | 179
LT(T) 72 70 67 64 64 62 62 61 61
NRT 3 3 4 3 3 4 4 3 3

TABLE VI
CORRELATION ANALYSIS

It 28 29 30 31 32 33 34 35 36
W(T) | 173 | 297 | 259 | 267 | 263 | 276 | 275 | 247 | 205
LT(T) 57 97 89 89 87 87 87 76 75
NRT 3 4 3 3 3 4 3 3 4

simple dynamic programming algorithm PDYN_EPC which
computes an upper bound W_Auz(I") of W(I') under running
times that allow its insertion into such a local search process.
We design PDYN_EPC by noticing that once I is fixed, a full
solution is determined by the sequence of recharge transactions
linking EVeh and PVP together, augmented with the amounts
of power bought during the periods separating 2 consecutive
recharge transactions. More precisely, PDYN_EPC searches
for a path (a sequence of transitions) in a state graph whose
nodes (the states) and arcs (decisions and transitions) are
defined as follows:

o A state in the sense of PDYN_EPC is a 4-uple S =
(4,4, VY ", V;FV'P), where j is a station, 7 a period, V"
is the power load of EVeh when it leaves j and V"'V
the power load of PVP at the end of 4, with the implicit
meaning that a recharge transaction involving ¢ and j
has just been performed. Such a state S comes with the
smallest cost value II(S) of the cost of a path connecting
initial state Sy to S according to the PDYN_EPC process.

e« A decision consists, in a natural way, in a 4-
uple (41,41, m1,%y), where (j1,i1,m1) means the next
recharge transaction, and y means the power which is
going to be bought by PVP during the periods ¢ +
1,...,41 — 1. Resulting state and feasibility constraints
derive in a natural way from the VR_EPC_MILP setting.

« The cost of related transition is p- (i; —4) augmented with
the purchase cost of ¢. This purchase cost corresponds to
the optimal value of some convex optimization program.
Since it does not depend on the vehicle inputs, it is
computed as part of a pre-process and stored in a table
Pr_Cost which, with any pair of periods i,7; and any
purchase value 7 in a target discrete set, associates the
optimal cost of purchasing y energy during the periods
i+1,...,01 — 1.

« Initial state S is a 4-uple (Depot, —1, HFVe HEPVE).
A final state is any 4-uple (Depot, N — 1, Vjveh >
HFVer VEVE > HEVP), taking into account that this
final state is not related to any recharge transaction and
that the cost of related transition must be adapted in order
to refer to the time when EVeh is back to Depot.

We do not detail the description of PDYN_EPC, which by
many ways works as the standard path search algorithm A*,
and restrict ourselves to say that:

o In order to make this algorithm run fast, we fix an upper
bound N Dec (in our case, we shall set NDec = 10) on
the number of feasible decisions that may be tried from a
given state S. A consequence is that PDYN_EPC(N Dec)
is only a heuristic algorithm, that provides us with an
upper bound for the optimal value W (T") of VR_EPC(T").

« We introduce a lower bound computation device, which,
to any state S = (4,1, Vj‘/eh7 V.PVP) makes correspond
some lower bound VAL(S) of the cost of a path in the
state graph that would connect S to some final state. This
lower bound device allows us to discard states .S which
appear to be poorly promising according to related values
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(IL(S), VAL(S)).
C. Two Simple Heuristic Algorithms

As told at the beginning of this section, above experiments
suggest handling I while partially short-cutting the computa-
tion of W(T') and relying on LT (T") and L¥(T) in order to
drive I' towards good solutions. We do it here in two ways:

e A GRASP Algorithm GRASP_VR_EPC(Q), () being a
number of replications, that perform () descent processes
on () randomly generated linear combinations of L7 (T")
and LE(T);

e An Algorithm Descent_VR_EPC that pipelines
GRASP_VR_EPC(Q) and some pseudo-descent process
parametrized by 2 flexibility parameters 677"¢ and
dFner  that allow modifying the route I' even when
neither 67%™¢ nor §"¢" decreases.

The GRASP Algorithm GRASP_VR_EPC.
It considers a replication parameter () and works as follows:

1) At any replication ¢, it randomly generates two non
negative scaling parameters w”*™¢ and w?™°" together
with an initial route T'(g);

2) Then it applies 2_Opt and Reloc until I'(q) becomes a
local optimum with respect to the surrogate objective
function w’®™e . LT(T)4 wner . LE(T);

3) Finally it computes W_Auxz(T'(q)) while applying the
PDYN_EPC algorithm and updates the best current route
I'(gBest). When the whole process is over, it computes
the exact value W (I'(¢pest)) while applying the restric-
tion of VR_EPC_MILP to I.

This is summarized by Algorithm 1:

The Pseudo-Descent Algorithm Descent_VR_EPC: Clearly,
it may occur that current route I' may be improved by opera-
tors 2_Opt and Reloc while neither LT™¢(T") nor L¥ner(T")
may be improved. This suggests allowing the 2_Opt and
Reloc operators to slightly deteriorate the values L7¥"¢(T") and
LEme(I") and deciding about their application after computing
W_Auz(T") while relying on the algorithm PDYN_EPC. More
precisely, let us consider 2 parameters 677™¢ > 0,577 > (
and 2 routes I'y,I's. We say that I'y deteriorates I'; by no
more than (§7%me §Emer) if at least one of the 2 following
inequalities holds:

1) LTime(Fz) _ LTime(Fl) S 51;

2) LEn,er(F2> _ LEner(Fl) S 52_
Then the parametric Descent_VR_EPC(§T"™¢ §EmeT) algo-
rithm works according to the following descent loop:

1) It initializes I' as a good quality route (for instance by
applying GRASP_SVR_EP(1) (1 replication));

2) At any iteration of the descent process, it generates all
the 2_Opt and Reloc parameters (j1, j2) such that result-
ing route deteriorates I" by no more than (§7%me §&ner);

3) For any parameter (j1,j2) selected this way and
any resulting route I'; it tests its impact on the
value W_Aux(I';) obtained through application of the
PDYN_EPC Algorithm;

PROCEEDINGS OF THE FEDCSIS. KRAKOW, POLAND, 2025

Algorithm 1: GRASP_VR_EPC(Replication Parame-
ter Q).
input : The inputs of the VR_EPC Problem, that we
suppose to be feasible
output: A best route I'?¢%* and related value W 5est
1 IBest  Undefined; W_AuxBet «— 400 ;
2 forg=0,...,Q do

3 Randomly generate coefficients w”*™¢ and w®"e" ;
4 Randomly generate I'(¢); Stop <+ False ;
5 while not Stop do
6 By applying 2_Opt or Reloc, decrease
WTme . T (D(q)) + wP™r - LE(D(g));
7 if Fail(decrease) then
8 ‘ Stop < True
9 else
10 ‘ Modify I'(g) accordingly
11 end
12 end
13 Compute W_Auz(T'(q)) by applying PDYN_EPC;
if W_AuzBet > W_Auz(T(q)) then
14 | TBest «— T(q); W_AuaPest « W_Auz(T(q));
15 end

16 Compute the exact value W5t (by application of the
restriction of VR_EPC_MILP to I'5¢st;
return I'B¢st and WBest,

4) If improving I' this way is possible, then it does it
according to a Best Descent strategy else it stops. In
case it stops then it compute the exact current value
w(T).

This is summarized by Algorithm 2:

Remark 2: Both GRASP_VR_EPC and Descent VR_EPC
might be easily extended along more sophisticated metaheuris-
tic scheme, more specifically genetic and ant colony based
schemes (see [9] and [7]).

D. Numerical Experiments

Table VII involves the same instances as Table II. It dis-

plays:

e The value GRASP_50
GRASP_VR_EPC(50) (50
CPU time CPU_Grasp_50.

o The value GRASP_150 obtained by
GRASP_VR_EPC(150) (150 replications).

Table VIII considers the same instances as Table III and
displays The value Desc_1 + LS obtained by the application
of the following pipeline: GRASP_VR_EPC(1) (1 replication)
— Descent_VR_EPC(4, 4), together with related CPU time
CPU_Desc+ LS.

Comments: GRASP_VR_EPC with 150 replications most of-
ten reaches quasi-optimality. It outperforms the upper bound
computed by CPLEX in 4 CPU hours in 8 among the
20 instances and obtains the same value as CPLEX in 6
other instances. This trend is reinforced when M = 30.

obtained by
replications) and related
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Algorithm 2: Descent_VR_EPC(Parameters §77¢ >
0, 6Encr > 0)
input : The inputs of the VR_EPC Problem, that we
suppose to be feasible
output: A (good quality) route I'
1 Initialize I' and compute an approximation W of
W (T') by applying the PDYN_EPC Algorithm (value
W_Auz(T));
Stop ¢ False ;
while not Stop do
3 Generate all the parameters ji, jo of the 2_Opt
operator such that applying 2_Opt or Reloc to T'
deteriorates I by no more than (§77m¢, §Ener)
4 for Any 3-uple (Op, j1,j2) (Op meaning either
Reloc or 2_Opt) generated this way do
5 Apply the PDYN_EPC Algorithm to the route
resulting from application of (Op, j1,j2) to T;
end
if A decrease of W_Auz(T") with respect to W is
obtained at least once then
8 Replace I" by Op(T, j1, jo) and W by related
W _Aux value (PDYN_EPC Algorithm), with
(Op, j1,j2) related to the best improvement

[ 5]

9 else

10 | Stop « False;
11 end

12 end

13 Compute the exact value W (T") (by application of the
restriction of VR_EPC_MILP to I;
return I" and W(T).

TABLE VII
RESULTS FOR GRASP_VR_EPC

Id | GRASP_50 | GRASP_150 | CPU_Grasp_50
1 171 171 52,9
131 131 95,1
1-2 175 175 10,4
2-2 135 135 14,8
3 173 173 58,4
4 129 126 71,4
3-2 176 176 19,8
4-2 138 134 20,8
5 156 156 158,7
6 175 175 3335
7 214 214 296,2
5-2 158 158 58,5
6-2 181 181 106,3
7-2 226 226 74,6
8 121 121 2275
9 123 119 225,5
10 159 159 317,6
8-1 135 132 91,7
9-1 128 123 78,7
10-1 163 153 96,7
TABLE VIII

RESULTS FOR GRASP_VR_EPC

Applying the pipe-line GRASP_VR_EPC(1) (1 replication)
— Descent_VR_EPC(4, 4) improves the value obtained by
GRASP_VR_EP5(50) in 8 among the 20 instances, and the
value obtained by GRASP_VR_EPC(150) in 5 among the
20 instances. The running times induced by the calls to
Descent_VR_EPC(4, 4) are rather high, due to the fact that
we did not optimize the transformation of a route I' into a
PDYN_EPC input. Also, we may notice that in some cases,
Descent_VR_EPC(4, 4) yields poor results (if we refer to
GRASP_VR_EP5(50)) due to a poor initial route computed
by a single GRASP_VR_EPC(1) run.

V. CONCLUSION

We dealt here with a complex model which make interact a
routing process with an energy production process. W adopted
a centralized point of view, which skips uncertainties, and tried
both an exact MILP approach and a heuristic approach based
upon a statistical correlation analysis. In the future, it will
of course be interesting to try other methods. Also we plan
dealing with collaborative contexts, when several consumers
interact, each provided with its own agenda and incomplete
information, and with the issue related to the uncertainty
induced by solar energy production.

Id | GRASP_150 | Desc_1+ LS | CPU_Desc+ LS
1 171 171 22,7
2 131 134 16,5
1-2 175 175 15,6
2-2 135 140 5.4
3 173 165 197,0
4 126 144 111,0
3-2 176 171 36,7
4-2 134 161 41,1
5 156 168 356,2
6 175 176 565,7
7 214 207 2544
5-2 158 173 109,8
6-2 181 181 203,6
7-2 226 220 109,0
8 121 121 1998,6
9 119 122 2351,0
10 159 151 876,2
8-1 132 134 773,0
9-1 123 130 629,1
10-1 153 159 633,5
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