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Abstract—Photovoltaic platforms enable a single agent to
simultaneously act as both a producer and a consumer of
power, facilitating self-consumption strategies. This trend aligns
with the goal of reducing CO2 emissions and is poised to
significantly transform the structure of energy markets. It also
introduces specific challenges—both tactical (e.g., pricing) and
operational (e.g., routing, scheduling)—related to synchronizing
energy production with consumption. In this work, we address
the problem of efficiently routing a fleet of electric autonomous
vehicles (EAVs), using energy that is either produced by a
photovoltaic platform or purchased from the general power grid.
We propose an exact Mixed-Integer Linear Programming (MILP)
formulation of the problem, along with a heuristic approach
that approximates the power production component of the model
using surrogate representations.

I. INTRODUCTION

RENEWABLE energy sources (e.g., photovoltaic, wind,

hydrogen) are driving the emergence of local, in situ

producers who simultaneously consume energy—such as fac-

tories and farms. In this context, the energy production-

consumption process becomes partially endogenous, forming

a closed-loop system under the self-consumption paradigm

[15]. This paradigm is expected to have a significant impact

on energy economics [11], [14]. It raises various challenges,

ranging from operational issues—related to the scheduling and

synchronization of production and consumption—to tactical

and strategic decisions, such as pricing, storage, and interac-

tion with the central grid. In scenarios where the decentralized

producer-consumer entity is a consortium of independent

agents, each with its own schedule and shared access to

the production platform, fairly distributing costs and benefits

raises the cooperative issue.

We consider here the problem of routing a fleet of electric

autonomous vehicles (EAVs), powered either by photovoltaic-

generated electricity—available at time-dependent rates—or

by electricity purchased from the general grid at time-

dependent prices. This Vehicle Routing under Energy Pro-

duction Costs (VR EPC) problem requires fleet managers

to synchronize vehicle activity with energy production and

procurement, while taking into account the limited storage

capacities of both the platform and the vehicles.

A. State of the Art

Numerous studies have explored the routing of electric

vehicles with the aim of minimizing energy costs or addressing

environmental concerns, such as in the Green Vehicle Routing

Problem (Green VRP), the Pollution Routing Problem, and the

Hybrid Vehicle Routing Problem: [5], [16], [21],[19]). They

most often proposed models involving refueling transactions

subject to time windows or shared access constraints. For

example:

• Erdoğan and al. [6] introduced the Green VRP, which

minimizes both total travel distance and the number of

refueling transactions.

• Franceschetti and al. [8] proposed a Pollution-Routing

model, incorporating time-dependent costs and an objec-

tive function accounting for driver wages and fuel costs.

• Koç and al. [12] focused on determining where and how

much vehicles should be recharged, considering access-

to-energy constraints.

• In [21], authors addressed customer sequencing, while

explicitly accounting for the recharge capacity of the

charging stations.

Some authors also dealt with CO2 emitting vehicles, with

the purpose of controlling related CO2 emission:

• Raylan and al. [17] minimized emissions resulting from

both routing and load-related factors.

• Sachenbacher and al. [18] accounted for time-dependent

factors and refueling schemes, adapting shortest path

algorithms accordingly.

• Kuo [13] explored speed control to balance energy con-

sumption, distance, and time.

• Schneider and al. [19] developed heuristics for a Vehicle

Routing problem with time windows and safety-specific

refueling constraints.

• Lajunen [14] performed simulation-based comparisons of

energy savings across urban shuttle and bus configura-

tions.

Despite these contributions, few studies have jointly man-

aged both energy production and consumption. Addressing

this challenge requires integrating heterogeneous routing and

scheduling processes while accounting for storage constraints

(see [2], [3], [1]). Some formulations borrow from the Lot
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Sizing framework or its multi-level scheduling variants (see

[4], [10], [20]), but these models involve highly heterogeneous

variables and constraints, often leading to poor performance

of linear relaxations. Moreover, they implicitly rely on the

existence of a single decider provided with full control and full

information with respect to the system, inducing an assumption

which does not fit most real life contexts. Alternatives such as

constraint programming and bi-level formulations may help

coordinate interactions across decision levels. Nonetheless,

whatever be the point of view (centralized or collaborative),

designing efficient solution algorithms remains a major chal-

lenge. A recent trend—facilitated by machine learning—is to

approximate complex sub-models using surrogate constraints

or cost functions.

B. Main Achievements

Since our VR EPC problem is likely to involve in practice

collaborative features making it difficult to suppose the exis-

tence of a global decider, we adopt here the point of view of

the EAV. Also, we skip the uncertainty issue, while supposing

that the behavior of our system, and more specifically of the

photovoltaic platform, is deterministic. Then we propose two

solution approaches for the VR EPC problem.

• The first one is an exact MILP formulation that considers

the vehicle variables as master variables and includes

specific Recharge Decomposition constraints requiring

the application of a specific separation procedure, which

works in polynomial time. This MILP model is solved

using a branch-and-cut method. However, this approach

becomes computationally inefficient for large instances.

• So we also design 2 heuristic algorithms, which makes

the EAV decide under a partial knowledge of the behavior

of the photovoltaic platform, while using an approxi-

mation of the energy production model. The resulting

algorithms pave the way for more efficient handling

of uncertainty and collaboration challenges, particularly

in scenarios where the photovoltaic (PV) platform and

the vehicles are run by distinct players, who do not

fully share neither the same goals nor the access to

information.

The paper is organized as follows. Section II provides a

detailed description of the Vehicle Routing under Energy Pro-

duction Costs problem (VR EPC). In Section III, we present

the MILP formulation and its resolution using a branch-and-

cut approach. Section IV offers a statistical analysis that

provides the basis for the development and testing of 2 local

search heuristic. We conclude briefly in Section V.

II. THE VEHICLE ROUTING UNDER ENERGY PRODUCTION

COSTS PROBLEM

We consider a photovoltaic (PV) micro-plant, referred to as

PVP, along with a fleet of electric autonomous vehicles (EAV)

in charge of visiting a set of stations. These two components

interact through recharge transactions when the vehicles return

to the micro-plant to recharge (see Fig. 1). For the sake of

simplicity, we limit our study to a single vehicle that must

complete a Traveling Salesman-type tour, and we assume the

system operates in a deterministic manner. Thus, the main

components of our target system are:

Fig. 1. The PV-Micro-Plant Interacting with a Vehicle Route

• A Photo-Voltaic Micro-Plant PVP

The time horizon of PVP is divided into N periods

i = 0, . . . , N − 1, all with a same duration p. Thus the

starting timestamp of period i is equal to p · i and its

ending timestamp equal to p · (i + 1). During a period

i, PVP is expected to produce Ri energy units. It may

also buy an additional amount yi of power, that cannot

exceed a charge capacity denoted by CCh. The cost of

buying such an additional energy amount yi depends

on both i and yi and may be written Φi(y), where Φi

is a piecewise linear increasing convex function. The

convexity of this cost function Φi expresses the fact that

marginal power purchase prices are usually increasing.

PVP is provided with a macro-battery, with storage

capacity CPV P ≥ CCh and initial load HPV P
0 . It must

manage its purchase operations in a way which makes it

able to meet vehicle’s demand without exceeding storage

and charge capacities, while ending the process with a

load at least equal to HPV P
0 and minimizing related

purchase costs.

• An Electric Autonomous Vehicle EVeh and a Set of

Stations J

This vehicle, denoted by EVeh, is initially located at a

specific station Depot. It must visit and service, within

the time horizon [0, N.p], a set J = {1, . . . ,M} of

stations according to a TSP (Traveling Salesman) route

Γ, before coming back to Depot. Moving from a station

j to a station k requires Ej,k energy units and Tj,k

time units, service times being included into the Tj,k

values. We suppose that vectors T, θ, θ∗ (E, ϵ, ϵ∗) define

a distance on the set defined by Depot, PVP and J.

EVeh is provided with a battery, with storage capacity

CV eh and initial load HV eh
0 . It must end with a load

at least equal to HV eh
0 while minimizing the time when

it returns to Depot. Depot is considered as a station,

identified as Depot = 0 at the beginning of the process

and Depot = M + 1 at the end. By the same way, PVP

is also considered as a station, identified as PVP = −1
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• Recharge Transactions

Because of its storage capacity CV eh and the constraint

about its load at the end of the process, EVeh must

periodically move to PVP in order to recharge. Such a

recharge transaction can be achieved in a single period

i and takes place between two stations j, k consecutive

according to the route Γ: EVeh moves from j to PVP in

order to arrive before time p · i, receives some amount

m ≤ Inf(CCh, CV eh) of energy, and starts again from

PVP at time p·(i+1) in order to reach k. Since the vehicle

is a kind of robot, this recharge transaction, denoted by

ω = (i, j, k,m), involves some human resource and so

it induces a cost Ψi. This human resource cost depends

on i and is independent on m. For the sake of safety,

purchasing power is forbidden during the period i when

the recharge transaction ω takes place. Moving from j
to PVP requires ϵj energy units and θj additional time,

while moving from PVP to k requires ϵ∗k energy units and

θ∗k additional time. A recharge transaction may impose

EVeh to wait at PVP until the beginning of period i in

case it arrives before time p·i. If we denote by τj the time

when EVeh arrives at j, by V V eh
j its energy load and by

V PV P
i the energy load of the PV-plant at the beginning

of period i, then we must have:

– p · i ≥ τj + θj ; τk = p · (i+ 1) + θ∗k;

– V MP
i+1 = V P

i −m ≥ 0;

– The load of EVeh at the end of period i must be

equal to V V eh
j − ϵj +m ≤ CV eh;

– The load of EVeh at the beginning of period i must

be equal to V V eh
j − ϵj ≥ 0.

Since the system described this way involves two players,

each provided with its own performance criterion, resulting

problem might be set according to the bi-objective format. Yet,

our focus here is on the algorithms. Therefore, we introduce

a time versus money coefficient α, and formulate VR EPC as

a mono-objective problem. By the same way, since we tend

here to adopt the point of view of the vehicle manager EVeh,

we set related model as a bi-level one.

VR EPC: Vehicle Routing with Energy Production Costs :

{Compute the route Γ followed by EVeh together with the

recharge transactions that link PVP and EVeh in such a way

that:

• All stations are visited once within the time horizon

[0, p ·N ].
• Vehicle storage capacity constraints and energy

requirements are satisfied.

• Some extended cost PCost+α.V eh T ime is minimized,

where PCost means the optimal cost value induced by

the PVP sub-problem consisting in deciding the purchase

vector y = (yi, i = 0, . . . , N − 1) in such a way that:

– It meets PVP storage and charge capacities;

– It meets the needs related to the recharge transactions

while allowing PVP to end with at least as much

energy as when it started;

– PCost =
∑

i

(Ψi · δi +Φi(yi)).}

TABLE I
PRODUCTION RATES, UNIT PURCHASE PRICES AND RECHARGE COSTS

i 0 1 2 3 4 5 6 7 8 9 10 11 12 13

Ri 2 2 0 0 4 4 4 0 0 0 0 2 2 0

Pi 2 3 5 5 1 1 1 5 5 5 5 2 2 5

Ψi 1 1 1 1 2 2 1 1 1 1 1 1 2 2

An Example: Let us suppose that:

• M = 5, N = 14, p = 2; α = 1;

• CV eh = 16, HV eh = 9, CPV P = 20, HPV P =
5, CCh = 15;

• Expected productions Ri, i = 0, . . . , N − 1 come as in

Table I;

• For any period i, function Φi comes as: Φi(y) = Pi · y,

y denoting the additional energy bought at period i and

prices Pi come according to table I.

Let us consider a route Γ = {0, 1, 2, 3, 4, 5, 6} together with

time and energy requirements given according to Figure 2:

1 2 3 4 5
4,	5 4,	4 7,	3 5,	5 2,	2 1,	2

3,	3
2,	1 5,	6

1,	3

Depot	=	0 Depot	=	6	=
M+1

Micro-plant

Time	value Energy	value

2

Fig. 2. The Route Γ, together with the time and energy requirements

Then we get a feasible VR EPC solution involving Γ by

specifying the recharge transactions as follows:

• A first recharge transaction occurs at period 3, while

EVeh is moving from station 1 to station 2. Related

energy amount m is equal to 10.

• Another recharge transaction occurs at period 11, while

EVeh is moving from station 3 to station 4. Related

energy amount m is equal to 15.

• PVP buys 3 energy units at period 0 and 3 energy units at

period 1. Those operations induce a purchase cost equal

to 3 · 3 + 2 · 3 = 15.

• The 2 recharge transactions induce a cost equal to 2,

which makes the PCost value equal to 15+2 = 17, while

the value V eh T ime is equal to 14 · 2 = 28 , inducing a

generalized cost value α ·PCost+ β · V eh T ime equal

to 1 · 17 + 1 · 28 = 45.

III. A MILP MODEL

Though VR EPC is too complex for an exact handling

of large size instances, casting it into the MILP format is

important, not only because resulting MILP VR EPC model

will provide us with benchmark results in the case of small

instances, but also because it will contain a structural analysis

of the problem.
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A. The Variables of the MILP VR EPC model

Getting a MILP formulation first requires identifying the

variables. Since we adopt here the point of view of the vehicle

manager, our master variables are going to be 2 {0, 1}-valued

vectors Z = (Zj,k, k ̸= j ∈ {−1, 0, . . . ,M + 1}) and

X = (Xj,k, k ̸= j ∈ {0, . . . ,M + 1}), that respectively

describe the routes followed by the vehicle with and without

the detours induced by the recharging transactions. Those

main vehicle variables are going to be completed by auxiliary

variables related to the time values when the vehicle visits the

stations and to its energy load at this time. We also need PV-

Plant variables that allow us to describe the evolution along the

periods of the power load stored inside the PVP macro-battery.

Finally, we need Recharge Transaction variables, linking the

respective trajectories of the vehicle EVeh and the PV-Plant

PVP. This leads us to introduce the following variables:

• Vehicle variables:

– {0, 1}-valued variables Zj,k, k ̸= j ∈
{−1, 0, . . . ,M + 1}: Zj,k = 1 iff the vehicle

moves from j to k: -1 denotes here the micro-plant

PVP.

– {0, 1}-valued variables Xj,k, k ̸= j ∈ {0, . . . ,M +
1}: Xj,k = 1 iff the vehicle moves either from j to

k or from j to PVP, and next from PVP to k.

– Non negative variables LV eh
j , j = 0, . . . ,M : LMP

j

means the energy transferred to EVeh just after j, in

case Zj,−1 = 1;

– Non negative variablesV V eh
j , j = 0, . . . ,M + 1:

V V eh
j means the energy stored by EVeh when it

arrives at j;

– Non negative variables τj , j = 0, . . . ,M + 1: τj
means the time when EVeh arrives at j;

– Non negative variables τ∗j , j = 0, . . . ,M + 1: If

Zj,−1 = 1 then τ∗j means the time when EVeh starts

recharging after station j in case Zj,−1 = 1.

• PV-Plant variables:

– Non negative variables yi, i = 0, . . . , N−1: yi means

the energy amount bought by the PV-Plant’s during

period i;
– {0, 1}-valued variables δi, i = 0, . . . , N − 1: δi = 1

means that some recharge transaction takes place at

i;
– Non negative variables V PV P

i , i = 0, . . . , N − 1, N :

V PV P
i means the energy stored by PVP at the

beginning of i;
– Non negative variables LPV P

i , i = 0, . . . , N − 1:

LPV P
i means the energy transferred from PVP pe-

riod i in case in case δi = 1.

• Recharge Transaction variables:

– {0, 1}-valued variables Ui,j , i = 0, . . . , N − 1, j =
0, . . . ,M : Ui,j = 1 means that some recharge

transactions occurs at period i that involves station

j and its sucessor in Γ;

– Non negative variables mi,j , i = 0, . . . , N − 1, j =
0, . . . ,M : mi,j means related amount of energy.

B. Structural Recharge Decomposition Vehicle Constraints

Z and X describe the full route followed by EVeh. They

must clearly meet the following standard vehicle routing

constraints:

• ZM+1,0 = 1; ∀j : Zj,j = 0; (VR1)

• ∀j = 0, . . . ,M + 1:
∑

k=−1,...,M+1 Zj,k = 1 =∑
k=−1,...,M+1 Zk,j ; (VR2)

•

∑
j=0,...,M+1 Zj,−1 =

∑
j=0,...,M+1 Z−1,j ≥ 1; (VR3)

• ∀j, k ∈ {0, . . . ,M + 1}: Xj,k ≥ Zj,k ; (VR4)

• ∀j ∈ {0, . . . ,M + 1}:
∑

k=0,1,...,M+1 Xj,k = 1 =∑
k=0,1,...,M+1 Xk,j ; (VR5)

Yet we see that (VR1, ..., VR5) are not enough to ensure that

we may interpret Z,X as a route followed by EVeh, feasible

with respect to the energy requirements. In fact, they are not

enough to prevent us from the existence of standard Traveling

Salesman sub-tours. So we must reinforce them. We do it by

noticing that if EVeh spends W energy while moving inside or

at the boarder of some station subset A which does contain the

micro-plant, then it must move at least ⌈ W
CV eh ⌉ times towards

PVP in order to refuel. In order to formalize this, we must

introduce some additional notations:

• For any such a subset A of {−1, 0, . . . ,M,M + 1}:

– Cl(A) = {(j, k) s.t at least j or k is in A};
– δ(A) = {(j, k), s.t j /∈ A and k ∈ A}.

• For any (j, k):

– Πj,k = E0 if (j, k) = (M + 1, 0) and Πj,k = CV eh

else.

– Π∗

j,k = CV eh−E0 if (j, k) = (M+1, 0) and Π∗

j,k =

CV eh else.

Then we become able to derive the following Recharge

Decomposition constraints that reinforce (VR1, ..., VR5):

• For any A ⊆ {0, . . . ,M + 1},
∑

(j,k)∈δ(A) Πj,k · Zj,k ≥∑
(j,k)∈Cl(A) Ej,k · Zj,k (VR6)

• For any A ⊆ {0, . . . ,M+1},
∑

(j,k)∈δ(J−A) Π
∗

j,k ·Zj,k ≥∑
(j,k)∈Cl(A) Ej,k · Zj,k (VR6-Bis)

The following Lemma 1 provides us with the structural

meaning of these constraints: It tells us that adding them to

(VR1, ..., VR5) ensures us that (Z,X) are going to describe a

vehicle route that excludes sub-tours and can be decomposed

into a sequence of sub-routes (Depot→ PVP), (PVP→ PVP)

and (PVP → Depot), all feasible with respect to the energy

requirements.

Lemma 1: The VRP constraints (VR1, ..., VR6-Bis) hold if and

only if the arcs (j, k) such that Zj,k = 1 define a collection

γ of sub-tours γs, s = 0, . . . , S such that:

• γ0 starts from Depot = 0, ends into PVP = −1, and

spends less than HV eh
0 energy. (SUB1)

• γS starts from PVP = −1, ends into Depot = 0, and

spends less than CV eh–HV eh
0 energy. (SUB2)

• For any s = 1, . . . , S−1, γs starts from PVP = −1, ends

into −1 and does not require more than CV eh energy.

(SUB3)

• Every station j = 1, . . . ,M is visited once. (SUB4)
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Proof. We only need to simultaneously follow the TSP route

defined by X and its extension defined by Z. End-Proof

Remark 1: Constraints (VR6, VR6-Bis) neither tells in which

order the sub-routes γs, s = 0, . . . , S must be performed, nor

it ensures the feasibility of resulting route with respect to the

time horizon p ·N .

Separating the Recharge Decomposition Constraints: As

usually when it comes to the management of constraints on

the subsets of a given set, we must cope with the separability

issue. Given 2 possibly non integral vectors (Z,X), separating

the constraints (VR6, VR6-Bis) means checking that all those

constraints are satisfied by (Z,X) and, in case they are not,

computing a subset A ⊆ {0, . . . ,M + 1} such that related

VR6 or VR6-Bis constraint is violated by (Z,X). Theorem 1

below not only tells us that separating (VR6, VR6-Bis) can be

done in polynomial time, but related proof provides us with

a polynomial time algorithm that will perform this separation

process.

Theorem 1: The Recharge Decomposition constraints can be

separated in polynomial time, by application of a min cost

flow algorithm.

Sketch of the Proof: Let us restrict ourselves to the case

of the constraints VR6 (the case of the constraints VR6-Bis

is quite similar). Given Z, possibly non integral. Separating

VR6 means searching for A ⊆ {0, . . . ,M + 1}, which does

not contain −1 and is such that:∑
(j,k)∈δ(A) Πj,k · Zj,k <

∑
(j,k)∈Cl(A) Ej,k · Zj,k,

or equivalently for B = {−1, 0, . . . ,M + 1} \ A, which

contains −1 and is such that: (*)∑
(j,k) s.t.j∈B,k/∈B Πj,k · Zj,k +∑
(j,k) s.t.j∈B,k∈B Ej,k · Zj,k <

∑
(j,k) Ej,k · Zj,k.

Let us set ∆ =
∑

(j,k) Ej,k · Zj,k, and let us construct an

auxiliary multi-graph G = (X,A) as follows:

• X = {Source = −1, 0, . . . ,M + 1,M + 2 = Sink};
• A is defined as the set of all simple-arc (j, k), j ̸= k ∈
{−1, 0, . . . ,M + 1}, augmented, for every j, with copy-

arcs (j,M + 1)k, k ̸= j ∈ {−1, 0, . . . ,M + 1}, which

connect j to Sink = (M + 2) and are provided with

label k. Every copy-arc a = (j,M + 1)k is provided

with a weight wa equal to Ej,k · Zj,k. Every simple-arc

a = (j, k) is provided with a weight wa equal to Πj,k ·
Zj,k − Ej,k · Zj,k.

Then we easily check that computing B such that (*) holds

means computing a cut B′ which separates Source =
−1 from Sink = M + 2 in G and is such that∑

a s.t. origin(a)∈B′,destination(a)/∈B′ wa < ∆. We know that

this can be done in polynomial time through a simple Max-

Flow algorithm. End-Proof.

C. The VR EPC MILP MILP formulation

We are now able to extend the structural vehicle routing

constraints VR1, ..., VR6-Bis into a VR EPC MILP setting

of VR EPC. We do it while distinguishing 3 main groups of

constraints:

• The PV-Plant Constraints: They involve the variables

related to the purchase of power and express the evolution

along the periods of the load V PV P
i of the PVP battery,

the fact that this load cannot exceed the capacity CPV P ,

and the fact that the final load V PV P
N must be no smaller

than the initial load HPV P
0 .

• The Vehicle Routing Constraints: They contain VR1,

..., VR6-Bis, together with constraints related to the

time values when the vehicle arrives to the stations or

to PVP for the recharging transactions. Those temporal

constraints fix the order according to which the sub-routes

involved in Lemma 1 are visited. The Vehicle Routing

constraints also contain constraints which express the

evolution along the route defined by (Z,X) of the load

V V eh
j of the EVeh battery, the fact that this load cannot

exceed the capacity CV eh, and the fact that the final load

V V eh
M+1 must be no smaller than the initial load HV eh

0 .

• The Synchronization Constraints: They link together

the PVP periods and the time horizon [0, p · N ] of

the vehicle, and synchronize the energy received by the

vehicle and the energy delivered by the PV-Plant during

the recharge transactions.

Those constraints may be formalized as follows (for the

sake of simplicity, we replace the ”Big M” formulations by

implications):

VR EPC Constraints and Objective Function:

• Objective: Minimize
∑

i

(Ψi.δi +Φi(yi) + α.τM+1

• PV-Plant Constraints

– ∀i = 1, . . . , N − 1: yi ≤ CCh · (1− δi); (PC1)

– ∀i = 0, . . . , N : V PV P
i ≤ CPV P ; (PC2)

– V PV P
0 = HPV P

0 ; V PV P
N ≥ HPV P

0 ; (PC3)

– ∀i = 1, . . . , N : V PV P
i = V PV P

i−1 +
yi − LPV P

i ; (PC4)

• Vehicle Routing Constraints

– (VR1, ..., VR6-Bis) involved in Lemma 1;

– V V eh
0 = HV eh

0 ; V V eh
M+1 ≥ HV eh

0 ; (VR7)

– ∀j = 0, . . . ,M+1: Ej,−1 ≤ V V eh
j ≤ CV eh ; (VR8)

– ∀j, k = 0, . . . ,M + 1: Xj,k →
(V V eh

k + Ej,k + (Zj,k − 1) · (ϵj + ϵk − Ej,k)) ≤
(V V eh

j + LV eh
j ) ; (VR9)

– ∀j = 0, . . . ,M : Zj,−1 → (V V eh
j ≥ ϵj) ; (VR10)

– ∀j = 0, . . . ,M : Zj,−1 → (V V eh
j + LV eh

j ≤
ϵj + CV eh) ; (VR10-Bis)

– τ0 = 0; τM+1 ≤ p ·N ; (VR11)

– ∀j, k = 0, . . . ,M + 1: Zj,k →
(τj + Tj,k ≤ τk); (VR12)

– ∀j, k = 0, . . . ,M + 1: (Xj,k − Zj,k = 1)→
(τ∗j + p+ T−1,k ≤ τk); (VR13)

– ∀j = 0, . . . ,M + 1: (Zj,−1)→
(τj + Tj,−1 ≤ −τ

∗

j ); (VR13-Bis)

• Synchronization Constraints

– ∀j = 0, . . . ,M :
∑

i=0,...,N−1 Ui,j = Zj,−1 ; (SY1)

– ∀j = 0, . . . ,M :∑
i=0,...,N−1 mi,j = LV eh

j ; (SY1-Bis)

– ∀i = 0, . . . , N − 1:
∑

j=0,...,M Ui,j = δi ; (SY2)
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– ∀i = 0, . . . , N − 1:∑
j=0,...,M mi,j = LPV P

i ; (SY2-Bis)

– ∀j = 0, . . . ,M :
∑

i=0,...,N−1 p·i·Ui,j = τ∗j ; (SY3)

– ∀i = 0, . . . , N − 1, j = 0, . . . ,M :

mi,j ≤ Inf(CPV P , CV eh) · Ui,j ; (SY4)

Theorem 2: Above VR EPC MILP MILP model solves

VR EPC in an exact way.

Proof: Lemma 1 tells us that X,Z define a feasible vehicle

route Γ. Constraints (SY1, SY2) link the variables U,m with

the route Z and the energy received by the vehicle, with

the PV-Plant variables δ and the energy transferred by PVP.

(SY4) makes those energy amounts be consistent with the

storage capacities. (SY3) links the time values of PVP and

EVeh. (PC4) describes the evolution throughout the time of

the energy stored by PVP. Vehicle constraints (VR7, ..., VR10)

describe the evolution throughout the time of the energy stored

by EVeh. They keep this energy from becoming negative or

larger than the capacity CV eh. (VR11, ..., VR13-Bis) describe

the evolution of the time while the vehicle follows the route

described by X and Z. End-Proof

Practical Handling of the VR EPC MILP MILP model.

We handle VR EPC MILP through Branch and Cut, while

applying the auxiliary graph and the Max-Flow algorithm

involved in Theorem 1 in order to separate the Recharge

Decomposition constraints.

D. Numerical Experiments

Purpose: Evaluating the VR EPC MILP MILP model.

Technical Context: The experiments are performed on a

computer with AMD EPYC 7H12 64-Core processor, and are

running under Gnu/linux Ubuntu 20.04.2. The MILP library

CPLEX 12.10 is used in a single-thread mode.

1) Instance generation: The main parameters of every

instance are the station number M , the period number N ,

and the length p of the periods. M varies from 5 to 30; N
varies from 40 to 320; p takes values in {1, 2, 4}. We derive

from the instances with p = 1 the instances with p = 2 and

p = 4 by merging the periods in a natural way, the length

TMax = p ·N of the time horizon remaining the same.

Vehicle coefficients: The M stations, together with Depot
and HMP are generated as integral points of a square in

the 2D plane. Vectors T, θ, θ∗ corresponds to a rounding of

the Euclidean distance, and vectors E, ϵ, ϵ∗ correspond to the

Manhattan distance.

PV-Plant coefficients: We cluster production periods into

5 super-periods of same length, each provided with sym-

bolic mean production and cost values Rcl, Costcl in

{Low,Medium,High}. Then, integral time dependent pro-

duction coefficients Ri, together with time dependent cost con-

vex piecewise (2 pieces) linear functions Φi, i = 0, . . . , N−1,

are generated accordingly in such a way that resulting instance

is feasible and that this feasibility requires the purchase of

additional power.

Storage capacities: We control the number of recharge trans-

actions by maintaining CPV P

CV eh between 0.5 and 3.

TABLE II
BEHAVIOR OF VR EPC MILP

Id (N,M, p) LBG LP UBG LP

1 (160, 10, 1) 56,7 173

2 (160, 10, 1) 76,6 131

1-2 (160, 10, 2) 58,5 175

2-2 (160, 10, 2) 71,7 135

3 (160, 10, 1) 51,6 171

4 (160, 10, 1) 64,0 125

3-2 (160, 10, 2) 51,7 174

4-2 (160, 10, 2) 63,4 134

5 (240, 20, 1) 43,8 148

6 (240, 20, 1) 59,5 176

7 (240, 20, 1) 83,2 208

5-2 (240, 20, 2) 43,9 148

6-2 (240, 20, 2) 59,1 201

7-2 (240, 20, 2) 82,8 255

8 (320, 30, 1) 58,0 151

9 (320, 30, 1) 51,7 117

10 (320, 30, 1) 63,2 150

8-2 (320, 30, 2) 58,0 153

9-2 (320, 30, 2) 51,2 127

10-2 (320, 30, 2) 63,08 163

Scaling coefficients α: We do in such a way that the weights

of respectively PCost and α.V eh T ime remain integral and

comparable.

For every instance Id (Tables II), we provide input values

values N , M , p. We tested 242 instances. Yet, we restrict

ourselves here to 20 instances, with p = 1, referred to as Id,

and p = 2 referred to as Id− 2.

2) Results: For every instance, Table II displays The

lower bound LBG LP and the upper bound UBG UB
computed through Branch and Cut by the CPLEX library

in 2 CPU hours (7200 seconds). We boost the computation

of upper bounds UBG UB with the CPLEX parameter

MIP emphasis switch.

Comments: Even when allowed to run during 2 hours, the

model never reaches optimality, though it often allows the

computation of a good feasible solution. That is why we

are now going to derive from some statistical analysis some

efficient heuristics for our problem.

IV. HEURISTIC HANDLING OF VR EPC

The bi-level structure of VR EPC and the fact that this bi-

level structure will correspond in most cases to some collab-

orative decision context, suggests to manage VR EPC while

acting on the master route Γ through local search operators and

devices that anticipate the behavior of resulting sub-problem

VR EPC(Γ) through the use of simple devices. There exists

many ways to proceed this way. The approach which we are

going to propose here relies on a statistical analysis of the

correlation which may exist between the optimal value of

VR EPC and some key features of the route Γ.

In order to keep on, we need some additional notations:

• We denote by VR EPC(Γ) the VR EPC instance

induced by fixing Γ (that means, referring to the

VR EPC MILP MILP model, if we fix X in such a
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TABLE III
CORRELATION ANALYSIS

It 1 2 3 4 5 6 7 8 9

W (Γ) 564 504 500 462 464 435 388 390 378

LT (Γ) 197 183 182 165 162 152 135 132 126

NRT 11 10 9 9 9 9 7 7 8

TABLE IV
CORRELATION ANALYSIS

It 10 11 12 13 14 15 16 17 18

W (Γ) 564 504 500 462 319 315 314 326 324

LT (Γ) 197 183 182 165 105 99 101 100 99

NRT 11 10 9 9 6 6 6 7 7

way it meets (VR3, VR4) and does not induce any sub-

tour). We denote by W (Γ) its optimal value;

• We denote by LT (Γ), LE(Γ) the lengths of Γ in the sense

of respectively vectors T and E.

Let us also recall the way the standard Traveling Salesman

2 Opt and Reloc operators act on any current route Γ through

2 parameters j1, j2 in J +{Depot}:

• 2 Opt(Γ, j1, j2) replaces the moves from j1 to its suc-

cessor j̄1 and from j2 to its successor j̄2 by moves from

j1 to j2 and from j̄1 to j̄2, and reverses the orientation

of Γ between j2 and j̄1;

• Reloc(Γ, j1, j2) relocates j1 between j2 and j̄2.

A. Experimentally Linking W (Γ), LT (Γ) and LE(Γ)

Tables III, ..., VI show that W (Γ), LT (Γ), LE(Γ) and the

number NRT of recharge transactions are strongly correlated

along the 36 iterations It = 1, . . . , 36 of a descent loop

involving 2 Opt and Reloc and performed on 20 stations. We

observe the same kind of correlation when performing the

same experimental process on all the instances involved in

table II.

B. A Simple PDYN EPC Algorithm for the Computation of an

Upper Bound W Aux(Γ) of W (Γ)

Though fixing Γ deeply simplifies the VR EPC MILP

MILP model, it does make it suitable for repeated applications

inside a local search process. So we briefly describe here a

TABLE V
CORRELATION ANALYSIS

It 19 20 21 22 23 24 25 26 27

W (Γ) 205 202 211 200 199 178 178 185 179

LT (Γ) 72 70 67 64 64 62 62 61 61

NRT 3 3 4 3 3 4 4 3 3

TABLE VI
CORRELATION ANALYSIS

It 28 29 30 31 32 33 34 35 36

W (Γ) 173 297 259 267 263 276 275 247 205

LT (Γ) 57 97 89 89 87 87 87 76 75

NRT 3 4 3 3 3 4 3 3 4

simple dynamic programming algorithm PDYN EPC which

computes an upper bound W Aux(Γ) of W (Γ) under running

times that allow its insertion into such a local search process.

We design PDYN EPC by noticing that once Γ is fixed, a full

solution is determined by the sequence of recharge transactions

linking EVeh and PVP together, augmented with the amounts

of power bought during the periods separating 2 consecutive

recharge transactions. More precisely, PDYN EPC searches

for a path (a sequence of transitions) in a state graph whose

nodes (the states) and arcs (decisions and transitions) are

defined as follows:

• A state in the sense of PDYN EPC is a 4-uple S =
(j, i, V V eh

j , V PV P
i ), where j is a station, i a period, V V eh

j

is the power load of EVeh when it leaves j and V PV P
i

the power load of PVP at the end of i, with the implicit

meaning that a recharge transaction involving i and j
has just been performed. Such a state S comes with the

smallest cost value Π(S) of the cost of a path connecting

initial state S0 to S according to the PDYN EPC process.

• A decision consists, in a natural way, in a 4-

uple (j1, i1,m1, ȳ), where (j1, i1,m1) means the next

recharge transaction, and ȳ means the power which is

going to be bought by PVP during the periods i +
1, . . . , i1 − 1. Resulting state and feasibility constraints

derive in a natural way from the VR EPC MILP setting.

• The cost of related transition is p·(i1−i) augmented with

the purchase cost of ȳ. This purchase cost corresponds to

the optimal value of some convex optimization program.

Since it does not depend on the vehicle inputs, it is

computed as part of a pre-process and stored in a table

Pr Cost which, with any pair of periods i, i1 and any

purchase value ȳ in a target discrete set, associates the

optimal cost of purchasing ȳ energy during the periods

i+ 1, . . . , i1 − 1.

• Initial state S0 is a 4-uple (Depot,−1, HEV eh
0 , HPV P

0 ).
A final state is any 4-uple (Depot,N − 1, V V eh

j ≥
HEV eh

0 , V PV P
j ≥ HPV P

0 ), taking into account that this

final state is not related to any recharge transaction and

that the cost of related transition must be adapted in order

to refer to the time when EVeh is back to Depot.

We do not detail the description of PDYN EPC, which by

many ways works as the standard path search algorithm A*,

and restrict ourselves to say that:

• In order to make this algorithm run fast, we fix an upper

bound NDec (in our case, we shall set NDec = 10) on

the number of feasible decisions that may be tried from a

given state S. A consequence is that PDYN EPC(NDec)
is only a heuristic algorithm, that provides us with an

upper bound for the optimal value W (Γ) of VR EPC(Γ).
• We introduce a lower bound computation device, which,

to any state S = (j, i, V V eh
j , V PV P

i ), makes correspond

some lower bound V AL(S) of the cost of a path in the

state graph that would connect S to some final state. This

lower bound device allows us to discard states S which

appear to be poorly promising according to related values
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(Π(S), V AL(S)).

C. Two Simple Heuristic Algorithms

As told at the beginning of this section, above experiments

suggest handling Γ while partially short-cutting the computa-

tion of W (Γ) and relying on LT (Γ) and LE(Γ) in order to

drive Γ towards good solutions. We do it here in two ways:

• A GRASP Algorithm GRASP VR EPC(Q), Q being a

number of replications, that perform Q descent processes

on Q randomly generated linear combinations of LT (Γ)
and LE(Γ);

• An Algorithm Descent VR EPC that pipelines

GRASP VR EPC(Q) and some pseudo-descent process

parametrized by 2 flexibility parameters δTime and

δEner, that allow modifying the route Γ even when

neither δTime nor δEner decreases.

The GRASP Algorithm GRASP VR EPC.

It considers a replication parameter Q and works as follows:

1) At any replication q, it randomly generates two non

negative scaling parameters ωTime and ωEner together

with an initial route Γ(q);
2) Then it applies 2 Opt and Reloc until Γ(q) becomes a

local optimum with respect to the surrogate objective

function ωTime · LT (Γ)+ ωEner · LE(Γ);
3) Finally it computes W Aux(Γ(q)) while applying the

PDYN EPC algorithm and updates the best current route

Γ(qBest). When the whole process is over, it computes

the exact value W (Γ(qBest)) while applying the restric-

tion of VR EPC MILP to Γ.

This is summarized by Algorithm 1:

The Pseudo-Descent Algorithm Descent VR EPC: Clearly,

it may occur that current route Γ may be improved by opera-

tors 2 Opt and Reloc while neither LTime(Γ) nor LEner(Γ)
may be improved. This suggests allowing the 2 Opt and

Reloc operators to slightly deteriorate the values LTime(Γ) and

LEner(Γ) and deciding about their application after computing

W Aux(Γ) while relying on the algorithm PDYN EPC. More

precisely, let us consider 2 parameters δTime > 0, δEner > 0
and 2 routes Γ1,Γ2. We say that Γ2 deteriorates Γ1 by no

more than (δTime, δEner) if at least one of the 2 following

inequalities holds:

1) LTime(Γ2)− LTime(Γ1) ≤ δ1;

2) LEner(Γ2)− LEner(Γ1) ≤ δ2.

Then the parametric Descent VR EPC(δTime, δEner) algo-

rithm works according to the following descent loop:

1) It initializes Γ as a good quality route (for instance by

applying GRASP SVR EP(1) (1 replication));

2) At any iteration of the descent process, it generates all

the 2 Opt and Reloc parameters (j1, j2) such that result-

ing route deteriorates Γ by no more than (δTime, δEner);
3) For any parameter (j1, j2) selected this way and

any resulting route Γ1 it tests its impact on the

value W Aux(Γ1) obtained through application of the

PDYN EPC Algorithm;

Algorithm 1: GRASP VR EPC(Replication Parame-

ter Q).

input : The inputs of the VR EPC Problem, that we

suppose to be feasible

output: A best route ΓBest and related value WBest

1 ΓBest ← Undefined; W AuxBest ← +∞ ;

2 for q = 0, . . . , Q do

3 Randomly generate coefficients ωTime and ωEner ;

4 Randomly generate Γ(q); Stop ← False ;

5 while not Stop do

6 By applying 2 Opt or Reloc, decrease

ωTime · LT (Γ(q)) + ωEner · LE(Γ(q));
7 if Fail(decrease) then

8 Stop ← True

9 else

10 Modify Γ(q) accordingly

11 end

12 end

13 Compute W Aux(Γ(q)) by applying PDYN EPC;

if W AuxBest > W Aux(Γ(q)) then

14 ΓBest ← Γ(q); W AuxBest ←W Aux(Γ(q));
15 end

16 Compute the exact value WBest (by application of the

restriction of VR EPC MILP to ΓBest;

return ΓBest and WBest.

4) If improving Γ this way is possible, then it does it

according to a Best Descent strategy else it stops. In

case it stops then it compute the exact current value

W (Γ).

This is summarized by Algorithm 2:

Remark 2: Both GRASP VR EPC and Descent VR EPC

might be easily extended along more sophisticated metaheuris-

tic scheme, more specifically genetic and ant colony based

schemes (see [9] and [7]).

D. Numerical Experiments

Table VII involves the same instances as Table II. It dis-

plays:

• The value GRASP 50 obtained by

GRASP VR EPC(50) (50 replications) and related

CPU time CPU Grasp 50.

• The value GRASP 150 obtained by

GRASP VR EPC(150) (150 replications).

Table VIII considers the same instances as Table III and

displays The value Desc 1 +LS obtained by the application

of the following pipeline: GRASP VR EPC(1) (1 replication)

→ Descent VR EPC(4, 4), together with related CPU time

CPU Desc+ LS.

Comments: GRASP VR EPC with 150 replications most of-

ten reaches quasi-optimality. It outperforms the upper bound

computed by CPLEX in 4 CPU hours in 8 among the

20 instances and obtains the same value as CPLEX in 6

other instances. This trend is reinforced when M = 30.
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Algorithm 2: Descent VR EPC(Parameters δTime ≥
0, δEner ≥ 0).

input : The inputs of the VR EPC Problem, that we

suppose to be feasible

output: A (good quality) route Γ

1 Initialize Γ and compute an approximation W of

W (Γ) by applying the PDYN EPC Algorithm (value

W Aux(Γ));
Stop ← False ;

2 while not Stop do

3 Generate all the parameters j1, j2 of the 2 Opt

operator such that applying 2 Opt or Reloc to Γ
deteriorates Γ by no more than (δTime, δEner) ;

4 for Any 3-uple (Op, j1, j2) (Op meaning either

Reloc or 2 Opt) generated this way do

5 Apply the PDYN EPC Algorithm to the route

resulting from application of (Op, j1, j2) to Γ;
6 end

7 if A decrease of W Aux(Γ) with respect to W is

obtained at least once then

8 Replace Γ by Op(Γ, j1, j2) and W by related

W Aux value (PDYN EPC Algorithm), with

(Op, j1, j2) related to the best improvement
9 else

10 Stop ← False;

11 end

12 end

13 Compute the exact value W (Γ) (by application of the

restriction of VR EPC MILP to Γ;

return Γ and W (Γ).

Applying the pipe-line GRASP VR EPC(1) (1 replication)

→ Descent VR EPC(4, 4) improves the value obtained by

GRASP VR EP5(50) in 8 among the 20 instances, and the

value obtained by GRASP VR EPC(150) in 5 among the

20 instances. The running times induced by the calls to

Descent VR EPC(4, 4) are rather high, due to the fact that

we did not optimize the transformation of a route Γ into a

PDYN EPC input. Also, we may notice that in some cases,

Descent VR EPC(4, 4) yields poor results (if we refer to

GRASP VR EP5(50)) due to a poor initial route computed

by a single GRASP VR EPC(1) run.

V. CONCLUSION

We dealt here with a complex model which make interact a

routing process with an energy production process. W adopted

a centralized point of view, which skips uncertainties, and tried

both an exact MILP approach and a heuristic approach based

upon a statistical correlation analysis. In the future, it will

of course be interesting to try other methods. Also we plan

dealing with collaborative contexts, when several consumers

interact, each provided with its own agenda and incomplete

information, and with the issue related to the uncertainty

induced by solar energy production.

TABLE VII
RESULTS FOR GRASP VR EPC

Id GRASP 50 GRASP 150 CPU Grasp 50
1 171 171 52,9

2 131 131 95,1

1-2 175 175 10,4

2-2 135 135 14,8

3 173 173 58,4

4 129 126 71,4

3-2 176 176 19,8

4-2 138 134 20,8

5 156 156 158,7

6 175 175 333,5

7 214 214 296,2

5-2 158 158 58,5

6-2 181 181 106,3

7-2 226 226 74,6

8 121 121 227,5

9 123 119 225,5

10 159 159 317,6

8-1 135 132 91,7

9-1 128 123 78,7

10-1 163 153 96,7

TABLE VIII
RESULTS FOR GRASP VR EPC

Id GRASP 150 Desc 1 + LS CPU Desc+ LS

1 171 171 22,7

2 131 134 16,5

1-2 175 175 15,6

2-2 135 140 5,4

3 173 165 197,0

4 126 144 111,0

3-2 176 171 36,7

4-2 134 161 41,1

5 156 168 356,2

6 175 176 565,7

7 214 207 254,4

5-2 158 173 109,8

6-2 181 181 203,6

7-2 226 220 109,0

8 121 121 1998,6

9 119 122 2351,0

10 159 151 876,2

8-1 132 134 773,0

9-1 123 130 629,1

10-1 153 159 633,5
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